SlideShare une entreprise Scribd logo
1  sur  29
Télécharger pour lire hors ligne
Arthur CHARPENTIER, Distortion in actuarial sciences
Distorting ... in actuarial sciences
Arthur Charpentier
Université Rennes 1
arthur.charpentier@univ-rennes1.fr
http ://freakonometrics.blog.free.fr/
Montréal Seminar of Actuarial and Financial Mathematics, McGill, November
2010.
1
Arthur CHARPENTIER, Distortion in actuarial sciences
1 Decision theory and distorted risk measures
Consider a preference ordering among risks, such that
1. is distribution based, i.e. if X Y , ∀ ˜X
L
= X ˜Y
L
= Y , then ˜X ˜Y ; hence,
we can write FX FY
2. is total, reflexive and transitive,
3. is continuous, i.e. ∀FX, FY and FZ such that FX FY FZ, ∃λ, µ ∈ (0, 1)
such that
λFX + (1 − λ)FZ FY µFX + (1 − µ)FZ.
4. satisfies an independence axiom, i.e. ∀FX, FY and FZ, and ∀λ ∈ (0, 1),
FX FY =⇒ λFX + (1 − λ)FZ λFY + (1 − λ)FZ.
5. satisfies an ordering axiom, ∀X and Y constant (i.e.
P(X = x) = P(Y = y) = 1, FX FY =⇒ x ≤ y.
2
Arthur CHARPENTIER, Distortion in actuarial sciences
Théorème1
Ordering satisfies axioms 1-2-3-4-5 if and only if ∃u : R → R, continuous, strictly
increasing and unique (up to an increasing affine transformation) such that ∀FX and FY :
FX FY ⇔
R
u(x)dFX(x) ≤
R
u(x)dFY (x)
⇔ E[u(X)] ≤ E[u(Y )].
But if we consider an alternative to the independence axiom
4’. satisfies an dual independence axiom, i.e. ∀FX, FY and FZ, and ∀λ ∈ (0, 1),
FX FY =⇒ [λF−1
X + (1 − λ)F−1
Z ]−1
[λF−1
Y + (1 − λ)F−1
Z ]−1
.
we (Yaari (1987)) obtain a dual representation theorem,
Théorème2
Ordering satisfies axioms 1-2-3-4’-5 if and only if ∃g : [0, 1] → R, continuous, strictly
increasing such that ∀FX and FY :
FX FY ⇔
R
g(FX(x))dx ≤
R
g(FY (x))dx
3
Arthur CHARPENTIER, Distortion in actuarial sciences
Standard axioms required on risque measures R : X → R,
– law invariance, X
L
= Y =⇒ R(X) = R(Y )
– increasing X ≥ Y =⇒ R(X) ≥ R(Y ),
– translation invariance ∀k ∈ R, =⇒ R(X + k) = R(X) + k,
– homogeneity ∀λ ∈ R+, R(λX) = λ · R(X),
– subadditivity R(X + Y ) ≤ R(X) + R(Y ),
– convexity ∀β ∈ [0, 1], R(βλX + [1 − β]Y ) ≤ β · R(X) + [1 − β] · R(Y ).
– additivity for comonotonic risks ∀X and Y comonotonic,
R(X + Y ) = R(X) + R(Y ),
– maximal correlation (w.r.t. measure µ) ∀X,
R(X) = sup {E(X · U) where U ∼ µ}
– strong coherence ∀X and Y , sup{R( ˜X + ˜Y )} = R(X) + R(Y ), where ˜X
L
= X
and ˜Y
L
= Y .
4
Arthur CHARPENTIER, Distortion in actuarial sciences
Proposition1
If R is a monetary convex fonction, then the three statements are equivalent,
– R is strongly coherent,
– R is additive for comonotonic risks,
– R is a maximal correlation measure.
Proposition2
A coherente risk measure R is additive for comonotonic risks if and only if there exists a
decreasing positive function φ on [0, 1] such that
R(X) =
1
0
φ(t)F−1
(1 − t)dt
where F(x) = F(X ≤ x).
see Kusuoka (2001), i.e. R is a spectral risk measure.
5
Arthur CHARPENTIER, Distortion in actuarial sciences
Definition1
A distortion function is a function g : [0, 1] → [0, 1] such that g(0) = 0 and g(1) = 1.
For positive risks,
Definition1
Given distortion function g, Wang’s risk measure, denoted Rg, is
Rg (X) =
∞
0
g (1 − FX(x)) dx =
∞
0
g FX(x) dx (1)
Proposition1
Wang’s risk measure can be defined as
Rg (X) =
1
0
F−1
X (1 − α) dg(α) =
1
0
VaR[X; 1 − α] dg(α). (2)
6
Arthur CHARPENTIER, Distortion in actuarial sciences
More generally (risks taking value in R)
Definition2
We call distorted risk measure
R(X) =
1
0
F−1
(1 − u)dg(u)
where g is some distortion function.
Proposition3
R(X) can be written
R(X) =
+∞
0
g(1 − F(x))dx −
0
−∞
[1 − g(1 − F(x))]dx.
7
Arthur CHARPENTIER, Distortion in actuarial sciences
risk measures R distortion function g
VaR g (x) = I[x ≥ p]
Tail-VaR g (x) = min {x/p, 1}
PH g (x) = xp
Dual Power g (x) = 1 − (1 − x)
1/p
Gini g (x) = (1 + p) x − px2
exponential transform g (x) = (1 − px
) / (1 − p)
Table 1 – Standard risk measures, p ∈ (0, 1).
8
Arthur CHARPENTIER, Distortion in actuarial sciences
Here, it looks like risk measures can be seen as R(X) = Eg◦P(X).
Remark1
Let Q denote the distorted measure induced by g on P, denoted g ◦ P i.e.
Q([a, +∞)) = g(P([a, +∞))).
Since g is increasing on [0, 1] Q is a capacity.
Example1
Consider function g(x) = xk
. The PH - proportional hazard - risk measure is
R(X; k) =
1
0
F−1
(1 − u)kuk−1
du =
∞
0
[F(x)]k
dx
If k is an integer [F(x)]k
is the survival distribution of the minimum over k values.
Definition2
The Esscher risk measure with parameter h > 0 is Es[X; h], defined as
Es[X; h] =
E[X exp(hX)]
MX(h)
=
d
dh
ln MX(h).
9
Arthur CHARPENTIER, Distortion in actuarial sciences
2 Archimedean copulas
Definition3
Let φ denote a decreasing function (0, 1] → [0, ∞] such that φ(1) = 0, and such that
φ−1
is d-monotone, i.e. for all k = 0, 1, · · · , d, (−1)k
[φ−1
](k)
(t) ≥ 0 for all t. Define
the inverse (or quasi-inverse if φ(0) < ∞) as
φ−1
(t) =



