A comparative study of social network analysis tools

David Combe
David CombePhD student à Université de Saint-Etienne, France
A comparative study of social network analysistools,[object Object],David Combe, Christine Largeron, ,[object Object],Előd Egyed-Zsigmondand Mathias Géry,[object Object],International Workshop on Web Intelligence and Virtual Enterprises 2 (2010) ,[object Object]
Outline,[object Object],Context: social networks and analysissoftwareExpected functionalities of network analysis softwareBenchmarkConclusion ,[object Object]
Context,[object Object],Definition (Wikipedia),[object Object],A social network isa social structure made up of individuals called "nodes," which are tied by one or more specific types of interdependency, such as friendship, commoninterest, etc.,[object Object],Sociologic analysis,[object Object],Sociological works (Moreno 1934, Milgram 1967, Cartwright and Harary, 1977),[object Object],Web 2.0 : Renewed interest from the Web based social networks websites development.,[object Object],Context,[object Object]
Context: Social network in business,[object Object],For the Gartner Institute:,[object Object],“By 2014, social networking services will replace e-mail as the primary vehicle for interpersonal communications for 20 percent of business users.” (Gartner 2008),[object Object],Social network analysisisgetting mature.,[object Object],Some applications in business:,[object Object],Workflowstudyto adapt management to the real flow in a company;,[object Object],Identifykeyactors, ie. for viral marketing.,[object Object],These applications needadapted software.,[object Object],Context,[object Object]
Context: social networks and analysis software,[object Object],Network analysis software,[object Object],A previousstatisticalanalysisorientedsurvey (Huisman& Van Duijn, 2003),[object Object],Networks and needs are changing,[object Object],Size,[object Object],Complex graphs,[object Object],Necessity to make a new benchmark,[object Object],Context,[object Object]
ContextExpected functionalities of network analysis softwareBenchmarkConclusion ,[object Object]
Expected functionalities of network analysis software,[object Object],Representation,[object Object],Visualization,[object Object],Characterization by indicators,[object Object],Communitydetection,[object Object],Expected functionalities of network analysis software,[object Object]
1. Network representation as graph(Cartwright and Harary, 1977),[object Object],Link orientation ,[object Object],Undirected links (edges, ex: co-authorship),[object Object],Directed (arcs, ex: e-mails sent, Enron dataset),[object Object],Weighton edges,[object Object],Withtypednodes,[object Object],(ex. bipartite network),[object Object],Expected functionalities of network analysis software,[object Object],2,[object Object],1,[object Object],3,[object Object],3,[object Object]
1. Network representation as graph,[object Object],Expected functionalities of network analysis software,[object Object],2,[object Object],1,[object Object],*Vertices 5,[object Object],*Edges,[object Object],1  2,[object Object],1  4,[object Object],2  3,[object Object],2  4,[object Object],3  4,[object Object],3  5,[object Object],4  5,[object Object],4,[object Object],3,[object Object],Connections,[object Object],5,[object Object],Adjacency matrix,[object Object],(.net file format),[object Object],Edgelist,[object Object],Adjacencylist,[object Object]
Aim: give a visualrepresentation of the graph, withdifferentapproaches:,[object Object],Fish eye,[object Object],Centered on an actor,[object Object],Force drivenvisualizationlayouts,[object Object],FruchtermanReingold (1984),[object Object],Iterative algorithm,[object Object],Randomlayout,[object Object],F-R convergence,[object Object],2. Visualization,[object Object],Expected functionalities of network analysis software,[object Object]
