SlideShare une entreprise Scribd logo
1  sur  16
Télécharger pour lire hors ligne
International Journal of Engineering Inventions
e-ISSN: 2278-7461, p-ISSN: 2319-6491
Volume 3, Issue 8 (April 2014) PP: 01-16
www.ijeijournal.com Page | 1
Periodic Solutions for Non-Linear Systems of Integral Equations
Prof. Dr. Raad. N. Butris1
, Baybeen S. Fars2
1, 2
Department of Mathematics, Faculty of Science, University of Zakho
Abstract: The aim of this paper is to study the existence and approximation of periodic solutions for non-linear
systems of integral equations, by using the numerical-analytic method which were introduced by Samoilenko[
10, 11]. The study of such nonlinear integral equations is more general and leads us to improve and extend the
results of Butris [2].
Keyword And Phrases: Numerical-analytic methods, existence and approximation of periodic solutions,
nonlinear system, integral equations.
I. Introduction
Integral equation has been arisen in many mathematical and engineering field, so that solving this kind
of problems are more efficient and useful in many research branches. Analytical solution of this kind of
equation is not accessible in general form of equation and we can only get an exact solution only in special
cases. But in industrial problems we have not spatial cases so that we try to solve this kind of equations
numerically in general format. Many numerical schemes are employed to give an approximate solution with
sufficient accuracy [3,4,6, ,12,13,14,15]. Many author create and develop numerical-analytic methods [1, 2,5,
7,8,9] and schemes to investigate periodic solution of integral equations describing many applications in
mathematical and engineering field.
Consider the following system of non-linear integral equations which has the form:
𝑥 𝑡, 𝑥0, 𝑦0 = 𝐹0 𝑡 + 𝑓1(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑠, 𝑥0, 𝑦0 ,
𝑡
0
, 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏
𝑏 𝑠
𝑎 𝑠
)𝑑𝑠 ⋯( I1 )
𝑦 𝑡, 𝑥0, 𝑦0 = 𝐺0 𝑡 + 𝑓2(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑠, 𝑥0, 𝑦0 ,
𝑡
0
, 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏
𝑏 𝑠
𝑎 𝑠
)𝑑𝑠 ⋯ ( I2 )
where 𝑥 ∈ 𝐷 ⊂ 𝑅 𝑛
, 𝐷 is closed and bounded domain subset of Euclidean space 𝑅 𝑛
.
Let the vector functions
𝑓1 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 = 𝑓11 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 , 𝑓12 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 , … , 𝑓1𝑛 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 ,
𝑓2 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 = 𝑓21 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 , 𝑓22 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 , … , 𝑓2𝑛 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 ,
𝑔1 𝑡, 𝑥, 𝑦 = 𝑔11 𝑡, 𝑥, 𝑦 , 𝑔12 𝑡, 𝑥, 𝑦 , … , 𝑔1𝑛 𝑡, 𝑥, 𝑦 ,
𝑔2 𝑡, 𝑥, 𝑦 = 𝑔21 𝑡, 𝑥, 𝑦 , 𝑔22 𝑡, 𝑥, 𝑦 , … , 𝑔2𝑛 𝑡, 𝑥, 𝑦 ,
𝐹0 𝑡 = (𝐹01 𝑡 , 𝐹02 𝑡 , … , 𝐹0𝑛 𝑡 ),
and
𝐺0 𝑡 = (𝐺01 𝑡 , 𝐺02 𝑡 , ⋯ , 𝐺0𝑛 𝑡 )
are defined and continuous on the domains:
𝑡, 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑅1
× 𝐷 × 𝐷1 × 𝐷2 = −∞, ∞ × 𝐷 × 𝐷1 × 𝐷2 × 𝐷3
𝑡, 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑅1
× 𝐷 × 𝐷1 × 𝐷2 = −∞, ∞ × 𝐷 × 𝐷1 × 𝐷2 × 𝐷3
⋯ 1.1
and periodic in t of period T, Also a(t) and b(t) are continuous and periodic in t of period 𝑇.
Suppose that the functions 𝑓1 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 , 𝑓2 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 , 𝑔1 𝑡, 𝑥, 𝑦
and 𝑔2 𝑡, 𝑥, 𝑦 satisfies the following inequalities:
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 2
𝑓1 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 ≤ 𝑀1 , 𝑓2 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 ≤ 𝑀2 , 𝑀1, 𝑀2 > 0
𝑔1 𝑡, 𝑥, 𝑦 ≤ 𝑁1 , 𝑔1 𝑡, 𝑥, 𝑦 ≤ 𝑁1 , 𝑁1, 𝑁 2 > 0
⋯ 1.2
𝑓1 𝑡, 𝑥1, 𝑦1, 𝑧1, 𝑤1 − 𝑓1 𝑡, 𝑥2, 𝑦2, 𝑧2, 𝑤2 ≤ 𝐾1 𝑥1 − 𝑥2 + 𝐾2 𝑦1−𝑦2 +
+𝐾3 𝑧1−𝑧2 + 𝐾4 𝑤1−𝑤2 ⋯ 1.3
𝑓2 𝑡, 𝑥1, 𝑦1, 𝑢1, 𝑣1 − 𝑓2 𝑡, 𝑥2, 𝑦2, 𝑢2, 𝑣2 ≤ 𝐿1 𝑥1 − 𝑥2 + 𝐿2 𝑦1−𝑦2 +
+𝐿3 𝑢1−𝑢2 + 𝐿4 𝑣1−𝑣2 , ⋯ 1.4
𝑔1 𝑡, 𝑥1, 𝑦1 − 𝑔1 𝑡, 𝑥2, 𝑦2 ≤ 𝑅1 𝑥1 − 𝑥2 + 𝑅2 𝑦1 − 𝑦2 , ⋯ 1.5
𝑔2 𝑡, 𝑥1, 𝑦1 − 𝑔2 𝑡, 𝑥2, 𝑦2 ≤ 𝐻1 𝑥1 − 𝑥2 + 𝐻2 𝑦1 − 𝑦2 , ⋯ 1.6
for all 𝑡 ∈ 𝑅1
, 𝑥, 𝑥1, 𝑥2 ∈ 𝐷 , 𝑦 , 𝑦1, 𝑦2 ∈ 𝐷1, 𝑧, 𝑧1, 𝑧2, 𝑢, 𝑢1, 𝑢2 ∈ 𝐷2 , and 𝑤, 𝑤1, 𝑤2, 𝑣, 𝑣1, 𝑣2 ∈ 𝐷3, where 𝑀1 =
𝑀11, 𝑀12, … , 𝑀1𝑛 ,
𝑀2 = 𝑀21, 𝑀22, … , 𝑀2𝑛 , 𝑁1 = (𝑁11, 𝑁12, … , 𝑁1𝑛 ) and
𝑁2 = 𝑁21, 𝑁22, … , 𝑁2𝑛 are positive constant vectors and 𝐾1 = (𝐾1 𝑖𝑗
), 𝐾2 = (𝐾2 𝑖𝑗
), 𝐾3 = (𝐾3 𝑖𝑗
), 𝐾4 = (𝐾4 𝑖𝑗
),
𝐿1 = (𝐿1 𝑖𝑗
), 𝐿2 = (𝐿2 𝑖𝑗
),
𝐿3 = ( 𝐿3 𝑖𝑗
), 𝐿4 = (𝐿4 𝑖𝑗
), 𝑅1 = (𝑅1 𝑖𝑗
), 𝑅2 = (𝑅2 𝑖𝑗
), 𝐻1 = (𝐻1 𝑖𝑗
), and
𝐻2 = (𝐻2 𝑖𝑗
) are positive constant matrices.
Also 𝐺1 𝑡, 𝑠 and 𝐺2 𝑡, 𝑠 are (n×n) continuous positive matrix and
periodic in t, s of period T in the domain 𝑅1
× 𝑅1
and satisfy the following conditions:
𝐺1 𝑡, 𝑠 ≤ 𝛾 𝑒−𝜆1 𝑡−𝑠
, 𝛾, 𝜆1 > 0 ⋯ 1.7
and
𝐺2(𝑡, 𝑠) ≤ 𝛿 𝑒−𝜆2 𝑡−𝑠
, 𝛿, 𝜆2 > 0 ⋯ 1.8
where −∞ < 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 < ∞ , 𝑖, 𝑗 = 1,2, ⋯ , 𝑛,
and 𝑕 = 𝑚𝑎𝑥𝑡∈ 0,𝑇 𝑏 𝑡 − 𝑎 𝑡 , . = 𝑚𝑎𝑥𝑡∈ 0,𝑇 .
Now define a non-empty sets as follows:
𝐷𝑓1
= 𝐷 −
𝑇
2
𝑀 1 ,
𝐷1𝑓2
= 𝐷1 −
𝑇
2
𝑀 2 ,
𝐷2𝑓1
= 𝐷2 −
𝑇
2
𝛾
𝜆1
𝑅1 𝑀1 + 𝑅2 𝑀2 ,
𝐷3𝑓1
= 𝐷3 −
𝑇
2
𝑕 𝑅1 𝑀1 + 𝑅2 𝑀2 ,
𝐷2𝑓2
= 𝐷2 −
𝑇
2
𝛿
𝜆2
𝐻1 𝑀1 + 𝐻2 𝑀2 ,
𝐷3𝑓2
= 𝐷3 −
𝑇
2
𝑕 𝐻1 𝑀1 + 𝐻2 𝑀2 .
⋯ 1.9
Forever, we suppose that the greatest eigen-value 𝑞 𝑚𝑎𝑥 of the following
matrix:
Q0 =
𝑇
2
[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)]
𝑇
2
[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)]
𝑇
2
[𝐿1 + 𝐻1(𝐿3
𝛿
𝜆2
+ 𝑕𝐿4)]
𝑇
2
[𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)]
⋯ 1.10
is less than unity, i.e.
𝑞 𝑚𝑎𝑥 𝑄0 =
φ1 + 𝜑1
2 + 4(𝜑2 − 𝜑3)
2
< 1 , ⋯ 1.11
where φ1 =
𝑇
2
[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] +
𝑇
2
[𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)],
φ2 = (
𝑇
2
[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)])(
𝑇
2
[𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)]) and
𝜑3 = (
𝑇
2
[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)])(
𝑇
2
[𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)]).
By using lemma 3.1[10],we can state and prove the following lemma:
Lemma 1.1. Let 𝑓1(𝑡, 𝑥, 𝑦, 𝑧, 𝑤) and 𝑓2(𝑡, 𝑥, 𝑦, 𝑢, 𝑣) be a vector functions which are defined and continuous in
the interval 0, 𝑇 , then the inequality:
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 3
𝐿1 𝑡, 𝑥0, 𝑦0
𝐿2(𝑡, 𝑥0, 𝑦0)
≤
𝑀1 𝛼 𝑡
𝑀2 𝛼 𝑡
⋯ 1.12
satisfies for 0 ≤ 𝑡 ≤ 𝑇 and 𝛼 𝑡 ≤
𝑇
2
,
where 𝛼 𝑡 = 2𝑡(1 −
𝑡
𝑇
) for all 𝑡 ∈ 0, 𝑇 ,
𝐿1 𝑡, 𝑥0, 𝑦0 = [𝑓1(𝑠, 𝑥0, 𝑦0,
𝑡
0
𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥0, 𝑦0)
𝑠
−∞
𝑑𝜏,
, 𝑔1(𝜏, 𝑥0, 𝑦0)𝑑𝜏
𝑏 𝑠
𝑎 𝑠
) −
1
𝑇
𝑓1(𝑠, 𝑥0, 𝑦0,
𝑇
0
, 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥0, 𝑦0)
𝑠
−∞
𝑑𝜏, 𝑔1(𝜏, 𝑥0, 𝑦0)𝑑𝜏
𝑏 𝑠
𝑎 𝑠
)𝑑𝑠]𝑑𝑠
𝐿2 𝑡, 𝑥0, 𝑦0 = [𝑓2(𝑠, 𝑥0, 𝑦0,
𝑡
0
𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥0, 𝑦0)
𝑠
−∞
𝑑𝜏,
, 𝑔2(𝜏, 𝑥0, 𝑦0)𝑑𝜏
𝑏 𝑠
𝑎 𝑠
) −
1
𝑇
𝑓2(𝑠, 𝑥0, 𝑦0,
𝑇
0
, 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥0, 𝑦0)
𝑠
−∞
𝑑𝜏, 𝑔2(𝜏, 𝑥0, 𝑦0)𝑑𝜏
𝑏 𝑠
𝑎 𝑠
)𝑑𝑠]𝑑𝑠
Proof.
𝐿1 𝑡, 𝑥0, 𝑦0 ≤ (1 −
𝑡
𝑇
) 𝑓1(𝑠, 𝑥0, 𝑦0, 𝐺1
𝑠
−∞
𝑠, 𝜏 𝑔1 𝜏, 𝑥0, 𝑦0 𝑑𝜏,
𝑡
0
, 𝑔1 𝜏, 𝑥0, 𝑦0 𝑑𝜏
𝑏(𝑠)
𝑎(𝑠)
) 𝑑𝑠 +
+
𝑡
𝑇
𝑓1(𝑠, 𝑥0, 𝑦0, 𝐺1
𝑠
−∞
𝑠, 𝜏 𝑔1 𝜏, 𝑥0, 𝑦0 𝑑𝜏,
𝑇
𝑡
𝑔1 𝜏, 𝑥0, 𝑦0 𝑑𝜏)
𝑏(𝑠)
𝑎(𝑠)
𝑑𝑠
≤ (1 −
𝑡
𝑇
) 𝑀1
𝑡
0
𝑑𝑠 +
𝑡
𝑇
𝑀1
𝑇
𝑡
𝑑𝑠
≤ 𝑀1[(1 −
𝑡
𝑇
)𝑡 +
𝑡
𝑇
(𝑇 − 𝑡)]
so that:
𝐿1 𝑡, 𝑥0, 𝑦0 ≤ 𝑀1 𝛼 𝑡 ⋯ 1.13
And similarly, we get also
𝐿2 𝑡, 𝑥0, 𝑦0 ≤ 𝑀2 𝛼 𝑡 ⋯ 1.14
From ( 1.13) and ( 1.14), then the inequality ( 1.12) satisfies for all
0 ≤ 𝑡 ≤ 𝑇 and 𝛼 𝑡 ≤
𝑇
2
. ∎
II. Approximation Solution Of (I1) And (I2)
In this section, we study the approximate periodic solution of (I1) and
(I2) by proving the following theorem:
Theorem 2.1. If the system (I1) and (I2) satisfies the inequalities ( 1.2), ( 1.3), 1.4), (1.5),(1.6) and
conditions(1.7),(1.8) has periodic solutions 𝑥 = 𝑥 𝑡, 𝑥0, 𝑦0 and 𝑦 = 𝑦(𝑡, 𝑥0, 𝑦0), then the sequence of
functions:
𝑥 𝑚+1 𝑡, 𝑥0, 𝑦0 = 𝐹0 𝑡 + [𝑓1(𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 ,
𝑡
0
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 4
, 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔1(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)
𝑏 𝑠
𝑎 𝑠
−
1
𝑇
𝑓1(𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 ,
𝑇
0
, 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔1(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)𝑑𝑠]𝑑𝑠
𝑏 𝑠
𝑎 𝑠
⋯ 2.1
with
𝑥0 𝑡, 𝑥0, 𝑦0 = 𝐹0 𝑡 = 𝑥0 , for all m = 0, 1,2, ⋯
𝑦 𝑚+1 𝑡, 𝑥0, 𝑦0 = 𝐺0 𝑡 + [𝑓2(𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 ,
𝑡
0
, 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔2(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)
𝑏 𝑠
𝑎 𝑠
−
1
𝑇
𝑓2(𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 ,
𝑇
0
, 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔2(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)𝑑𝑠]𝑑𝑠
𝑏 𝑠
𝑎 𝑠
⋯ 2.2
with
𝑦0 𝑡, 𝑥0, 𝑦0 = 𝐺0 𝑡 = 𝑦0 , for all m = 0, 1,2, ⋯
periodic in t of period T, and uniformly converges as 𝑚 → ∞ in the domain:
𝑡, 𝑥0, 𝑦0 ∈ 0, 𝑇 × 𝐷𝑓1
× 𝐷1𝑓2
⋯ 2.3
to the limit functions 𝑥0
𝑡, 𝑥0, 𝑦0 , 𝑦0
𝑡, 𝑥0, 𝑦0 defined in the domain ( 2.3) which are periodic in t of period T
and satisfying the system of integral equations:
𝑥 𝑡, 𝑥0, 𝑦0 = 𝐹0 𝑡 + [𝑓1(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑠, 𝑥0, 𝑦0 ,
𝑡
0
, 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)
𝑏 𝑠
𝑎 𝑠
−
1
𝑇
𝑓1(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 ,
𝑇
0
, 𝑦 𝑠, 𝑥0, 𝑦0 , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)𝑑𝑠]𝑑𝑠
𝑏 𝑠
𝑎 𝑠
⋯ 2.4
and
𝑦 𝑡, 𝑥0, 𝑦0 = 𝐺0 𝑡 + [𝑓2(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑠, 𝑥0, 𝑦0 ,
𝑡
0
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 5
, 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)
𝑏 𝑠
𝑎 𝑠
−
1
𝑇
𝑓2(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 ,
𝑇
0
, 𝑦 𝑠, 𝑥0, 𝑦0 , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)𝑑𝑠]𝑑𝑠
𝑏 𝑠
𝑎 𝑠
⋯ 2.5
provided that:
𝑥0
𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚 𝑡, 𝑥0, 𝑦0
𝑦0
𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚 𝑡, 𝑥0, 𝑦0