φ−1
(t) for 0 ≤ t ≤ φ(0)
0 for φ(0) < t < ∞.
The function
C(u1, · · · , un) = φ−1
(φ(u1) + · · · + φ(ud)), u1, · · · , un ∈ [0, 1],
is a copula, called an Archimedean copula, with generator φ.
Let Φd denote the set of generators in dimension d.
Example2
The independent copula C⊥
is an Archimedean copula, with generator φ(t) = − log t.
10
Arthur CHARPENTIER, Distortion in actuarial sciences
The upper Fréchet-Hoeffding copula, defined as the minimum componentwise,
M(u) = min{u1, · · · , ud}, is not Archimedean (but can be obtained as the limit of
some Archimedean copulas).
Set λ(t) = exp[−φ(t)] (the multiplicative generator), then
C(u1, ..., ud) = λ−1
(λ(u1) · · · λ(ud)), ∀u1, ..., ud ∈ [0, 1],
which can be written
C(u1, ..., ud) = λ−1
(Cp
erp[λ(u1), . . . , λ(ud)]), ∀u1, ..., ud ∈ [0, 1],
Note that it is possible to get an interpretation of that distortion of the
independence.
A large subclass of Archimedean copula in dimension d is the class of
Archimedean copulas obtained using the frailty approach.
Consider random variables X1, · · · , Xd conditionally independent, given a latent
factor Θ, a positive random variable, such that P (Xi ≤ xi|Θ) = Gi (x)
Θ
where
Gi denotes a baseline distribution function.
11
Arthur CHARPENTIER, Distortion in actuarial sciences
The joint distribution function of X is given by
FX (x1, · · · , xd) = E (P (X1 ≤ x1, · · · , Xd ≤ Xd|Θ))
= E
d
i=1
P (Xi ≤ xi|Θ) = E
d
i=1
Gi (xi)
Θ
= E
d
i=1
exp [−Θ (− log Gi (xi))] = ψ −
d
i=1
log Gi (xi) ,
where ψ is the Laplace transform of the distribution of Θ, i.e.
ψ (t) = E (exp (−tΘ)) . Because the marginal distributions are given respectively
by
Fi(xi) = P(Xi ≤ xi) = ψ (− log Gi (xi)) ,
the copula of X is
C (u) = FX F−1
1 (u1) , · · · , F−1
d (ud) = ψ ψ−1
(u) + · · · + ψ−1
(ud)
This copula is an Archimedean copula with generator φ = ψ−1
(see e.g. Clayton
(1978), Oakes (1989), Bandeen-Roche & Liang (1996) for more details).
12
Arthur CHARPENTIER, Distortion in actuarial sciences
3 Hierarchical Archimedean copulas
It is possible to look at C(u1, · · · , ud) defined as
φ−1
1 [φ1[φ−1
2 (φ2[· · · φ−1
d−1[φd−1(u1) + φd−1(u2)] + · · · + φ2(ud−1))] + φ1(ud)]
where φi are generators. C is a copula if φi ◦ φ−1
i−1 is the inverse of a Laplace
transform.
This copula is said to be a fully nested Archimedean (FNA) copula.
E.g. in dimension d = 5, we get
φ−1
1 [φ1(φ−1
2 [φ2(φ−1
3 [φ3(φ−1
4 [φ4(u1) + φ4(u2)])
+ φ3(u3)]) + φ2(u4)]) + φ1(u5)].
It is also possible to consider partially nested Archimedean (PNA) copulas, e.g.
13
Arthur CHARPENTIER, Distortion in actuarial sciences
by coupling (U1, U2, U3), and (U4, U5),
φ−1
4 [φ4(φ−1
1 [φ1(φ−1
2 [φ2(u1) + φ2(u2)]) + φ1(u3)])
+ φ4(φ−1
3 [φ3(u4) + φ3(u5)])]
Again, it is a copula if φ2 ◦ φ−1
1 is the inverse of a Laplace transform, as well as
φ4 ◦ φ−1
1 and φ4 ◦ φ−1
3 .
14
Arthur CHARPENTIER, Distortion in actuarial sciences
U1 U2 U3 U4 U5
φ4
φ3
φ2
φ1
U1 U2 U3 U4 U5
φ2
φ1
φ3
φ4
Figure 1 – fully nested Archimedean copula, and partially nested Archimedean
copula.
15
Arthur CHARPENTIER, Distortion in actuarial sciences
It is also possible to consider
φ−1
3 [φ3(φ−1
1 [φ1(u1) + φ1(u2) + φ1(u3)])
+ φ3(φ−1
2 [φ2(u4) + φ2(u5)])].
if φ3 ◦ φ−1
1 andφ3 ◦ φ−1
2 are inverses of Laplace transform. Or
φ−1
3 [φ3(φ−1
1 [φ1(u1) + φ1(u2)] + φ3(u3)
+ φ3(φ−1
2 [φ2(u4) + φ2(u5)])].
16
Arthur CHARPENTIER, Distortion in actuarial sciences
U1 U2 U3 U4 U5
φ1
φ3
φ2
U1 U2 U3 U4 U5
φ1
φ3
φ2
Figure 2 – Copules Archimédiennes hiérarchiques avec deux constructions dif-
férentes.
17
Arthur CHARPENTIER, Distortion in actuarial sciences
Example3
If φi’s are Gumbel’s generators, with parameter θi, a sufficient condition for C to be a
FNA copula is that θi’s increasing. Similarly if φi’s are Clayton’s generators.
Again, an heuristic interpretation can be derived.
18
Arthur CHARPENTIER, Distortion in actuarial sciences
4 Distorting copulas
Genest & Rivest (2001) extended the concept of Archimedean copulas
introducing the multivariate probability integral transformation (Wang, Nelsen &
Valdez (2005) called this the distorted copula, while Klement, Mesiar & Pap
(2005) or Durante & Sempi (2005) called this the transformed copula). Consider
a copula C. Let h be a continuous strictly concave increasing function
[0, 1] → [0, 1] satisfying h (0) = 0 and h (1) = 1, such that
Dh (C) (u1, · · · , ud) = h−1
(C (h (u1) , · · · , h (ud))) , 0 ≤ ui ≤ 1
is a copula. Those functions will be called distortion functions.
Example4
A classical example is obtained when h is a power function, and when the power is the
inverse of an integer, hn(x) = x1/n
, i.e.
Dhn
(C) (u, v) = Cn
(u1/n
, v1/n
), 0 ≤ u, v ≤ 1 and n ∈ N.
Then this copula is the survival copula of the componentwise maxima : the copula of
19
Arthur CHARPENTIER, Distortion in actuarial sciences
(max{X1, · · · , Xn}, max{Y1, · · · , Yn}) is Dhn
(C), where {(X1, Y1), · · · , (Xn, Yn)}
is an i.i.d. sample, and the (Xi, Yi)’s have copula C.
A max-stable copula is a copula C such that ∀n ∈ N,
Cn
(u
1/n
1 , · · · , u
1/n
d ) = C(u1, · · · , ud).
Example5
Let φ denote a convex decreasing function on (0, 1] such that φ(1) = 0, and define
C(u, v) = φ−1
(φ(u) + φ(v)) = Dexp[−φ](C⊥
). This function is an Archimedean copula.
In the bivariate case, h need not be differentiable, and concavity is a sufficient
condition.
Let Hd denote the set of continuous strictly increasing functions [0, 1] → [0, 1]
such that h (0) = 0 and h (1) = 1, C ∈ C,
Dh (C) (u1, · · · , ud) = h−1
(C (h (u1) , · · · , h (ud))) , 0 ≤ ui ≤ 1
is a copula, called distorted copula.
Hd-copulas will be functions Dh (C) for some distortion function h and some
20
Arthur CHARPENTIER, Distortion in actuarial sciences
copula C.
d-increasingness of function Dh (C) is obtained when h ∈ Hd, i.e. h is continuous,
