Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.

Selective Laser Melting versus Electron Beam Melting

19 441 vues

Publié le

Selective Laser Melting versus Electron Beam Melting

  1. 1. “État actuel des fabrications additives pour les applications métalliques” Atelier CNES – 18/19 Novembre 2013, Toulouse, France Olivier RIGO Carsten ENGEL 25.11.13 1© sirris | www.sirris.be | info@sirris.be |
  2. 2. Special thanks … Le Fonds Européen de Développement Régional et la Région Wallonne investissent dans votre avenir. 25.11.13 2© sirris | www.sirris.be | info@sirris.be |
  3. 3. Sirris | Metal Additive Manufacturing 25.11.13 3  Index  Sirris – short overview  Generalities:  Metal Additive Manufacturing  Technology comparison: LBM vs EBM  Metallurgical aspects  Mechanical aspects  Case studies  Contact © sirris | www.sirris.be | info@sirris.be |
  4. 4. Sirris | Driving industry by technology 130 experts & hight-tech infrastructure Collective centre of the technology industry • Non profit organization • Industry owned 4,700 industrial interventions (advice, projects, services) •within 1,700 different companies •whose 75% are SME’s •24M EUR turnover Mission: “Increase the competitiveness of companies of the Agoria sectors through technological innovations”
  5. 5. Sirris | 23 years of Additive Manufacturing AM centre – Leading position in EU 16 engineers and technicians 17 high-tech additive technologies in house Most complete installed base in EU Driving technology companies in applications Technologies: • Stereolithography (normal & hi-res) • Paste polymerisation for ceramics and metals (Optoform) • 3D Printing of plaster and metal powder • Laser sintering of polymeric powder (PA,…): P360 – P390 • Objet Connex 500: bi-material • Laser sintering of metal powder (parts and mould inserts) • Electron Beam Melting (Arcam A2) • 3D Printing of wax (Thermojet) • Vacuum Casting of Alu, Bronze, Zamak • Laser Cladding (EasyClad) • Laser Beam Melting (MTT) • Bi-material FDM system • Fab@home system (for students) • MCOR technology (color 3Dprinter) 25.11.13 5© sirris | www.sirris.be | info@sirris.be |
  6. 6. Sirris | Metal Additive Manufacturing 25.11.13 6  Index  Sirris – short overview  Generalities:  Metal Additive Manufacturing  Technology comparison: LBM vs EBM  Metallurgical aspects  Mechanical aspects  Case studies  Contact © sirris | www.sirris.be | info@sirris.be |
  7. 7. Generalities: Metal Additive Manufacturing 25.11.13 7© sirris | www.sirris.be | info@sirris.be | Direct Fabrication system Laser E-Beam Print head Nozzle Post- processing Indirect Binder Debinding + sintering Post- processing
  8. 8. Generalities: Metal Additive Manufacturing  Electron Beam Melting (EBM)  Laser Beam Melting (LBM) • Metallic powder deposited in a powder bed • Electron Beam • Vacuum • Build temperature: 680-720°C • Metallic powder deposited in a powder bed • Laser Beam • Argon flow along Ox direction • Build temperature: 200°C 25.11.13 8© sirris | www.sirris.be | info@sirris.be |
  9. 9. Generalities: Metal Additive Manufacturing 25.11.13 9© sirris | www.sirris.be | info@sirris.be |  Electron Beam Melting
  10. 10. Generalities: Metal Additive Manufacturing 25.11.13 10© sirris | www.sirris.be | info@sirris.be |  Electron Beam Melting
