SlideShare une entreprise Scribd logo
1  sur  45
Télécharger pour lire hors ligne
Hashing with Graphs
Anchor Graph Hashing
                2011 6   24       10
                                                 2
                              (                      )
                       http://blog.beam2d.net @beam2d
‣

‣



‣
Hashing with Graphs.
Liu, W., Wang, J., Kumar, S. and Chang, S.-F. ICML ’11, 2011.

                                                                2
‣
‣




‣
‣

    3
‣
‣




‣
‣

    4
Near Neighbor Search

xi ∈ R (i ∈ {1, …, n}) :
      d


D: R × R → R :
     d    d




                      x ∈ Rd
     x1, …, xn         x




                                    5
k-




     6
‣       : x

    -   O(dn)
    -   O(dn) (   )

‣
    -
    -


                      7
hashing

‣          d
         x∈R                     y
    -y   r                   (       2   )
    -
‣
    (                    ”       ”       )

‣
    -
               (             )

                                             8
(   ,2   )




             9
‣
    -
‣
    -




        10
‣
    -
            (
        )
    -

‣


                11
(AGH   )
‣



‣
‣

‣


           12
‣
‣




‣
‣

    13
xi ∈ R (i ∈ {1, …, n}) :
         d


D: R × R → R :
     d    d


h: Rd × Rd → R :
                                               
                                    1 2
                    h(x, x ) = exp − D (x, x  ) .
                          
                                    t
                                                  (t  0 :   )
A = (h(xi, xj)) ij ∈ R          n×n
                                      :
Yi ∈ {1, -1} : xi
            r


Y∈R   n×r
             : Yi
                T
                            i
yk : Y          k      (k                 )
                                                             14
3                         Y
‣
‣
‣
                 n
                 
               1             2
        min        Yi − Yj  Aij
         Y     2
                 i,j=1
                             n×r             
        s.t.   Y ∈ {1, −1}         , 1 Y = 0, Y Y = nIr×r .

                                      (1 :          1          )
                    Y
                                                              15
r=1            NP-hard

xi (i ∈ {1, …, n})                 Aij
                      G
‣r = 1



            Yi = -1


                          Yi = 1

                                         16
Y

                Y
                 n
                 
               1             2
        min        Yi − Yj  Aij
         Y     2
                i,j=1
                                     
        s.t.   Y∈R   n×r
                           , 1 Y = 0, Y Y = nIr×r .


    Y                   1, -1

                                                      17
G       A              D = diag(A1)
             L=D-A         G



  n
                    n
                                  n
                                   
1             2             2         
    Yi − Yj  Aij =   Yi  Dii −   Yi Yj Aij
2
 i,j=1               i=1           i,j=1
                                   
                  = tr(Y DY) − tr(Y AY)
                           
                  = tr(Y LY).
                                                 18
L


                 Y
                 
        min tr(Y LY)
         Y
        s.t. Y ∈ Rn×r , 1 Y = 0, Y  Y = nIr×r .


‣                    Y     k    yk      L
             0                                 k
    -    0                     1
‣
                                                    19
L

‣                n   n×n       L
        O(n )3

    -
    -        L


                           A
         L




                                   20
‣
‣




‣
‣

    21
‣
‣ m (≪ n)        u1, …, um ∈ R  d




                                    :




‣
‣            s                              (
    s = 2)                 (2           )       22
Truncated similarity

‣                                                               :
                                               n×m
                                        Z∈R
                            h(xi ,uj )
                        
                                  h(xi ,uj  ) ,   ∀j ∈ i
            Zij =        j  ∈i

                     0,                            otherwise.
        (       i   xi            s ( ≪ m)                      )


‣Z          i           xi
    s                               0
                                                                23
Anchor Graph

Λ = diag(1 Z) ∈ R
          T       m×m
                          :Z



                        ^ = ZΛ−1 Z .
                        A                        ≤m

      G                        A        ^
                                        A
              G

‣    2                  Zij
                    ^
                    A                   G(   )
                                                  24
‣                               G

‣
                          L
‣A
 ^          (       )                   L
                                 ^     ^       ^
                        L = diag(A1) − A = I − A
                ^
                A
    -           L       ^
                        A                          (1
        )
                                                        25
‣ M = Λ Z ZΛ ∈ R
        -1/2 T    -1/2    m×m


‣A^ = ZΛ-1/2Λ-1/2ZT
‣ ZΛ = UΣ V :
    -1/2     1/2 T


    (    U∈R     n×m
                         Σ∈Rm×m
                                  V∈R    m×m
                                            )
‣
           ^ = UΣ1/2 V  VΣ1/2 U = UΣU ,
           A
          M = VΣ1/2 U UΣ1/2 V  = VΣV  .