3. Characterization by indicators,[object Object],Global indicatorsat network level by:,[object Object],Number of nodes,[object Object],Number of edges,[object Object],Diameter,[object Object],…,[object Object],Local indicatorsatnodelevel:,[object Object],Number of neighboors degree,[object Object],…,[object Object],Distance,[object Object],Length of the shortestpath,[object Object],Expected functionalities of network analysis software,[object Object],2,[object Object],1,[object Object],Density,[object Object],2,[object Object],4,[object Object],3,[object Object],5,[object Object],5,[object Object],4,[object Object]
3. Characterization by indicators : how to decide if an actoris « central »?,[object Object],Many ways to determine central actors.,[object Object],Ex: Betweenness centrality,[object Object],Which node is the most likely to be an intermediary for a random communication?,[object Object],higher betweennesscentrality,[object Object],Selection depends on what they are needed for.,[object Object],Expected functionalities of network analysis software,[object Object]
4. Communitydetection,[object Object],Community:,[object Object],A set of actorshavingstrong connexions.,[object Object],Communitydetectionalgorithms,[object Object],Newman–Girvan (Newman and Girvan, 2002),[object Object],Walktrap (Latapy & Pons, 2005),[object Object],Expected functionalities of network analysis software,[object Object]
ContextExpected functionalities of network analysis softwareBenchmarkConclusion ,[object Object]
Benchmark methodology,[object Object],Required points:,[object Object],Asocial network analysis point of view,[object Object],Scalability,[object Object],Free for educational purposes,[object Object],A balance between well established software and newer ones, based on recent development standards (ergonomics, modularity and data portability).,[object Object],Datasets: Zachary’skarate-club, DBLP,[object Object],Benchmark,[object Object]
Software comparisoncriteria,[object Object],Input/output formats,[object Object],Custom attribute handling,[object Object],Bipartite graphs specific functions,[object Object],Longitudinal analysis,[object Object],Visualization,[object Object],Indicators,[object Object],Communitydetection,[object Object],Benchmark,[object Object]
Studied software,[object Object],Gephiis an “interactive visualization and exploration platform”.,[object Object],[object Object],Tulip can handle over 1 million vertices and 4 millions edges. It has visualization, clustering and extension by plug-ins capabilities.,[object Object],GraphVizis mainly for graph visualization.,[object Object],UCInetis not free. It uses Pajek and Netdraw for visualization. It is specialized in statistical and matricial analysis. It calculates indicators (such as triad census, Freeman betweenness) and performs hierarchical clustering.,[object Object],Pajekis a Windows program for analysis and visualization of large networks. It is freely available, for noncommercial use.,[object Object],igraphis a free software package for creating and manipulating graphs. It also implements algorithms for some recent network analysis methods.,[object Object],NetworkXis a package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks.,[object Object],JUNG, for Java Universal Network/Graph Framework, is mainly developed for creating interactive graphs in Java GUIs, JUNG has been extended with some SNA metrics.,[object Object],Benchmark,[object Object]
Selected software,[object Object],Stand-alonesoftware,[object Object],Pajekhttp://pajek.imfm.si/doku.php,[object Object],Gephihttp://gephi.org/,[object Object],Libraries,[object Object],igraphhttp://igraph.sourceforge.net/,[object Object],NetworkXhttp://networkx.lanl.gov/,[object Object],Benchmark,[object Object]
Pajek(Vladimir Batagelj and AndrejMrvar),[object Object],Developmentstarted in 1996,[object Object],Data miningoriented,[object Object],Many graph operatorsavailable,[object Object],Fast,[object Object],Exports 3D visualization,[object Object],Macro,[object Object],Supports matrices, adjacencylists and arcs listsoriented input files,[object Object],Benchmark,[object Object]