≤ 𝑄0
𝑚
(𝐸 − 𝑄0)−1
𝐶0 ⋯ 2.6
for all 𝑚 ≥ 0 , where
𝐶0 =
𝑇
2
𝑀1
𝑇
2
𝑀2
, 𝐸 is identity matrix.
Proof. Consider the sequence of functions 𝑥1 𝑡, 𝑥0, 𝑦0 , 𝑥2 𝑡, 𝑥0, 𝑦0 , ⋯,
𝑥 𝑚 𝑡, 𝑥0, 𝑦0 , ⋯, and 𝑦1 𝑡, 𝑥0, 𝑦0 , 𝑦2 𝑡, 𝑥0, 𝑦0 , ⋯ , 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 , ⋯, defined
by the recurrences relations ( 2.1) and ( 2.2). Each of these functions of sequence defined and continuous in the
domain ( 1.1) and periodic in 𝑡 of period 𝑇.
Now, by the lemma 1.1, and using the sequence of functions (2.1),
when 𝑚 = 0, we get:
By mathematical induction and lemma1.1 , we have the following inequality:
𝑥 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑥0 ≤
𝑇
2
𝑀1 ⋯ 2.13
i.e. 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 ∈ 𝐷, for all 𝑡 ∈ 𝑅1
, 𝑥0 ∈ 𝐷𝑓1
, 𝑦0 ∈ 𝐷1𝑓2
, 𝑚 = 0,1,2, ⋯,
and
𝑦 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑦0 ≤
𝑇
2
𝑀2 ⋯ 2.14
i.e. 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 ∈ 𝐷, for all 𝑡 ∈ 𝑅1
, 𝑥0 ∈ 𝐷𝑓1
, 𝑦0 ∈ 𝐷1𝑓2
, 𝑚 = 0,1,2, ⋯,
Now, from ( 2.13), we get:
𝑧 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑧0(𝑡, 𝑥0, 𝑦0) ≤
𝑇
2
(
𝛾
𝜆1
) 𝑅1 𝑀1 + 𝑅2 𝑀2 ⋯ 2.15
and
𝑤 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑤0(𝑡, 𝑥0, 𝑦0) ≤
𝑇
2
𝑕 𝑅1 𝑀1 + 𝑅2 𝑀2 ⋯ 2.16
for all 𝑡 ∈ 𝑅1
, 𝑥0 ∈ 𝐷𝑓1
, 𝑦0 ∈ 𝐷1𝑓2
, 𝑧0 𝑡, 𝑥0, 𝑦0 ∈ 𝐷2𝑓1
and
𝑤0 𝑡, 𝑥0, 𝑦0 ∈ 𝐷3𝑓1
,
i.e. 𝑧 𝑚 𝑡, 𝑥0, 𝑦0 ∈ 𝐷2 and 𝑤 𝑚 𝑡, 𝑥0, 𝑦0 ∈ 𝐷3 , for all 𝑥0 ∈ 𝐷𝑓1
, 𝑦0 ∈ 𝐷1𝑓2
,
where
𝑧 𝑚 𝑡, 𝑥0, 𝑦0 = 𝐺1 𝑡, 𝑠 𝑔1 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑑𝑠
𝑡
−∞
and
𝑤 𝑚 𝑡, 𝑥0, 𝑦0 = 𝑔1 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑑𝑠
𝑏(𝑡)
𝑎(𝑡)
, 𝑚 = 0,1,2, ⋯ ,
Also from (4.2.14), we get:
𝑢 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑢0(𝑡, 𝑥0, 𝑦0) ≤
𝑇
2
(
𝛿
𝜆2
) 𝐻1 𝑀1 + 𝐻2 𝑀2 ⋯ 2.17
and
𝑉𝑚 𝑡, 𝑥0, 𝑦0 − 𝑉0(𝑡, 𝑥0, 𝑦0) ≤
𝑇
2
𝑕 𝐻1 𝑀1 + 𝐻2 𝑀2 ⋯ 2.18
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 6
for all 𝑡 ∈ 𝑅1
, 𝑥0 ∈ 𝐷𝑓1
, 𝑦0 ∈ 𝐷1𝑓2
, 𝑢0 𝑡, 𝑥0, 𝑦0 ∈ 𝐷2𝑓2
and
𝑣0 𝑡, 𝑥0, 𝑦0 ∈ 𝐷3𝑓2
,
i.e. 𝑢 𝑚 𝑡, 𝑥0, 𝑦0 ∈ 𝐷2 and 𝑣 𝑚 𝑡, 𝑥0, 𝑦0 ∈ 𝐷3, for all 𝑥0 ∈ 𝐷𝑓1
, 𝑦0 ∈ 𝐷1𝑓2
,
where
𝑢 𝑚 𝑡, 𝑥0, 𝑦0 = 𝐺2 𝑡, 𝑠 𝑔2 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑑𝑠
𝑡
−∞
and
𝑣 𝑚 𝑡, 𝑥0, 𝑦0 = 𝑔2 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑑𝑠
𝑏(𝑡)
𝑎(𝑡)
, 𝑚 = 0,1,2, ⋯ ,
Next, we claim that two sequences 𝑥 𝑚 (𝑡, 𝑥0, 𝑦0)} 𝑚=0
∞
, 𝑦 𝑚 (𝑡, 𝑥0, 𝑦0)} 𝑚=0
∞
are convergent uniformly to the limit functions 𝑥, 𝑦 on the domain ( 2.3).
By mathematical induction and lemma 1.1, we find that:
𝑥 𝑚+1 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 ≤
≤ 𝛼(𝑡)[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚−1 𝑡, 𝑥0, 𝑦0
+𝛼(𝑡)[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚−1 𝑡, 𝑥0, 𝑦0
⋯ 2.19
and
𝑦 𝑚+1 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 ≤
≤ 𝛼(𝑡)[𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚−1 𝑡, 𝑥0, 𝑦0 +
+𝛼(𝑡)[𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚−1 𝑡, 𝑥0, 𝑦0
⋯ 2.20
We can write the inequalities ( 2.19) and ( 2.20) in a vector form:
𝐶 𝑚+1 𝑡, 𝑥0, 𝑦0 ≤ 𝑄 𝑡 𝐶 𝑚 𝑡, 𝑥0, 𝑦0 ⋯ 2.21
where
𝐶 𝑚+1 𝑡, 𝑥0, 𝑦0 =
𝑥 𝑚+1 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚 𝑡, 𝑥0, 𝑦0
𝑦 𝑚+1 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚 𝑡, 𝑥0, 𝑦0
,
and
𝑄 𝑡 =
𝛼(𝑡)[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝛼(𝑡)[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)]
𝛼(𝑡)[𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝛼(𝑡)[𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)]
,
𝐶 𝑚 𝑡, 𝑥0, 𝑦0 =
𝑥 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚−1 𝑡, 𝑥0, 𝑦0
𝑦 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚−1 𝑡, 𝑥0, 𝑦0
Now, we take the maximum value to both sides of the inequality ( 2.21),
for all 0 ≤ 𝑡 ≤ 𝑇 and 𝛼 𝑡 ≤
𝑇
2
, we get:
𝐶 𝑚+1 ≤ 𝑄0 𝐶 𝑚 , ⋯ 2.22
where 𝑄0 = 𝑚𝑎𝑥𝑡∈ 0,𝑇 𝑄(𝑡) .
Q0 =
𝑇
2
[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)]
𝑇
2
[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)]
𝑇
2
[𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)]
𝑇
2
[𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)]
By iterating the inequality (4.2.22), we find that:
𝐶 𝑚+1 ≤ 𝑄0
𝑚
𝐶0 , ⋯ 2.23
which leads to the estimate:
𝐶𝑖 ≤ 𝑄0
𝑖−1
𝑚
𝑖=1
𝐶0
𝑚
𝑖=1
⋯ 2.24
Since the matrix 𝑄0 has maximum eigen-values of (4.1.13) and the series
(4.2.24) is uniformly convergent, i. e.
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 7
lim
𝑚→∞
𝑄0
𝑖−1
𝑚
𝑖=1
𝐶0 = 𝑄0
𝑖−1
∞
𝑖=1
𝐶0 = (𝐸 − 𝑄0)−1
𝐶0 ⋯ ( 2.25)
The limiting relation (4.2.25) signifies a uniform convergence of the sequence
𝑥 𝑚 (𝑡, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑡, 𝑥0, 𝑦0) 𝑚=0
∞
in the domain (4.2.3) as 𝑚 → ∞.
Let
lim
𝑚→∞
𝑥 𝑚 𝑡, 𝑥0, 𝑦0 = 𝑥0
𝑡, 𝑥0, 𝑦0 ,
lim
𝑚→∞
𝑦 𝑚 𝑡, 𝑥0, 𝑦0 = 𝑦0
𝑡, 𝑥0, 𝑦0 .
⋯ ( 2.26)
Finally, we show that 𝑥 𝑡, 𝑥0, 𝑦0 ≡ 𝑥0
𝑡, 𝑥0, 𝑦0 ∈ 𝐷 and
𝑦 𝑡, 𝑥0, 𝑦0 ≡ 𝑦0
(𝑡, 𝑥0, 𝑦0) ∈ 𝐷1, for all 𝑥0 ∈ 𝐷𝑓1
and 𝑦0 ∈ 𝐷1𝑓2
.
By using inequalities ( 2.1) and ( 2.4) and lemma 1.1, such that:
[𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0),
𝑡
0
𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0)) −
−
1
𝑇
𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0),
𝑇
0
𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 −
− [𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0),
𝑡
0
𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0)) −
−
1
𝑇
𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0),
𝑇
0
𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠
≤ 𝛼(𝑡) [𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 +
+[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 ≤
≤
𝑇
2
[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 +
+[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 .
From inequality ( 2.26) and on the other hand suppose that:.
𝑥 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 ≤ 𝜖1 ,
𝑦 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 ≤ 𝜖2 .
Thus
[𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0),
𝑡
0
𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0)) −
−
1
𝑇
𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0),
𝑇
0
𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 −
− [𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0),
𝑡
0
𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0)) −
−
1
𝑇
𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0),
𝑇
0
𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠
≤
𝑇
2
[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)]𝜖1 +
𝑇
2
[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)]𝜖2
Putting 𝜖1 =
𝜖3
𝑇
2
[𝐾1+𝑅1(
𝛾
𝜆1
𝐾3+𝑕 𝐾4)]
and 𝜖2 =
𝜖4
𝑇
2
[𝐾2+𝑅2(
𝛾
𝜆1
𝐾3+𝑕𝐾4)]
and substituting in the last equation, we have:
[𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0),
𝑡
0
𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0)) −
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 8
−
1
𝑇
𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0),
𝑇
0
𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 −
− [𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0),
𝑡
0
𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0)) −
−
1
𝑇
𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0),
𝑇
0
𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠
≤
𝑇
2
[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)]
𝜖3
𝑇
2
[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)]
+
+
𝑇
2
[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)]
𝜖4
𝑇
2
[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)]
≤ 𝜖3 + 𝜖4,
and choosing 𝜖3 + 𝜖4 = 𝜖 , we get:
[𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0),
𝑡
0
𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0)) −
−
1
𝑇
𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0),
𝑇
0
𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 −
− [𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0),
𝑡
0
𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0)) −
−
1
𝑇
𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0),
𝑇
0
𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 ≤ 𝜖
for all 𝑚 ≥ 0,
i. e. lim
𝑚→∞
[𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0),
𝑡
0
𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0)) −
−
1
𝑇
𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0),
𝑇
0
𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 =
− [𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0),
𝑡
0
𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0)) −
−
1
𝑇
𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0),
𝑇
0
𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠.
So 𝑥 𝑡, 𝑥0, 𝑦0 ∈ 𝐷, and 𝑥 𝑡, 𝑥0, 𝑦0 ≡ 𝑥0
(𝑡, 𝑥0, 𝑦0) is a periodic solution of ( I1),
Also by using the same method above we can prove 𝑦 𝑡, 𝑥0, 𝑦0 ∈ 𝐷1, and 𝑦 𝑡, 𝑥0, 𝑦0 ≡ 𝑦0
𝑡, 𝑥0, 𝑦0 is
also periodic solution of (𝐼2 ).
Theorem 2.2. With the hypotheses and all conditions of the theorem 2.1, the periodic solution of integral
equations ( 𝐼1 ) and ( 𝐼2 ) are a unique on the domain (1.3).
Proof. Suppose that 𝑥 𝑡, 𝑥0, 𝑦0 and 𝑦 𝑡, 𝑥0, 𝑦0 be another periodic solutions
for the systems (𝐼1) and ( 𝐼2 ) defined and continuous and periodic in 𝑡 of period 𝑇, this means that:
𝑥 𝑡, 𝑥0, 𝑦0 = 𝐹0 𝑡 + [𝑓1(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑠, 𝑥0, 𝑦0 ,
𝑡
0
, 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 9
, 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)
𝑏 𝑠
𝑎 𝑠
−
1
𝑇
𝑓1(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 ,
𝑇
0
, 𝑦 𝑠, 𝑥0, 𝑦0 , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)𝑑𝑠]𝑑𝑠
𝑏 𝑠
𝑎 𝑠
⋯ 2.27
and
𝑦 𝑡, 𝑥0, 𝑦0 = 𝐺0 𝑡 + [𝑓2(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑠, 𝑥0, 𝑦0 ,
𝑡
0
, 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)
𝑏 𝑠
𝑎 𝑠
−
1
𝑇
𝑓2(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 ,
𝑇
0
, 𝑦 𝑠, 𝑥0, 𝑦0 , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)𝑑𝑠]𝑑𝑠
𝑏 𝑠
𝑎 𝑠
⋯ 2.28
For their difference, we should obtain the inequality:
𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 ≤
≤
𝑇
2
[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 +
+
𝑇
2
[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 ⋯ 2.29
And also
𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 ≤
≤ (1 −
𝑡
𝑇
) [𝐿1 𝑥 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + 𝐿2 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0
𝑡
0
+
𝛿
𝜆2
𝐿3 𝐻1 𝑥 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + 𝐻2 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 +
+𝑕𝐿4(𝐻1 𝑥 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + 𝐻2 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 )]𝑑𝑠
+
𝑡
𝑇
𝐿1 𝑥 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + 𝐿2 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 +
𝑇
𝑡
+
𝛿
𝜆2
𝐿3 𝐻1 𝑥 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + 𝐻2 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 +
+𝑕𝐿4(𝐻1 𝑥 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + 𝐻2 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 )]𝑑𝑠
≤ 𝛼(𝑡)[𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 +
+𝛼(𝑡)[𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0
so that:
𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 ≤
≤
𝑇
2
[𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 +
+
𝑇
2
[𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 ⋯ 2.30
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 10
and the inequalities (4.2.29) and (4.2.30) would lead to the estimate:
𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0
𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0
≤ 𝑄0
𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0
𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0
⋯ 2.31
By iterating the inequality (4.2.27), which should find:
𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0
𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0
≤ 𝑄0
𝑚 𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0
𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0
.
But 𝑄0
𝑚
→ 0 as 𝑚 → ∞, so that proceeding in the last inequality which is contradict the supposition It follows
immediately 𝑥 𝑡, 𝑥0, 𝑦0 = 𝑥 𝑡, 𝑥0, 𝑦0 and
𝑦 𝑡, 𝑥0, 𝑦0 = 𝑦 𝑡, 𝑥0, 𝑦0 .
III. Existence of Solution of (𝑰 𝟏) and (𝑰 𝟐)
The problem of existence of periodic solution of period T of the system
( 𝐼1) and ( 𝐼2) are uniquely connected with the existence of zero of the functions ∆1 0, 𝑥0, 𝑦0 = ∆1 and
∆2 0, 𝑥0, 𝑦0 = ∆2 which has the form:
∆1: 𝐷𝑓1
× 𝐷1𝑓2
→ 𝑅 𝑛
∆1 0, 𝑥0, 𝑦0 =
1
𝑇
𝑓1(𝑡, 𝑥0
𝑡, 𝑥0, 𝑦0 , 𝑦0
𝑡, 𝑥0, 𝑦0 ,
𝑇
0
, 𝐺1 𝑡, 𝑠 𝑔1 𝑠, 𝑥0
𝑠, 𝑥0, 𝑦0 , 𝑦0
𝑠, 𝑥0, 𝑦0
𝑡
−∞
𝑑𝑠
, 𝑔1 𝑠, 𝑥0
𝑠, 𝑥0, 𝑦0 , 𝑦0
𝑠, 𝑥0, 𝑦0 𝑑𝑠)𝑑𝑡
𝑏 𝑡
𝑎 𝑡
⋯ 3.1
∆2: 𝐷𝑓1
× 𝐷1𝑓2
→ 𝑅 𝑛
∆2 0, 𝑥0, 𝑦0 =
1
𝑇
𝑓2(𝑡, 𝑥0
𝑡, 𝑥0, 𝑦0 , 𝑦0
𝑡, 𝑥0, 𝑦0 ,
𝑇
0
, 𝐺2 𝑡, 𝑠 𝑔2 𝑠, 𝑥0
𝑠, 𝑥0, 𝑦0 , 𝑦0
𝑠, 𝑥0, 𝑦0
𝑡
−∞
𝑑𝑠
, 𝑔2 𝑠, 𝑥0
𝑠, 𝑥0, 𝑦0 , 𝑦0
𝑠, 𝑥0, 𝑦0 𝑑𝑠)𝑑𝑡
𝑏 𝑡
𝑎 𝑡
⋯ 3.2
where the function 𝑥0
𝑡, 𝑥0, 𝑦0 is the limit of the sequence of the functions 𝑥 𝑚 (𝑡, 𝑥0, 𝑦0) and the function
𝑦0
𝑡, 𝑥0, 𝑦0 is the limit of the sequence of the functions 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 .
Since this two functions are approximately determined from the sequences of functions:
∆1𝑚 : 𝐷𝑓1
× 𝐷1𝑓2
→ 𝑅 𝑛
∆1𝑚 0, 𝑥0, 𝑦0 =
1
𝑇
𝑓1(𝑡, 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 ,
𝑇
0
, 𝐺1 𝑡, 𝑠 𝑔1 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0
𝑡
−∞
𝑑𝑠
, 𝑔1 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑑𝑠)𝑑𝑡
𝑏 𝑡
𝑎 𝑡
⋯ 3.3
∆2𝑚 : 𝐷𝑓1
× 𝐷1𝑓2
→ 𝑅 𝑛
∆2𝑚 0, 𝑥0, 𝑦0 =
1
𝑇
𝑓2(𝑡, 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 ,
𝑇
0
, 𝐺2 𝑡, 𝑠 𝑔2 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0
𝑡
−∞
𝑑𝑠
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 11
, 𝑔2 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑑𝑠)𝑑𝑡
𝑏 𝑡
𝑎 𝑡
⋯ 3.4
for all 𝑚 = 0,1,2, ⋯
Theorem 3.1. If the hypotheses and all conditions of the theorem 2.1 and 2.2 are satisfied, then the following
inequality satisfied:
∆1 0, 𝑥0, 𝑦0 − ∆1𝑚 0, 𝑥0, 𝑦0 ≤ 𝑑 𝑚 ⋯ 3.5
∆2 0, 𝑥0, 𝑦0 − ∆2𝑚 0, 𝑥0, 𝑦0 ≤ 𝜂 𝑚 ⋯ 3.6
satisfied for all 𝑚 ≥ 0 , 𝑥0 ∈ 𝐷𝑓1
and 𝑦0 ∈ 𝐷1𝑓2
,
where
𝑑 𝑚 = [𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] [𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] ,
, 𝑄0
𝑚+1
𝐸 − 𝑄0
−1
𝐶0
and
𝜂 𝑚 = [𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] [𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] ,
, 𝑄0
𝑚+1
𝐸 − 𝑄0
−1
𝐶0 .
Proof. By using the relation ( 3.1) and ( 3.3), we have:
∆1 0, 𝑥0, 𝑦0 − ∆1𝑚 0, 𝑥0, 𝑦0
≤ [𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑥0
𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 +
+[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑦0
𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚 𝑡, 𝑥0, 𝑦0
≤ [𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] [𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] ,
, 𝑄0
𝑚+1
𝐸 − 𝑄0
−1
𝐶0 = 𝑑 𝑚
And also by using the relation ( 3.2) and ( 3.4), we get:
∆2 0, 𝑥0, 𝑦0 − ∆2𝑚 0, 𝑥0, 𝑦0 ≤
≤ [𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] [𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] ,
, 𝑄0
𝑚+1
𝐸 − 𝑄0
−1
𝐶0 = 𝜂 𝑚
where . denotes the ordinary scalar product in the space 𝑅 𝑛
. ∎
Theorem 3.2. Let the vector functions 𝑓1 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 , 𝑓2 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 ,
𝑔1 𝑡, 𝑥, 𝑦 and 𝑔2 𝑡, 𝑥, 𝑦 be defined on the domain:
𝐺 = 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇, 𝑎 ≤ 𝑥, 𝑦 ≤ 𝑏, 𝑐 ≤ 𝑧, 𝑢 ≤ 𝑑, 𝑒 ≤ 𝑤, 𝑣 ≤ 𝑓} ⊆ 𝑅1
,
and periodic in t of period T.
Assume that the sequence of functions (4.3.3) and (4.3.4) satisfies the
inequalities:
min
a+
𝑇
2
𝑀1≤x0≤b−
𝑇
2
𝑀1
c+
𝑇
2
𝑀2≤y0≤d−
𝑇
2
𝑀2
∆1m 0, x0, y0 ≤ − 𝑑m ,
max
a+
𝑇
2
𝑀1≤x0≤b−
𝑇
2
𝑀1
c+
𝑇
2
𝑀2≤y0≤d−
𝑇
2
𝑀2
∆1m 0, x0, y0 ≥ 𝑑m ,
⋯ 3.7
min
a+
𝑇
2
𝑀1≤x0≤b−
𝑇
2
𝑀1
c+
𝑇
2
𝑀2≤y0≤d−
𝑇
2
𝑀2
∆2m 0, x0, y0 ≤ − ηm
,
max
a+
𝑇
2
𝑀1≤x0≤b−
𝑇
2
𝑀1
c+
𝑇
2
𝑀2≤y0≤d−
𝑇
2
𝑀2
∆2m 0, x0, y0 ≥ ηm
,
⋯ 3.8
for all 𝑚 ≥ 0, where
𝑑 𝑚 = [𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] [𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] ,
, 𝑄0
𝑚+1
𝐸 − 𝑄0
−1
𝐶0
and
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 12
𝜂 𝑚 = [𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] [𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] ,
, 𝑄0
𝑚+1
𝐸 − 𝑄0
−1
𝐶0
Then the system (4.1.1) and (4.1.2) has periodic solution of period T
𝑥 = 𝑥(𝑡, 𝑥0, 𝑦0) and 𝑦 = 𝑦(𝑡, 𝑥0, 𝑦0) for which 𝑥0 ∈ [𝑎 +
𝑇
2
𝑀1, 𝑏 −
𝑇
2
𝑀1] and
𝑦0 ∈ [𝑐 +
𝑇
2
𝑀2, 𝑑 −
𝑇
2
𝑀2].
Proof. Let 𝑥1, 𝑥2 be any two points in the interval [𝑎 +
𝑇
2
𝑀1, 𝑏 −
𝑇
2
𝑀1] and 𝑦1, 𝑦2 be any two points in the
interval [𝑐 +
𝑇
2
𝑀2, 𝑑 −
𝑇
2
𝑀2],
such that:
Δ1m 0, 𝑥1, 𝑦1 = min
a+
𝑇
2
𝑀1≤x0≤b−
𝑇
2
𝑀1
c+
𝑇
2
𝑀2≤y0≤d−
𝑇
2
𝑀2
∆1m 0, 𝑥0, 𝑦0 ,
Δ1m 0, 𝑥2, 𝑦2 = max
a+
𝑇
2
𝑀1≤x0≤b−
𝑇
2
𝑀1
c+
𝑇
2
𝑀2≤y0≤d−
𝑇
2
𝑀2
∆1𝑚 0, 𝑥0, 𝑦0 ,
⋯ 3.9
Δ2m 0, 𝑥1, 𝑦1 = min
a+
𝑇
2
𝑀1≤x0≤b−
𝑇
2
𝑀1
c+
𝑇
2
𝑀2≤y0≤d−
𝑇
2
𝑀2
∆2m 0, x0, y0 ,
Δ2m 0, 𝑥2, 𝑦2 = max
a+
𝑇
2
𝑀1≤x0≤b−
𝑇
2
𝑀1
c+
𝑇
2
𝑀2≤y0≤d−
𝑇
2
𝑀2
∆2m 0, x0, y0 ,
⋯ 3.10
By using the inequalities ( 3.5), ( 3.6), ( 3.7) and ( 3.8), we have:
∆1 0, 𝑥1, 𝑦1 = ∆1𝑚 0, 𝑥1, 𝑦1 + ∆1 0, 𝑥1, 𝑦1 − ∆1𝑚 (0, 𝑥1, 𝑦1) ≤ 0 ,
∆1 0, 𝑥2, 𝑦2 = ∆1𝑚 0, 𝑥2, 𝑦2 + ∆1 0, 𝑥2, 𝑦2 − ∆1𝑚 (0, 𝑥2, 𝑦2) ≤ 0 .
⋯ 3.11
∆2 0, 𝑥1, 𝑦1 = ∆2𝑚 0, 𝑥1, 𝑦1 + ∆2 0, 𝑥1, 𝑦1 − ∆2𝑚 (0, 𝑥1, 𝑦1) ≤ 0 ,
∆2 0, 𝑥2, 𝑦2 = ∆2𝑚 0, 𝑥2, 𝑦2 + ∆2 0, 𝑥2, 𝑦2 − ∆2𝑚 (0, 𝑥2, 𝑦2) ≤ 0 .
⋯ 3.12
It follows from the inequalities ( 3.11) and ( 3.12) in virtue of the
continuity of the functions ∆1(0, 𝑥0, 𝑦0) and ∆1(0, 𝑥0, 𝑦0) that there exists an isolated singular point (𝑥0
, 𝑦0
) =
(𝑥0, 𝑦0) , 𝑥0
∈ 𝑥1, 𝑥2 and 𝑦0
∈ 𝑦1, 𝑦2 ,
so that ∆1(0, 𝑥0
, 𝑦0
) = 0 and ∆2(0, 𝑥0
, 𝑦0
) = 0. This means that the system ( 3.1) and (4.3.2) has a periodic
solutions 𝑥 𝑡, 𝑥0, 𝑦0 , 𝑦 𝑡, 𝑥0, 𝑦0 for which
𝑥0 ∈ [𝑎 +
𝑇
2
𝑀1, 𝑏 −
𝑇
2
𝑀1] and 𝑦0 ∈ [𝑐 +
𝑇
2
𝑀2, 𝑑 −
𝑇
2
𝑀2]. ∎
Remark 3.1. Theorem 3.2 is proved when 𝑅 𝑛
= 𝑅1
, on the other hand as 𝑥0, 𝑦0 are a scalar singular point
which should be isolated (For this remark, see [5]).
IV. Stability Theorem Of Solution (𝑰 𝟏) And (𝑰 𝟐)
In this section, we study theorem on stability of a periodic solution for the integral equations ( 𝐼1) and ( 𝐼2).
Theorem 4.1. If the function ∆1 0, 𝑥0, 𝑦0 , Δ2(0, 𝑥0, 𝑦0) are defined by
equations ( 3.1) and ( 3.2), where the function 𝑥0
(𝑡, 𝑥0, 𝑦0) is a limit of the sequence of the functions ( 2.1) , the
function 𝑦0
(𝑡, 𝑥0, 𝑦0) is the limit of the sequence of the functions ( 2.2) , Then the following inequalities yields:
∆1 0, 𝑥0, 𝑦0 ≤ 𝑀1 ⋯ 4.1
∆2 0, 𝑥0, 𝑦0 ≤ 𝑀2 ⋯ 4.2
and
∆2 0, 𝑥0
1
, 𝑦0
1
− ∆2 0, 𝑥0
2
, 𝑦0
2
≤ 𝐹1 𝐹2 𝐸3 𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
+
𝑇
2
𝐹1 𝐹2 𝐸2( 𝐸3 + 𝐸4 + 𝐹1 𝐸4(1 −
𝑇
2
𝐸1)) 𝐺0
1
𝑡 − 𝐺0
2
(𝑡)
⋯ 4.4
for all 𝑥0
, 𝑥0
1
, 𝑥0
2
∈ 𝐷𝑓1
, 𝑦0
, 𝑦0
1
, 𝑦0
2
∈ 𝐷1𝑓2
, and 𝛼 𝑡 = 2𝑡(1 −
𝑡
𝑇
) ≤
𝑇
2
,
where 𝐸1 = [𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)], 𝐸2 = [𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)],
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 13
𝐸3 = [𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)], 𝐸4 = [𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)],
𝐹1 = [(1 −
𝑇
2
𝐸1)(1 −
𝑇
2
𝐸4)]−1
and 𝐹2 = (1 −
𝑇2
4
𝑁2 𝑁3 𝐹1)−1
Proof. From the properties of the functions 𝑥0
𝑡, 𝑥0, 𝑦0 and 𝑦0
𝑡, 𝑥0, 𝑦0 as in the theorem 4.2.1, the
functions Δ1 = ∆1 𝑥0, 𝑦0 , Δ1 = ∆1 𝑥0, 𝑦0 ,
𝑥0 ∈ 𝐷𝑓1
, 𝑦0 ∈ 𝐷1𝑓2
are continuous and bounded by 𝑀1, 𝑀2 in the domain ( 1.3).
From relation ( 3.1), we find:
∆1 (0, 𝑥0 , 𝑦0 ≤
1
𝑇
𝑓1(𝑡, 𝑥0
𝑡, 𝑥0, 𝑦0 , 𝑦0
𝑡, 𝑥0, 𝑦0 ,
𝑇
0
, 𝐺1 𝑡, 𝑠 𝑔1 𝑠, 𝑥0
𝑠, 𝑥0, 𝑦0 , 𝑦0
𝑠, 𝑥0, 𝑦0 𝑑𝑠,
𝑡
−∞
, 𝑔1 𝑠, 𝑥0
𝑠, 𝑥0, 𝑦0 , 𝑦0
𝑠, 𝑥0, 𝑦0 𝑑 𝑠)
𝑏(𝑡)
𝑎(𝑡)
𝑑𝑡
by using the Lemma 4.1.1, gives:
∆1(0, 𝑥0, 𝑦0) ≤ 𝑀1.
And from relation ( 3.2), we get:
∆2 (0, 𝑥0 , 𝑦0 ≤
1
𝑇
𝑓2(𝑡, 𝑥0
𝑡, 𝑥0, 𝑦0 , 𝑦0
𝑡, 𝑥0, 𝑦0 ,
𝑇
0
, 𝐺2 𝑡, 𝑠 𝑔2 𝑠, 𝑥0
𝑠, 𝑥0, 𝑦0 , 𝑦0
𝑠, 𝑥0, 𝑦0 𝑑𝑠,
𝑡
−∞
, 𝑔2 𝑠, 𝑥0
𝑠, 𝑥0, 𝑦0 , 𝑦0
𝑠, 𝑥0, 𝑦0 𝑑𝑠)
𝑏(𝑡)
𝑎(𝑡)
𝑑𝑡
and using Lemma 4.1.1, we have:
∆2(0, 𝑥0, 𝑦0) ≤ 𝑀2
By using equation ( 3.1) and lemma 1.1, we get:
