SlideShare une entreprise Scribd logo
1  sur  28
Télécharger pour lire hors ligne
Module 5
Circular Functions and Trigonometry
What this module is about
This module is about trigonometric equations and proving fundamental
identities. The lessons in this module were presented in a very simple way so it
will be easy for you to understand solve problems without difficulty. Your
knowledge in previous lessons would be of help in the process
What you are expected to learn
This module is designed for you to:
1. state the fundamental identities
2. prove trigonometric identities
3. state and illustrate the sum and cosine formulas of cosine and sine
4. determine the sine and cosine of an angle using the sum and difference
formulas.
5. solve simple trigonometric equations
How much do you know
A. Answer the following:
1. Which of the following does not equal to 1 for all A in each domain?
a. sin2
A + cos2
A b. sec2
A - cos2 A
c.
sin A sec A d. tan A cot A
2. Simplify cos2
A sec A csc A
2
3. If sin ∝ =
13
12
and cos β =
5
4
, where ∝ and β are both in the first
quadrant, find the values of cos (∝ + β ).
4. Sec A is equal to
a. cos A b. sin A c.
Acos
1
d.
Asin
1
.
5. Express
B
B
cot
csc1−
in terms of cos B and Sin A.
a. cos B – sinB b.
B
B
cos
sin1−
c. sin B – cos B d.
B
B
cos
1sin −
6. Simplify
φφ
φ
cotsin
cos
.
a. 1 b. tanφ c. –csc φ d. -1
7. Multiply and simplify ( 1 – cos2
t ) ( 1 + tan2
t ).
8. Express tan B ( sin B + cot B + cos B ) in terms of sec B.
9. Compute sin
12
5π
from the function of
4
π
and
6
π
.
10. Solve the equation cos A – 2sin A cos A = 0.
3
What you will do
Lesson 1
Fundamental Trigonometric Identities
To be able to simplify trigonometric expressions and solve trigonometric
equations, you must be able to know the fundamental trigonometric identities.
The Eight Fundamental Identities:
A. Reciprocal Relations
1. sec θ =
θcos
1
2. csc θ =
θsin
1
3. cot θ =
θtan
1
B. Quotient Relations
4. tan θ =
θ
θ
cos
sin
5. cot θ =
θ
θ
sin
cos
C. Pythagorean Relations
6. cos2
θ + sin2
θ = 1
7. 1 + tan2
θ = sec2
θ
8. cot2
θ + 1 = csc2
θ
4
With the aid of this identities, you may now simplify trigonometric
expressions.
Examples:
Perform the indicated operation.
a. ( 1 – sin x ) ( 1 + sin x )
= 1 - sin2
x Product of sum & difference of 2 terms
= cos2
x Since, cos2
θ + sin2
θ = 1,
then 1 - sin2
x = cos2
x
b. ( sec A – 1 ) ( sec A + 1 )
= sec2
A - 1
= tan2
A Pythagorean Relation no. 2
c. tan θ ( cot θ + tan θ )
= tan θ cot θ + tan2
θ
= 1 + tan
= sec2
θ
tan θ cot θ = 1, because
tan θ =
θ
θ
cos
sin
cot θ =
θ
θ
cos
sin
tan θ cot θ = (
θ
θ
cos
sin
) (
θ
θ
cos
sin
) = 1
d. cos x ( sec x - cos x )
= cos x sec x - cos2
x
= 1 - cos2
x
= sin2
x
cos x sec x = 1, because sec x =
xcos
1
therefore, cos x sec x = cos x (
xcos
1
) = 1
5
e. cos B +
B
B
cos
sin2
=
B
BB
cos
sincos 22
+
cos B, Least common denominator
=
Bcos
1
Identity C. 6
= sec B Identity A. 1
Simplify the following expressions to a single function.
a. cos 2
A tan2
A = sin2
A
cos 2
A (
A
A
2
2
cos
sin
) = sin2
A
b. ( sin x + cos x )2
+ ( sin x - cos x )2
= sin2
x + 2sinx cos x + cos2
x + sin2
x - 2 sin x cos x + cos2
x
= sin2
x + cos2
x + sin2
x + cos2
x
= 2
since, cos2
θ + sin2
θ = 1
c. cot B sec B sin B = 1
since, cot θ =
θ
θ
sin
cos
and sec θ =
θcos
1
then, (
θ
θ
sin
cos
) (
θcos
1
) sin θ = 1
6
d. csc A - csc A cos2
A = sin A
= csc A ( 1 - cos2
A ) Factor csc A
= csc A ( sin2
A ) Identity C. 6
=
θsin
1
( sin2
A) Identity A. 2
= sin A Cancellation
e. cos3
B + cos B sin2
B
= cos B ( cos2
B + sin2
B ) Factor cos B
= cos B ( 1 ) Identity C. 6
= cos B
You are now ready to prove identities. In this lesson, you will prove that
one side of the equation is equal to the other side. You can work on either of the
two sides to verify the expressions are equal or you can work on both equations
to arrive at an equal statement.
Suggested Steps in Proving Identities
1. Start with the more complicated side and transform it into the
simpler side.
2. Try algebraic operations such as multiplying, factorings, splitting
single fractions and so on.
3. If other steps fail, express each function in terms of sine and cosine
functions and then perform appropriate algebraic operations.
4. At each step, keep the other side of the identity in mind. This often
reveals what one should do in order to get there.
7
Examples:
a. Prove: cos B + tan B sin B = sec B
Solution:
Generally, we start with the more complicated side and transform it into
the other side using fundamental identities, algebra or other establish
identities.
cos B +
B
B
cos
sin
( sin B ) substituting
B
B
cos
sin
to tan B
B
BB
cos
sincos 2
+
addition of fractions
Bcos
1
= sec B identity A. 1
b. Prove that sec A - tan A sin A = cos A
Solution:
sec A - tan A sin A = cos A
sec A - tan A sin A =
Acos
1
-
A
A
cos
sin
sin A = Substitute
A
A
cos
sin
to tan A
Acos
1
-
A
A
cos
sin2
= Subtraction of fraction
A
A
cos
sin1 2
−
= Identity C. 6
A
A
cos
cos2
= Division of fraction
cos A = cos A
8
c Prove:
θsin1
1
−
+
θsin1
1
+
= 2 sec2
θ
Solution:
In this problem, let us concentrate on the left side because the left
side looks more complicated than the right side. By adding the two
fractions, we get:
θsin1
1
−
+
θsin1
1
+
=
( )( )θϖ
θθ
sin1sin1
sin1sin1
+−
−++
=
θ2
sin1
2
−
=
θ2
cos
2
2 sec2
θ = 2 sec2
θ
d. Prove: sec4
A - sec2
A = tan2
A + tan4
A
Solution:
sec4
A - sec2
A = sec2
A ( sec2
A - 1 )
= sec2
A tan2
A
= 1 + tan2
A ( tan2
A )
= tan2
A + tan4
A
e. Prove: sin θ + cos θ +
θ
θ
cot
sin
= sec θ + csc θ -
θ
θ
tan
cos
For this example, we will work on both sides of the equation.
9
Let us first work on the left-hand side of the equation:
sin θ + cos θ +
θ
θ
cot
sin
= sin θ + cos θ +
θ
θ
θ
sin
cos
sin
= sin θ + cos θ +
θ
θ
cos
sin2
= sin θ + cos θ +
θ
θ
cos
cos1 2
−
= sin θ + cos θ +
θcos
1
-
θ
θ
cos
cos2
= sin θ + cos θ + sec θ - cos θ
= sin θ + sec θ
Now, work on the right-hand side of the eqution:
sec θ + csc θ -
θ
θ
tan
cos
= sec θ + csc θ -
θ
θ
θ
cos
sin
cos
= sec θ + csc θ -
θ
θ
sin
cos2
= sec θ + csc θ -
θ
θ
sin
sin1 2
−
= sec θ + csc θ -
θsin
1
-
θ
θ
sin
sin2
= sec θ + csc θ - csc θ - sin θ
= sec θ - sin θ
Therefore:
sec θ - sin θ = sec θ - sin θ
10
f. Prove the identity
B
B
cos1
cos1
−
+
+
B
B
sin1
sin1
−
+
=
1csccoscot
csccos2
+−−
−
BBB
BB