Gephi(Bastian M., Heymann S., Jacomy M.),[object Object],Benchmark,[object Object],Development started in 2008,[object Object],Interactive GUI,[object Object],Uses Java,[object Object],Recent scriptability improvements,[object Object],« Photoshop for graphs » with customizable visualization,[object Object],Supports the main file formats for networks,[object Object],Improvable by plugins,[object Object],Community detection still experimental,[object Object]
NetworkX(Brandes U., Erlebach T.),[object Object],Python,[object Object],Bipartite graphs ready,[object Object],Attribute-friendly,[object Object],1,000,000 nodeswide networks canbehandled.,[object Object],Lacks in communitydetectionalgorithms,[object Object],Relies on other software for visualization,[object Object],Benchmark,[object Object],>>> importnetworkxasnx,[object Object],>>> G=nx.Graph() ,[object Object],>>> G.add_node("spam") ,[object Object],>>> G.add_edge(1,2) ,[object Object],>>> print(G.nodes()) ,[object Object],[1, 2, 'spam'] ,[object Object],>>> print(G.edges()),[object Object],[(1, 2)],[object Object],>>> G.degree(1) ,[object Object],1,[object Object]
Igraph(Csárdi G., Nepusz T.),[object Object],For R (a statisticalenvironment) and Python. The lowlevel routines are written in C.,[object Object],GUI available for R.,[object Object],Communitydetectionready.,[object Object],Not custom attributes-friendly,[object Object],Benchmark,[object Object],> g <- graph.ring(10),[object Object],> degree(g),[object Object], [1] 2 2 2 2 2 2 2 2 2 2,[object Object],> g2 <- erdos.renyi.game(1000, 10/1000),[object Object],> degree.distribution(g2),[object Object], [1] 0.000 0.000 0.002 0.009 0.020 0.039 0.064 0.107 0.111 0.115 0.118…,[object Object],[21] 0.003 0.001,[object Object]
Benchmark,[object Object],How to choose the right tool?,[object Object],++ Mature functionality,[object Object],- - Not available or weak,[object Object]
Featurecomparison,[object Object],Benchmark,[object Object],Temporality,[object Object],Input / output,[object Object],Visualization,[object Object],Clustering,[object Object],igraph,[object Object],Pajek,[object Object],Indicators,[object Object],Bipartite,[object Object],NetworkX,[object Object],Gephi,[object Object],Attributehandling,[object Object]
ContextExpected functionalities of network analysis softwareBenchmarkConclusion,[object Object]
Conclusion,[object Object],Manydomains, manyapproaches, many software (sociology, computer science, mathematics and physics).,[object Object],[object Object],Temporalityawareness,[object Object],Links and nodesattributesanalysis,[object Object],Hierarchicalgraphs,[object Object],Conclusion,[object Object]
Thankyou for your attention.Any questions ?,[object Object]
Bibliography,[object Object],Gartner http://www.gartner.com/it/page.jsp?id=1293114,[object Object],Gartner Hype Cycle for Social Software, 2008,[object Object],Fortunato, S. (2009). Community detection in graphs. Physics Reports, 103. Retrieved from http://arxiv.org/abs/0906.0612.Pons, P., & Latapy, M. (2005). Computing communities in large networks using random walks. Computer and Information Sciences-ISCIS 2005. Retrieved from http://www.springerlink.com/index/P312811313637372.pdf.,[object Object],Newman, M., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical review E. Retrieved from http://link.aps.org/doi/10.1103/PhysRevE.69.026113.,[object Object],Kamada, T., & Kawai, S. (1989). An algorithm for drawing general undirected graphs. Information processing letters, 31(12), 7--15. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/0020019089901026.,[object Object]
Bibliography (2),[object Object],Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine* 1. Computer networks and ISDN systems. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S016975529800110X.,[object Object],Fruchterman, T. M., & Reingold, E. M. (1991). Graph Drawing by Force-directed Placement. Huisman, M., & Van Duijn, M. (2003). Software for social network analysis. In Models and methods in social network analysis (p. 270–316). ,[object Object],Freeman, L. (1979). Centrality in Social Networks Conceptual Clarification. Social Networks. ,[object Object]
1 sur 29