‣                          U = ZΛ -1/2
                                     VΣ  -1/2

‣U           r               Y                  26
‣Σ                             1, σ1, …, σr, …
  σ1, …, σr            V         v1, …, vr ∈ R m

‣ Σr = diag(σ1, …, σr) Vr = [v1, …, vr]
‣           W
                  √ −1/2       −1/2
             W = nΛ        Vr Σr     ∈R m×r


‣                   Y


                        Y = ZW.
                                                   27
‣
‣




‣
‣

    28
Out-of-sample

‣

    -
‣           x

    -
‣

    -
                29
‣                 x∈R     n


               [δ1 (x)h(x, u1 ), . . . , δm (x)h(x, um )]
        z(x) =          m                                 .
                           j=1 δj (x)h(x, uj )

          δj(x)      x               s
 j            1                  j       0
‣A
 ^
                  ^              −1  
                  A(x, x ) = z (x)Λ z(x ).

    -                    (Λ                      )
                                                               30
‣
‣ A
  ^   n→∞                          K

‣              p(x)              p(x)
                            G
                     
              Gf =       K(·, x)f(x)dp(x).

‣         ^
          A                                  G

‣     G
                                                 31
Nyström method


‣                                        ^
                                         A   k
                                                 K
    k
‣                             n
         k
                      n
                      
                    1   ^
        φn,k (x) =      A(x, xi )Yik .
                   σk
                      i=1



                                                     32
AGH         Nyström

                    n
                    
                  1   ^
      φn,k (x) =      A(x, xi )Yik .
                 σk
                    i=1

‣
‣
                         
           φn,k (x) =   wk z(x).

-
-       O(dm)
-
                                       33
‣
‣




‣
‣

    34
d:
n:
m:
T:
s:
r:   (   )




             35
AGH

1.                               u1, …, um
2.                             Z        Λ
           -1/2 T   -1/2
3.   M = Λ Z ZΛ
4.   M                Σr, Vr
         √ −1/2     −1/2
5.   W = nΛ     Vr Σr
6.   Y = ZW

‣               O(dmnT + dmn + m2n)
     -T:
‣               O((d + s + r)n)        O((s + r)n)
                                                     36
     -
AGH

                        T
1.       x             W z(x)


‣        O(dm + sr)
‣        O((d + r)m)
     -




                                37
‣
‣
‣
    ‣
    ‣
    ‣
    ‣
‣
‣
        38
‣             :         *(            )
‣ 28 × 28 = 784
‣                (784      )
‣               n = 69,000
‣                 1,000




* http://yann.lecun.com/exdb/mnist/       39
(                    )




    m = 300, s = 2       40
‣
‣
‣
    ‣
    ‣
    ‣
    ‣
‣
‣
        41
‣

‣




‣
    42
‣


‣

    -A



‣
         43
A. Andoni and P. Indyk. Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions. Proceedings of
FOCS, 2006.
Y. Bengio, O. Delalleau, N. Le Roux, and J.-F. Paiement. Learning
eigenfunctions links spectral embedding and kernel pca. Neural
Computation, 2004.
A. Gionis, P. Indyk, and R. Motwani. Similarity search in high
dimensions via hashing. Proceedings of VLDB, 1999.
P. Indyk and R. Motwani. Approximate nearest neighbor: Towards
removing the curse of dimensionality. Proceedings of STOC, 1998.
B. Kulis and T. Darrell. Learning to hash with binary reconstructive
embeddings. NIPS 22, 2010.
B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for
scalable image search. Proceedings of ICCV, 2009.                      44
W. Liu, J. He, and S.-F. Chang. Large graph construction for scalable
semi-supervised learning. Proceedings of ICML, 2010.
W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with graphs.
ICML, 2011.
M. Raginsky and S. Lazebnik. Locality-sensitive binary codes from
shift-invariant kernels. NIPS 22, 2010.
J. Wang, S. Kumar, and S.-F. Chang. Sequential projection learning for
hashing with compact codes. Proceedings of ICML, 2010.
Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. NIPS 21, 2009.
C. Williams and M. Seeger. The effect of the input density distribution
on kernel-based classifiers. Proceedings of ICML, 2000.