Begin working with the left side,
B
B
cos1
cos1
−
+
+
B
B
sin1
sin1
−
+
=
( )( ) ( )( )
( )( )BB
BBBB
sin1cos1
cos1sin1sin1cos1
−−
−++−+
=
( )
( )( )BB
BBBBBBBB
sin1cos1
cossincossin1sincossincos1
−−
−−++−−+
=
BBBB
BcoB
sincossincos1
sin22
+−−
−
Now work on the right side of the equation.
1csccoscot
csccos2
+−−
−
BBB
BB
=
1
sin
1
cos
sin
cos
sin
2
cos2
+−−
−
B
B
B
B
B
B
= 2cosBsinB – 2
sinB
cosB – cosB sinB – 1 + sinB
sinB
=
BBBB
BB
sin1sincoscos
sincos22
=−−
−
=
BBBB
BB
sincossincos1
sincos22
+−−
−
11
Try this out
A. Perform the indicated operation and simplify.
1. (sin θ + cos θ)2
2. (cot B + csc B)(cot B - csc B)
3.
θ
θ
sin1
cos
+
+
θ
θ
cos
sin1+
4. tan θ -
θ
θ
tan
sec2
B. Factor each expression and simplify
1. tan2
A - tan2
A sin2
A
2. sec2
B tan2
B + sec2
B
3. tan4
A + 2 tan2
A + 1
C. Prove the following identities.
1. sin x cos x cot x = cos2
x
2. 1 - sin t cos t cot t = sin2
t
3. sin A cos A tan A + sin A cos A cot A = 1
4. sec B cot B = csc B
5.
θ
θ
sin
cos1+
+
θ
θ
cos
sin
=
θθ
θ
cossin
1cos +
6.
θ
θ
cot1
tan1
+
+
=
θ
θ
csc
sec
7.
θθ
θθ
cscsec
cossin
+
+
=
θ
θ
sec
sin
12
Lesson 2
The Sum and Difference of Sine and Cosine
The sum and difference identities for sine and cosine can be used to find
the exact values of the sine and cosine of angles which is not exact.
The Sum and Difference Identities:
cos ( A - B ) = cos A cos B + sin A cos A
cos ( A + B ) = cos A Cos B - sin A sin B
sin ( A + B ) = sin A cos B + sin B cos A
sin ( A – B ) = sin A cos B – sin B cos A
The sum and difference identities for sine and cosine can be used to find
the exact values of the sine and cosine of angles that are not special angles.
Example 1:
a. Find the exact value of sin 15°
sin 15° = sin ( 45° - 30° )
= sin 45° cos 30° - cos 45° sin 30°
= (
2
2
) (
2
3
) - (
2
2
) (
2
1
)
=
4
6
-
4
2
=
4
26 −
13
b. find the exact value of cos
12
5π
.
cos
12
5π
= cos (
4
π
+
6
π
)
= cos
4
π
cos
6
π
- sin
4
π
sin
6
π
= (
2
2
) (
2
3
) - (
2
2
) (
2
1
)
=
4
6
-
4
2
= 6 - 2
4
Example 2:
Consider sin A =
13
12
with P(A) in Q1 and cos B =
5
3
with P(B)in Q1.
Find: a. sin ( A + B ) b. cos ( A + B )
Solution:
Since P(A) and P(B) are both in Q1, P(A + B) is either in the first or
second quadrant. While, cosine is positive in the first quadrant and
negative in the second, it will suffice to find sin (A + B) and cos (A + B).
We get the value of cos A and sin B by using the Pythagorean
relation,
cos2
A + sin2
B = 1
Substitute
13
12
for sin A and
5
3
for cos B.
cos2
A + sin2
A = 1
14
cos2
A + (
13
12
)2
= 1
cos2
A +
169
144
= 1
cos2
A = 1 -
169
144
cos2
A =
169
25
A2
cos =
169
25
cos A = ±
13
5
Take cos A =
13
5
since P( A ) is in Q1.
Substitute
5
3
for cos B.
cos2
B + sin2
B = 1
(
5
3
)2
+ sin2
B = 1
25
9
+ sin2
B = 1
sin2
B = 1 -
25
9
sin2
B =
25
16
B2
sin =
25
16
sin B = ±
5
4
Take sin B =
5
4
15
a. sin( A + B ) = sinA cosB + cosA sinB
= (
13
12
) (
5
3
) + (
13
5
) (
5
4
)
=
65
36
+
65
20
sin( A + B ) =
65
56
b. cos( A + B ) = cosA cosB - sinA sinB
= (
13
5
) (
5
3
) - (
13
12
) (
5
4
)
=
65
15
-
65
48
cos( A + B ) =
65
33−
Example 3:
If sin A =
3
1−
, 180° < ∠A < 270° and cos B =
5
1
, 270° < ∠B < 360°.
Evaluate:
a. cos (A - B) b. sin (A – B)
Solution:
First, you have to get the values of cos A and sin B. We can get these
values by using the Pythagorean relation.
Since, 180° < ∠A <270°, ∠A is in quadrant III and ∠B is in quadrant IV.
cos2
A + sin2
A = 1
cos2
A + (
3
1−
)2
= 1
16
cos2
A +
9
1
= 1
cos2
A =
9
8
cos A = ±
3
22
cos A = -
3
22
, since ∠ A is in Q III.
Now, find the value of cos B:
cos B =
5
1
, 270° < ∠B < 360°.
cos2
B + sin2
B = 1
(
5
1
)2
+ sin2
B = 1
sin2
B =
25
24
sin B = ±
5
62
sin B = -
5
62
, since ∠ B is Q IV.
We are now ready to evaluate: a. cos( A - B )
cos( A - B ) = cos A cos B + sin A sin B
= ( -
3
22
) (
5
1
) + (
3
1−
) ( -
5
62
)
=
15
22−
+
15
62
cos ( A – B ) = -2 2 + 2 6
15
17
b. sin( A – B ) = sin A cos B - cos A sin B
= (
3
1−
) (
5
1
) - ( -
3
22
) ( -
5
62
)
=
15
1−
-
15
124
=
15
1−
-
15
38
sin( A – B ) = -1 - 8 3
15
Try this out
A. Express each measure as the sum or difference of two special angle
measures.
1. 105° 2. 135°
3. 225° 4. 315°
5.
6
π
6.
12
7π
B. Evaluate by using special angle measures and a sum or difference
identity.
1. cos 105° 2. sin 135°
3. sin 225° 4. cos 315°
5. cos
6
π
6. sin
12
7π
7. sin
3
8π
8. sin
3
4π
9. sin 300° 10. cos 240°
18
C. Evaluate sin( A + B ) and sin( A - B ) given the following:
1. sin A =
5
4
, 90° 〈 ∠ A 〈 180° and cos B =
13
12
, 180° 〈 ∠ B 〈 270°
2. sin A =
5
3
, 90° 〈 ∠ A 〈 180° and cos B = -
13
12
, 180° 〈 ∠ B 〈 270°
Lesson 3
Trigonometric Equations
A trigonometric equation is an equation which involves some trigonometric
functions of the variable. The rules in solving algebraic equations also applies to
the solution of trigonometric equations.
Here, are some pointers for you to remember:
1. Adding the same expression to both members of an equation
produces an equivalent equation.
2. Multiplying each member of an equation by the same expression
produces an equivalent equation.
3. Replacing any expression is an equation by another expression
representing the same real number produces an equivalent
equation.
Let us review your knowledge on solving algebraic equations:
Solve for the value of x in the following equations.
1. x2
- 7x + 12 = 0 2. 6x2
- 5x = -1
(x - 4)(x - 3) = 0 6x2
- 5x + 1 = 0
x - 4 = 0 or x - 3 = 0 (3x - 1)(2x - 1) = 0
x = 4 or x = 3 x =
3
1
or x =
2
1
19
You can now apply these procedure to solve trigonometric equations.
Examples:
a. Solve: sin2
x + 3 sin x + 2 = 0, 0 ≤ x 〈 2π
sin2
x + 3 sin x + 2 = 0
(sin x + 2)(sin x + 1) = 0
sin x + 2 = 0 or sin x + 1 = 0
sin x = -2 or sin x = -1
You have to reject -2 since, -1 ≤ x ≤ 1
sin x = -1 and x =
2
3π
since sin
2
3π
= -1.
Therefore, the solution within the specified interval is
2
3π
.
2
3π
is called a primary solution because it is a solution within the given
interval. All angles that are coterminal with the angle that is a primary
solution would also be a solution. These solutions differ from the primary
solution by integral multiples of the period of the function and are called
general solutions of the equation. The general solution of the equation is
x =
2
3π
+ π, where k is an integer.
Forming the General Solution