Recommandé

Spotify Business Case par
Spotify Business CaseSpotify Business Case
Spotify Business CaseDavid Gorgan
10.1K vues84 diapositives
Nokia brand-audit par
Nokia brand-auditNokia brand-audit
Nokia brand-auditSanjay Mishra
777 vues13 diapositives
Activate Tech & Media Outlook 2018 par
Activate Tech & Media Outlook 2018Activate Tech & Media Outlook 2018
Activate Tech & Media Outlook 2018Activate
1.3M vues140 diapositives
United breaks Guitar Casestudy par
United breaks Guitar CasestudyUnited breaks Guitar Casestudy
United breaks Guitar CasestudyGangadhara Rao
10K vues15 diapositives
Mekanism- Engineering Viral Marketing par
Mekanism- Engineering Viral MarketingMekanism- Engineering Viral Marketing
Mekanism- Engineering Viral MarketingPrasith Ashok
4.9K vues13 diapositives
Case study - jabong par
Case study -  jabongCase study -  jabong
Case study - jabongVineela Kanapala
12.1K vues6 diapositives

Contenu connexe

Tendances

Flipkart Wired Case Competition 2018 par
Flipkart Wired Case Competition 2018Flipkart Wired Case Competition 2018
Flipkart Wired Case Competition 2018Bhargava Ram
6.2K vues6 diapositives
PWC Case Competition par
PWC Case CompetitionPWC Case Competition
PWC Case CompetitionHaokun Chen
2.5K vues24 diapositives
BMW Z3 Roadster Launch in USA par
BMW Z3 Roadster Launch in USABMW Z3 Roadster Launch in USA
BMW Z3 Roadster Launch in USAAbhishek Kapoor
19.4K vues41 diapositives
Vodafone Mannesmann Case par
Vodafone Mannesmann CaseVodafone Mannesmann Case
Vodafone Mannesmann CaseKivanc Ozuolmez
17.9K vues17 diapositives
Marketing transformation at Mastercard par
Marketing transformation at MastercardMarketing transformation at Mastercard
Marketing transformation at MastercardSagar Bhatt
4.5K vues13 diapositives
Nokia crisis par
Nokia crisisNokia crisis
Nokia crisisPreeti Gulati
7.3K vues20 diapositives

Tendances(20)

Flipkart Wired Case Competition 2018 par Bhargava Ram
Flipkart Wired Case Competition 2018Flipkart Wired Case Competition 2018
Flipkart Wired Case Competition 2018
Bhargava Ram6.2K vues
PWC Case Competition par Haokun Chen
PWC Case CompetitionPWC Case Competition
PWC Case Competition
Haokun Chen2.5K vues
Marketing transformation at Mastercard par Sagar Bhatt
Marketing transformation at MastercardMarketing transformation at Mastercard
Marketing transformation at Mastercard
Sagar Bhatt4.5K vues
ICICI Beat The Curve Case Competition 2018 PPT par Bhargava Ram
ICICI Beat The Curve Case Competition 2018 PPTICICI Beat The Curve Case Competition 2018 PPT
ICICI Beat The Curve Case Competition 2018 PPT
Bhargava Ram1.3K vues
Asian Paints Canvas 2018 Case Competition - Campus Finalists par Bhargava Ram
Asian Paints Canvas 2018 Case Competition - Campus FinalistsAsian Paints Canvas 2018 Case Competition - Campus Finalists
Asian Paints Canvas 2018 Case Competition - Campus Finalists
Bhargava Ram4.6K vues
ISB Case Competition | Final round par Tarun Gupta
ISB Case Competition | Final roundISB Case Competition | Final round
ISB Case Competition | Final round
Tarun Gupta9.6K vues
Wiikano Orchards | Marketing Plan par Anahit Babayan
Wiikano Orchards | Marketing Plan  Wiikano Orchards | Marketing Plan
Wiikano Orchards | Marketing Plan
Anahit Babayan5.7K vues
Module 4 group f canadian blood services par Si Tang
Module 4 group f   canadian blood servicesModule 4 group f   canadian blood services
Module 4 group f canadian blood services
Si Tang1.2K vues
LIME Season 4 Final submission par Tarun Gupta
LIME Season 4 Final submissionLIME Season 4 Final submission
LIME Season 4 Final submission
Tarun Gupta16.8K vues
Reliance TUP 3.0 Case Competition PPT - Campus Finalist par Bhargava Ram
Reliance TUP 3.0 Case Competition PPT - Campus FinalistReliance TUP 3.0 Case Competition PPT - Campus Finalist
Reliance TUP 3.0 Case Competition PPT - Campus Finalist
Bhargava Ram2.2K vues
Boots - Hair Care Sales Promotion (Case study Analysis) par Darshak Kamani
Boots - Hair Care Sales Promotion (Case study Analysis)Boots - Hair Care Sales Promotion (Case study Analysis)
Boots - Hair Care Sales Promotion (Case study Analysis)
Darshak Kamani2.8K vues
Marketing Strategies and Operations (Ayokunle) par Ayokunle Bajulaiye
Marketing Strategies and Operations (Ayokunle)Marketing Strategies and Operations (Ayokunle)
Marketing Strategies and Operations (Ayokunle)
Ayokunle Bajulaiye6.1K vues
HubSpot - Inbound marketing and web 2.0 case study par Ronak Shah
HubSpot - Inbound marketing and web 2.0 case studyHubSpot - Inbound marketing and web 2.0 case study
HubSpot - Inbound marketing and web 2.0 case study
Ronak Shah17.9K vues
Abbott Business Challenge 2.0 Case Competition PPT- Campus Winners par Bhargava Ram
Abbott Business Challenge 2.0 Case Competition PPT- Campus WinnersAbbott Business Challenge 2.0 Case Competition PPT- Campus Winners
Abbott Business Challenge 2.0 Case Competition PPT- Campus Winners
Bhargava Ram11.8K vues
Culinarian Cookware case analysis par Anurag Bisen
Culinarian Cookware case analysisCulinarian Cookware case analysis
Culinarian Cookware case analysis
Anurag Bisen17.3K vues