                                                                          45

Contenu connexe

Tendances

Gaussseidelsor
GaussseidelsorGaussseidelsor
Gaussseidelsor
uis
 
4. standard granger causality
4. standard granger causality4. standard granger causality
4. standard granger causality
Quang Hoang
 
กลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Pptกลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Ppt
tuiye
 
7. toda yamamoto-granger causality
7. toda yamamoto-granger causality7. toda yamamoto-granger causality
7. toda yamamoto-granger causality
Quang Hoang
 
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
Alexander Decker
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
Delta Pi Systems
 

Tendances (19)

Regression Theory
Regression TheoryRegression Theory
Regression Theory
 
Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.
 
Signal Processing Course : Sparse Regularization of Inverse Problems
Signal Processing Course : Sparse Regularization of Inverse ProblemsSignal Processing Course : Sparse Regularization of Inverse Problems
Signal Processing Course : Sparse Regularization of Inverse Problems
 
Admissions in india 2015
Admissions in india 2015Admissions in india 2015
Admissions in india 2015
 
Andreas Eberle
Andreas EberleAndreas Eberle
Andreas Eberle
 
Gaussseidelsor
GaussseidelsorGaussseidelsor
Gaussseidelsor
 
Journey to structure from motion
Journey to structure from motionJourney to structure from motion
Journey to structure from motion
 
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
Scientific Computing with Python Webinar 9/18/2009:Curve FittingScientific Computing with Python Webinar 9/18/2009:Curve Fitting
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
 
4. standard granger causality
4. standard granger causality4. standard granger causality
4. standard granger causality
 
กลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Pptกลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Ppt
 
7. toda yamamoto-granger causality
7. toda yamamoto-granger causality7. toda yamamoto-granger causality
7. toda yamamoto-granger causality
 
Cheat Sheet
Cheat SheetCheat Sheet
Cheat Sheet
 
Markov Tutorial CDC Shanghai 2009
Markov Tutorial CDC Shanghai 2009Markov Tutorial CDC Shanghai 2009
Markov Tutorial CDC Shanghai 2009
 
Computation of the marginal likelihood
Computation of the marginal likelihoodComputation of the marginal likelihood
Computation of the marginal likelihood
 
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
 
Montpellier Math Colloquium
Montpellier Math ColloquiumMontpellier Math Colloquium
Montpellier Math Colloquium
 
Query Suggestion @ tokyotextmining#2
Query Suggestion @ tokyotextmining#2Query Suggestion @ tokyotextmining#2
Query Suggestion @ tokyotextmining#2
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 
iTute Notes MM
iTute Notes MMiTute Notes MM
iTute Notes MM
 

En vedette

はじめてのパターン認識 第5章 k最近傍法(k_nn法)
はじめてのパターン認識 第5章 k最近傍法(k_nn法)はじめてのパターン認識 第5章 k最近傍法(k_nn法)
はじめてのパターン認識 第5章 k最近傍法(k_nn法)
Motoya Wakiyama
 

En vedette (20)

はじめてのパターン認識 第5章 k最近傍法(k_nn法)
はじめてのパターン認識 第5章 k最近傍法(k_nn法)はじめてのパターン認識 第5章 k最近傍法(k_nn法)
はじめてのパターン認識 第5章 k最近傍法(k_nn法)
 
On the benchmark of Chainer
On the benchmark of ChainerOn the benchmark of Chainer
On the benchmark of Chainer
 
深層学習ライブラリの環境問題Chainer Meetup2016 07-02
深層学習ライブラリの環境問題Chainer Meetup2016 07-02深層学習ライブラリの環境問題Chainer Meetup2016 07-02
深層学習ライブラリの環境問題Chainer Meetup2016 07-02
 