For equations of the form
sin x = k cos x = k csc x = k sec x = k
find all solutions in the interval 0 ≤ x ≤ kπ and add 2kπ to each to form
the general solution..
For equations of the form
tan x = k cot x = k
find all solutions in the interval 0 ≤ x ≤ kπ and add kπ to each to form
the general solution.
20
When a trigonometric equation contains more than one function, transform
it into an equation containing only one trigonometric function. Use the
identities and substitute.
b. Solve: 5 sec2
x + 2 tan x = 8, 0° ≤ x ≤ 360°
5 sec2
x + 2 tan x = 8
5(tan2
x + 1) + 2 tan x - 8 = 0 substitute tan2
x + 1 for sec2
x
5 tan2
x + 5 + 2 tan x - 8 = 0
5 tan2
x + 2 tan x - 3 = 0
(5 tan x - 3) (tan x + 1) = 0
tan x =
5
3
or tan x = -1
tan x = 0.6 or tan x = -1
x = 31° or x = 135 °
x = 211° or x = 315 °
Since the tangent functions has a period of 180°, the solutions within
the specified interval are 31°, 135 °, 211° and 315 °.
c. Solve cot x cos2
x = 2 cot x
cot x cos2
x = 2 cot x
cot x cos2
x - 2 cot x = 0
cot x ( cos2
x - 2) = 0
cot x = 0 or cos2
x - 2 = 0
x =
2
π
cos2
x = 2
cos x = ± 2
21
No solution is obtained from cos x = ± 2 , since ± 2 is outside the
cosine function. The complete solution is
x =
2
π
+ kπ, where k is an integer.
d. Solve cos A + sin A = 1
Solve for cos A. Then square both sides.
cos A + sin A = 1
cos A = 1 - sin A
cos2
A = (1 - sin A )2
cos2
A = 1 - 2sin A + sin2
A
1 - sin2
A = 1 - 2sin A + sin2
A
2 sin A - 2 sin2
A = 0
2 sin A ( 1 - sin A ) = 0
2 sin A = 0 or 1 - sin A = 0
2 sin A = 0 implies that sin A = 1, and A = 2π.
1 - sin A = 0 implies that sin A = 1, A =
2
π
Try this out
A. Find all values of θ between 0 and 2π that satisfy each of the following
equations.
1. sin θ =
2
1
2. cos θ =
2
3−
3. tan θ = -1 4. cot θ = - 3
22
5. tan θ =
3
1
−
6. cos θ =
2
1−
7. sin θ =
2
2
8. sin θ =
2
3−
9. cos θ = -
2
2
10. sec θ = 2
B. Find the solutions in each of the following in the interval 0, 2π
1. 2 sin2
x = 1
2. tan x ( tan x - 1 ) = 0
3. 3 sec2
x - 4 = 0
4. 2 cos2
x tan x - tan x = 0
5. 2 cot2
x + csc2
x = 2
6. 1 + cos A = 3 cos A
7. 2 tan2
B + sec2
B = 2
8. cos A = sin A
9. sin2
A + 2sin A + 1 = 0
10. cos2
x = cos x
23
Let’s summarize
The Eight Fundamental Identities
A. Reciprocal Relations B. Quotient Relations
1. sec θ =
θcos
1
4. tan θ =
θ
θ
cos
sin
2. csc θ =
θsin
1
5. cot θ =
θ
θ
sin
cos
3. cot θ =
θtan
1
C. Pythagorean Relations
6. cos2
θ + sin2
θ = 1
7. 1 + tan2
θ = sec2
θ
8. cot2
θ + 1 = csc2
θ
The Sum and Difference Identities
1. cos ( A - B ) = cos A cos B + sin A cos A
2. cos ( A + B ) = cos A Cos B - sin A sin B
3. sin ( A + B ) = sin A cos B + sin B cos A
4. sin ( A – B ) = sin A cos B – sin B cos A
The sum and difference identities for sine and cosine can be used to find
the exact values of the sine and cosine of angles that are not special angles.
The General Solution:
For equations of the form,
sin x = k cos x = k csc x = k sec x = k
24
find all solutions in the interval 0 ≤ x ≤ kπ and add 2kπ to each to form the
general solution.
For equations of the form,
tan x = k cot x = k
find all solutions in the interval 0 ≤ x ≤ kπ and add kπ to each to form the general
solution.
What have you learned
Answer the following:
1. What is cos x if sin x =
5
3
and the terminal side of ∠ X is in Q1.
2. Express cos B +
B
B
cos
sin2
in simplest form.
3. Factor and simplify. cos3
A - cos A
4. Prove:
A
AA
cot
csccos
= 1
5. Simplify cot B sec B sin B to a single function.
6. Rationalize the denominator and simplify.
θ
θ
cos1
sin2
−
.
7. Write cos 330° as sum and difference of 2 special angles.
8. If ∠ A is a fourth-quadrant angle, sin A =
17
8−
,∠ B is a 3rd
-quadrant angle,
and cos B =
13
5−
. Find the exact value of cos( A + B ) and cos ( A – B ).
9. Solve for x, 0 ≤ x ≤
2
π
. 1 - 2sin A = 0
10. Prove: tan θ( sin θ + cos θ )2
+ ( 1 – sec2
θ ) cot θ = 2 sin2
θ
25
Answer Key
How much do you know
1. c 2. cot A 3.
4225
228
4. c 5. d 6. a 7. tan2
θ
8.
B
B
cos
sin
( sin B ) + (
B
B
sin
cos
)(
B
B
cos
sin
) cos A 9. 6 - 2
4
B
B
cos
sin2
+ cos B =
B
BB
cos
cossin 22
+
=
Bcos
1
= sec B 10.
2
π
,
2
3π
,
6
7π
,
6
11π
Try this out
Lesson 1
A 1. 1 + 2sinθ cos θ 2.
θ
θ
2
2
sin
1cos −
3.
)sin1(cos
sin21
θθ
θ
+
+
4.
θtan
1−
or
θ
θ
sin
cos−
B 1. tan2
A (1 – sin2
A) 2. sec2
B tan2
B + sec2
B 3. (tan2
B + 1)2
= tan2
A (cos2
A) = sec2
B (tan2
B + 1) = sec4
A
=
A
A
2
2
cos
sin
(cos A) = sec2
B (sec2
B)
= sin2
A = sec4
B
C1. sin x cos x cot x = cos x 2. 1 - sin t cos t cot t = sin2
t
sin x cos x
x
x
sin
cos
= cos2
x = 1 - sin t cos t (
t
t
sin
cos
) = 1 – cos2
t = sin2
t
3. sin A cos A tan A + sin A cos A cot A = 1
= sin A cos A (
A
A
cos
sin
) + sin A cos A (
A
A
sin
cos
) = sin2
A + cos2
A = 1
4. sec B cot B = csc B (
Bcos
1
) (
B
B
sin
cos
) =
Bsin
1
= csc B
26
5.
θ
θ
sin
cos1+
+
θ
θ
cos
sin
=
( )
θθ
θθθ
cossin
sincos1cos 2
++
=
θθ
θθθ
cossin
sincoscos 22
++
=
θθ
θ
cossin
1cos +
6.
θ
θ
cot1
tan1
+
+
=
θ
θθ
cos
sincos +
.
θθ
θ
cossin
sin
+
=
θ
θ
cos
sin
=
θ
θ
csc
sec
7.
xx
xx
cscsec
cossin
+
+
=
xcox
xx
xx
sin
cossin
cossin
+
+
= sin x + cos x (
xx
xx
cossin
sincos
+
) = cos x sin x =
θ
θ
sec
sin
Lesson 2
A. 1. (60° + 45°) 2. (90° + 45°) 3. (180° + 45°) 4. (270° + 45°)
5.
3
π
-
6
π
6.
4
π
+
3
π
B. 1. 2 - 6 2.
2
2
3.
2
2
4. -
2
2
5. 3 - 1
4 4
6. 2 + 6 7.
2
3
8. -
2
3
9.
2
1−
10. -
2
3
4
C. 1. cos A =
5
3−
sin B =
13
5−
sin (A + B) =
65
63
sin (A - B) =
13
7−
2. cos A =
5
4−
sin B =
13
5−
sin (A + B) =
13
1
sin (A - B) =
65
44−
27
Lesson 3
A. 1. θ =
6
π
,
6
5π
2. θ =
3
2π
,
3
4π
3. θ =
4
3π
,
4
7π
4. θ =
6
5π
,
6
11π
5. θ =
6
5π
,
6
7π
6. θ =
3
2π
,
3
4π
7. θ =
4
π
,
4
3π
8. θ =
3
4π
,
3
5π
9. θ =
4
3π
, 4
5π
10. θ =
3
π
,
3
5π
B. 1. x =
4
π
,
4
7π
2. x =
4
π
, 4
5π
3. x =
6
π
,
6
11π
4. x = 2π 5.
3
π
,
3
2π
,
3
4π
,
3
5π
6.
3
π
,
3
5π
7. x =
6
π
,
6
5π
,
6
7π
,
6
11π
8. x =
4
π
,
4
5π
9. x =
2
3π
10. x = 0, 2π
What have you learned
1. cos x =
25
4
2.
B
BB
cos
sincos 22
+
=
Bcos
1
= sec B
3. cos A (cos A + 1)(cos A – 1)
28
4.
A
A
A
A
sin
cos
sin
1
cos
=
A
A
sin
cos
x
A
A
cos
sin
= 1
5.
θ
θ
cos
sin
x cos θ -
θ
θ
sin
cos
x sin θ = sin θ - cos θ
6.
θ
θθ
2
2
sin
cossin +
7. cos (270° + 60°) =
2
3
8. cos A =
17
15
sin A =
13
12−
cos (A + B) =
221
171−
9. X =
6
π
,
3
π
10. sin θ + 2sin2
θ +
θ
θ
sin
1sin1 2
−−
=
θ
θθθ
sin
sinsin2sin 23
−+
= 2 sin2
θ