with h (0) = 0 and h (1) = 1, and such that h(k)
(x) ≤ 0 for all x ∈ (0, 1) and
k = 2, 3, · · · , d (see Theorem 2.6 and 4.4 in Morillas (2005)).
As a corollary, note that if φ ∈ Φd, then h(x) = exp(−φ(x)) belongs to Hd.
Further, observe that for h, h ∈ Hd,
Dh◦h (C) (u1, · · · , ud) = (Dh ◦ Dh ) (C) (u1, · · · , ud) , 0 ≤ ui ≤ 1.
21
Arthur CHARPENTIER, Distortion in actuarial sciences
Again, it is possible to get an intuitive interpretation of that distortion.
Consider a max-stable copula C. Let X be a random vector such that X given Θ
has copula C and P (Xi ≤ xi|Θ) = Gi (xi)
Θ
, i = 1, · · · , d.
Then, the (unconditional) joint distribution function of X is given by
F (x) = E (P (X1 ≤ x1, · · · , Xd ≤ xd|Θ)) = E (C (P (X1 ≤ xi|Θ) , · · · , P (Xd ≤ xd|Θ))
= E C G1 (x1)
Θ
, · · · , Gd (xd)
Θ
= E CΘ
(G1 (x1) , · · · , Gd (xd))
= ψ (− log C (G1 (x1) , · · · , Gd (xd))) ,
where ψ is the Laplace transform of the distribution of Θ, i.e.
ψ (t) = E (exp (−tΘ)), since C is a max-stable copula, i.e.
C G1 (x1)
Θ
, · · · , Gd (xd)
Θ
= CΘ
(G1 (x1) , · · · , Gd (xd)) .
The unconditional marginal distribution functions are Fi (xi) = ψ (− log Gi (xi)),
and therefore
CX (x1, · · · , xd) = ψ − log C exp −ψ−1
(x) , exp −ψ−1
(y) .
22
Arthur CHARPENTIER, Distortion in actuarial sciences
Note that since ψ−1
is completly montone, then h belongs to Hd.
23
Arthur CHARPENTIER, Distortion in actuarial sciences
5 Application to aging problems
Let T = (T1, · · · , Td) denote remaining lifetime, at time t = 0. Consider the
conditional distribution
(T1, · · · , Td) given T1 > t, · · · , Td > t
for some t > 0.
Let C denote the survival copula of T ,
P(T1 > t1, · · · , Td > td) = C(P(T1 > t1), · · · , P(T1 > tc)).
The survival copula of the conditional distribution is the copula of
(U1, · · · , Ud) given U1 < F1(t), · · · , Ud < Fd(t)
where (U1, · · · , Ud) has distribution C , and where Fi is the distribution of Ti
Let C be a copula and let U be a random vector with joint distribution function
C. Let u ∈ (0, 1]d
be such that C(u) > 0. The lower tail dependence copula of C
24
Arthur CHARPENTIER, Distortion in actuarial sciences
at level u is defined as the copula, denoted Cu, of the joint distribution of U
conditionally on the event {U ≤ u} = {U1 ≤ u1, · · · , Ud ≤ ud}.
5.1 Aging with Archimedean copulas
If C is a strict Archimedean copula with generator φ (i.e. φ(0) = ∞), then the
lower tail dependence copula relative to C at level u is given by the strict
Archimedean copula with generator φu defined by
φu(t) = φ(t · C(u)) − φ(C(u)), 0 ≤ t ≤ 1, (3)
where C(u) = φ−1
[φ(u1) + · · · + φ(ud)] (see Juri & Wüthrich (2002) or C & Juri
(2007)).
Example6
Gumbel copulas have generator φ (t) = [− ln t]
θ
where θ ≥ 1. For any u ∈ (0, 1]d
, the
corresponding conditional copula has generator
φu (t) = M1/θ
− ln t
θ
− M where M = [− ln u1]
θ
+ · · · + [− ln ud]
θ
.
25
Arthur CHARPENTIER, Distortion in actuarial sciences
Example7
Clayton copulas C have generator φ (t) = t−θ
− 1 where θ > 0. Hence,
φu (t) = [t·C(u)]−θ
−1−φ(C(u)) = t−θ
·C(u)−θ
−1−[C(u)−θ
−1] = C(u)−θ
·[t−θ
−1],
hence φu (t) = C(u)−θ
· φ(t). Since the generator of an Archimedean copula is unique
up to a multiplicative constant, φu is also the generator of Clayton copula, with
parameter θ.
Théorème3
Consider X with Archimedean copula, having a factor representation, and let ψ denote
the Laplace transform of the heterogeneity factor Θ. Let u ∈ (0, 1]d
, then X given
X ≤ F−1
X (u) (in the pointwise sense, i.e. X1 ≤ F−1
1 (u1), · · · ., Xd ≤ F−1
d (ud)) is an
Archimedean copula with a factor representation, where the factor has Laplace transform
ψu (t) =
ψ t + ψ−1
(C(u))
C(u)
.
26
Arthur CHARPENTIER, Distortion in actuarial sciences
5.2 Aging with distorted copulas copulas
class of Hd-copulas, defined as
Dh(C)(u1, · · · , ud) = h−1
(C(h(u1), · · · , h(ud))), 0 ≤ ui ≤ 1,
where C is a copula, and h ∈ Hd is a d-distortion function.
Assume that there exists a positive random variable Θ, such that, conditionally
on Θ, random vector X = (X1, · · · , Xd) has copula C, which does not depend on
Θ. Assume moreover that C is in extreme value copula, or max-stable copula (see
e.g. Joe (1997)) : C xh
1 , · · · , xh
d = Ch
(x1, · · · , xd) for all h ≥ 0. The following
result holds,
Lemma1
Let Θ be a random variable with Laplace transform ψ, and consider a random vector
X = (X1, · · · , Xd) such that X given Θ has copula C, an extreme value copula.
Assume that, for all i = 1, · · · , d, P (Xi ≤ xi|Θ) = Gi (xi)
Θ
where the Gi’s are
27
Arthur CHARPENTIER, Distortion in actuarial sciences
distribution functions. Then X has copula
CX (x1, · · · , xd) = ψ − log C exp −ψ−1
(x1) , · · · , exp −ψ−1
(xd) ,
whose copula is of the form Dh(C) with h(·) = exp −ψ−1
(·) .
Théorème4
Let X be a random vector with an Hd-copula with a factor representation, let ψ denote
the Laplace transform of the heterogeneity factor Θ, C denote the underlying copula, and
Gi’s the marginal distributions.
Let u ∈ (0, 1]d
, then, the copula of X given X ≤ F−1
X (u) is
CX,u (x) = ψu − log Cu exp −ψ−1
u (x1) , · · · , exp −ψ−1
u (xd) = Dhu (Cu)(x),
where hu(·) = exp −ψ−1
u (·) , and where
– ψu is the Laplace transform defined as ψu (t) = ψ (t + α) /ψ (α) where
α = − log (C (u∗
)), u∗
i = exp −ψ−1
(ui) for all i = 1, · · · , d. Hence, ψu is the
Laplace transform of Θ given X ≤ F−1
X (u),
28
Arthur CHARPENTIER, Distortion in actuarial sciences
– P Xi ≤ xi|X ≤ F−1
X (u) , Θ = Gi (xi)
Θ
for all i = 1, · · · , d, where
Gi (xi) =
C (u∗
1, u∗
2, · · · , Gi (xi) , · · · , u∗
d)
C (u∗
1, u∗
2, · · · , u∗
i , · · · , u∗
d)
,
– and Cu is the following copula
Cu (x) =
C G1 G1
−1
(x1) , · · · , Gd Gd
−1
(xd)
C G1 F−1
1 (u1) , · · · , Gd F−1
d (ud)
.
29