ヤフー音声認識サービスでのディープラーニングとGPU利用事例
ヤフー音声認識サービスでのディープラーニングとGPU利用事例ヤフー音声認識サービスでのディープラーニングとGPU利用事例
ヤフー音声認識サービスでのディープラーニングとGPU利用事例
 
俺のtensorが全然flowしないのでみんなchainer使おう by DEEPstation
俺のtensorが全然flowしないのでみんなchainer使おう by DEEPstation俺のtensorが全然flowしないのでみんなchainer使おう by DEEPstation
俺のtensorが全然flowしないのでみんなchainer使おう by DEEPstation
 
マシンパーセプション研究におけるChainer活用事例
マシンパーセプション研究におけるChainer活用事例マシンパーセプション研究におけるChainer活用事例
マシンパーセプション研究におけるChainer活用事例
 
Chainer Update v1.8.0 -> v1.10.0+
Chainer Update v1.8.0 -> v1.10.0+Chainer Update v1.8.0 -> v1.10.0+
Chainer Update v1.8.0 -> v1.10.0+
 
Chainer, Cupy入門
Chainer, Cupy入門Chainer, Cupy入門
Chainer, Cupy入門
 
NVIDIA 更新情報: Tesla P100 PCIe/cuDNN 5.1
NVIDIA 更新情報: Tesla P100 PCIe/cuDNN 5.1NVIDIA 更新情報: Tesla P100 PCIe/cuDNN 5.1
NVIDIA 更新情報: Tesla P100 PCIe/cuDNN 5.1
 
Chainerを使って細胞を数えてみた
Chainerを使って細胞を数えてみたChainerを使って細胞を数えてみた
Chainerを使って細胞を数えてみた
 
ReviewNet_161122
ReviewNet_161122ReviewNet_161122
ReviewNet_161122
 
スペクトラル・クラスタリング
スペクトラル・クラスタリングスペクトラル・クラスタリング
スペクトラル・クラスタリング
 
[DL輪読会]TREE-STRUCTURED VARIATIONAL AUTOENCODER
[DL輪読会]TREE-STRUCTURED VARIATIONAL AUTOENCODER[DL輪読会]TREE-STRUCTURED VARIATIONAL AUTOENCODER
[DL輪読会]TREE-STRUCTURED VARIATIONAL AUTOENCODER
 
[Dl輪読会]dl hacks輪読
[Dl輪読会]dl hacks輪読[Dl輪読会]dl hacks輪読
[Dl輪読会]dl hacks輪読
 
Iclr2016 vaeまとめ
Iclr2016 vaeまとめIclr2016 vaeまとめ
Iclr2016 vaeまとめ
 
[DL輪読会]QUASI-RECURRENT NEURAL NETWORKS
[DL輪読会]QUASI-RECURRENT NEURAL NETWORKS[DL輪読会]QUASI-RECURRENT NEURAL NETWORKS
[DL輪読会]QUASI-RECURRENT NEURAL NETWORKS
 
Paper intoduction "Playing Atari with deep reinforcement learning"
Paper intoduction   "Playing Atari with deep reinforcement learning"Paper intoduction   "Playing Atari with deep reinforcement learning"
Paper intoduction "Playing Atari with deep reinforcement learning"
 
"Playing Atari with Deep Reinforcement Learning"
"Playing Atari with Deep Reinforcement Learning""Playing Atari with Deep Reinforcement Learning"
"Playing Atari with Deep Reinforcement Learning"
 
[DL輪読会]Unsupervised Cross-Domain Image Generation
[DL輪読会]Unsupervised Cross-Domain Image Generation[DL輪読会]Unsupervised Cross-Domain Image Generation
[DL輪読会]Unsupervised Cross-Domain Image Generation
 
[DL輪読会]StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generat...
[DL輪読会]StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generat...[DL輪読会]StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generat...
[DL輪読会]StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generat...
 