∆1 0, 𝑥0
1
, 𝑦0
1
− ∆1 0, 𝑥0
2
, 𝑦0
2
≤
1
𝑇
[𝐾1 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
𝑇
0
+𝐾2 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
+
+
𝛾
𝜆1
𝐾3(𝑅1 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+𝑅2 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
) +
+ 𝑕𝐾4(𝑅1 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+𝑅2 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
)]𝑑𝑡
≤ [𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
so,
∆1 0, 𝑥0
1
, 𝑦0
1
− ∆1 0, 𝑥0
2
, 𝑦0
2
≤ 𝐸1 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+𝐸2 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
⋯ 4.5
And also by using equation ( 3.2) and lemma 1.1, gives:
∆2 0, 𝑥0
1
, 𝑦0
1
− ∆2 0, 𝑥0
2
, 𝑦0
2
≤
1
𝑇
[𝐿1 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
𝑇
0
+𝐿2 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
+
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 14
+
𝛿
𝜆2
𝐿3(𝐻1 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+𝐻2 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
) +
+ 𝑕𝐿4(𝐻1 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+𝐻2 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
)]𝑑𝑡
≤ [𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+[𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
.
Therefore,
∆2 0, 𝑥0
1
, 𝑦0
1
− ∆2 0, 𝑥0
2
, 𝑦0
2
≤ 𝐸3 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+𝐸4 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
⋯ 4.6
where the functions 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
, 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
, 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
and
𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
are solutions of the equation:
𝑥 𝑡, 𝑥0
𝑘
, 𝑦0
𝑘
= 𝐹0
𝑘
𝑡 + [𝑓1(𝑠, 𝑥(𝑠, 𝑥0
𝑘
, 𝑦0
𝑘
), 𝑦(𝑠, 𝑥0
𝑘
, 𝑦0
𝑘
),
𝑡
0
, 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
), 𝑦(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
))
𝑠
−∞
𝑑𝜏,
, 𝑔1(𝜏, 𝑥(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
), 𝑦(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
))𝑑𝜏
𝑏 𝑠
𝑎 𝑠
) −
−
1
𝑇
𝑓1(𝑠, 𝑥(𝑠, 𝑥0
𝑘
, 𝑦0
𝑘
), 𝑦(𝑠, 𝑥0
𝑘
, 𝑦0
𝑘
)
𝑇
0
,
, 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
), 𝑦(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
))
𝑠
−∞
𝑑𝜏,
, 𝑔1(𝜏, 𝑥(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
), 𝑦(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
))𝑑𝜏
𝑏 𝑠
𝑎 𝑠
)𝑑𝑠]𝑑𝑠 ⋯ ( 4.7)
and
𝑦 𝑡, 𝑥0
𝑘
, 𝑦0
𝑘
= 𝐺0
𝑘
𝑡 + [𝑓2(𝑠, 𝑥(𝑠, 𝑥0
𝑘
, 𝑦0
𝑘
), 𝑦(𝑠, 𝑥0
𝑘
, 𝑦0
𝑘
),
𝑡
0
, 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
), 𝑦(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
))
𝑠
−∞
𝑑𝜏,
, 𝑔2(𝜏, 𝑥(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
), 𝑦(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
))𝑑𝜏
𝑏 𝑠
𝑎 𝑠
) −
−
1
𝑇
𝑓2(𝑠, 𝑥(𝑠, 𝑥0
𝑘
, 𝑦0
𝑘
), 𝑦(𝑠, 𝑥0
𝑘
, 𝑦0
𝑘
)
𝑇
0
,
, 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
), 𝑦(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
))
𝑠
−∞
𝑑𝜏,
, 𝑔2(𝜏, 𝑥(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
), 𝑦(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
))𝑑𝜏
𝑏 𝑠
𝑎 𝑠
)𝑑𝑠]𝑑𝑠 ⋯ ( 4.8)
where 𝑘 = 1, 2.
From (4.4.7), we get:
𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
−𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
≤ 𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 15
+𝛼(𝑡)[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+𝛼 𝑡 [𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
≤ 𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
+
𝑇
2
[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+
𝑇
2
[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
such that:
𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
−𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
≤ 𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
+
𝑇
2
𝐸1 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+
𝑇
2
𝐸2 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
therefore:
𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
−𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
≤ (1 −
𝑇
2
𝐸1)−1
𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
+
𝑇
2
𝐸2(1 −
𝑇
2
𝐸1)−1
𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
⋯ 4.9
And also from relation ( 4.8), we have:
𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
−𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
≤
≤ 𝐺0
1
𝑡 − 𝐺0
2
𝑡 +
+𝛼(𝑡)[𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+𝛼(𝑡)[𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
≤
≤ 𝐺0
1
𝑡 − 𝐺0
2
𝑡 +
+
𝑇
2
[𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+
𝑇
2
[𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
so that:
𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
−𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
≤ 𝐺0
1
𝑡 − 𝐺0
2
𝑡 +
+
𝑇
2
𝐸3 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+
𝑇
2
𝐸4 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
and hence:
𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
−𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
≤ (1 −
𝑇
2
𝐸4)−1
𝐺0
1
𝑡 − 𝐺0
2
𝑡 +
+
𝑇
2
𝐸3(1 −
𝑇
2
𝐸4)−1
𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
⋯ 4.10
Now, by substituting inequality ( 4.10) in ( 4.9), we get:
𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
≤ (1 −
𝑇
2
𝐸1)−1
𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
+
𝑇
2
𝐸2(1 −
𝑇
2
𝐸1)−1
[(1 −
𝑇
2
𝐸4)−1
𝐺0
1
𝑡 − 𝐺0
2
𝑡 +
+
𝑇
2
𝐸3(1 −
𝑇
2
𝐸4)−1
𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
]
≤ (1 −
𝑇
2
𝐸1)−1
𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
+
𝑇
2
𝐸2[(1 −
𝑇
2
𝐸1)(1 −
𝑇
2
𝐸4)]−1
𝐺0
1
𝑡 − 𝐺0
2
𝑡 +
+
𝑇2
4
𝐸2 𝐸3[(1 −
𝑇
2
𝐸1)(1 −
𝑇
2
𝐸4)]−1
𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
]
putting 𝐹1 = [(1 −
𝑇
2
𝐸1)(1 −
𝑇
2
𝐸4)]−1
,
and substituting in the last inequality, we obtain:
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 16
𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
≤ (1 −
𝑇
2
𝐸1)−1
𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
+
𝑇
2
𝐸2 𝐹1 𝐺0
1
𝑡 − 𝐺0
2
𝑡 + +
𝑇2
4
𝐸2 𝐸3 𝐹1 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
]
as the 𝐹1(1 −
𝑇
2
𝐸4) = (1 −
𝑇
2
𝐸1)−1
𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
≤ 𝐹1(1 −
𝑇
2
𝐸4) 𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
+
𝑇
2
𝐸2 𝐹1 𝐺0
1
𝑡 − 𝐺0
2
𝑡 +
𝑇2
4
𝐸2 𝐸3 𝐹1 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
]
which implies that:
𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
≤≤ 𝐹1(1 −
𝑇
2
𝐸4)(1 −
𝑇2
4
𝐸2 𝐸3 𝐹1)−1
𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
+
𝑇
2
𝐸2 𝐹1(1 −
𝑇2
4
𝐸2 𝐸3 𝐹1)−1
𝐺0
1
𝑡 − 𝐺0
2
𝑡
putting 𝐹2 = (1 −
𝑇2
4
𝐸2 𝐸3 𝐹1)−1
and substituting in the last inequality, we obtain:
𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
≤ 𝐹1 𝐹2(1 −
𝑇
2
𝐸4) 𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
+
𝑇
2
𝐸2 𝐹1 𝐹2 𝐺0
1
𝑡 − 𝐺0
2
𝑡 ⋯ 4.11
Also, substituting the inequalities ( 4.11) in ( 4.10), we find that:
𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
−𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
≤ (1 −
𝑇
2
𝐸4)−1
𝐺0
1
𝑡 − 𝐺0
2
𝑡 +
+
𝑇
2
𝐸3(1 −
𝑇
2
𝐸4)−1
[𝐹1 𝐹2(1 −
𝑇
2
𝐸4) 𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
+
𝑇
2
𝐸2 𝐹1 𝐹2 𝐺0
1
𝑡 − 𝐺0
2
𝑡 ]
and hence
𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
−𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
≤
𝑇
2
𝐸3 𝐹1 𝐹2 𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
+[𝐹1(1 −
𝑇
2
𝐸1) +
𝑇
2
𝐹1 𝐹2 𝐸2] 𝐺0
1
𝑡 − 𝐺0
2
𝑡
⋯ 4.12
so, substituting inequalities ( 4.11) and ( 4.12) in inequality ( 4.5), we get the inequality ( 4.3).
and the same, substituting inequalities ( 4.11) and ( 4.12) in inequality
( 4.6), gives the inequality ( 4.4). ∎
REFERENCES
[1] Aziz, M.A., (2006), Periodic solutions for some systems of non-linear ordinary differential equations, M. Sc. Thesis, college of
Education, University of Mosul.
[2] Butris, R. N. and Rafeq, A. Sh., (2011), Existence and Uniqueness, Solution for Non-linear Volterra Integral Equation, J. Duhok
Univ. Vol.No. 1, (Pure and Eng. Sciences).
[3] Jaswon, M. A. and Symm, G. T., (1977), Integral Equations Methods in Potential Theory and Elastostatics, A subsidiary of
Hart court brace Jovanovich Publishers, Academic press, London.
[4] Korol, I. I., (2005), On periodic solutions of one class of systems of differential equations, Ukraine, Math. J. Vol. 57, No. 4.
[5] Mitropolsky, Yu. A. and Martynyuk, D. I., (1979), For Periodic Solutions for the Oscillations System with Retarded Argument,
Kiev, Ukraine.
[6] Rama, M. M., (1981), Ordinary Differential Equations Theory and Applications, Britain.
[7] Rafeq, A. Sh., (2009), Periodic solutions for some classes of non-linear systems of integro-differential equations, M. Sc. Thesis,
college of Education, University of Duhok.
[8] Perestyuk, N. A., (1971), The periodic solutions for non-linear systems of differential equations, Math. and Meca. J., Univ. of Kiev,
Kiev, Ukraine,5, 136-146.
[9] Perestyuk, N. A. and Martynyuk, D. I., (1976), Periodic solutions of a certain class systems of differential equations, Math. J., Univ.
of Kiev , Ukraine,No 3.
[10] Samoilenko, A. M. and Ronto, N. I., (1976), A Numerical – Analytic Methods for Investigating of Periodic Solutions, Kiev,
Ukraine.
[11] Samoilenko, A. M., (1966), A numerical – analytic methods for investigations of periodic systems of ordinary differential equations
II, Kiev, Ukraine, Math. J.,No 5.
[12] Shestopalov, Y. V. and Smirnov, Y. G., (2002), Integral Equations, Karlstad University.
[13] Struble, R. A., (1962), Non-Linear Differential Equations, Mc Graw-Hall Book Company Inc., New York.
[14] Tarang, M., (2004), Stability of the spline collocation method for Volterra integro-differential equations, Thesis, University of
Tartu.
[15] Tricomi, F. G., (1965), Integral Equations, Turin University, Turin, Italy.