Contenu connexe

Tendances

Slides sales-forecasting-session2-web
Slides sales-forecasting-session2-webSlides sales-forecasting-session2-web
Slides sales-forecasting-session2-web
Arthur Charpentier
 

Tendances (20)

Slides univ-van-amsterdam
Slides univ-van-amsterdamSlides univ-van-amsterdam
Slides univ-van-amsterdam
 
Slides sales-forecasting-session2-web
Slides sales-forecasting-session2-webSlides sales-forecasting-session2-web
Slides sales-forecasting-session2-web
 
Slides amsterdam-2013
Slides amsterdam-2013Slides amsterdam-2013
Slides amsterdam-2013
 
slides tails copulas
slides tails copulasslides tails copulas
slides tails copulas
 
Multivariate Distributions, an overview
Multivariate Distributions, an overviewMultivariate Distributions, an overview
Multivariate Distributions, an overview
 
Slides ihp
Slides ihpSlides ihp
Slides ihp
 
Sildes buenos aires
Sildes buenos airesSildes buenos aires
Sildes buenos aires
 
Slides toulouse
Slides toulouseSlides toulouse
Slides toulouse
 
Slides ineq-4
Slides ineq-4Slides ineq-4
Slides ineq-4
 
Slides compiegne
Slides compiegneSlides compiegne
Slides compiegne
 
slides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial scienceslides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial science
 
Slides erasmus
Slides erasmusSlides erasmus
Slides erasmus
 
Lundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentierLundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentier
 
Slides barcelona Machine Learning
Slides barcelona Machine LearningSlides barcelona Machine Learning
Slides barcelona Machine Learning
 
Proba stats-r1-2017
Proba stats-r1-2017Proba stats-r1-2017
Proba stats-r1-2017
 
transformations and nonparametric inference
transformations and nonparametric inferencetransformations and nonparametric inference
transformations and nonparametric inference
 
Slides ACTINFO 2016
Slides ACTINFO 2016Slides ACTINFO 2016
Slides ACTINFO 2016
 
Inequality, slides #2
Inequality, slides #2Inequality, slides #2
Inequality, slides #2
 
Quantile and Expectile Regression
Quantile and Expectile RegressionQuantile and Expectile Regression
Quantile and Expectile Regression
 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
 

Similaire à Slides mc gill-v3

Slides 110406105147-phpapp01
Slides 110406105147-phpapp01Slides 110406105147-phpapp01
Slides 110406105147-phpapp01
Philippe Porta
 
Actuarial Science Reference Sheet
Actuarial Science Reference SheetActuarial Science Reference Sheet
Actuarial Science Reference Sheet
Daniel Nolan
 

Similaire à Slides mc gill-v3 (20)

Slides 110406105147-phpapp01
Slides 110406105147-phpapp01Slides 110406105147-phpapp01
Slides 110406105147-phpapp01
 
Finance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdfFinance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdf
 
Distributionworkshop 2.pptx
Distributionworkshop 2.pptxDistributionworkshop 2.pptx
Distributionworkshop 2.pptx
 
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
 
Fixed Point Results In Fuzzy Menger Space With Common Property (E.A.)
Fixed Point Results In Fuzzy Menger Space With Common Property (E.A.)Fixed Point Results In Fuzzy Menger Space With Common Property (E.A.)
Fixed Point Results In Fuzzy Menger Space With Common Property (E.A.)
 
Expectation of Discrete Random Variable.ppt
Expectation of Discrete Random Variable.pptExpectation of Discrete Random Variable.ppt
Expectation of Discrete Random Variable.ppt
 
ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...
ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...
ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...
 
Distributions
DistributionsDistributions
Distributions
 
The dual geometry of Shannon information
The dual geometry of Shannon informationThe dual geometry of Shannon information
The dual geometry of Shannon information
 
Course notes2summer2012
Course notes2summer2012Course notes2summer2012
Course notes2summer2012
 
Slides risk-rennes
Slides risk-rennesSlides risk-rennes
Slides risk-rennes
 
Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4
 
A Note on “   Geraghty contraction type mappings”
A Note on “   Geraghty contraction type mappings”A Note on “   Geraghty contraction type mappings”
A Note on “   Geraghty contraction type mappings”
 
Actuarial Science Reference Sheet
Actuarial Science Reference SheetActuarial Science Reference Sheet
Actuarial Science Reference Sheet
 
Slides ensae-2016-8
Slides ensae-2016-8Slides ensae-2016-8
Slides ensae-2016-8
 
Slides ensae 8
Slides ensae 8Slides ensae 8
Slides ensae 8
 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
 
On Spaces of Entire Functions Having Slow Growth Represented By Dirichlet Series
On Spaces of Entire Functions Having Slow Growth Represented By Dirichlet SeriesOn Spaces of Entire Functions Having Slow Growth Represented By Dirichlet Series
On Spaces of Entire Functions Having Slow Growth Represented By Dirichlet Series
 
A generalisation of the ratio-of-uniform algorithm
A generalisation of the ratio-of-uniform algorithmA generalisation of the ratio-of-uniform algorithm
A generalisation of the ratio-of-uniform algorithm
 
Geometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first orderGeometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first order
 

Plus de Arthur Charpentier

Plus de Arthur Charpentier (20)

Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
ACT6100 introduction
ACT6100 introductionACT6100 introduction
ACT6100 introduction
 
Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)
 
Control epidemics
Control epidemics Control epidemics
Control epidemics
 
STT5100 Automne 2020, introduction
STT5100 Automne 2020, introductionSTT5100 Automne 2020, introduction
STT5100 Automne 2020, introduction
 
Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
Machine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceMachine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & Insurance
 
Reinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and FinanceReinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and Finance
 
Optimal Control and COVID-19
Optimal Control and COVID-19Optimal Control and COVID-19
Optimal Control and COVID-19
 
Slides OICA 2020
Slides OICA 2020Slides OICA 2020
Slides OICA 2020
 
Lausanne 2019 #3
Lausanne 2019 #3Lausanne 2019 #3
Lausanne 2019 #3
 
Lausanne 2019 #4
Lausanne 2019 #4Lausanne 2019 #4
Lausanne 2019 #4
 
Lausanne 2019 #2
Lausanne 2019 #2Lausanne 2019 #2
Lausanne 2019 #2
 
Lausanne 2019 #1
Lausanne 2019 #1Lausanne 2019 #1
Lausanne 2019 #1
 
Side 2019 #10
Side 2019 #10Side 2019 #10
Side 2019 #10
 
Side 2019 #11
Side 2019 #11Side 2019 #11
Side 2019 #11
 
Side 2019 #12
Side 2019 #12Side 2019 #12
Side 2019 #12
 
Side 2019 #9
Side 2019 #9Side 2019 #9
Side 2019 #9
 
Side 2019 #8
Side 2019 #8Side 2019 #8
Side 2019 #8
 
Side 2019 #7
Side 2019 #7Side 2019 #7
Side 2019 #7
 

Dernier

abortion pills in Jeddah Saudi Arabia (+919707899604)cytotec pills in Riyadh
abortion pills in Jeddah Saudi Arabia (+919707899604)cytotec pills in Riyadhabortion pills in Jeddah Saudi Arabia (+919707899604)cytotec pills in Riyadh
abortion pills in Jeddah Saudi Arabia (+919707899604)cytotec pills in Riyadh
samsungultra782445
 