  11. 11. Benefits and drawbacks - EBM Benefits Drawbacks  Few developed materials, only conductive materials possible  Tricky to work with fine powder  Powder is sintered -> tricky to remove (e.g. interior channels)  Long dead time between 2 productions (8 hours for cooling – A2, A2X, A2XX systems)  Sintered powder = good for thermal conductivity = less supports  Suitable for very massive parts  Less supports are needed for manufacturing of parts  Possibility to stack parts on top of each other (mass production)  Process under vacuum (no gaz contaminations)  High productivity  No residual internal stress (constant 680-720°C build temperature)  Very fine microstructures (Ti6Al4V), very good mechanical and fatigue results (Ti6Al4V)  Expensive maintenance contract 25.11.13 11© sirris | www.sirris.be | info@sirris.be |
  12. 12. Generalities: Metal Additive Manufacturing  Electron Beam Melting (EBM)  Laser Beam Melting (LBM) • Metallic powder deposited in a powder bed • Electron Beam • Vacuum • Build temperature: 680-720°C • Metallic powder deposited in a powder bed • Laser Beam • Argon flow along Ox direction • Build temperature: 200°C 25.11.13 12© sirris | www.sirris.be | info@sirris.be |
  13. 13. 25/11/2013 © Sirris | www.sirris.be | info@sirris.be | 13 Spread powder Recoater Laser beam Melted zones Previous layers Initial plate Argon Main tank The building steps Generalities: Metal Additive Manufacturing
  14. 14. Laser Beam Melting – SLM Solutions 250HL 25.11.13 14© sirris | www.sirris.be | info@sirris.be |
  15. 15. Benefits and drawbacks - LBM Benefits Drawbacks • Flexibility for new material developments • Possibility to work with fine powders 10µm (d50) • Easy powder removing from the parts (the parts are not embedded in pre-sintered cake) • Short dead time between 2 productions (2 hours for cooling) • Possibility of restarting an interrupted job • Easy visual inspection of building process during the manufacturing (either with unaided eye or with optical camera) • Process is wall thickness dependent. (not suitable for massive parts) • Process involving internal stresses in the parts need additional annealing • Process requiring strong supports for parts fasten during the manufacturing (not only for heat transfer) • Need to use build plates of the same material than the powder used in the machine (e.g.: more expensive for titanium powder) • Cutting tool necessary (eg: a saw) in order to release the parts from the build plate 25.11.13 15© sirris | www.sirris.be | info@sirris.be |
  16. 16. Technology comparison – EBM – LBM LBM EBM Size (mm) 250 x 250 x 350*¹ 210 x 210 x 350*² Layer thickness (µm) 30 - 60 50 Min wall thickness (mm) 0.2 0.6 Accuracy (mm) +/- 0.1 +/- 0.3 Build rate (cm³/h) 5 - 20 80 Surface roughness (µm) 5 - 15 20 - 30 Geometry limitations Supports needed everywhere (thermal, anchorage) Less supports but powder is sintered Materials Stainless steel, tool steel, titanium, aluminum,… Only conductive materials (Ti6Al4V, CrCo,…) CENG 25/11/2013© sirris 2013 | www.sirris.be | info@sirris.be | 16 *1 SLM Solutions 250HL *2 Arcam A2
  17. 17. 0 2 4 6 8 10 productivity 3D complexity maximum size AccuracySurface finish mech prop - density material range EBM (Arcam) LBM (SLM Solutions Technology comparison – EBM – LBM CENG 25/11/2013© sirris 2013 | www.sirris.be | info@sirris.be | 17 *1 SLM Solutions 250HL *2 Arcam A2
  18. 18. Sirris | Metal Additive Manufacturing 25.11.13 18  Index  Sirris – short overview  Generalities:  Metal Additive Manufacturing  Technology comparison: LBM vs EBM  Metallurgical aspects  Mechanical aspects  Case studies  Contact © sirris | www.sirris.be | info@sirris.be |
  19. 19. Metallurgical aspects – LBM & EBM  Electron Beam Melting (EBM)  Laser Beam Melting (LBM) • Metallic powder deposited in a powder bed • Electron Beam • Vacuum • Build temperature: 680-720°C • Metallic powder deposited in a powder bed • Laser Beam • Argon flow along Ox direction • Build temperature: 200°C 25/11/2013 © sirris 2013 | www.sirris.be | info@sirris.be | 19