Similaire à rinko2011-agh

Jyokyo-kai-20120605
Jyokyo-kai-20120605Jyokyo-kai-20120605
Jyokyo-kai-20120605
ketanaka
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
zabidah awang
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
zabidah awang
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
zabidah awang
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
zabidah awang
 
Hybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity MarketHybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity Market
tomoyukiichiba
 

Similaire à rinko2011-agh (20)

Tprimal agh
Tprimal aghTprimal agh
Tprimal agh
 
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton TensorDual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
 
Holographic Cotton Tensor
Holographic Cotton TensorHolographic Cotton Tensor
Holographic Cotton Tensor
 
Metric Embeddings and Expanders
Metric Embeddings and ExpandersMetric Embeddings and Expanders
Metric Embeddings and Expanders
 
Prediction of Financial Processes
Prediction of Financial ProcessesPrediction of Financial Processes
Prediction of Financial Processes
 
Jyokyo-kai-20120605
Jyokyo-kai-20120605Jyokyo-kai-20120605
Jyokyo-kai-20120605
 
test
testtest
test
 
Intraguild mutualism
Intraguild mutualismIntraguild mutualism
Intraguild mutualism
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
Matrix calculus
Matrix calculusMatrix calculus
Matrix calculus
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
Hybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity MarketHybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity Market
 
Formulas
FormulasFormulas
Formulas
 
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie AlgebrasT. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
 
Iceaa07 Foils
Iceaa07 FoilsIceaa07 Foils
Iceaa07 Foils
 
Modeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationModeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential Equation
 
One way to see higher dimensional surface
One way to see higher dimensional surfaceOne way to see higher dimensional surface
One way to see higher dimensional surface
 
Momentum sudut total
Momentum sudut totalMomentum sudut total
Momentum sudut total
 

Plus de Seiya Tokui

Plus de Seiya Tokui (20)

Chainer/CuPy v5 and Future (Japanese)
Chainer/CuPy v5 and Future (Japanese)Chainer/CuPy v5 and Future (Japanese)
Chainer/CuPy v5 and Future (Japanese)
 
Chainer v3
Chainer v3Chainer v3
Chainer v3
 
Chainer v2 and future dev plan
Chainer v2 and future dev planChainer v2 and future dev plan
Chainer v2 and future dev plan
 
Chainer v2 alpha
Chainer v2 alphaChainer v2 alpha
Chainer v2 alpha
 
Learning stochastic neural networks with Chainer
Learning stochastic neural networks with ChainerLearning stochastic neural networks with Chainer
Learning stochastic neural networks with Chainer
 
深層学習フレームワーク Chainer の開発と今後の展開
深層学習フレームワーク Chainer の開発と今後の展開深層学習フレームワーク Chainer の開発と今後の展開
深層学習フレームワーク Chainer の開発と今後の展開
 
論文紹介 Pixel Recurrent Neural Networks
論文紹介 Pixel Recurrent Neural Networks論文紹介 Pixel Recurrent Neural Networks
論文紹介 Pixel Recurrent Neural Networks
 
Introduction to Chainer
Introduction to ChainerIntroduction to Chainer
Introduction to Chainer
 
Differences of Deep Learning Frameworks
Differences of Deep Learning FrameworksDifferences of Deep Learning Frameworks
Differences of Deep Learning Frameworks
 
Overview of Chainer and Its Features
Overview of Chainer and Its FeaturesOverview of Chainer and Its Features
Overview of Chainer and Its Features
 
生成モデルの Deep Learning
生成モデルの Deep Learning生成モデルの Deep Learning
生成モデルの Deep Learning
 
Chainer Development Plan 2015/12
Chainer Development Plan 2015/12Chainer Development Plan 2015/12
Chainer Development Plan 2015/12
 
Towards Chainer v1.5
Towards Chainer v1.5Towards Chainer v1.5
Towards Chainer v1.5
 
Deep Learningの基礎と応用
Deep Learningの基礎と応用Deep Learningの基礎と応用
Deep Learningの基礎と応用
 
Chainerの使い方と自然言語処理への応用
Chainerの使い方と自然言語処理への応用Chainerの使い方と自然言語処理への応用
Chainerの使い方と自然言語処理への応用
 
論文紹介 Compressing Neural Networks with the Hashing Trick
論文紹介 Compressing Neural Networks with the Hashing Trick論文紹介 Compressing Neural Networks with the Hashing Trick
論文紹介 Compressing Neural Networks with the Hashing Trick
 