MASTERING FOREX: STRATEGIES FOR SUCCESS.pdf
MASTERING FOREX: STRATEGIES FOR SUCCESS.pdfMASTERING FOREX: STRATEGIES FOR SUCCESS.pdf
MASTERING FOREX: STRATEGIES FOR SUCCESS.pdf
Cocity Enterprises
 
Abortion pills in Saudi Arabia (+919707899604)cytotec pills in dammam
Abortion pills in Saudi Arabia (+919707899604)cytotec pills in dammamAbortion pills in Saudi Arabia (+919707899604)cytotec pills in dammam
Abortion pills in Saudi Arabia (+919707899604)cytotec pills in dammam
samsungultra782445
 
QATAR Pills for Abortion -+971*55*85*39*980-in Dubai. Abu Dhabi.
QATAR Pills for Abortion -+971*55*85*39*980-in Dubai. Abu Dhabi.QATAR Pills for Abortion -+971*55*85*39*980-in Dubai. Abu Dhabi.
QATAR Pills for Abortion -+971*55*85*39*980-in Dubai. Abu Dhabi.
hyt3577
 

Dernier (20)

Group 8 - Goldman Sachs & 1MDB Case Studies
Group 8 - Goldman Sachs & 1MDB Case StudiesGroup 8 - Goldman Sachs & 1MDB Case Studies
Group 8 - Goldman Sachs & 1MDB Case Studies
 
abortion pills in Jeddah Saudi Arabia (+919707899604)cytotec pills in Riyadh
abortion pills in Jeddah Saudi Arabia (+919707899604)cytotec pills in Riyadhabortion pills in Jeddah Saudi Arabia (+919707899604)cytotec pills in Riyadh
abortion pills in Jeddah Saudi Arabia (+919707899604)cytotec pills in Riyadh
 
Mahendragarh Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Mahendragarh Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsMahendragarh Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Mahendragarh Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
 
cost-volume-profit analysis.ppt(managerial accounting).pptx
cost-volume-profit analysis.ppt(managerial accounting).pptxcost-volume-profit analysis.ppt(managerial accounting).pptx
cost-volume-profit analysis.ppt(managerial accounting).pptx
 
Responsible Finance Principles and Implication
Responsible Finance Principles and ImplicationResponsible Finance Principles and Implication
Responsible Finance Principles and Implication
 
MASTERING FOREX: STRATEGIES FOR SUCCESS.pdf
MASTERING FOREX: STRATEGIES FOR SUCCESS.pdfMASTERING FOREX: STRATEGIES FOR SUCCESS.pdf
MASTERING FOREX: STRATEGIES FOR SUCCESS.pdf
 
Business Principles, Tools, and Techniques in Participating in Various Types...
Business Principles, Tools, and Techniques  in Participating in Various Types...Business Principles, Tools, and Techniques  in Participating in Various Types...
Business Principles, Tools, and Techniques in Participating in Various Types...
 
Abortion pills in Saudi Arabia (+919707899604)cytotec pills in dammam
Abortion pills in Saudi Arabia (+919707899604)cytotec pills in dammamAbortion pills in Saudi Arabia (+919707899604)cytotec pills in dammam
Abortion pills in Saudi Arabia (+919707899604)cytotec pills in dammam
 
Explore Dual Citizenship in Africa | Citizenship Benefits & Requirements
Explore Dual Citizenship in Africa | Citizenship Benefits & RequirementsExplore Dual Citizenship in Africa | Citizenship Benefits & Requirements
Explore Dual Citizenship in Africa | Citizenship Benefits & Requirements
 
Certified Kala Jadu, Black magic specialist in Rawalpindi and Bangali Amil ba...
Certified Kala Jadu, Black magic specialist in Rawalpindi and Bangali Amil ba...Certified Kala Jadu, Black magic specialist in Rawalpindi and Bangali Amil ba...
Certified Kala Jadu, Black magic specialist in Rawalpindi and Bangali Amil ba...
 
Black magic specialist in Canada (Kala ilam specialist in UK) Bangali Amil ba...
Black magic specialist in Canada (Kala ilam specialist in UK) Bangali Amil ba...Black magic specialist in Canada (Kala ilam specialist in UK) Bangali Amil ba...
Black magic specialist in Canada (Kala ilam specialist in UK) Bangali Amil ba...
 
FE Credit and SMBC Acquisition Case Studies
FE Credit and SMBC Acquisition Case StudiesFE Credit and SMBC Acquisition Case Studies
FE Credit and SMBC Acquisition Case Studies
 
QATAR Pills for Abortion -+971*55*85*39*980-in Dubai. Abu Dhabi.
QATAR Pills for Abortion -+971*55*85*39*980-in Dubai. Abu Dhabi.QATAR Pills for Abortion -+971*55*85*39*980-in Dubai. Abu Dhabi.
QATAR Pills for Abortion -+971*55*85*39*980-in Dubai. Abu Dhabi.
 
Significant AI Trends for the Financial Industry in 2024 and How to Utilize Them
Significant AI Trends for the Financial Industry in 2024 and How to Utilize ThemSignificant AI Trends for the Financial Industry in 2024 and How to Utilize Them
Significant AI Trends for the Financial Industry in 2024 and How to Utilize Them
 
Toronto dominion bank investor presentation.pdf
Toronto dominion bank investor presentation.pdfToronto dominion bank investor presentation.pdf
Toronto dominion bank investor presentation.pdf
 
Female Escorts Service in Hyderabad Starting with 5000/- for Savita Escorts S...
Female Escorts Service in Hyderabad Starting with 5000/- for Savita Escorts S...Female Escorts Service in Hyderabad Starting with 5000/- for Savita Escorts S...
Female Escorts Service in Hyderabad Starting with 5000/- for Savita Escorts S...
 
7 tips trading Deriv Accumulator Options
7 tips trading Deriv Accumulator Options7 tips trading Deriv Accumulator Options
7 tips trading Deriv Accumulator Options
 
20240419-SMC-submission-Annual-Superannuation-Performance-Test-–-design-optio...
20240419-SMC-submission-Annual-Superannuation-Performance-Test-–-design-optio...20240419-SMC-submission-Annual-Superannuation-Performance-Test-–-design-optio...
20240419-SMC-submission-Annual-Superannuation-Performance-Test-–-design-optio...
 