Similaire à A comparative study of social network analysis tools

Analysis of IT Monitoring Using Open Source Software Techniques: A Review par
Analysis of IT Monitoring Using Open Source Software Techniques: A ReviewAnalysis of IT Monitoring Using Open Source Software Techniques: A Review
Analysis of IT Monitoring Using Open Source Software Techniques: A ReviewIJERD Editor
363 vues5 diapositives
IRJET- Comparative Study on Network Monitoring Tools of Nagios Versus Hyp... par
IRJET-  	  Comparative Study on Network Monitoring Tools of Nagios Versus Hyp...IRJET-  	  Comparative Study on Network Monitoring Tools of Nagios Versus Hyp...
IRJET- Comparative Study on Network Monitoring Tools of Nagios Versus Hyp...IRJET Journal
7 vues5 diapositives
IRJET - Network Traffic Monitoring and Botnet Detection using K-ANN Algorithm par
IRJET - Network Traffic Monitoring and Botnet Detection using K-ANN AlgorithmIRJET - Network Traffic Monitoring and Botnet Detection using K-ANN Algorithm
IRJET - Network Traffic Monitoring and Botnet Detection using K-ANN AlgorithmIRJET Journal
10 vues4 diapositives
DN18 | The Evolution and Future of Graph Technology: Intelligent Systems | Ax... par
DN18 | The Evolution and Future of Graph Technology: Intelligent Systems | Ax...DN18 | The Evolution and Future of Graph Technology: Intelligent Systems | Ax...
DN18 | The Evolution and Future of Graph Technology: Intelligent Systems | Ax...Dataconomy Media
139 vues24 diapositives
Efficient Attack Detection in IoT Devices using Feature Engineering-Less Mach... par
Efficient Attack Detection in IoT Devices using Feature Engineering-Less Mach...Efficient Attack Detection in IoT Devices using Feature Engineering-Less Mach...
Efficient Attack Detection in IoT Devices using Feature Engineering-Less Mach...AIRCC Publishing Corporation
18 vues18 diapositives
EFFICIENT ATTACK DETECTION IN IOT DEVICES USING FEATURE ENGINEERING-LESS MACH... par
EFFICIENT ATTACK DETECTION IN IOT DEVICES USING FEATURE ENGINEERING-LESS MACH...EFFICIENT ATTACK DETECTION IN IOT DEVICES USING FEATURE ENGINEERING-LESS MACH...
EFFICIENT ATTACK DETECTION IN IOT DEVICES USING FEATURE ENGINEERING-LESS MACH...ijcsit
23 vues18 diapositives

Similaire à A comparative study of social network analysis tools(20)