  20. 20. Experimental procedures  Electron Beam Melting (EBM)  Laser Beam Melting (LBM) • Random scanning strategy • Vacuum • Pre-heating of the subtrate: 680-720°C • Complex lasing strategy: 79° rotation between two successive layers • Argon flow along Ox direction • Pre-heating of the subtrate: 200°C Characteristics of theTi6Al4V ELI powders Process Ti (wt%) Al(wt%) V(wt%) LBM Bal 5,9 4,2 EBM Bal 3,3 4,4 Reference axis for EBM and LBM 25.11.13 20© sirris | www.sirris.be | info@sirris.be |
  21. 21. Results and discussion  Laser Beam Melting Perpendicular to the building direction • Equiaxed morphology (around 50μm of diameter) • Width does NOT significantly change along the height No evolution of the thermal gradient intensity, no evolution of the grain width 25.11.13 21© sirris | www.sirris.be | info@sirris.be |
  22. 22. Results and discussion  Laser Beam Melting Parallel to the building direction • Elongated grains characteristic of an epitaxial growth aligned with the heat flow • No epitaxial growth apparent Explanation: Tilt of the primary β grains Suggestion: combined effect of part geometry and a modification of the direction of the maximum heat flow that had possibly been brought about by the Argon flow 25.11.13 22© sirris | www.sirris.be | info@sirris.be |
  23. 23. Results and discussion Perpendicular to the building direction • Equiaxed morphology as for LBM  Electron Beam Melting (EBM) Parallel to the building direction Explanation: • Random scanning trategy • Thermal homogeneity due to substrate preheating (680-720°C) • No argon flow Hoped this would allow a significant reduction of internal stresses and then improve mechanical properties • Epitaxial growth: • No Tilt (≠LBM) 25.11.13 23© sirris | www.sirris.be | info@sirris.be |
  24. 24. Results and discussion  Electron Beam Melting (EBM) • Typical morphology of a Widmanstätten microstructure • Pre-heating of the substrate induces slower cooling rates thus favouring a diffusive transformation to α Cooling rate is directly influenced by the preheating of the substrate: the lower the preheating, the faster the cooling rates and the finer the resulting microstructure Characteristics: • Uniform, Fine Grain • Columnar • Lamellar Alpha Phase • Larger Beta Grains 25.11.13 24© sirris | www.sirris.be | info@sirris.be |
  25. 25. Results and discussion  Electron Beam Melting (EBM) Two types of porosities (spherical and non- spherical) due to entrapped argon in powder particles (amount porosity in GA is about 0.2-0.1%) or un- melted areas can be observed. 25.11.13 25© sirris | www.sirris.be | info@sirris.be |
  26. 26. Sirris | Metal Additive Manufacturing 25.11.13 26  Index  Sirris – short overview  Generalities:  Metal Additive Manufacturing  Technology comparison: LBM vs EBM  Metallurgical aspects  Mechanical aspects  Case studies  Contact © sirris | www.sirris.be | info@sirris.be |
  27. 27. Mechanichal comparison  Electron Beam Melting (EBM)  Laser Beam Melting (LBM) • Layer Thickness: 70µm • Job 130503a • As built sample without additional post treatment • Layer Thickness: 50µm • Job 130423a • Laser Beam • Argon flow along Ox direction 25.11.13 27© sirris | www.sirris.be | info@sirris.be |
  28. 28.  Tensile test:  According to standard ASTM E111-04 and NF EN 10002 standards Experimental procedures 25.11.13 28© sirris | www.sirris.be | info@sirris.be |