Contenu connexe

Tendances

Lesson plan-advanced algebra Grade 7
Lesson plan-advanced algebra Grade 7Lesson plan-advanced algebra Grade 7
Lesson plan-advanced algebra Grade 7
yhuds
 
Absolute Value Functions & Graphs
Absolute Value Functions & GraphsAbsolute Value Functions & Graphs
Absolute Value Functions & Graphs
toni dimella
 

Tendances (20)

Lesson plan math 10 2 nd grading
Lesson plan math 10 2 nd gradingLesson plan math 10 2 nd grading
Lesson plan math 10 2 nd grading
 
Lesson plan-advanced algebra Grade 7
Lesson plan-advanced algebra Grade 7Lesson plan-advanced algebra Grade 7
Lesson plan-advanced algebra Grade 7
 
Mathematical investigation
Mathematical investigationMathematical investigation
Mathematical investigation
 
Distance formula
Distance formulaDistance formula
Distance formula
 
Module 2 plane coordinate geometry
Module  2   plane coordinate geometryModule  2   plane coordinate geometry
Module 2 plane coordinate geometry
 
Special angles
Special anglesSpecial angles
Special angles
 
DISTANCE FORMULA (GRADE 10 MATH)
DISTANCE FORMULA (GRADE 10 MATH)DISTANCE FORMULA (GRADE 10 MATH)
DISTANCE FORMULA (GRADE 10 MATH)
 
Trigonometric Functions and their Graphs
Trigonometric Functions and their GraphsTrigonometric Functions and their Graphs
Trigonometric Functions and their Graphs
 
Angles
AnglesAngles
Angles
 
Adding and Subtracting Polynomials - Math 7 Q2W4 LC1
Adding and Subtracting Polynomials - Math 7 Q2W4 LC1Adding and Subtracting Polynomials - Math 7 Q2W4 LC1
Adding and Subtracting Polynomials - Math 7 Q2W4 LC1
 
Lesson plan on Evaluating Rational Algebraic Expression
Lesson plan on Evaluating Rational Algebraic ExpressionLesson plan on Evaluating Rational Algebraic Expression
Lesson plan on Evaluating Rational Algebraic Expression
 
Rectangular Coordinate System Lesson Plan
Rectangular Coordinate System Lesson PlanRectangular Coordinate System Lesson Plan
Rectangular Coordinate System Lesson Plan
 
MATH 9 COT 1 Quarter 2.pptx
MATH 9 COT 1 Quarter 2.pptxMATH 9 COT 1 Quarter 2.pptx
MATH 9 COT 1 Quarter 2.pptx
 
Factoring Perfect Square Trinomial
Factoring Perfect Square TrinomialFactoring Perfect Square Trinomial
Factoring Perfect Square Trinomial
 
Detailed lesson plan sss congruence postulate
Detailed lesson plan sss congruence postulateDetailed lesson plan sss congruence postulate
Detailed lesson plan sss congruence postulate
 
Polynomial function
Polynomial functionPolynomial function
Polynomial function
 
Module 4 circular function
Module 4   circular functionModule 4   circular function
Module 4 circular function
 
Sim (Linear Function)
Sim (Linear Function)Sim (Linear Function)
Sim (Linear Function)
 
Absolute Value Functions & Graphs
Absolute Value Functions & GraphsAbsolute Value Functions & Graphs
Absolute Value Functions & Graphs
 
Special Products
Special ProductsSpecial Products
Special Products
 

Similaire à Module 5 circular functions

t4 sum and double half-angle formulas
t4 sum and double half-angle formulast4 sum and double half-angle formulas
t4 sum and double half-angle formulas
math260
 
Advanced Trigonometry
Advanced TrigonometryAdvanced Trigonometry
Advanced Trigonometry
timschmitz
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
Sanpraju
 
Problems and solutions, inmo 2011
Problems and solutions, inmo 2011Problems and solutions, inmo 2011
Problems and solutions, inmo 2011
askiitians
 
Assessments for class xi
Assessments  for class  xi Assessments  for class  xi
Assessments for class xi
indu psthakur
 

Similaire à Module 5 circular functions (20)

1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge
1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge
1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
t4 sum and double half-angle formulas
t4 sum and double half-angle formulast4 sum and double half-angle formulas
t4 sum and double half-angle formulas
 
Advanced Trigonometry
Advanced TrigonometryAdvanced Trigonometry
Advanced Trigonometry
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
Trigonometric ratios and identities 1
Trigonometric ratios and identities 1Trigonometric ratios and identities 1
Trigonometric ratios and identities 1
 
trigonometry.pdf
trigonometry.pdftrigonometry.pdf
trigonometry.pdf
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
TRIGONOMETRY
TRIGONOMETRYTRIGONOMETRY
TRIGONOMETRY
 
Questions and Solutions Basic Trigonometry.pdf
Questions and Solutions Basic Trigonometry.pdfQuestions and Solutions Basic Trigonometry.pdf
Questions and Solutions Basic Trigonometry.pdf
 