Analysis of IT Monitoring Using Open Source Software Techniques: A Review par IJERD Editor
Analysis of IT Monitoring Using Open Source Software Techniques: A ReviewAnalysis of IT Monitoring Using Open Source Software Techniques: A Review
Analysis of IT Monitoring Using Open Source Software Techniques: A Review
IJERD Editor363 vues
IRJET- Comparative Study on Network Monitoring Tools of Nagios Versus Hyp... par IRJET Journal
IRJET-  	  Comparative Study on Network Monitoring Tools of Nagios Versus Hyp...IRJET-  	  Comparative Study on Network Monitoring Tools of Nagios Versus Hyp...
IRJET- Comparative Study on Network Monitoring Tools of Nagios Versus Hyp...
IRJET Journal7 vues
IRJET - Network Traffic Monitoring and Botnet Detection using K-ANN Algorithm par IRJET Journal
IRJET - Network Traffic Monitoring and Botnet Detection using K-ANN AlgorithmIRJET - Network Traffic Monitoring and Botnet Detection using K-ANN Algorithm
IRJET - Network Traffic Monitoring and Botnet Detection using K-ANN Algorithm
IRJET Journal10 vues
DN18 | The Evolution and Future of Graph Technology: Intelligent Systems | Ax... par Dataconomy Media
DN18 | The Evolution and Future of Graph Technology: Intelligent Systems | Ax...DN18 | The Evolution and Future of Graph Technology: Intelligent Systems | Ax...
DN18 | The Evolution and Future of Graph Technology: Intelligent Systems | Ax...
Dataconomy Media139 vues
EFFICIENT ATTACK DETECTION IN IOT DEVICES USING FEATURE ENGINEERING-LESS MACH... par ijcsit
EFFICIENT ATTACK DETECTION IN IOT DEVICES USING FEATURE ENGINEERING-LESS MACH...EFFICIENT ATTACK DETECTION IN IOT DEVICES USING FEATURE ENGINEERING-LESS MACH...
EFFICIENT ATTACK DETECTION IN IOT DEVICES USING FEATURE ENGINEERING-LESS MACH...
ijcsit23 vues
IRJET- Windows Log Investigator System for Faster Root Cause Detection of a D... par IRJET Journal
IRJET- Windows Log Investigator System for Faster Root Cause Detection of a D...IRJET- Windows Log Investigator System for Faster Root Cause Detection of a D...
IRJET- Windows Log Investigator System for Faster Root Cause Detection of a D...
IRJET Journal6 vues
Network Analyzer and Report Generation Tool for NS-2 using TCL Script par IRJET Journal
Network Analyzer and Report Generation Tool for NS-2 using TCL ScriptNetwork Analyzer and Report Generation Tool for NS-2 using TCL Script
Network Analyzer and Report Generation Tool for NS-2 using TCL Script
IRJET Journal28 vues
Cloud Camp Milan 2K9 Telecom Italia: Where P2P? par Gabriele Bozzi
Cloud Camp Milan 2K9 Telecom Italia: Where P2P?Cloud Camp Milan 2K9 Telecom Italia: Where P2P?
Cloud Camp Milan 2K9 Telecom Italia: Where P2P?
Gabriele Bozzi432 vues
CloudCamp Milan 2009: Telecom Italia par Gabriele Bozzi
CloudCamp Milan 2009: Telecom ItaliaCloudCamp Milan 2009: Telecom Italia
CloudCamp Milan 2009: Telecom Italia
Gabriele Bozzi322 vues
IRJET - Identification and Classification of IoT Devices in Various Appli... par IRJET Journal
IRJET -  	  Identification and Classification of IoT Devices in Various Appli...IRJET -  	  Identification and Classification of IoT Devices in Various Appli...
IRJET - Identification and Classification of IoT Devices in Various Appli...
IRJET Journal5 vues
Cytoscape plugins - GeneMania and CentiScape par Nixon Mendez
Cytoscape plugins - GeneMania and CentiScapeCytoscape plugins - GeneMania and CentiScape
Cytoscape plugins - GeneMania and CentiScape
Nixon Mendez1.5K vues
Analysis and Visualization of Network Data Using JUNG par IJERA Editor
Analysis and Visualization of Network Data Using JUNGAnalysis and Visualization of Network Data Using JUNG
Analysis and Visualization of Network Data Using JUNG
IJERA Editor265 vues
2009-C&T-NodeXL and social queries - a social media network analysis toolkit par Marc Smith
2009-C&T-NodeXL and social queries - a social media network analysis toolkit2009-C&T-NodeXL and social queries - a social media network analysis toolkit
2009-C&T-NodeXL and social queries - a social media network analysis toolkit
Marc Smith39.4K vues