  29. 29. Results and discussion  Mechanical properties comparison (Tensile testing) 1126 1202 1029 1094 Rp0.2 (Mpa) Rm (Mpa) Yield strenght/UTS (Oy samples) LBM (50µm anealed) EBM (70µm) 3,1 9,9 LBM EBM A (%) 25.11.13 29© sirris | www.sirris.be | info@sirris.be |
  30. 30. Results and discussion  Mechanical properties comparison (Tensile testing) 1079 1120 974 1032 Rp0.2 (Mpa) Rm (Mpa) Yield strenght/UTS (Oz samples) LBM (50µm anealed) EBM (70µm) 4,1 10,8 LBM EBM A (%) 25.11.13 30© sirris | www.sirris.be | info@sirris.be |
  31. 31. Mechanichal comparison  Electron Beam Melting (EBM)  Laser Beam Melting (LBM) • Layer Thickness: 70µm • Job 120124a • As built sample without additional post treatment • Layer Thickness: 30µm • Job 121214b • Laser Beam • Argon flow along Ox direction 25.11.13 31© sirris | www.sirris.be | info@sirris.be |
  32. 32. Experimental procedures Whöler fatigue curve with a stress ratio of 0.1 and 4 different levels tensile test probes (3 each) :  10-50 kcycles (level 1)  100-200 kcycles (level 2)  500-800 kcycles (level 3)  1-2 exp 6 kcycles (level 4) Mode: strain-strain Control: force Form: sinusoidal R: 0.1 End process criteria: break or 10^7 cycles 25.11.13 32© sirris | www.sirris.be | info@sirris.be |  Fatigue test:  According to standard ASTM E466-07
  33. 33. Results and discussion  Mechanical properties comparison (Fatigue testing) EBM Oz Post-machined samples LBM Oz Post-machined samples 25.11.13 33© sirris | www.sirris.be | info@sirris.be |
  34. 34. Results and discussion  Mechanical properties comparison (Fatigue testing) EBM Oz Post-machined samples LBM Oz Post-machined samples Ref 2 Roll formed TiAl6V4 25.11.13 34© sirris | www.sirris.be | info@sirris.be |
  35. 35. Results and discussion  Hip treatement in order to improve fatigue properties EBM Oz Post-machined samples Ref 2 Roll formed TiAl6V4 EBM Oz Post-machined samples + HIP 25.11.13 35© sirris | www.sirris.be | info@sirris.be |
  36. 36. Results and discussion  Orientation impact? EBM Ox Post-machined samples + HIP Ref 2 Roll formed TiAl6V4 EBM Oz Post-machined samples + HIP 25.11.13 36© sirris | www.sirris.be | info@sirris.be |
  37. 37. Results and discussion  Surface roughness impact EBM Oz Post-machined samples EBM Oz As-Built sample Ref 2 Roll formed TiAl6V4 25.11.13 37© sirris | www.sirris.be | info@sirris.be |
  38. 38. Sirris | Metal Additive Manufacturing 25.11.13 38  Index  Sirris – short overview  Generalities:  Metal Additive Manufacturing  Technology comparison: LBM vs EBM  Metallurgical aspects  Mechanical aspects  Case studies  Contact © sirris | www.sirris.be | info@sirris.be |
  39. 39. Case study 01: Massive ESA-CSL part EBM  Dimensions: 208*175*38mm (L*W*H) Machining 25.11.13 39© sirris | www.sirris.be | info@sirris.be |
  40. 40. Case study 02: ESA-CSL-AlmaSpace LBM Machining Machining EBW 25.11.13 40© sirris | www.sirris.be | info@sirris.be |
  41. 41. Case study 03: Design of an “improved” support geometry for an antenna Support mass : 223 g 57.5% mass reductionInitial mass ~ 400 g LBM 25.11.13 41© sirris | www.sirris.be | info@sirris.be |
  42. 42. Sirris | Metal Additive Manufacturing 25.11.13 42  Index  Sirris – short overview  Generalities:  Metal Additive Manufacturing  Technology comparison: LBM vs EBM  Metallurgical aspects  Mechanical aspects  Case studies  Contact © sirris | www.sirris.be | info@sirris.be |
  43. 43. +32 498 91 94 71 Olivier.rigo@sirris.be Olivier RIGO 25.11.13© sirris | www.sirris.be | info@sirris.be | Olivier.rigo1
  44. 44. http://www.sirris.be #sirris http://www.linkedin.com/company/sirris 25.11.13 http://techniline.sirris.be © sirris | www.sirris.be | info@sirris.be |

×