Pension dashboards forum 1 May 2024 (1).pdf
Pension dashboards forum 1 May 2024 (1).pdfPension dashboards forum 1 May 2024 (1).pdf
Pension dashboards forum 1 May 2024 (1).pdf
 
Shrambal_Distributors_Newsletter_May-2024.pdf
Shrambal_Distributors_Newsletter_May-2024.pdfShrambal_Distributors_Newsletter_May-2024.pdf
Shrambal_Distributors_Newsletter_May-2024.pdf
 

Slides mc gill-v3

  • 1. Arthur CHARPENTIER, Distortion in actuarial sciences Distorting ... in actuarial sciences Arthur Charpentier Université Rennes 1 arthur.charpentier@univ-rennes1.fr http ://freakonometrics.blog.free.fr/ Montréal Seminar of Actuarial and Financial Mathematics, McGill, November 2010. 1
  • 2. Arthur CHARPENTIER, Distortion in actuarial sciences 1 Decision theory and distorted risk measures Consider a preference ordering among risks, such that 1. is distribution based, i.e. if X Y , ∀ ˜X L = X ˜Y L = Y , then ˜X ˜Y ; hence, we can write FX FY 2. is total, reflexive and transitive, 3. is continuous, i.e. ∀FX, FY and FZ such that FX FY FZ, ∃λ, µ ∈ (0, 1) such that λFX + (1 − λ)FZ FY µFX + (1 − µ)FZ. 4. satisfies an independence axiom, i.e. ∀FX, FY and FZ, and ∀λ ∈ (0, 1), FX FY =⇒ λFX + (1 − λ)FZ λFY + (1 − λ)FZ. 5. satisfies an ordering axiom, ∀X and Y constant (i.e. P(X = x) = P(Y = y) = 1, FX FY =⇒ x ≤ y. 2
  • 3. Arthur CHARPENTIER, Distortion in actuarial sciences Théorème1 Ordering satisfies axioms 1-2-3-4-5 if and only if ∃u : R → R, continuous, strictly increasing and unique (up to an increasing affine transformation) such that ∀FX and FY : FX FY ⇔ R u(x)dFX(x) ≤ R u(x)dFY (x) ⇔ E[u(X)] ≤ E[u(Y )]. But if we consider an alternative to the independence axiom 4’. satisfies an dual independence axiom, i.e. ∀FX, FY and FZ, and ∀λ ∈ (0, 1), FX FY =⇒ [λF−1 X + (1 − λ)F−1 Z ]−1 [λF−1 Y + (1 − λ)F−1 Z ]−1 . we (Yaari (1987)) obtain a dual representation theorem, Théorème2 Ordering satisfies axioms 1-2-3-4’-5 if and only if ∃g : [0, 1] → R, continuous, strictly increasing such that ∀FX and FY : FX FY ⇔ R g(FX(x))dx ≤ R g(FY (x))dx 3
  • 4. Arthur CHARPENTIER, Distortion in actuarial sciences Standard axioms required on risque measures R : X → R, – law invariance, X L = Y =⇒ R(X) = R(Y ) – increasing X ≥ Y =⇒ R(X) ≥ R(Y ), – translation invariance ∀k ∈ R, =⇒ R(X + k) = R(X) + k, – homogeneity ∀λ ∈ R+, R(λX) = λ · R(X), – subadditivity R(X + Y ) ≤ R(X) + R(Y ), – convexity ∀β ∈ [0, 1], R(βλX + [1 − β]Y ) ≤ β · R(X) + [1 − β] · R(Y ). – additivity for comonotonic risks ∀X and Y comonotonic, R(X + Y ) = R(X) + R(Y ), – maximal correlation (w.r.t. measure µ) ∀X, R(X) = sup {E(X · U) where U ∼ µ} – strong coherence ∀X and Y , sup{R( ˜X + ˜Y )} = R(X) + R(Y ), where ˜X L = X and ˜Y L = Y . 4
  • 5. Arthur CHARPENTIER, Distortion in actuarial sciences Proposition1 If R is a monetary convex fonction, then the three statements are equivalent, – R is strongly coherent, – R is additive for comonotonic risks, – R is a maximal correlation measure. Proposition2 A coherente risk measure R is additive for comonotonic risks if and only if there exists a decreasing positive function φ on [0, 1] such that R(X) = 1 0 φ(t)F−1 (1 − t)dt where F(x) = F(X ≤ x). see Kusuoka (2001), i.e. R is a spectral risk measure. 5
  • 6. Arthur CHARPENTIER, Distortion in actuarial sciences Definition1 A distortion function is a function g : [0, 1] → [0, 1] such that g(0) = 0 and g(1) = 1. For positive risks, Definition1 Given distortion function g, Wang’s risk measure, denoted Rg, is Rg (X) = ∞ 0 g (1 − FX(x)) dx = ∞ 0 g FX(x) dx (1) Proposition1 Wang’s risk measure can be defined as Rg (X) = 1 0 F−1 X (1 − α) dg(α) = 1 0 VaR[X; 1 − α] dg(α). (2) 6
  • 7. Arthur CHARPENTIER, Distortion in actuarial sciences More generally (risks taking value in R) Definition2 We call distorted risk measure R(X) = 1 0 F−1 (1 − u)dg(u) where g is some distortion function. Proposition3 R(X) can be written R(X) = +∞ 0 g(1 − F(x))dx − 0 −∞ [1 − g(1 − F(x))]dx. 7
  • 8. Arthur CHARPENTIER, Distortion in actuarial sciences risk measures R distortion function g VaR g (x) = I[x ≥ p] Tail-VaR g (x) = min {x/p, 1} PH g (x) = xp Dual Power g (x) = 1 − (1 − x) 1/p Gini g (x) = (1 + p) x − px2 exponential transform g (x) = (1 − px ) / (1 − p) Table 1 – Standard risk measures, p ∈ (0, 1). 8
  • 9. Arthur CHARPENTIER, Distortion in actuarial sciences Here, it looks like risk measures can be seen as R(X) = Eg◦P(X). Remark1 Let Q denote the distorted measure induced by g on P, denoted g ◦ P i.e. Q([a, +∞)) = g(P([a, +∞))). Since g is increasing on [0, 1] Q is a capacity. Example1 Consider function g(x) = xk . The PH - proportional hazard - risk measure is R(X; k) = 1 0 F−1 (1 − u)kuk−1 du = ∞ 0 [F(x)]k dx If k is an integer [F(x)]k is the survival distribution of the minimum over k values. Definition2 The Esscher risk measure with parameter h > 0 is Es[X; h], defined as Es[X; h] = E[X exp(hX)] MX(h) = d dh ln MX(h). 9
  • 10. Arthur CHARPENTIER, Distortion in actuarial sciences 2 Archimedean copulas Definition3 Let φ denote a decreasing function (0, 1] → [0, ∞] such that φ(1) = 0, and such that φ−1 is d-monotone, i.e. for all k = 0, 1, · · · , d, (−1)k [φ−1 ](k) (t) ≥ 0 for all t. Define the inverse (or quasi-inverse if φ(0) < ∞) as φ−1 (t) =    φ−1 (t) for 0 ≤ t ≤ φ(0) 0 for φ(0) < t < ∞. The function C(u1, · · · , un) = φ−1 (φ(u1) + · · · + φ(ud)), u1, · · · , un ∈ [0, 1], is a copula, called an Archimedean copula, with generator φ. Let Φd denote the set of generators in dimension d. Example2 The independent copula C⊥ is an Archimedean copula, with generator φ(t) = − log t. 10