深層学習フレームワークChainerの紹介とFPGAへの期待
深層学習フレームワークChainerの紹介とFPGAへの期待深層学習フレームワークChainerの紹介とFPGAへの期待
深層学習フレームワークChainerの紹介とFPGAへの期待
 
Introduction to Chainer: A Flexible Framework for Deep Learning
Introduction to Chainer: A Flexible Framework for Deep LearningIntroduction to Chainer: A Flexible Framework for Deep Learning
Introduction to Chainer: A Flexible Framework for Deep Learning
 
論文紹介 Semi-supervised Learning with Deep Generative Models
論文紹介 Semi-supervised Learning with Deep Generative Models論文紹介 Semi-supervised Learning with Deep Generative Models
論文紹介 Semi-supervised Learning with Deep Generative Models
 
Recurrent Neural Networks
Recurrent Neural NetworksRecurrent Neural Networks
Recurrent Neural Networks
 

Dernier

Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Victor Rentea
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 

Dernier (20)

Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering Developers
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital Adaptability
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 

rinko2011-agh

  • 1. Hashing with Graphs Anchor Graph Hashing 2011 6 24 10 2 ( ) http://blog.beam2d.net @beam2d
  • 2. ‣ ‣ ‣ Hashing with Graphs. Liu, W., Wang, J., Kumar, S. and Chang, S.-F. ICML ’11, 2011. 2
  • 5. Near Neighbor Search xi ∈ R (i ∈ {1, …, n}) : d D: R × R → R : d d x ∈ Rd x1, …, xn x 5
  • 6. k- 6
  • 7. : x - O(dn) - O(dn) ( ) ‣ - - 7
  • 8. hashing ‣ d x∈R y -y r ( 2 ) - ‣ ( ” ” ) ‣ - ( ) 8
  • 9. ( ,2 ) 9
  • 10. - ‣ - 10
  • 11. - ( ) - ‣ 11
  • 12. (AGH ) ‣ ‣ ‣ ‣ 12
  • 14. xi ∈ R (i ∈ {1, …, n}) : d D: R × R → R : d d h: Rd × Rd → R : 1 2 h(x, x ) = exp − D (x, x ) . t (t 0 : ) A = (h(xi, xj)) ij ∈ R n×n : Yi ∈ {1, -1} : xi r Y∈R n×r : Yi T i yk : Y k (k ) 14
  • 15. 3 Y ‣ ‣ ‣ n 1 2 min Yi − Yj Aij Y 2 i,j=1 n×r s.t. Y ∈ {1, −1} , 1 Y = 0, Y Y = nIr×r . (1 : 1 ) Y 15
  • 16. r=1 NP-hard xi (i ∈ {1, …, n}) Aij G ‣r = 1 Yi = -1 Yi = 1 16
  • 17. Y Y n 1 2 min Yi − Yj Aij Y 2 i,j=1 s.t. Y∈R n×r , 1 Y = 0, Y Y = nIr×r . Y 1, -1 17
  • 18. G A D = diag(A1) L=D-A G n n n 1 2 2 Yi − Yj Aij = Yi Dii − Yi Yj Aij 2 i,j=1 i=1 i,j=1 = tr(Y DY) − tr(Y AY) = tr(Y LY). 18
  • 19. L Y min tr(Y LY) Y s.t. Y ∈ Rn×r , 1 Y = 0, Y Y = nIr×r . ‣ Y k yk L 0 k - 0 1 ‣ 19
  • 20. L ‣ n n×n L O(n )3 - - L A L 20
  • 22. ‣ ‣ m (≪ n) u1, …, um ∈ R d : ‣ ‣ s ( s = 2) (2 ) 22
  • 23. Truncated similarity ‣ : n×m Z∈R h(xi ,uj ) h(xi ,uj ) , ∀j ∈ i Zij = j ∈i 0, otherwise. ( i xi s ( ≪ m) ) ‣Z i xi s 0 23
  • 24. Anchor Graph Λ = diag(1 Z) ∈ R T m×m :Z ^ = ZΛ−1 Z . A ≤m G A ^ A G ‣ 2 Zij ^ A G( ) 24