Oblique Triangle
Oblique TriangleOblique Triangle
Oblique Triangle
 
MATHS SYMBOLS - PROPORTIONS - FIRST PROPERTIES - MANY OTHER PROPERTIES
MATHS SYMBOLS - PROPORTIONS - FIRST PROPERTIES - MANY OTHER PROPERTIESMATHS SYMBOLS - PROPORTIONS - FIRST PROPERTIES - MANY OTHER PROPERTIES
MATHS SYMBOLS - PROPORTIONS - FIRST PROPERTIES - MANY OTHER PROPERTIES
 
Hprec9 2
Hprec9 2Hprec9 2
Hprec9 2
 
Problems and solutions, inmo 2011
Problems and solutions, inmo 2011Problems and solutions, inmo 2011
Problems and solutions, inmo 2011
 
Assessments for class xi
Assessments  for class  xi Assessments  for class  xi
Assessments for class xi
 
Trigonometry - Formula Sheet - MathonGo.pdf
Trigonometry - Formula Sheet - MathonGo.pdfTrigonometry - Formula Sheet - MathonGo.pdf
Trigonometry - Formula Sheet - MathonGo.pdf
 
6.2 law of cosines
6.2  law of cosines6.2  law of cosines
6.2 law of cosines
 
Propeties of-triangles
Propeties of-trianglesPropeties of-triangles
Propeties of-triangles
 
3.complex numbers Further Mathematics Zimbabwe Zimsec Cambridge
3.complex numbers  Further Mathematics Zimbabwe Zimsec Cambridge3.complex numbers  Further Mathematics Zimbabwe Zimsec Cambridge
3.complex numbers Further Mathematics Zimbabwe Zimsec Cambridge
 
Hprec10 1
Hprec10 1Hprec10 1
Hprec10 1
 

Plus de dionesioable

Results based performance management system (rpms) for dep ed
Results   based performance management system (rpms) for dep edResults   based performance management system (rpms) for dep ed
Results based performance management system (rpms) for dep ed
dionesioable
 
1 1a modyul final ok
1 1a modyul final ok1 1a modyul final ok
1 1a modyul final ok
dionesioable
 
1 1c modyul final ok
1 1c modyul final ok1 1c modyul final ok
1 1c modyul final ok
dionesioable
 
1 1b modyul final ok
1 1b modyul final ok1 1b modyul final ok
1 1b modyul final ok
dionesioable
 
Biology m16 diversity of plants
Biology m16 diversity of plantsBiology m16 diversity of plants
Biology m16 diversity of plants
dionesioable
 
Biology m1 nature of biology
Biology m1 nature of biologyBiology m1 nature of biology
Biology m1 nature of biology
dionesioable
 

Plus de dionesioable (20)

Squad drill
Squad drillSquad drill
Squad drill
 
Dril
DrilDril
Dril
 
Modyul 01 hegrapiya ng daigdig
Modyul 01   hegrapiya ng daigdigModyul 01   hegrapiya ng daigdig
Modyul 01 hegrapiya ng daigdig
 
Innovation presentation
Innovation presentationInnovation presentation
Innovation presentation
 
Results based performance management system (rpms) for dep ed
Results   based performance management system (rpms) for dep edResults   based performance management system (rpms) for dep ed
Results based performance management system (rpms) for dep ed
 
Unit 1, mod 3 Sulyap ng Buhay Panlipunan sa Sinaunang Panahon
Unit 1, mod 3 Sulyap ng Buhay Panlipunan sa Sinaunang PanahonUnit 1, mod 3 Sulyap ng Buhay Panlipunan sa Sinaunang Panahon
Unit 1, mod 3 Sulyap ng Buhay Panlipunan sa Sinaunang Panahon
 
Unit 1, mod 4 Pagtatag ng kolonyang Espanyol at mga patakarang kolonyal
Unit 1, mod 4 Pagtatag ng kolonyang Espanyol at mga patakarang kolonyalUnit 1, mod 4 Pagtatag ng kolonyang Espanyol at mga patakarang kolonyal
Unit 1, mod 4 Pagtatag ng kolonyang Espanyol at mga patakarang kolonyal
 
Unit 1, mod 2 Ang bangang Manunggul at mga sinaunang paniniwala
Unit 1, mod 2 Ang bangang Manunggul at mga sinaunang paniniwalaUnit 1, mod 2 Ang bangang Manunggul at mga sinaunang paniniwala
Unit 1, mod 2 Ang bangang Manunggul at mga sinaunang paniniwala
 
1 1a modyul final ok
1 1a modyul final ok1 1a modyul final ok
1 1a modyul final ok
 
1 1c modyul final ok
1 1c modyul final ok1 1c modyul final ok
1 1c modyul final ok
 
1 1b modyul final ok
1 1b modyul final ok1 1b modyul final ok
1 1b modyul final ok
 
Deped Sch calendar 2014 -15
Deped Sch calendar 2014 -15Deped Sch calendar 2014 -15
Deped Sch calendar 2014 -15
 
Biology m13 human reproductive system
Biology m13 human reproductive systemBiology m13 human reproductive system
Biology m13 human reproductive system
 
Biology m8 integumentary & excretory systems
Biology m8 integumentary & excretory systemsBiology m8 integumentary & excretory systems
Biology m8 integumentary & excretory systems
 
Biology m6 the levels of biological organization
Biology m6 the levels of biological organizationBiology m6 the levels of biological organization
Biology m6 the levels of biological organization
 
Biology m3 movement of matls thru the cell membrane
Biology m3 movement of matls thru the cell membraneBiology m3 movement of matls thru the cell membrane
Biology m3 movement of matls thru the cell membrane
 
Biology m1 nature of biology
Biology m1 nature of biologyBiology m1 nature of biology
Biology m1 nature of biology
 
Biology m18 animals with backbones
Biology m18 animals with backbonesBiology m18 animals with backbones
Biology m18 animals with backbones
 
Biology m16 diversity of plants
Biology m16 diversity of plantsBiology m16 diversity of plants
Biology m16 diversity of plants
 
Biology m1 nature of biology
Biology m1 nature of biologyBiology m1 nature of biology
Biology m1 nature of biology
 

Dernier

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Dernier (20)

Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 

Module 5 circular functions

  • 1. Module 5 Circular Functions and Trigonometry What this module is about This module is about trigonometric equations and proving fundamental identities. The lessons in this module were presented in a very simple way so it will be easy for you to understand solve problems without difficulty. Your knowledge in previous lessons would be of help in the process What you are expected to learn This module is designed for you to: 1. state the fundamental identities 2. prove trigonometric identities 3. state and illustrate the sum and cosine formulas of cosine and sine 4. determine the sine and cosine of an angle using the sum and difference formulas. 5. solve simple trigonometric equations How much do you know A. Answer the following: 1. Which of the following does not equal to 1 for all A in each domain? a. sin2 A + cos2 A b. sec2 A - cos2 A c. sin A sec A d. tan A cot A 2. Simplify cos2 A sec A csc A
  • 2. 2 3. If sin ∝ = 13 12 and cos β = 5 4 , where ∝ and β are both in the first quadrant, find the values of cos (∝ + β ). 4. Sec A is equal to a. cos A b. sin A c. Acos 1 d. Asin 1 . 5. Express B B cot csc1− in terms of cos B and Sin A. a. cos B – sinB b. B B cos sin1− c. sin B – cos B d. B B cos 1sin − 6. Simplify φφ φ cotsin cos . a. 1 b. tanφ c. –csc φ d. -1 7. Multiply and simplify ( 1 – cos2 t ) ( 1 + tan2 t ). 8. Express tan B ( sin B + cot B + cos B ) in terms of sec B. 9. Compute sin 12 5π from the function of 4 π and 6 π . 10. Solve the equation cos A – 2sin A cos A = 0.
  • 3. 3 What you will do Lesson 1 Fundamental Trigonometric Identities To be able to simplify trigonometric expressions and solve trigonometric equations, you must be able to know the fundamental trigonometric identities. The Eight Fundamental Identities: A. Reciprocal Relations 1. sec θ = θcos 1 2. csc θ = θsin 1 3. cot θ = θtan 1 B. Quotient Relations 4. tan θ = θ θ cos sin 5. cot θ = θ θ sin cos C. Pythagorean Relations 6. cos2 θ + sin2 θ = 1 7. 1 + tan2 θ = sec2 θ 8. cot2 θ + 1 = csc2 θ
  • 4. 4 With the aid of this identities, you may now simplify trigonometric expressions. Examples: Perform the indicated operation. a. ( 1 – sin x ) ( 1 + sin x ) = 1 - sin2 x Product of sum & difference of 2 terms = cos2 x Since, cos2 θ + sin2 θ = 1, then 1 - sin2 x = cos2 x b. ( sec A – 1 ) ( sec A + 1 ) = sec2 A - 1 = tan2 A Pythagorean Relation no. 2 c. tan θ ( cot θ + tan θ ) = tan θ cot θ + tan2 θ = 1 + tan = sec2 θ tan θ cot θ = 1, because tan θ = θ θ cos sin cot θ = θ θ cos sin tan θ cot θ = ( θ θ cos sin ) ( θ θ cos sin ) = 1 d. cos x ( sec x - cos x ) = cos x sec x - cos2 x = 1 - cos2 x = sin2 x cos x sec x = 1, because sec x = xcos 1 therefore, cos x sec x = cos x ( xcos 1 ) = 1
  • 5. 5 e. cos B + B B cos sin2 = B BB cos sincos 22 + cos B, Least common denominator = Bcos 1 Identity C. 6 = sec B Identity A. 1 Simplify the following expressions to a single function. a. cos 2 A tan2 A = sin2 A cos 2 A ( A A 2 2 cos sin ) = sin2 A b. ( sin x + cos x )2 + ( sin x - cos x )2 = sin2 x + 2sinx cos x + cos2 x + sin2 x - 2 sin x cos x + cos2 x = sin2 x + cos2 x + sin2 x + cos2 x = 2 since, cos2 θ + sin2 θ = 1 c. cot B sec B sin B = 1 since, cot θ = θ θ sin cos and sec θ = θcos 1 then, ( θ θ sin cos ) ( θcos 1 ) sin θ = 1
  • 6. 6 d. csc A - csc A cos2 A = sin A = csc A ( 1 - cos2 A ) Factor csc A = csc A ( sin2 A ) Identity C. 6 = θsin 1 ( sin2 A) Identity A. 2 = sin A Cancellation e. cos3 B + cos B sin2 B = cos B ( cos2 B + sin2 B ) Factor cos B = cos B ( 1 ) Identity C. 6 = cos B You are now ready to prove identities. In this lesson, you will prove that one side of the equation is equal to the other side. You can work on either of the two sides to verify the expressions are equal or you can work on both equations to arrive at an equal statement. Suggested Steps in Proving Identities 1. Start with the more complicated side and transform it into the simpler side. 2. Try algebraic operations such as multiplying, factorings, splitting single fractions and so on. 3. If other steps fail, express each function in terms of sine and cosine functions and then perform appropriate algebraic operations. 4. At each step, keep the other side of the identity in mind. This often reveals what one should do in order to get there.
  • 7. 7 Examples: a. Prove: cos B + tan B sin B = sec B Solution: Generally, we start with the more complicated side and transform it into the other side using fundamental identities, algebra or other establish identities. cos B + B B cos sin ( sin B ) substituting B B cos sin to tan B B BB cos sincos 2 + addition of fractions Bcos 1 = sec B identity A. 1 b. Prove that sec A - tan A sin A = cos A Solution: sec A - tan A sin A = cos A sec A - tan A sin A = Acos 1 - A A cos sin sin A = Substitute A A cos sin to tan A Acos 1 - A A cos sin2 = Subtraction of fraction A A cos sin1 2 − = Identity C. 6 A A cos cos2 = Division of fraction cos A = cos A
  • 8. 8 c Prove: θsin1 1 − + θsin1 1 + = 2 sec2 θ Solution: In this problem, let us concentrate on the left side because the left side looks more complicated than the right side. By adding the two fractions, we get: θsin1 1 − + θsin1 1 + = ( )( )θϖ θθ sin1sin1 sin1sin1 +− −++ = θ2 sin1 2 − = θ2 cos 2 2 sec2 θ = 2 sec2 θ d. Prove: sec4 A - sec2 A = tan2 A + tan4 A Solution: sec4 A - sec2 A = sec2 A ( sec2 A - 1 ) = sec2 A tan2 A = 1 + tan2 A ( tan2 A ) = tan2 A + tan4 A e. Prove: sin θ + cos θ + θ θ cot sin = sec θ + csc θ - θ θ tan cos For this example, we will work on both sides of the equation.
  • 9. 9 Let us first work on the left-hand side of the equation: sin θ + cos θ + θ θ cot sin = sin θ + cos θ + θ θ θ sin cos sin = sin θ + cos θ + θ θ cos sin2 = sin θ + cos θ + θ θ cos cos1 2 − = sin θ + cos θ + θcos 1 - θ θ cos cos2 = sin θ + cos θ + sec θ - cos θ = sin θ + sec θ Now, work on the right-hand side of the eqution: sec θ + csc θ - θ θ tan cos = sec θ + csc θ - θ θ θ cos sin cos = sec θ + csc θ - θ θ sin cos2 = sec θ + csc θ - θ θ sin sin1 2 − = sec θ + csc θ - θsin 1 - θ θ sin sin2 = sec θ + csc θ - csc θ - sin θ = sec θ - sin θ Therefore: sec θ - sin θ = sec θ - sin θ