  • 11. Arthur CHARPENTIER, Distortion in actuarial sciences The upper Fréchet-Hoeffding copula, defined as the minimum componentwise, M(u) = min{u1, · · · , ud}, is not Archimedean (but can be obtained as the limit of some Archimedean copulas). Set λ(t) = exp[−φ(t)] (the multiplicative generator), then C(u1, ..., ud) = λ−1 (λ(u1) · · · λ(ud)), ∀u1, ..., ud ∈ [0, 1], which can be written C(u1, ..., ud) = λ−1 (Cp erp[λ(u1), . . . , λ(ud)]), ∀u1, ..., ud ∈ [0, 1], Note that it is possible to get an interpretation of that distortion of the independence. A large subclass of Archimedean copula in dimension d is the class of Archimedean copulas obtained using the frailty approach. Consider random variables X1, · · · , Xd conditionally independent, given a latent factor Θ, a positive random variable, such that P (Xi ≤ xi|Θ) = Gi (x) Θ where Gi denotes a baseline distribution function. 11
  • 12. Arthur CHARPENTIER, Distortion in actuarial sciences The joint distribution function of X is given by FX (x1, · · · , xd) = E (P (X1 ≤ x1, · · · , Xd ≤ Xd|Θ)) = E d i=1 P (Xi ≤ xi|Θ) = E d i=1 Gi (xi) Θ = E d i=1 exp [−Θ (− log Gi (xi))] = ψ − d i=1 log Gi (xi) , where ψ is the Laplace transform of the distribution of Θ, i.e. ψ (t) = E (exp (−tΘ)) . Because the marginal distributions are given respectively by Fi(xi) = P(Xi ≤ xi) = ψ (− log Gi (xi)) , the copula of X is C (u) = FX F−1 1 (u1) , · · · , F−1 d (ud) = ψ ψ−1 (u) + · · · + ψ−1 (ud) This copula is an Archimedean copula with generator φ = ψ−1 (see e.g. Clayton (1978), Oakes (1989), Bandeen-Roche & Liang (1996) for more details). 12
  • 13. Arthur CHARPENTIER, Distortion in actuarial sciences 3 Hierarchical Archimedean copulas It is possible to look at C(u1, · · · , ud) defined as φ−1 1 [φ1[φ−1 2 (φ2[· · · φ−1 d−1[φd−1(u1) + φd−1(u2)] + · · · + φ2(ud−1))] + φ1(ud)] where φi are generators. C is a copula if φi ◦ φ−1 i−1 is the inverse of a Laplace transform. This copula is said to be a fully nested Archimedean (FNA) copula. E.g. in dimension d = 5, we get φ−1 1 [φ1(φ−1 2 [φ2(φ−1 3 [φ3(φ−1 4 [φ4(u1) + φ4(u2)]) + φ3(u3)]) + φ2(u4)]) + φ1(u5)]. It is also possible to consider partially nested Archimedean (PNA) copulas, e.g. 13
  • 14. Arthur CHARPENTIER, Distortion in actuarial sciences by coupling (U1, U2, U3), and (U4, U5), φ−1 4 [φ4(φ−1 1 [φ1(φ−1 2 [φ2(u1) + φ2(u2)]) + φ1(u3)]) + φ4(φ−1 3 [φ3(u4) + φ3(u5)])] Again, it is a copula if φ2 ◦ φ−1 1 is the inverse of a Laplace transform, as well as φ4 ◦ φ−1 1 and φ4 ◦ φ−1 3 . 14
  • 15. Arthur CHARPENTIER, Distortion in actuarial sciences U1 U2 U3 U4 U5 φ4 φ3 φ2 φ1 U1 U2 U3 U4 U5 φ2 φ1 φ3 φ4 Figure 1 – fully nested Archimedean copula, and partially nested Archimedean copula. 15
  • 16. Arthur CHARPENTIER, Distortion in actuarial sciences It is also possible to consider φ−1 3 [φ3(φ−1 1 [φ1(u1) + φ1(u2) + φ1(u3)]) + φ3(φ−1 2 [φ2(u4) + φ2(u5)])]. if φ3 ◦ φ−1 1 andφ3 ◦ φ−1 2 are inverses of Laplace transform. Or φ−1 3 [φ3(φ−1 1 [φ1(u1) + φ1(u2)] + φ3(u3) + φ3(φ−1 2 [φ2(u4) + φ2(u5)])]. 16
  • 17. Arthur CHARPENTIER, Distortion in actuarial sciences U1 U2 U3 U4 U5 φ1 φ3 φ2 U1 U2 U3 U4 U5 φ1 φ3 φ2 Figure 2 – Copules Archimédiennes hiérarchiques avec deux constructions dif- férentes. 17
  • 18. Arthur CHARPENTIER, Distortion in actuarial sciences Example3 If φi’s are Gumbel’s generators, with parameter θi, a sufficient condition for C to be a FNA copula is that θi’s increasing. Similarly if φi’s are Clayton’s generators. Again, an heuristic interpretation can be derived. 18
  • 19. Arthur CHARPENTIER, Distortion in actuarial sciences 4 Distorting copulas Genest & Rivest (2001) extended the concept of Archimedean copulas introducing the multivariate probability integral transformation (Wang, Nelsen & Valdez (2005) called this the distorted copula, while Klement, Mesiar & Pap (2005) or Durante & Sempi (2005) called this the transformed copula). Consider a copula C. Let h be a continuous strictly concave increasing function [0, 1] → [0, 1] satisfying h (0) = 0 and h (1) = 1, such that Dh (C) (u1, · · · , ud) = h−1 (C (h (u1) , · · · , h (ud))) , 0 ≤ ui ≤ 1 is a copula. Those functions will be called distortion functions. Example4 A classical example is obtained when h is a power function, and when the power is the inverse of an integer, hn(x) = x1/n , i.e. Dhn (C) (u, v) = Cn (u1/n , v1/n ), 0 ≤ u, v ≤ 1 and n ∈ N. Then this copula is the survival copula of the componentwise maxima : the copula of 19
  • 20. Arthur CHARPENTIER, Distortion in actuarial sciences (max{X1, · · · , Xn}, max{Y1, · · · , Yn}) is Dhn (C), where {(X1, Y1), · · · , (Xn, Yn)} is an i.i.d. sample, and the (Xi, Yi)’s have copula C. A max-stable copula is a copula C such that ∀n ∈ N, Cn (u 1/n 1 , · · · , u 1/n d ) = C(u1, · · · , ud). Example5 Let φ denote a convex decreasing function on (0, 1] such that φ(1) = 0, and define C(u, v) = φ−1 (φ(u) + φ(v)) = Dexp[−φ](C⊥ ). This function is an Archimedean copula. In the bivariate case, h need not be differentiable, and concavity is a sufficient condition. Let Hd denote the set of continuous strictly increasing functions [0, 1] → [0, 1] such that h (0) = 0 and h (1) = 1, C ∈ C, Dh (C) (u1, · · · , ud) = h−1 (C (h (u1) , · · · , h (ud))) , 0 ≤ ui ≤ 1 is a copula, called distorted copula. Hd-copulas will be functions Dh (C) for some distortion function h and some 20
  • 21. Arthur CHARPENTIER, Distortion in actuarial sciences copula C. d-increasingness of function Dh (C) is obtained when h ∈ Hd, i.e. h is continuous, with h (0) = 0 and h (1) = 1, and such that h(k) (x) ≤ 0 for all x ∈ (0, 1) and k = 2, 3, · · · , d (see Theorem 2.6 and 4.4 in Morillas (2005)). As a corollary, note that if φ ∈ Φd, then h(x) = exp(−φ(x)) belongs to Hd. Further, observe that for h, h ∈ Hd, Dh◦h (C) (u1, · · · , ud) = (Dh ◦ Dh ) (C) (u1, · · · , ud) , 0 ≤ ui ≤ 1. 21