  • 25. G ‣ L ‣A ^ ( ) L ^ ^ ^ L = diag(A1) − A = I − A ^ A - L ^ A (1 ) 25
  • 26. ‣ M = Λ Z ZΛ ∈ R -1/2 T -1/2 m×m ‣A^ = ZΛ-1/2Λ-1/2ZT ‣ ZΛ = UΣ V : -1/2 1/2 T ( U∈R n×m Σ∈Rm×m V∈R m×m ) ‣ ^ = UΣ1/2 V VΣ1/2 U = UΣU , A M = VΣ1/2 U UΣ1/2 V = VΣV . ‣ U = ZΛ -1/2 VΣ -1/2 ‣U r Y 26
  • 27. ‣Σ 1, σ1, …, σr, … σ1, …, σr V v1, …, vr ∈ R m ‣ Σr = diag(σ1, …, σr) Vr = [v1, …, vr] ‣ W √ −1/2 −1/2 W = nΛ Vr Σr ∈R m×r ‣ Y Y = ZW. 27
  • 29. Out-of-sample ‣ - ‣ x - ‣ - 29
  • 30. x∈R n [δ1 (x)h(x, u1 ), . . . , δm (x)h(x, um )] z(x) = m . j=1 δj (x)h(x, uj ) δj(x) x s j 1 j 0 ‣A ^ ^ −1 A(x, x ) = z (x)Λ z(x ). - (Λ ) 30
  • 31. ‣ ‣ A ^ n→∞ K ‣ p(x) p(x) G Gf = K(·, x)f(x)dp(x). ‣ ^ A G ‣ G 31
  • 32. Nyström method ‣ ^ A k K k ‣ n k n 1 ^ φn,k (x) = A(x, xi )Yik . σk i=1 32
  • 33. AGH Nyström n 1 ^ φn,k (x) = A(x, xi )Yik . σk i=1 ‣ ‣ φn,k (x) = wk z(x). - - O(dm) - 33
  • 36. AGH 1. u1, …, um 2. Z Λ -1/2 T -1/2 3. M = Λ Z ZΛ 4. M Σr, Vr √ −1/2 −1/2 5. W = nΛ Vr Σr 6. Y = ZW ‣ O(dmnT + dmn + m2n) -T: ‣ O((d + s + r)n) O((s + r)n) 36 -
  • 37. AGH T 1. x W z(x) ‣ O(dm + sr) ‣ O((d + r)m) - 37
  • 38. ‣ ‣ ‣ ‣ ‣ ‣ ‣ ‣ ‣ 38
  • 39. : *( ) ‣ 28 × 28 = 784 ‣ (784 ) ‣ n = 69,000 ‣ 1,000 * http://yann.lecun.com/exdb/mnist/ 39
  • 40. ( ) m = 300, s = 2 40
  • 41. ‣ ‣ ‣ ‣ ‣ ‣ ‣ ‣ ‣ 41
  • 43. ‣ ‣ -A ‣ 43
  • 44. A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Proceedings of FOCS, 2006. Y. Bengio, O. Delalleau, N. Le Roux, and J.-F. Paiement. Learning eigenfunctions links spectral embedding and kernel pca. Neural Computation, 2004. A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. Proceedings of VLDB, 1999. P. Indyk and R. Motwani. Approximate nearest neighbor: Towards removing the curse of dimensionality. Proceedings of STOC, 1998. B. Kulis and T. Darrell. Learning to hash with binary reconstructive embeddings. NIPS 22, 2010. B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for scalable image search. Proceedings of ICCV, 2009. 44
  • 45. W. Liu, J. He, and S.-F. Chang. Large graph construction for scalable semi-supervised learning. Proceedings of ICML, 2010. W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with graphs. ICML, 2011. M. Raginsky and S. Lazebnik. Locality-sensitive binary codes from shift-invariant kernels. NIPS 22, 2010. J. Wang, S. Kumar, and S.-F. Chang. Sequential projection learning for hashing with compact codes. Proceedings of ICML, 2010. Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. NIPS 21, 2009. C. Williams and M. Seeger. The effect of the input density distribution on kernel-based classifiers. Proceedings of ICML, 2000. 45