  • 10. 10 f. Prove the identity B B cos1 cos1 − + + B B sin1 sin1 − + = 1csccoscot csccos2 +−− − BBB BB Begin working with the left side, B B cos1 cos1 − + + B B sin1 sin1 − + = ( )( ) ( )( ) ( )( )BB BBBB sin1cos1 cos1sin1sin1cos1 −− −++−+ = ( ) ( )( )BB BBBBBBBB sin1cos1 cossincossin1sincossincos1 −− −−++−−+ = BBBB BcoB sincossincos1 sin22 +−− − Now work on the right side of the equation. 1csccoscot csccos2 +−− − BBB BB = 1 sin 1 cos sin cos sin 2 cos2 +−− − B B B B B B = 2cosBsinB – 2 sinB cosB – cosB sinB – 1 + sinB sinB = BBBB BB sin1sincoscos sincos22 =−− − = BBBB BB sincossincos1 sincos22 +−− −
  • 11. 11 Try this out A. Perform the indicated operation and simplify. 1. (sin θ + cos θ)2 2. (cot B + csc B)(cot B - csc B) 3. θ θ sin1 cos + + θ θ cos sin1+ 4. tan θ - θ θ tan sec2 B. Factor each expression and simplify 1. tan2 A - tan2 A sin2 A 2. sec2 B tan2 B + sec2 B 3. tan4 A + 2 tan2 A + 1 C. Prove the following identities. 1. sin x cos x cot x = cos2 x 2. 1 - sin t cos t cot t = sin2 t 3. sin A cos A tan A + sin A cos A cot A = 1 4. sec B cot B = csc B 5. θ θ sin cos1+ + θ θ cos sin = θθ θ cossin 1cos + 6. θ θ cot1 tan1 + + = θ θ csc sec 7. θθ θθ cscsec cossin + + = θ θ sec sin
  • 12. 12 Lesson 2 The Sum and Difference of Sine and Cosine The sum and difference identities for sine and cosine can be used to find the exact values of the sine and cosine of angles which is not exact. The Sum and Difference Identities: cos ( A - B ) = cos A cos B + sin A cos A cos ( A + B ) = cos A Cos B - sin A sin B sin ( A + B ) = sin A cos B + sin B cos A sin ( A – B ) = sin A cos B – sin B cos A The sum and difference identities for sine and cosine can be used to find the exact values of the sine and cosine of angles that are not special angles. Example 1: a. Find the exact value of sin 15° sin 15° = sin ( 45° - 30° ) = sin 45° cos 30° - cos 45° sin 30° = ( 2 2 ) ( 2 3 ) - ( 2 2 ) ( 2 1 ) = 4 6 - 4 2 = 4 26 −
  • 13. 13 b. find the exact value of cos 12 5π . cos 12 5π = cos ( 4 π + 6 π ) = cos 4 π cos 6 π - sin 4 π sin 6 π = ( 2 2 ) ( 2 3 ) - ( 2 2 ) ( 2 1 ) = 4 6 - 4 2 = 6 - 2 4 Example 2: Consider sin A = 13 12 with P(A) in Q1 and cos B = 5 3 with P(B)in Q1. Find: a. sin ( A + B ) b. cos ( A + B ) Solution: Since P(A) and P(B) are both in Q1, P(A + B) is either in the first or second quadrant. While, cosine is positive in the first quadrant and negative in the second, it will suffice to find sin (A + B) and cos (A + B). We get the value of cos A and sin B by using the Pythagorean relation, cos2 A + sin2 B = 1 Substitute 13 12 for sin A and 5 3 for cos B. cos2 A + sin2 A = 1
  • 14. 14 cos2 A + ( 13 12 )2 = 1 cos2 A + 169 144 = 1 cos2 A = 1 - 169 144 cos2 A = 169 25 A2 cos = 169 25 cos A = ± 13 5 Take cos A = 13 5 since P( A ) is in Q1. Substitute 5 3 for cos B. cos2 B + sin2 B = 1 ( 5 3 )2 + sin2 B = 1 25 9 + sin2 B = 1 sin2 B = 1 - 25 9 sin2 B = 25 16 B2 sin = 25 16 sin B = ± 5 4 Take sin B = 5 4
  • 15. 15 a. sin( A + B ) = sinA cosB + cosA sinB = ( 13 12 ) ( 5 3 ) + ( 13 5 ) ( 5 4 ) = 65 36 + 65 20 sin( A + B ) = 65 56 b. cos( A + B ) = cosA cosB - sinA sinB = ( 13 5 ) ( 5 3 ) - ( 13 12 ) ( 5 4 ) = 65 15 - 65 48 cos( A + B ) = 65 33− Example 3: If sin A = 3 1− , 180° < ∠A < 270° and cos B = 5 1 , 270° < ∠B < 360°. Evaluate: a. cos (A - B) b. sin (A – B) Solution: First, you have to get the values of cos A and sin B. We can get these values by using the Pythagorean relation. Since, 180° < ∠A <270°, ∠A is in quadrant III and ∠B is in quadrant IV. cos2 A + sin2 A = 1 cos2 A + ( 3 1− )2 = 1
  • 16. 16 cos2 A + 9 1 = 1 cos2 A = 9 8 cos A = ± 3 22 cos A = - 3 22 , since ∠ A is in Q III. Now, find the value of cos B: cos B = 5 1 , 270° < ∠B < 360°. cos2 B + sin2 B = 1 ( 5 1 )2 + sin2 B = 1 sin2 B = 25 24 sin B = ± 5 62 sin B = - 5 62 , since ∠ B is Q IV. We are now ready to evaluate: a. cos( A - B ) cos( A - B ) = cos A cos B + sin A sin B = ( - 3 22 ) ( 5 1 ) + ( 3 1− ) ( - 5 62 ) = 15 22− + 15 62 cos ( A – B ) = -2 2 + 2 6 15
  • 17. 17 b. sin( A – B ) = sin A cos B - cos A sin B = ( 3 1− ) ( 5 1 ) - ( - 3 22 ) ( - 5 62 ) = 15 1− - 15 124 = 15 1− - 15 38 sin( A – B ) = -1 - 8 3 15 Try this out A. Express each measure as the sum or difference of two special angle measures. 1. 105° 2. 135° 3. 225° 4. 315° 5. 6 π 6. 12 7π B. Evaluate by using special angle measures and a sum or difference identity. 1. cos 105° 2. sin 135° 3. sin 225° 4. cos 315° 5. cos 6 π 6. sin 12 7π 7. sin 3 8π 8. sin 3 4π 9. sin 300° 10. cos 240°
  • 18. 18 C. Evaluate sin( A + B ) and sin( A - B ) given the following: 1. sin A = 5 4 , 90° 〈 ∠ A 〈 180° and cos B = 13 12 , 180° 〈 ∠ B 〈 270° 2. sin A = 5 3 , 90° 〈 ∠ A 〈 180° and cos B = - 13 12 , 180° 〈 ∠ B 〈 270° Lesson 3 Trigonometric Equations A trigonometric equation is an equation which involves some trigonometric functions of the variable. The rules in solving algebraic equations also applies to the solution of trigonometric equations. Here, are some pointers for you to remember: 1. Adding the same expression to both members of an equation produces an equivalent equation. 2. Multiplying each member of an equation by the same expression produces an equivalent equation. 3. Replacing any expression is an equation by another expression representing the same real number produces an equivalent equation. Let us review your knowledge on solving algebraic equations: Solve for the value of x in the following equations. 1. x2 - 7x + 12 = 0 2. 6x2 - 5x = -1 (x - 4)(x - 3) = 0 6x2 - 5x + 1 = 0 x - 4 = 0 or x - 3 = 0 (3x - 1)(2x - 1) = 0 x = 4 or x = 3 x = 3 1 or x = 2 1
  • 19. 19 You can now apply these procedure to solve trigonometric equations. Examples: a. Solve: sin2 x + 3 sin x + 2 = 0, 0 ≤ x 〈 2π sin2 x + 3 sin x + 2 = 0 (sin x + 2)(sin x + 1) = 0 sin x + 2 = 0 or sin x + 1 = 0 sin x = -2 or sin x = -1 You have to reject -2 since, -1 ≤ x ≤ 1 sin x = -1 and x = 2 3π since sin 2 3π = -1. Therefore, the solution within the specified interval is 2 3π . 2 3π is called a primary solution because it is a solution within the given interval. All angles that are coterminal with the angle that is a primary solution would also be a solution. These solutions differ from the primary solution by integral multiples of the period of the function and are called general solutions of the equation. The general solution of the equation is x = 2 3π + π, where k is an integer. Forming the General Solution For equations of the form sin x = k cos x = k csc x = k sec x = k find all solutions in the interval 0 ≤ x ≤ kπ and add 2kπ to each to form the general solution.. For equations of the form tan x = k cot x = k find all solutions in the interval 0 ≤ x ≤ kπ and add kπ to each to form the general solution.