  • 22. Arthur CHARPENTIER, Distortion in actuarial sciences Again, it is possible to get an intuitive interpretation of that distortion. Consider a max-stable copula C. Let X be a random vector such that X given Θ has copula C and P (Xi ≤ xi|Θ) = Gi (xi) Θ , i = 1, · · · , d. Then, the (unconditional) joint distribution function of X is given by F (x) = E (P (X1 ≤ x1, · · · , Xd ≤ xd|Θ)) = E (C (P (X1 ≤ xi|Θ) , · · · , P (Xd ≤ xd|Θ)) = E C G1 (x1) Θ , · · · , Gd (xd) Θ = E CΘ (G1 (x1) , · · · , Gd (xd)) = ψ (− log C (G1 (x1) , · · · , Gd (xd))) , where ψ is the Laplace transform of the distribution of Θ, i.e. ψ (t) = E (exp (−tΘ)), since C is a max-stable copula, i.e. C G1 (x1) Θ , · · · , Gd (xd) Θ = CΘ (G1 (x1) , · · · , Gd (xd)) . The unconditional marginal distribution functions are Fi (xi) = ψ (− log Gi (xi)), and therefore CX (x1, · · · , xd) = ψ − log C exp −ψ−1 (x) , exp −ψ−1 (y) . 22
  • 23. Arthur CHARPENTIER, Distortion in actuarial sciences Note that since ψ−1 is completly montone, then h belongs to Hd. 23
  • 24. Arthur CHARPENTIER, Distortion in actuarial sciences 5 Application to aging problems Let T = (T1, · · · , Td) denote remaining lifetime, at time t = 0. Consider the conditional distribution (T1, · · · , Td) given T1 > t, · · · , Td > t for some t > 0. Let C denote the survival copula of T , P(T1 > t1, · · · , Td > td) = C(P(T1 > t1), · · · , P(T1 > tc)). The survival copula of the conditional distribution is the copula of (U1, · · · , Ud) given U1 < F1(t), · · · , Ud < Fd(t) where (U1, · · · , Ud) has distribution C , and where Fi is the distribution of Ti Let C be a copula and let U be a random vector with joint distribution function C. Let u ∈ (0, 1]d be such that C(u) > 0. The lower tail dependence copula of C 24
  • 25. Arthur CHARPENTIER, Distortion in actuarial sciences at level u is defined as the copula, denoted Cu, of the joint distribution of U conditionally on the event {U ≤ u} = {U1 ≤ u1, · · · , Ud ≤ ud}. 5.1 Aging with Archimedean copulas If C is a strict Archimedean copula with generator φ (i.e. φ(0) = ∞), then the lower tail dependence copula relative to C at level u is given by the strict Archimedean copula with generator φu defined by φu(t) = φ(t · C(u)) − φ(C(u)), 0 ≤ t ≤ 1, (3) where C(u) = φ−1 [φ(u1) + · · · + φ(ud)] (see Juri & Wüthrich (2002) or C & Juri (2007)). Example6 Gumbel copulas have generator φ (t) = [− ln t] θ where θ ≥ 1. For any u ∈ (0, 1]d , the corresponding conditional copula has generator φu (t) = M1/θ − ln t θ − M where M = [− ln u1] θ + · · · + [− ln ud] θ . 25
  • 26. Arthur CHARPENTIER, Distortion in actuarial sciences Example7 Clayton copulas C have generator φ (t) = t−θ − 1 where θ > 0. Hence, φu (t) = [t·C(u)]−θ −1−φ(C(u)) = t−θ ·C(u)−θ −1−[C(u)−θ −1] = C(u)−θ ·[t−θ −1], hence φu (t) = C(u)−θ · φ(t). Since the generator of an Archimedean copula is unique up to a multiplicative constant, φu is also the generator of Clayton copula, with parameter θ. Théorème3 Consider X with Archimedean copula, having a factor representation, and let ψ denote the Laplace transform of the heterogeneity factor Θ. Let u ∈ (0, 1]d , then X given X ≤ F−1 X (u) (in the pointwise sense, i.e. X1 ≤ F−1 1 (u1), · · · ., Xd ≤ F−1 d (ud)) is an Archimedean copula with a factor representation, where the factor has Laplace transform ψu (t) = ψ t + ψ−1 (C(u)) C(u) . 26
  • 27. Arthur CHARPENTIER, Distortion in actuarial sciences 5.2 Aging with distorted copulas copulas class of Hd-copulas, defined as Dh(C)(u1, · · · , ud) = h−1 (C(h(u1), · · · , h(ud))), 0 ≤ ui ≤ 1, where C is a copula, and h ∈ Hd is a d-distortion function. Assume that there exists a positive random variable Θ, such that, conditionally on Θ, random vector X = (X1, · · · , Xd) has copula C, which does not depend on Θ. Assume moreover that C is in extreme value copula, or max-stable copula (see e.g. Joe (1997)) : C xh 1 , · · · , xh d = Ch (x1, · · · , xd) for all h ≥ 0. The following result holds, Lemma1 Let Θ be a random variable with Laplace transform ψ, and consider a random vector X = (X1, · · · , Xd) such that X given Θ has copula C, an extreme value copula. Assume that, for all i = 1, · · · , d, P (Xi ≤ xi|Θ) = Gi (xi) Θ where the Gi’s are 27
  • 28. Arthur CHARPENTIER, Distortion in actuarial sciences distribution functions. Then X has copula CX (x1, · · · , xd) = ψ − log C exp −ψ−1 (x1) , · · · , exp −ψ−1 (xd) , whose copula is of the form Dh(C) with h(·) = exp −ψ−1 (·) . Théorème4 Let X be a random vector with an Hd-copula with a factor representation, let ψ denote the Laplace transform of the heterogeneity factor Θ, C denote the underlying copula, and Gi’s the marginal distributions. Let u ∈ (0, 1]d , then, the copula of X given X ≤ F−1 X (u) is CX,u (x) = ψu − log Cu exp −ψ−1 u (x1) , · · · , exp −ψ−1 u (xd) = Dhu (Cu)(x), where hu(·) = exp −ψ−1 u (·) , and where – ψu is the Laplace transform defined as ψu (t) = ψ (t + α) /ψ (α) where α = − log (C (u∗ )), u∗ i = exp −ψ−1 (ui) for all i = 1, · · · , d. Hence, ψu is the Laplace transform of Θ given X ≤ F−1 X (u), 28
  • 29. Arthur CHARPENTIER, Distortion in actuarial sciences – P Xi ≤ xi|X ≤ F−1 X (u) , Θ = Gi (xi) Θ for all i = 1, · · · , d, where Gi (xi) = C (u∗ 1, u∗ 2, · · · , Gi (xi) , · · · , u∗ d) C (u∗ 1, u∗ 2, · · · , u∗ i , · · · , u∗ d) , – and Cu is the following copula Cu (x) = C G1 G1 −1 (x1) , · · · , Gd Gd −1 (xd) C G1 F−1 1 (u1) , · · · , Gd F−1 d (ud) . 29