Dernier

Chemistry of sex hormones.pptx par
Chemistry of sex hormones.pptxChemistry of sex hormones.pptx
Chemistry of sex hormones.pptxRAJ K. MAURYA
119 vues38 diapositives
Community-led Open Access Publishing webinar.pptx par
Community-led Open Access Publishing webinar.pptxCommunity-led Open Access Publishing webinar.pptx
Community-led Open Access Publishing webinar.pptxJisc
69 vues9 diapositives
Class 10 English lesson plans par
Class 10 English  lesson plansClass 10 English  lesson plans
Class 10 English lesson plansTARIQ KHAN
239 vues53 diapositives
ACTIVITY BOOK key water sports.pptx par
ACTIVITY BOOK key water sports.pptxACTIVITY BOOK key water sports.pptx
ACTIVITY BOOK key water sports.pptxMar Caston Palacio
350 vues4 diapositives
The basics - information, data, technology and systems.pdf par
The basics - information, data, technology and systems.pdfThe basics - information, data, technology and systems.pdf
The basics - information, data, technology and systems.pdfJonathanCovena1
77 vues1 diapositive
11.28.23 Social Capital and Social Exclusion.pptx par
11.28.23 Social Capital and Social Exclusion.pptx11.28.23 Social Capital and Social Exclusion.pptx
11.28.23 Social Capital and Social Exclusion.pptxmary850239
112 vues25 diapositives

Dernier(20)

Chemistry of sex hormones.pptx par RAJ K. MAURYA
Chemistry of sex hormones.pptxChemistry of sex hormones.pptx
Chemistry of sex hormones.pptx
RAJ K. MAURYA119 vues
Community-led Open Access Publishing webinar.pptx par Jisc
Community-led Open Access Publishing webinar.pptxCommunity-led Open Access Publishing webinar.pptx
Community-led Open Access Publishing webinar.pptx
Jisc69 vues
Class 10 English lesson plans par TARIQ KHAN
Class 10 English  lesson plansClass 10 English  lesson plans
Class 10 English lesson plans
TARIQ KHAN239 vues
The basics - information, data, technology and systems.pdf par JonathanCovena1
The basics - information, data, technology and systems.pdfThe basics - information, data, technology and systems.pdf
The basics - information, data, technology and systems.pdf
JonathanCovena177 vues
11.28.23 Social Capital and Social Exclusion.pptx par mary850239
11.28.23 Social Capital and Social Exclusion.pptx11.28.23 Social Capital and Social Exclusion.pptx
11.28.23 Social Capital and Social Exclusion.pptx
mary850239112 vues
Narration lesson plan.docx par TARIQ KHAN
Narration lesson plan.docxNarration lesson plan.docx
Narration lesson plan.docx
TARIQ KHAN99 vues
American Psychological Association 7th Edition.pptx par SamiullahAfridi4
American Psychological Association  7th Edition.pptxAmerican Psychological Association  7th Edition.pptx
American Psychological Association 7th Edition.pptx
Class 10 English notes 23-24.pptx par TARIQ KHAN
Class 10 English notes 23-24.pptxClass 10 English notes 23-24.pptx
Class 10 English notes 23-24.pptx
TARIQ KHAN95 vues
DU Oral Examination Toni Santamaria par MIPLM
DU Oral Examination Toni SantamariaDU Oral Examination Toni Santamaria
DU Oral Examination Toni Santamaria
MIPLM138 vues
The Open Access Community Framework (OACF) 2023 (1).pptx par Jisc
The Open Access Community Framework (OACF) 2023 (1).pptxThe Open Access Community Framework (OACF) 2023 (1).pptx
The Open Access Community Framework (OACF) 2023 (1).pptx
Jisc77 vues
Scope of Biochemistry.pptx par shoba shoba
Scope of Biochemistry.pptxScope of Biochemistry.pptx
Scope of Biochemistry.pptx
shoba shoba121 vues

A comparative study of social network analysis tools

  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.