Contenu connexe

Tendances

BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IRai University
 
Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Nurkhalifah Anwar
 
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets Vladimir Godovalov
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSRai University
 
Gram-Schmidt process linear algbera
Gram-Schmidt process linear algberaGram-Schmidt process linear algbera
Gram-Schmidt process linear algberaPulakKundu1
 
Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Rai University
 
Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method  Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method AMINULISLAM439
 
Differential equations
Differential equationsDifferential equations
Differential equationsAMINULISLAM439
 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSRai University
 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential EquationsAMINULISLAM439
 
Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Rai University
 

Tendances (20)

BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
 
Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)
 
MT102 Лекц 6
MT102 Лекц 6MT102 Лекц 6
MT102 Лекц 6
 
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
Gram-Schmidt process linear algbera
Gram-Schmidt process linear algberaGram-Schmidt process linear algbera
Gram-Schmidt process linear algbera
 
MT102 Лекц 7
MT102 Лекц 7MT102 Лекц 7
MT102 Лекц 7
 
Tugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integralTugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integral
 
Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3
 
MT102 Лекц 10
MT102 Лекц 10MT102 Лекц 10
MT102 Лекц 10
 
MT102 Лекц 11
MT102 Лекц 11MT102 Лекц 11
MT102 Лекц 11
 
Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method  Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method
 
MT102 Лекц 16
MT102 Лекц 16MT102 Лекц 16
MT102 Лекц 16
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
MT102 Лекц 14
MT102 Лекц 14MT102 Лекц 14
MT102 Лекц 14
 
MT102 Лекц 15
MT102 Лекц 15MT102 Лекц 15
MT102 Лекц 15
 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
 
Four Point Gauss Quadrature Runge – Kuta Method Of Order 8 For Ordinary Diffe...
Four Point Gauss Quadrature Runge – Kuta Method Of Order 8 For Ordinary Diffe...Four Point Gauss Quadrature Runge – Kuta Method Of Order 8 For Ordinary Diffe...
Four Point Gauss Quadrature Runge – Kuta Method Of Order 8 For Ordinary Diffe...
 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential Equations
 
Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5
 

En vedette (8)

Trade & Customs Exam Questions
Trade & Customs Exam QuestionsTrade & Customs Exam Questions
Trade & Customs Exam Questions
 
310 exam 3 review
310 exam 3 review310 exam 3 review
310 exam 3 review
 
Linear integral equations
Linear integral equationsLinear integral equations
Linear integral equations
 
E04122330
E04122330E04122330
E04122330
 
F04123137
F04123137F04123137
F04123137
 
G04123844
G04123844G04123844
G04123844
 
International Trade Example
International Trade ExampleInternational Trade Example
International Trade Example
 
H04124548
H04124548H04124548
H04124548
 

Similaire à Periodic Solutions for Non-Linear Systems of Integral Equations

One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...Lossian Barbosa Bacelar Miranda
 
Solving Partial Integro Differential Equations using Modified Differential Tr...
Solving Partial Integro Differential Equations using Modified Differential Tr...Solving Partial Integro Differential Equations using Modified Differential Tr...
Solving Partial Integro Differential Equations using Modified Differential Tr...Associate Professor in VSB Coimbatore
 
publisher in research
publisher in researchpublisher in research
publisher in researchrikaseorika
 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mappinginventionjournals
 
A Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary ConditionA Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary ConditionIJMERJOURNAL
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationRai University
 
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric SpaceSome Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric SpaceIOSR Journals
 
Matrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesMatrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesIOSR Journals
 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine LearningSEMINARGROOT
 
Penjelasan Integral Lipat dua dan Penerapan pada momen inersia
Penjelasan Integral Lipat dua dan Penerapan pada momen inersiaPenjelasan Integral Lipat dua dan Penerapan pada momen inersia
Penjelasan Integral Lipat dua dan Penerapan pada momen inersiabisma samudra
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)irjes
 
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...IJMER
 
FOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxFOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxjyotidighole2
 
Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...
Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...
Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...IOSRJM
 

Similaire à Periodic Solutions for Non-Linear Systems of Integral Equations (20)

One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
 
Solving Partial Integro Differential Equations using Modified Differential Tr...
Solving Partial Integro Differential Equations using Modified Differential Tr...Solving Partial Integro Differential Equations using Modified Differential Tr...
Solving Partial Integro Differential Equations using Modified Differential Tr...
 
B0560508
B0560508B0560508
B0560508
 
C0560913
C0560913C0560913
C0560913
 
Fourier series
Fourier series Fourier series
Fourier series
 
publisher in research
publisher in researchpublisher in research
publisher in research
 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
 
A Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary ConditionA Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary Condition
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
 
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric SpaceSome Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
 
Matrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesMatrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence Spaces
 
E0561719
E0561719E0561719
E0561719
 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine Learning
 
Penjelasan Integral Lipat dua dan Penerapan pada momen inersia
Penjelasan Integral Lipat dua dan Penerapan pada momen inersiaPenjelasan Integral Lipat dua dan Penerapan pada momen inersia
Penjelasan Integral Lipat dua dan Penerapan pada momen inersia
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)
 
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
 
lec38.ppt
lec38.pptlec38.ppt
lec38.ppt
 
A05330107
A05330107A05330107
A05330107
 
FOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxFOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptx
 
Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...
Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...
Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...
 

Plus de International Journal of Engineering Inventions www.ijeijournal.com

Plus de International Journal of Engineering Inventions www.ijeijournal.com (20)

C04121115
C04121115C04121115
C04121115
 
B04120610
B04120610B04120610
B04120610
 
A04120105
A04120105A04120105
A04120105
 
F04113640
F04113640F04113640
F04113640
 
E04112135
E04112135E04112135
E04112135
 
D04111520
D04111520D04111520
D04111520
 
C04111114
C04111114C04111114
C04111114
 
B04110710
B04110710B04110710
B04110710
 
A04110106
A04110106A04110106
A04110106
 
I04105358
I04105358I04105358
I04105358
 
H04104952
H04104952H04104952
H04104952
 
G04103948
G04103948G04103948
G04103948
 
F04103138
F04103138F04103138
F04103138
 
E04102330
E04102330E04102330
E04102330
 
D04101822
D04101822D04101822
D04101822
 
C04101217
C04101217C04101217
C04101217
 
B04100611
B04100611B04100611
B04100611
 
A04100105
A04100105A04100105
A04100105
 
D0494146
D0494146D0494146
D0494146
 
C0491740
C0491740C0491740
C0491740
 

Dernier

OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 

Dernier (20)

Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 

Periodic Solutions for Non-Linear Systems of Integral Equations

  • 1. International Journal of Engineering Inventions e-ISSN: 2278-7461, p-ISSN: 2319-6491 Volume 3, Issue 8 (April 2014) PP: 01-16 www.ijeijournal.com Page | 1 Periodic Solutions for Non-Linear Systems of Integral Equations Prof. Dr. Raad. N. Butris1 , Baybeen S. Fars2 1, 2 Department of Mathematics, Faculty of Science, University of Zakho Abstract: The aim of this paper is to study the existence and approximation of periodic solutions for non-linear systems of integral equations, by using the numerical-analytic method which were introduced by Samoilenko[ 10, 11]. The study of such nonlinear integral equations is more general and leads us to improve and extend the results of Butris [2]. Keyword And Phrases: Numerical-analytic methods, existence and approximation of periodic solutions, nonlinear system, integral equations. I. Introduction Integral equation has been arisen in many mathematical and engineering field, so that solving this kind of problems are more efficient and useful in many research branches. Analytical solution of this kind of equation is not accessible in general form of equation and we can only get an exact solution only in special cases. But in industrial problems we have not spatial cases so that we try to solve this kind of equations numerically in general format. Many numerical schemes are employed to give an approximate solution with sufficient accuracy [3,4,6, ,12,13,14,15]. Many author create and develop numerical-analytic methods [1, 2,5, 7,8,9] and schemes to investigate periodic solution of integral equations describing many applications in mathematical and engineering field. Consider the following system of non-linear integral equations which has the form: 𝑥 𝑡, 𝑥0, 𝑦0 = 𝐹0 𝑡 + 𝑓1(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑠, 𝑥0, 𝑦0 , 𝑡 0 , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏 𝑏 𝑠 𝑎 𝑠 )𝑑𝑠 ⋯( I1 ) 𝑦 𝑡, 𝑥0, 𝑦0 = 𝐺0 𝑡 + 𝑓2(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑠, 𝑥0, 𝑦0 , 𝑡 0 , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏 𝑏 𝑠 𝑎 𝑠 )𝑑𝑠 ⋯ ( I2 ) where 𝑥 ∈ 𝐷 ⊂ 𝑅 𝑛 , 𝐷 is closed and bounded domain subset of Euclidean space 𝑅 𝑛 . Let the vector functions 𝑓1 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 = 𝑓11 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 , 𝑓12 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 , … , 𝑓1𝑛 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 , 𝑓2 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 = 𝑓21 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 , 𝑓22 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 , … , 𝑓2𝑛 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 , 𝑔1 𝑡, 𝑥, 𝑦 = 𝑔11 𝑡, 𝑥, 𝑦 , 𝑔12 𝑡, 𝑥, 𝑦 , … , 𝑔1𝑛 𝑡, 𝑥, 𝑦 , 𝑔2 𝑡, 𝑥, 𝑦 = 𝑔21 𝑡, 𝑥, 𝑦 , 𝑔22 𝑡, 𝑥, 𝑦 , … , 𝑔2𝑛 𝑡, 𝑥, 𝑦 , 𝐹0 𝑡 = (𝐹01 𝑡 , 𝐹02 𝑡 , … , 𝐹0𝑛 𝑡 ), and 𝐺0 𝑡 = (𝐺01 𝑡 , 𝐺02 𝑡 , ⋯ , 𝐺0𝑛 𝑡 ) are defined and continuous on the domains: 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑅1 × 𝐷 × 𝐷1 × 𝐷2 = −∞, ∞ × 𝐷 × 𝐷1 × 𝐷2 × 𝐷3 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑅1 × 𝐷 × 𝐷1 × 𝐷2 = −∞, ∞ × 𝐷 × 𝐷1 × 𝐷2 × 𝐷3 ⋯ 1.1 and periodic in t of period T, Also a(t) and b(t) are continuous and periodic in t of period 𝑇. Suppose that the functions 𝑓1 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 , 𝑓2 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 , 𝑔1 𝑡, 𝑥, 𝑦 and 𝑔2 𝑡, 𝑥, 𝑦 satisfies the following inequalities:
  • 2. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 2 𝑓1 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 ≤ 𝑀1 , 𝑓2 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 ≤ 𝑀2 , 𝑀1, 𝑀2 > 0 𝑔1 𝑡, 𝑥, 𝑦 ≤ 𝑁1 , 𝑔1 𝑡, 𝑥, 𝑦 ≤ 𝑁1 , 𝑁1, 𝑁 2 > 0 ⋯ 1.2 𝑓1 𝑡, 𝑥1, 𝑦1, 𝑧1, 𝑤1 − 𝑓1 𝑡, 𝑥2, 𝑦2, 𝑧2, 𝑤2 ≤ 𝐾1 𝑥1 − 𝑥2 + 𝐾2 𝑦1−𝑦2 + +𝐾3 𝑧1−𝑧2 + 𝐾4 𝑤1−𝑤2 ⋯ 1.3 𝑓2 𝑡, 𝑥1, 𝑦1, 𝑢1, 𝑣1 − 𝑓2 𝑡, 𝑥2, 𝑦2, 𝑢2, 𝑣2 ≤ 𝐿1 𝑥1 − 𝑥2 + 𝐿2 𝑦1−𝑦2 + +𝐿3 𝑢1−𝑢2 + 𝐿4 𝑣1−𝑣2 , ⋯ 1.4 𝑔1 𝑡, 𝑥1, 𝑦1 − 𝑔1 𝑡, 𝑥2, 𝑦2 ≤ 𝑅1 𝑥1 − 𝑥2 + 𝑅2 𝑦1 − 𝑦2 , ⋯ 1.5 𝑔2 𝑡, 𝑥1, 𝑦1 − 𝑔2 𝑡, 𝑥2, 𝑦2 ≤ 𝐻1 𝑥1 − 𝑥2 + 𝐻2 𝑦1 − 𝑦2 , ⋯ 1.6 for all 𝑡 ∈ 𝑅1 , 𝑥, 𝑥1, 𝑥2 ∈ 𝐷 , 𝑦 , 𝑦1, 𝑦2 ∈ 𝐷1, 𝑧, 𝑧1, 𝑧2, 𝑢, 𝑢1, 𝑢2 ∈ 𝐷2 , and 𝑤, 𝑤1, 𝑤2, 𝑣, 𝑣1, 𝑣2 ∈ 𝐷3, where 𝑀1 = 𝑀11, 𝑀12, … , 𝑀1𝑛 , 𝑀2 = 𝑀21, 𝑀22, … , 𝑀2𝑛 , 𝑁1 = (𝑁11, 𝑁12, … , 𝑁1𝑛 ) and 𝑁2 = 𝑁21, 𝑁22, … , 𝑁2𝑛 are positive constant vectors and 𝐾1 = (𝐾1 𝑖𝑗 ), 𝐾2 = (𝐾2 𝑖𝑗 ), 𝐾3 = (𝐾3 𝑖𝑗 ), 𝐾4 = (𝐾4 𝑖𝑗 ), 𝐿1 = (𝐿1 𝑖𝑗 ), 𝐿2 = (𝐿2 𝑖𝑗 ), 𝐿3 = ( 𝐿3 𝑖𝑗 ), 𝐿4 = (𝐿4 𝑖𝑗 ), 𝑅1 = (𝑅1 𝑖𝑗 ), 𝑅2 = (𝑅2 𝑖𝑗 ), 𝐻1 = (𝐻1 𝑖𝑗 ), and 𝐻2 = (𝐻2 𝑖𝑗 ) are positive constant matrices. Also 𝐺1 𝑡, 𝑠 and 𝐺2 𝑡, 𝑠 are (n×n) continuous positive matrix and periodic in t, s of period T in the domain 𝑅1 × 𝑅1 and satisfy the following conditions: 𝐺1 𝑡, 𝑠 ≤ 𝛾 𝑒−𝜆1 𝑡−𝑠 , 𝛾, 𝜆1 > 0 ⋯ 1.7 and 𝐺2(𝑡, 𝑠) ≤ 𝛿 𝑒−𝜆2 𝑡−𝑠 , 𝛿, 𝜆2 > 0 ⋯ 1.8 where −∞ < 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 < ∞ , 𝑖, 𝑗 = 1,2, ⋯ , 𝑛, and 𝑕 = 𝑚𝑎𝑥𝑡∈ 0,𝑇 𝑏 𝑡 − 𝑎 𝑡 , . = 𝑚𝑎𝑥𝑡∈ 0,𝑇 . Now define a non-empty sets as follows: 𝐷𝑓1 = 𝐷 − 𝑇 2 𝑀 1 , 𝐷1𝑓2 = 𝐷1 − 𝑇 2 𝑀 2 , 𝐷2𝑓1 = 𝐷2 − 𝑇 2 𝛾 𝜆1 𝑅1 𝑀1 + 𝑅2 𝑀2 , 𝐷3𝑓1 = 𝐷3 − 𝑇 2 𝑕 𝑅1 𝑀1 + 𝑅2 𝑀2 , 𝐷2𝑓2 = 𝐷2 − 𝑇 2 𝛿 𝜆2 𝐻1 𝑀1 + 𝐻2 𝑀2 , 𝐷3𝑓2 = 𝐷3 − 𝑇 2 𝑕 𝐻1 𝑀1 + 𝐻2 𝑀2 . ⋯ 1.9 Forever, we suppose that the greatest eigen-value 𝑞 𝑚𝑎𝑥 of the following matrix: Q0 = 𝑇 2 [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑇 2 [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑇 2 [𝐿1 + 𝐻1(𝐿3 𝛿 𝜆2 + 𝑕𝐿4)] 𝑇 2 [𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] ⋯ 1.10 is less than unity, i.e. 𝑞 𝑚𝑎𝑥 𝑄0 = φ1 + 𝜑1 2 + 4(𝜑2 − 𝜑3) 2 < 1 , ⋯ 1.11 where φ1 = 𝑇 2 [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] + 𝑇 2 [𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)], φ2 = ( 𝑇 2 [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)])( 𝑇 2 [𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)]) and 𝜑3 = ( 𝑇 2 [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)])( 𝑇 2 [𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)]). By using lemma 3.1[10],we can state and prove the following lemma: Lemma 1.1. Let 𝑓1(𝑡, 𝑥, 𝑦, 𝑧, 𝑤) and 𝑓2(𝑡, 𝑥, 𝑦, 𝑢, 𝑣) be a vector functions which are defined and continuous in the interval 0, 𝑇 , then the inequality:
  • 3. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 3 𝐿1 𝑡, 𝑥0, 𝑦0 𝐿2(𝑡, 𝑥0, 𝑦0) ≤ 𝑀1 𝛼 𝑡 𝑀2 𝛼 𝑡 ⋯ 1.12 satisfies for 0 ≤ 𝑡 ≤ 𝑇 and 𝛼 𝑡 ≤ 𝑇 2 , where 𝛼 𝑡 = 2𝑡(1 − 𝑡 𝑇 ) for all 𝑡 ∈ 0, 𝑇 , 𝐿1 𝑡, 𝑥0, 𝑦0 = [𝑓1(𝑠, 𝑥0, 𝑦0, 𝑡 0 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥0, 𝑦0) 𝑠 −∞ 𝑑𝜏, , 𝑔1(𝜏, 𝑥0, 𝑦0)𝑑𝜏 𝑏 𝑠 𝑎 𝑠 ) − 1 𝑇 𝑓1(𝑠, 𝑥0, 𝑦0, 𝑇 0 , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥0, 𝑦0) 𝑠 −∞ 𝑑𝜏, 𝑔1(𝜏, 𝑥0, 𝑦0)𝑑𝜏 𝑏 𝑠 𝑎 𝑠 )𝑑𝑠]𝑑𝑠 𝐿2 𝑡, 𝑥0, 𝑦0 = [𝑓2(𝑠, 𝑥0, 𝑦0, 𝑡 0 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥0, 𝑦0) 𝑠 −∞ 𝑑𝜏, , 𝑔2(𝜏, 𝑥0, 𝑦0)𝑑𝜏 𝑏 𝑠 𝑎 𝑠 ) − 1 𝑇 𝑓2(𝑠, 𝑥0, 𝑦0, 𝑇 0 , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥0, 𝑦0) 𝑠 −∞ 𝑑𝜏, 𝑔2(𝜏, 𝑥0, 𝑦0)𝑑𝜏 𝑏 𝑠 𝑎 𝑠 )𝑑𝑠]𝑑𝑠 Proof. 𝐿1 𝑡, 𝑥0, 𝑦0 ≤ (1 − 𝑡 𝑇 ) 𝑓1(𝑠, 𝑥0, 𝑦0, 𝐺1 𝑠 −∞ 𝑠, 𝜏 𝑔1 𝜏, 𝑥0, 𝑦0 𝑑𝜏, 𝑡 0 , 𝑔1 𝜏, 𝑥0, 𝑦0 𝑑𝜏 𝑏(𝑠) 𝑎(𝑠) ) 𝑑𝑠 + + 𝑡 𝑇 𝑓1(𝑠, 𝑥0, 𝑦0, 𝐺1 𝑠 −∞ 𝑠, 𝜏 𝑔1 𝜏, 𝑥0, 𝑦0 𝑑𝜏, 𝑇 𝑡 𝑔1 𝜏, 𝑥0, 𝑦0 𝑑𝜏) 𝑏(𝑠) 𝑎(𝑠) 𝑑𝑠 ≤ (1 − 𝑡 𝑇 ) 𝑀1 𝑡 0 𝑑𝑠 + 𝑡 𝑇 𝑀1 𝑇 𝑡 𝑑𝑠 ≤ 𝑀1[(1 − 𝑡 𝑇 )𝑡 + 𝑡 𝑇 (𝑇 − 𝑡)] so that: 𝐿1 𝑡, 𝑥0, 𝑦0 ≤ 𝑀1 𝛼 𝑡 ⋯ 1.13 And similarly, we get also 𝐿2 𝑡, 𝑥0, 𝑦0 ≤ 𝑀2 𝛼 𝑡 ⋯ 1.14 From ( 1.13) and ( 1.14), then the inequality ( 1.12) satisfies for all 0 ≤ 𝑡 ≤ 𝑇 and 𝛼 𝑡 ≤ 𝑇 2 . ∎ II. Approximation Solution Of (I1) And (I2) In this section, we study the approximate periodic solution of (I1) and (I2) by proving the following theorem: Theorem 2.1. If the system (I1) and (I2) satisfies the inequalities ( 1.2), ( 1.3), 1.4), (1.5),(1.6) and conditions(1.7),(1.8) has periodic solutions 𝑥 = 𝑥 𝑡, 𝑥0, 𝑦0 and 𝑦 = 𝑦(𝑡, 𝑥0, 𝑦0), then the sequence of functions: 𝑥 𝑚+1 𝑡, 𝑥0, 𝑦0 = 𝐹0 𝑡 + [𝑓1(𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑡 0
  • 4. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 4 , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔1(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 )𝑑𝜏) 𝑏 𝑠 𝑎 𝑠 − 1 𝑇 𝑓1(𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑇 0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔1(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)𝑑𝑠]𝑑𝑠 𝑏 𝑠 𝑎 𝑠 ⋯ 2.1 with 𝑥0 𝑡, 𝑥0, 𝑦0 = 𝐹0 𝑡 = 𝑥0 , for all m = 0, 1,2, ⋯ 𝑦 𝑚+1 𝑡, 𝑥0, 𝑦0 = 𝐺0 𝑡 + [𝑓2(𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑡 0 , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔2(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 )𝑑𝜏) 𝑏 𝑠 𝑎 𝑠 − 1 𝑇 𝑓2(𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑇 0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔2(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)𝑑𝑠]𝑑𝑠 𝑏 𝑠 𝑎 𝑠 ⋯ 2.2 with 𝑦0 𝑡, 𝑥0, 𝑦0 = 𝐺0 𝑡 = 𝑦0 , for all m = 0, 1,2, ⋯ periodic in t of period T, and uniformly converges as 𝑚 → ∞ in the domain: 𝑡, 𝑥0, 𝑦0 ∈ 0, 𝑇 × 𝐷𝑓1 × 𝐷1𝑓2 ⋯ 2.3 to the limit functions 𝑥0 𝑡, 𝑥0, 𝑦0 , 𝑦0 𝑡, 𝑥0, 𝑦0 defined in the domain ( 2.3) which are periodic in t of period T and satisfying the system of integral equations: 𝑥 𝑡, 𝑥0, 𝑦0 = 𝐹0 𝑡 + [𝑓1(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑠, 𝑥0, 𝑦0 , 𝑡 0 , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏) 𝑏 𝑠 𝑎 𝑠 − 1 𝑇 𝑓1(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑇 0 , 𝑦 𝑠, 𝑥0, 𝑦0 , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)𝑑𝑠]𝑑𝑠 𝑏 𝑠 𝑎 𝑠 ⋯ 2.4 and 𝑦 𝑡, 𝑥0, 𝑦0 = 𝐺0 𝑡 + [𝑓2(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑠, 𝑥0, 𝑦0 , 𝑡 0