  • 20. 20 When a trigonometric equation contains more than one function, transform it into an equation containing only one trigonometric function. Use the identities and substitute. b. Solve: 5 sec2 x + 2 tan x = 8, 0° ≤ x ≤ 360° 5 sec2 x + 2 tan x = 8 5(tan2 x + 1) + 2 tan x - 8 = 0 substitute tan2 x + 1 for sec2 x 5 tan2 x + 5 + 2 tan x - 8 = 0 5 tan2 x + 2 tan x - 3 = 0 (5 tan x - 3) (tan x + 1) = 0 tan x = 5 3 or tan x = -1 tan x = 0.6 or tan x = -1 x = 31° or x = 135 ° x = 211° or x = 315 ° Since the tangent functions has a period of 180°, the solutions within the specified interval are 31°, 135 °, 211° and 315 °. c. Solve cot x cos2 x = 2 cot x cot x cos2 x = 2 cot x cot x cos2 x - 2 cot x = 0 cot x ( cos2 x - 2) = 0 cot x = 0 or cos2 x - 2 = 0 x = 2 π cos2 x = 2 cos x = ± 2
  • 21. 21 No solution is obtained from cos x = ± 2 , since ± 2 is outside the cosine function. The complete solution is x = 2 π + kπ, where k is an integer. d. Solve cos A + sin A = 1 Solve for cos A. Then square both sides. cos A + sin A = 1 cos A = 1 - sin A cos2 A = (1 - sin A )2 cos2 A = 1 - 2sin A + sin2 A 1 - sin2 A = 1 - 2sin A + sin2 A 2 sin A - 2 sin2 A = 0 2 sin A ( 1 - sin A ) = 0 2 sin A = 0 or 1 - sin A = 0 2 sin A = 0 implies that sin A = 1, and A = 2π. 1 - sin A = 0 implies that sin A = 1, A = 2 π Try this out A. Find all values of θ between 0 and 2π that satisfy each of the following equations. 1. sin θ = 2 1 2. cos θ = 2 3− 3. tan θ = -1 4. cot θ = - 3
  • 22. 22 5. tan θ = 3 1 − 6. cos θ = 2 1− 7. sin θ = 2 2 8. sin θ = 2 3− 9. cos θ = - 2 2 10. sec θ = 2 B. Find the solutions in each of the following in the interval 0, 2π 1. 2 sin2 x = 1 2. tan x ( tan x - 1 ) = 0 3. 3 sec2 x - 4 = 0 4. 2 cos2 x tan x - tan x = 0 5. 2 cot2 x + csc2 x = 2 6. 1 + cos A = 3 cos A 7. 2 tan2 B + sec2 B = 2 8. cos A = sin A 9. sin2 A + 2sin A + 1 = 0 10. cos2 x = cos x
  • 23. 23 Let’s summarize The Eight Fundamental Identities A. Reciprocal Relations B. Quotient Relations 1. sec θ = θcos 1 4. tan θ = θ θ cos sin 2. csc θ = θsin 1 5. cot θ = θ θ sin cos 3. cot θ = θtan 1 C. Pythagorean Relations 6. cos2 θ + sin2 θ = 1 7. 1 + tan2 θ = sec2 θ 8. cot2 θ + 1 = csc2 θ The Sum and Difference Identities 1. cos ( A - B ) = cos A cos B + sin A cos A 2. cos ( A + B ) = cos A Cos B - sin A sin B 3. sin ( A + B ) = sin A cos B + sin B cos A 4. sin ( A – B ) = sin A cos B – sin B cos A The sum and difference identities for sine and cosine can be used to find the exact values of the sine and cosine of angles that are not special angles. The General Solution: For equations of the form, sin x = k cos x = k csc x = k sec x = k
  • 24. 24 find all solutions in the interval 0 ≤ x ≤ kπ and add 2kπ to each to form the general solution. For equations of the form, tan x = k cot x = k find all solutions in the interval 0 ≤ x ≤ kπ and add kπ to each to form the general solution. What have you learned Answer the following: 1. What is cos x if sin x = 5 3 and the terminal side of ∠ X is in Q1. 2. Express cos B + B B cos sin2 in simplest form. 3. Factor and simplify. cos3 A - cos A 4. Prove: A AA cot csccos = 1 5. Simplify cot B sec B sin B to a single function. 6. Rationalize the denominator and simplify. θ θ cos1 sin2 − . 7. Write cos 330° as sum and difference of 2 special angles. 8. If ∠ A is a fourth-quadrant angle, sin A = 17 8− ,∠ B is a 3rd -quadrant angle, and cos B = 13 5− . Find the exact value of cos( A + B ) and cos ( A – B ). 9. Solve for x, 0 ≤ x ≤ 2 π . 1 - 2sin A = 0 10. Prove: tan θ( sin θ + cos θ )2 + ( 1 – sec2 θ ) cot θ = 2 sin2 θ
  • 25. 25 Answer Key How much do you know 1. c 2. cot A 3. 4225 228 4. c 5. d 6. a 7. tan2 θ 8. B B cos sin ( sin B ) + ( B B sin cos )( B B cos sin ) cos A 9. 6 - 2 4 B B cos sin2 + cos B = B BB cos cossin 22 + = Bcos 1 = sec B 10. 2 π , 2 3π , 6 7π , 6 11π Try this out Lesson 1 A 1. 1 + 2sinθ cos θ 2. θ θ 2 2 sin 1cos − 3. )sin1(cos sin21 θθ θ + + 4. θtan 1− or θ θ sin cos− B 1. tan2 A (1 – sin2 A) 2. sec2 B tan2 B + sec2 B 3. (tan2 B + 1)2 = tan2 A (cos2 A) = sec2 B (tan2 B + 1) = sec4 A = A A 2 2 cos sin (cos A) = sec2 B (sec2 B) = sin2 A = sec4 B C1. sin x cos x cot x = cos x 2. 1 - sin t cos t cot t = sin2 t sin x cos x x x sin cos = cos2 x = 1 - sin t cos t ( t t sin cos ) = 1 – cos2 t = sin2 t 3. sin A cos A tan A + sin A cos A cot A = 1 = sin A cos A ( A A cos sin ) + sin A cos A ( A A sin cos ) = sin2 A + cos2 A = 1 4. sec B cot B = csc B ( Bcos 1 ) ( B B sin cos ) = Bsin 1 = csc B
  • 26. 26 5. θ θ sin cos1+ + θ θ cos sin = ( ) θθ θθθ cossin sincos1cos 2 ++ = θθ θθθ cossin sincoscos 22 ++ = θθ θ cossin 1cos + 6. θ θ cot1 tan1 + + = θ θθ cos sincos + . θθ θ cossin sin + = θ θ cos sin = θ θ csc sec 7. xx xx cscsec cossin + + = xcox xx xx sin cossin cossin + + = sin x + cos x ( xx xx cossin sincos + ) = cos x sin x = θ θ sec sin Lesson 2 A. 1. (60° + 45°) 2. (90° + 45°) 3. (180° + 45°) 4. (270° + 45°) 5. 3 π - 6 π 6. 4 π + 3 π B. 1. 2 - 6 2. 2 2 3. 2 2 4. - 2 2 5. 3 - 1 4 4 6. 2 + 6 7. 2 3 8. - 2 3 9. 2 1− 10. - 2 3 4 C. 1. cos A = 5 3− sin B = 13 5− sin (A + B) = 65 63 sin (A - B) = 13 7− 2. cos A = 5 4− sin B = 13 5− sin (A + B) = 13 1 sin (A - B) = 65 44−
  • 27. 27 Lesson 3 A. 1. θ = 6 π , 6 5π 2. θ = 3 2π , 3 4π 3. θ = 4 3π , 4 7π 4. θ = 6 5π , 6 11π 5. θ = 6 5π , 6 7π 6. θ = 3 2π , 3 4π 7. θ = 4 π , 4 3π 8. θ = 3 4π , 3 5π 9. θ = 4 3π , 4 5π 10. θ = 3 π , 3 5π B. 1. x = 4 π , 4 7π 2. x = 4 π , 4 5π 3. x = 6 π , 6 11π 4. x = 2π 5. 3 π , 3 2π , 3 4π , 3 5π 6. 3 π , 3 5π 7. x = 6 π , 6 5π , 6 7π , 6 11π 8. x = 4 π , 4 5π 9. x = 2 3π 10. x = 0, 2π What have you learned 1. cos x = 25 4 2. B BB cos sincos 22 + = Bcos 1 = sec B 3. cos A (cos A + 1)(cos A – 1)
  • 28. 28 4. A A A A sin cos sin 1 cos = A A sin cos x A A cos sin = 1 5. θ θ cos sin x cos θ - θ θ sin cos x sin θ = sin θ - cos θ 6. θ θθ 2 2 sin cossin + 7. cos (270° + 60°) = 2 3 8. cos A = 17 15 sin A = 13 12− cos (A + B) = 221 171− 9. X = 6 π , 3 π 10. sin θ + 2sin2 θ + θ θ sin 1sin1 2 −− = θ θθθ sin sinsin2sin 23 −+ = 2 sin2 θ