Notes de l'éditeur

  1. 24 minutesGood morning,mynameis DC. I come fromLaHC , University of St-Etienne. The aim of mythesis I amhere to presentyou an article titled « A comparative study of social network analysistools » writtenwith Christine Largeron, Előd Egyed-Zsigmond and Mathias Géry.
  2. (for the Gartner …)Many experts insist about social network new behavioursappearing in the enterprise and necessity to takethemintoaccount.Gartner Institute predicts #CITATION#.It alsoconsidersthat SNA isgetting mature.So progresscanbe made in business use of SNA for workflow study intended to permit adaptation of the management to the real communication flow in a company;And Identify key actors in networks, ie. for viral marketing aware campains
  3. A previoussurvey by Huisman &amp; Van Duijn has been published.Havingpreviousbench, werealizedthatitshouldbeupdated, as networks and needs have changed.Main Changes in networks concerns the sizes (networks are far largerthanbefore) and the type of information (as networks tend to getricher, withcontextual data).
  4. There are 4 main domains of functionalities :the Representations of the network as datafilesVisualizationCharacterization by quantitativeindicatorsCommunitydetectioncapabilities
  5. There are different sorts of indicators, which help discribe the network or just one actor.First, among global indicatorsyoucanfindsomegeneral values such as the number of nodes of the graph, the number of edges, the diameter (longestshortest path, how far at the maximum are two nodes in the graph). You can compose these values and deduce the density of the graph (whichdepends on the maximum number of links youcan put in the graph ie. the complete graph). An highdensity (high links ratio) defines a dense graph. A graph with a lowdensity value issaid to besparse.The second type of indicatorsis local indicators. You cancalculateitwithonly a small part of the graph information. An exampleis the number of neighboors (called the degree of a node).You canalso use distances between 2 nodes (or evenedges). The shortestpathis one of them.
  6. Nowlet’sadress the benchmark itself.
  7. The methodology for the selection of the tools takes into account the following points:First, in our vision blocking criteria for selection are that:The tools must provide the basic metricsused in the Social Network Analysisdomain ;and the networks size can reach tens of thousands of nodes, as well as smallerones.The toolsstudied in depthwerechoosenbecausetheyrepresentlegacy, wellestablished software, or new developments base on recent standards such as modularization and ergonomics.The datasetsused for experimentation are the Zachary’skarate-club dataset and the DBLP database.
  8. Seven areas of functionalities were evaluated:Input/output formatsCustom attribute handlingBipartite graphs specific functionsLongitudinal analysis (ietimestamped events)IndicatorsVisualizationClustering capabilities
  9. Hereis the list of studied software.Several of them are vizualisationoriented: Pajek, Gephi, GraphViz, GUESS, Tulip.Others claim to permit graph manipulation: igraph, NetworkX, and JUNG.Bothapproaches have led for manytools in incorporating SNA metrics.
  10. The retained softwareis split in twocategories: Stand-alone softwares and libraries.The Stand-alone software are Pajek and Gephi.The libraries are igraph and NetworkX.Some of the software are emblematic of an approach (Gephi has somecommonalitieswithTulip for example).Nowlet’sdetailtheseones.
  11. This table summarizes how well each tool performs in the seven areas.Pajek performs quite well at the seven domains.If you need more than a simple visualization of a small network, you should avoid NetworkX.Igraph is very good at providing indicator, visualization and community detection.
  12. Hereis an otherrepresentation of the results of the benchmark.Weseeclearlywiththis radar viewthatNetworkXisvery good at custom attributeshandling and providesmanyindicators.No software performsfairlywellattemporality and bipartite graphs management.
  13. Inorder to concludethispresentation, wecansaythere aredifferentscientificdomainsconcerned by SN, and thisexplainwhythere are somuch approches and toolsavailable.The advancesshould come in short or midtermfrom smart modularisation of user interface, algorithms and data, with the goal of allowing the reuse of methodsbetween software. Contextualanalysisneedtools for longitudinal analysis and attributesstudy.Hierarchical graph visualizationisnow an important subjecttoo for smart manipulation of large graphs.
  14. Thankyou.