  • 5. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 5 , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏) 𝑏 𝑠 𝑎 𝑠 − 1 𝑇 𝑓2(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑇 0 , 𝑦 𝑠, 𝑥0, 𝑦0 , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)𝑑𝑠]𝑑𝑠 𝑏 𝑠 𝑎 𝑠 ⋯ 2.5 provided that: 𝑥0 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 𝑦0 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 ≤ 𝑄0 𝑚 (𝐸 − 𝑄0)−1 𝐶0 ⋯ 2.6 for all 𝑚 ≥ 0 , where 𝐶0 = 𝑇 2 𝑀1 𝑇 2 𝑀2 , 𝐸 is identity matrix. Proof. Consider the sequence of functions 𝑥1 𝑡, 𝑥0, 𝑦0 , 𝑥2 𝑡, 𝑥0, 𝑦0 , ⋯, 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 , ⋯, and 𝑦1 𝑡, 𝑥0, 𝑦0 , 𝑦2 𝑡, 𝑥0, 𝑦0 , ⋯ , 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 , ⋯, defined by the recurrences relations ( 2.1) and ( 2.2). Each of these functions of sequence defined and continuous in the domain ( 1.1) and periodic in 𝑡 of period 𝑇. Now, by the lemma 1.1, and using the sequence of functions (2.1), when 𝑚 = 0, we get: By mathematical induction and lemma1.1 , we have the following inequality: 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑥0 ≤ 𝑇 2 𝑀1 ⋯ 2.13 i.e. 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 ∈ 𝐷, for all 𝑡 ∈ 𝑅1 , 𝑥0 ∈ 𝐷𝑓1 , 𝑦0 ∈ 𝐷1𝑓2 , 𝑚 = 0,1,2, ⋯, and 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑦0 ≤ 𝑇 2 𝑀2 ⋯ 2.14 i.e. 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 ∈ 𝐷, for all 𝑡 ∈ 𝑅1 , 𝑥0 ∈ 𝐷𝑓1 , 𝑦0 ∈ 𝐷1𝑓2 , 𝑚 = 0,1,2, ⋯, Now, from ( 2.13), we get: 𝑧 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑧0(𝑡, 𝑥0, 𝑦0) ≤ 𝑇 2 ( 𝛾 𝜆1 ) 𝑅1 𝑀1 + 𝑅2 𝑀2 ⋯ 2.15 and 𝑤 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑤0(𝑡, 𝑥0, 𝑦0) ≤ 𝑇 2 𝑕 𝑅1 𝑀1 + 𝑅2 𝑀2 ⋯ 2.16 for all 𝑡 ∈ 𝑅1 , 𝑥0 ∈ 𝐷𝑓1 , 𝑦0 ∈ 𝐷1𝑓2 , 𝑧0 𝑡, 𝑥0, 𝑦0 ∈ 𝐷2𝑓1 and 𝑤0 𝑡, 𝑥0, 𝑦0 ∈ 𝐷3𝑓1 , i.e. 𝑧 𝑚 𝑡, 𝑥0, 𝑦0 ∈ 𝐷2 and 𝑤 𝑚 𝑡, 𝑥0, 𝑦0 ∈ 𝐷3 , for all 𝑥0 ∈ 𝐷𝑓1 , 𝑦0 ∈ 𝐷1𝑓2 , where 𝑧 𝑚 𝑡, 𝑥0, 𝑦0 = 𝐺1 𝑡, 𝑠 𝑔1 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑑𝑠 𝑡 −∞ and 𝑤 𝑚 𝑡, 𝑥0, 𝑦0 = 𝑔1 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑑𝑠 𝑏(𝑡) 𝑎(𝑡) , 𝑚 = 0,1,2, ⋯ , Also from (4.2.14), we get: 𝑢 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑢0(𝑡, 𝑥0, 𝑦0) ≤ 𝑇 2 ( 𝛿 𝜆2 ) 𝐻1 𝑀1 + 𝐻2 𝑀2 ⋯ 2.17 and 𝑉𝑚 𝑡, 𝑥0, 𝑦0 − 𝑉0(𝑡, 𝑥0, 𝑦0) ≤ 𝑇 2 𝑕 𝐻1 𝑀1 + 𝐻2 𝑀2 ⋯ 2.18
  • 6. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 6 for all 𝑡 ∈ 𝑅1 , 𝑥0 ∈ 𝐷𝑓1 , 𝑦0 ∈ 𝐷1𝑓2 , 𝑢0 𝑡, 𝑥0, 𝑦0 ∈ 𝐷2𝑓2 and 𝑣0 𝑡, 𝑥0, 𝑦0 ∈ 𝐷3𝑓2 , i.e. 𝑢 𝑚 𝑡, 𝑥0, 𝑦0 ∈ 𝐷2 and 𝑣 𝑚 𝑡, 𝑥0, 𝑦0 ∈ 𝐷3, for all 𝑥0 ∈ 𝐷𝑓1 , 𝑦0 ∈ 𝐷1𝑓2 , where 𝑢 𝑚 𝑡, 𝑥0, 𝑦0 = 𝐺2 𝑡, 𝑠 𝑔2 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑑𝑠 𝑡 −∞ and 𝑣 𝑚 𝑡, 𝑥0, 𝑦0 = 𝑔2 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑑𝑠 𝑏(𝑡) 𝑎(𝑡) , 𝑚 = 0,1,2, ⋯ , Next, we claim that two sequences 𝑥 𝑚 (𝑡, 𝑥0, 𝑦0)} 𝑚=0 ∞ , 𝑦 𝑚 (𝑡, 𝑥0, 𝑦0)} 𝑚=0 ∞ are convergent uniformly to the limit functions 𝑥, 𝑦 on the domain ( 2.3). By mathematical induction and lemma 1.1, we find that: 𝑥 𝑚+1 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 ≤ ≤ 𝛼(𝑡)[𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚−1 𝑡, 𝑥0, 𝑦0 +𝛼(𝑡)[𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚−1 𝑡, 𝑥0, 𝑦0 ⋯ 2.19 and 𝑦 𝑚+1 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 ≤ ≤ 𝛼(𝑡)[𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚−1 𝑡, 𝑥0, 𝑦0 + +𝛼(𝑡)[𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚−1 𝑡, 𝑥0, 𝑦0 ⋯ 2.20 We can write the inequalities ( 2.19) and ( 2.20) in a vector form: 𝐶 𝑚+1 𝑡, 𝑥0, 𝑦0 ≤ 𝑄 𝑡 𝐶 𝑚 𝑡, 𝑥0, 𝑦0 ⋯ 2.21 where 𝐶 𝑚+1 𝑡, 𝑥0, 𝑦0 = 𝑥 𝑚+1 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 𝑦 𝑚+1 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 , and 𝑄 𝑡 = 𝛼(𝑡)[𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝛼(𝑡)[𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝛼(𝑡)[𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝛼(𝑡)[𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] , 𝐶 𝑚 𝑡, 𝑥0, 𝑦0 = 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚−1 𝑡, 𝑥0, 𝑦0 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚−1 𝑡, 𝑥0, 𝑦0 Now, we take the maximum value to both sides of the inequality ( 2.21), for all 0 ≤ 𝑡 ≤ 𝑇 and 𝛼 𝑡 ≤ 𝑇 2 , we get: 𝐶 𝑚+1 ≤ 𝑄0 𝐶 𝑚 , ⋯ 2.22 where 𝑄0 = 𝑚𝑎𝑥𝑡∈ 0,𝑇 𝑄(𝑡) . Q0 = 𝑇 2 [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑇 2 [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑇 2 [𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑇 2 [𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] By iterating the inequality (4.2.22), we find that: 𝐶 𝑚+1 ≤ 𝑄0 𝑚 𝐶0 , ⋯ 2.23 which leads to the estimate: 𝐶𝑖 ≤ 𝑄0 𝑖−1 𝑚 𝑖=1 𝐶0 𝑚 𝑖=1 ⋯ 2.24 Since the matrix 𝑄0 has maximum eigen-values of (4.1.13) and the series (4.2.24) is uniformly convergent, i. e.
  • 7. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 7 lim 𝑚→∞ 𝑄0 𝑖−1 𝑚 𝑖=1 𝐶0 = 𝑄0 𝑖−1 ∞ 𝑖=1 𝐶0 = (𝐸 − 𝑄0)−1 𝐶0 ⋯ ( 2.25) The limiting relation (4.2.25) signifies a uniform convergence of the sequence 𝑥 𝑚 (𝑡, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑡, 𝑥0, 𝑦0) 𝑚=0 ∞ in the domain (4.2.3) as 𝑚 → ∞. Let lim 𝑚→∞ 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 = 𝑥0 𝑡, 𝑥0, 𝑦0 , lim 𝑚→∞ 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 = 𝑦0 𝑡, 𝑥0, 𝑦0 . ⋯ ( 2.26) Finally, we show that 𝑥 𝑡, 𝑥0, 𝑦0 ≡ 𝑥0 𝑡, 𝑥0, 𝑦0 ∈ 𝐷 and 𝑦 𝑡, 𝑥0, 𝑦0 ≡ 𝑦0 (𝑡, 𝑥0, 𝑦0) ∈ 𝐷1, for all 𝑥0 ∈ 𝐷𝑓1 and 𝑦0 ∈ 𝐷1𝑓2 . By using inequalities ( 2.1) and ( 2.4) and lemma 1.1, such that: [𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑡 0 𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0)) − − 1 𝑇 𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑇 0 𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 − − [𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0), 𝑡 0 𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0)) − − 1 𝑇 𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0), 𝑇 0 𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 ≤ 𝛼(𝑡) [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + +[𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 ≤ ≤ 𝑇 2 [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 + +[𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 . From inequality ( 2.26) and on the other hand suppose that:. 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 ≤ 𝜖1 , 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 ≤ 𝜖2 . Thus [𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑡 0 𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0)) − − 1 𝑇 𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑇 0 𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 − − [𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0), 𝑡 0 𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0)) − − 1 𝑇 𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0), 𝑇 0 𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 ≤ 𝑇 2 [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)]𝜖1 + 𝑇 2 [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)]𝜖2 Putting 𝜖1 = 𝜖3 𝑇 2 [𝐾1+𝑅1( 𝛾 𝜆1 𝐾3+𝑕 𝐾4)] and 𝜖2 = 𝜖4 𝑇 2 [𝐾2+𝑅2( 𝛾 𝜆1 𝐾3+𝑕𝐾4)] and substituting in the last equation, we have: [𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑡 0 𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0)) −
  • 8. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 8 − 1 𝑇 𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑇 0 𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 − − [𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0), 𝑡 0 𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0)) − − 1 𝑇 𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0), 𝑇 0 𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 ≤ 𝑇 2 [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝜖3 𝑇 2 [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] + + 𝑇 2 [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝜖4 𝑇 2 [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] ≤ 𝜖3 + 𝜖4, and choosing 𝜖3 + 𝜖4 = 𝜖 , we get: [𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑡 0 𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0)) − − 1 𝑇 𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑇 0 𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 − − [𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0), 𝑡 0 𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0)) − − 1 𝑇 𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0), 𝑇 0 𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 ≤ 𝜖 for all 𝑚 ≥ 0, i. e. lim 𝑚→∞ [𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑡 0 𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0)) − − 1 𝑇 𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑇 0 𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 = − [𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0), 𝑡 0 𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0)) − − 1 𝑇 𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0), 𝑇 0 𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠. So 𝑥 𝑡, 𝑥0, 𝑦0 ∈ 𝐷, and 𝑥 𝑡, 𝑥0, 𝑦0 ≡ 𝑥0 (𝑡, 𝑥0, 𝑦0) is a periodic solution of ( I1), Also by using the same method above we can prove 𝑦 𝑡, 𝑥0, 𝑦0 ∈ 𝐷1, and 𝑦 𝑡, 𝑥0, 𝑦0 ≡ 𝑦0 𝑡, 𝑥0, 𝑦0 is also periodic solution of (𝐼2 ). Theorem 2.2. With the hypotheses and all conditions of the theorem 2.1, the periodic solution of integral equations ( 𝐼1 ) and ( 𝐼2 ) are a unique on the domain (1.3). Proof. Suppose that 𝑥 𝑡, 𝑥0, 𝑦0 and 𝑦 𝑡, 𝑥0, 𝑦0 be another periodic solutions for the systems (𝐼1) and ( 𝐼2 ) defined and continuous and periodic in 𝑡 of period 𝑇, this means that: 𝑥 𝑡, 𝑥0, 𝑦0 = 𝐹0 𝑡 + [𝑓1(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑠, 𝑥0, 𝑦0 , 𝑡 0 , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏,
  • 9. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 9 , 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏) 𝑏 𝑠 𝑎 𝑠 − 1 𝑇 𝑓1(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑇 0 , 𝑦 𝑠, 𝑥0, 𝑦0 , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)𝑑𝑠]𝑑𝑠 𝑏 𝑠 𝑎 𝑠 ⋯ 2.27 and 𝑦 𝑡, 𝑥0, 𝑦0 = 𝐺0 𝑡 + [𝑓2(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑠, 𝑥0, 𝑦0 , 𝑡 0 , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏) 𝑏 𝑠 𝑎 𝑠 − 1 𝑇 𝑓2(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑇 0 , 𝑦 𝑠, 𝑥0, 𝑦0 , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)𝑑𝑠]𝑑𝑠 𝑏 𝑠 𝑎 𝑠 ⋯ 2.28 For their difference, we should obtain the inequality: 𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 ≤ ≤ 𝑇 2 [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 + + 𝑇 2 [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 ⋯ 2.29 And also 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 ≤ ≤ (1 − 𝑡 𝑇 ) [𝐿1 𝑥 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + 𝐿2 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 𝑡 0 + 𝛿 𝜆2 𝐿3 𝐻1 𝑥 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + 𝐻2 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 + +𝑕𝐿4(𝐻1 𝑥 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + 𝐻2 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 )]𝑑𝑠 + 𝑡 𝑇 𝐿1 𝑥 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + 𝐿2 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 + 𝑇 𝑡 + 𝛿 𝜆2 𝐿3 𝐻1 𝑥 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + 𝐻2 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 + +𝑕𝐿4(𝐻1 𝑥 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + 𝐻2 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 )]𝑑𝑠 ≤ 𝛼(𝑡)[𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 + +𝛼(𝑡)[𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 so that: 𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 ≤ ≤ 𝑇 2 [𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 + + 𝑇 2 [𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 ⋯ 2.30
  • 10. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 10 and the inequalities (4.2.29) and (4.2.30) would lead to the estimate: 𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 ≤ 𝑄0 𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 ⋯ 2.31 By iterating the inequality (4.2.27), which should find: 𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 ≤ 𝑄0 𝑚 𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 . But 𝑄0 𝑚 → 0 as 𝑚 → ∞, so that proceeding in the last inequality which is contradict the supposition It follows immediately 𝑥 𝑡, 𝑥0, 𝑦0 = 𝑥 𝑡, 𝑥0, 𝑦0 and 𝑦 𝑡, 𝑥0, 𝑦0 = 𝑦 𝑡, 𝑥0, 𝑦0 . III. Existence of Solution of (𝑰 𝟏) and (𝑰 𝟐) The problem of existence of periodic solution of period T of the system ( 𝐼1) and ( 𝐼2) are uniquely connected with the existence of zero of the functions ∆1 0, 𝑥0, 𝑦0 = ∆1 and ∆2 0, 𝑥0, 𝑦0 = ∆2 which has the form: ∆1: 𝐷𝑓1 × 𝐷1𝑓2 → 𝑅 𝑛 ∆1 0, 𝑥0, 𝑦0 = 1 𝑇 𝑓1(𝑡, 𝑥0 𝑡, 𝑥0, 𝑦0 , 𝑦0 𝑡, 𝑥0, 𝑦0 , 𝑇 0 , 𝐺1 𝑡, 𝑠 𝑔1 𝑠, 𝑥0 𝑠, 𝑥0, 𝑦0 , 𝑦0 𝑠, 𝑥0, 𝑦0 𝑡 −∞ 𝑑𝑠 , 𝑔1 𝑠, 𝑥0 𝑠, 𝑥0, 𝑦0 , 𝑦0 𝑠, 𝑥0, 𝑦0 𝑑𝑠)𝑑𝑡 𝑏 𝑡 𝑎 𝑡 ⋯ 3.1 ∆2: 𝐷𝑓1 × 𝐷1𝑓2 → 𝑅 𝑛 ∆2 0, 𝑥0, 𝑦0 = 1 𝑇 𝑓2(𝑡, 𝑥0 𝑡, 𝑥0, 𝑦0 , 𝑦0 𝑡, 𝑥0, 𝑦0 , 𝑇 0 , 𝐺2 𝑡, 𝑠 𝑔2 𝑠, 𝑥0 𝑠, 𝑥0, 𝑦0 , 𝑦0 𝑠, 𝑥0, 𝑦0 𝑡 −∞ 𝑑𝑠 , 𝑔2 𝑠, 𝑥0 𝑠, 𝑥0, 𝑦0 , 𝑦0 𝑠, 𝑥0, 𝑦0 𝑑𝑠)𝑑𝑡 𝑏 𝑡 𝑎 𝑡 ⋯ 3.2 where the function 𝑥0 𝑡, 𝑥0, 𝑦0 is the limit of the sequence of the functions 𝑥 𝑚 (𝑡, 𝑥0, 𝑦0) and the function 𝑦0 𝑡, 𝑥0, 𝑦0 is the limit of the sequence of the functions 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 . Since this two functions are approximately determined from the sequences of functions: ∆1𝑚 : 𝐷𝑓1 × 𝐷1𝑓2 → 𝑅 𝑛 ∆1𝑚 0, 𝑥0, 𝑦0 = 1 𝑇 𝑓1(𝑡, 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 , 𝑇 0 , 𝐺1 𝑡, 𝑠 𝑔1 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑡 −∞ 𝑑𝑠 , 𝑔1 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑑𝑠)𝑑𝑡 𝑏 𝑡 𝑎 𝑡 ⋯ 3.3 ∆2𝑚 : 𝐷𝑓1 × 𝐷1𝑓2 → 𝑅 𝑛 ∆2𝑚 0, 𝑥0, 𝑦0 = 1 𝑇 𝑓2(𝑡, 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 , 𝑇 0 , 𝐺2 𝑡, 𝑠 𝑔2 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑡 −∞ 𝑑𝑠
  • 11. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 11 , 𝑔2 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑑𝑠)𝑑𝑡 𝑏 𝑡 𝑎 𝑡 ⋯ 3.4 for all 𝑚 = 0,1,2, ⋯ Theorem 3.1. If the hypotheses and all conditions of the theorem 2.1 and 2.2 are satisfied, then the following inequality satisfied: ∆1 0, 𝑥0, 𝑦0 − ∆1𝑚 0, 𝑥0, 𝑦0 ≤ 𝑑 𝑚 ⋯ 3.5 ∆2 0, 𝑥0, 𝑦0 − ∆2𝑚 0, 𝑥0, 𝑦0 ≤ 𝜂 𝑚 ⋯ 3.6 satisfied for all 𝑚 ≥ 0 , 𝑥0 ∈ 𝐷𝑓1 and 𝑦0 ∈ 𝐷1𝑓2 , where 𝑑 𝑚 = [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] , , 𝑄0 𝑚+1 𝐸 − 𝑄0 −1 𝐶0 and 𝜂 𝑚 = [𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] [𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] , , 𝑄0 𝑚+1 𝐸 − 𝑄0 −1 𝐶0 . Proof. By using the relation ( 3.1) and ( 3.3), we have: ∆1 0, 𝑥0, 𝑦0 − ∆1𝑚 0, 𝑥0, 𝑦0 ≤ [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑥0 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 + +[𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑦0 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 ≤ [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] , , 𝑄0 𝑚+1 𝐸 − 𝑄0 −1 𝐶0 = 𝑑 𝑚 And also by using the relation ( 3.2) and ( 3.4), we get: ∆2 0, 𝑥0, 𝑦0 − ∆2𝑚 0, 𝑥0, 𝑦0 ≤ ≤ [𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] [𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] , , 𝑄0 𝑚+1 𝐸 − 𝑄0 −1 𝐶0 = 𝜂 𝑚 where . denotes the ordinary scalar product in the space 𝑅 𝑛 . ∎ Theorem 3.2. Let the vector functions 𝑓1 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 , 𝑓2 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 , 𝑔1 𝑡, 𝑥, 𝑦 and 𝑔2 𝑡, 𝑥, 𝑦 be defined on the domain: 𝐺 = 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇, 𝑎 ≤ 𝑥, 𝑦 ≤ 𝑏, 𝑐 ≤ 𝑧, 𝑢 ≤ 𝑑, 𝑒 ≤ 𝑤, 𝑣 ≤ 𝑓} ⊆ 𝑅1 , and periodic in t of period T. Assume that the sequence of functions (4.3.3) and (4.3.4) satisfies the inequalities: min a+ 𝑇 2 𝑀1≤x0≤b− 𝑇 2 𝑀1 c+ 𝑇 2 𝑀2≤y0≤d− 𝑇 2 𝑀2 ∆1m 0, x0, y0 ≤ − 𝑑m , max a+ 𝑇 2 𝑀1≤x0≤b− 𝑇 2 𝑀1 c+ 𝑇 2 𝑀2≤y0≤d− 𝑇 2 𝑀2 ∆1m 0, x0, y0 ≥ 𝑑m , ⋯ 3.7 min a+ 𝑇 2 𝑀1≤x0≤b− 𝑇 2 𝑀1 c+ 𝑇 2 𝑀2≤y0≤d− 𝑇 2 𝑀2 ∆2m 0, x0, y0 ≤ − ηm , max a+ 𝑇 2 𝑀1≤x0≤b− 𝑇 2 𝑀1 c+ 𝑇 2 𝑀2≤y0≤d− 𝑇 2 𝑀2 ∆2m 0, x0, y0 ≥ ηm , ⋯ 3.8 for all 𝑚 ≥ 0, where 𝑑 𝑚 = [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] , , 𝑄0 𝑚+1 𝐸 − 𝑄0 −1 𝐶0 and
  • 12. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 12 𝜂 𝑚 = [𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] [𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] , , 𝑄0 𝑚+1 𝐸 − 𝑄0 −1 𝐶0 Then the system (4.1.1) and (4.1.2) has periodic solution of period T 𝑥 = 𝑥(𝑡, 𝑥0, 𝑦0) and 𝑦 = 𝑦(𝑡, 𝑥0, 𝑦0) for which 𝑥0 ∈ [𝑎 + 𝑇 2 𝑀1, 𝑏 − 𝑇 2 𝑀1] and 𝑦0 ∈ [𝑐 + 𝑇 2 𝑀2, 𝑑 − 𝑇 2 𝑀2]. Proof. Let 𝑥1, 𝑥2 be any two points in the interval [𝑎 + 𝑇 2 𝑀1, 𝑏 − 𝑇 2 𝑀1] and 𝑦1, 𝑦2 be any two points in the interval [𝑐 + 𝑇 2 𝑀2, 𝑑 − 𝑇 2 𝑀2], such that: Δ1m 0, 𝑥1, 𝑦1 = min a+ 𝑇 2 𝑀1≤x0≤b− 𝑇 2 𝑀1 c+ 𝑇 2 𝑀2≤y0≤d− 𝑇 2 𝑀2 ∆1m 0, 𝑥0, 𝑦0 , Δ1m 0, 𝑥2, 𝑦2 = max a+ 𝑇 2 𝑀1≤x0≤b− 𝑇 2 𝑀1 c+ 𝑇 2 𝑀2≤y0≤d− 𝑇 2 𝑀2 ∆1𝑚 0, 𝑥0, 𝑦0 , ⋯ 3.9 Δ2m 0, 𝑥1, 𝑦1 = min a+ 𝑇 2 𝑀1≤x0≤b− 𝑇 2 𝑀1 c+ 𝑇 2 𝑀2≤y0≤d− 𝑇 2 𝑀2 ∆2m 0, x0, y0 , Δ2m 0, 𝑥2, 𝑦2 = max a+ 𝑇 2 𝑀1≤x0≤b− 𝑇 2 𝑀1 c+ 𝑇 2 𝑀2≤y0≤d− 𝑇 2 𝑀2 ∆2m 0, x0, y0 , ⋯ 3.10 By using the inequalities ( 3.5), ( 3.6), ( 3.7) and ( 3.8), we have: ∆1 0, 𝑥1, 𝑦1 = ∆1𝑚 0, 𝑥1, 𝑦1 + ∆1 0, 𝑥1, 𝑦1 − ∆1𝑚 (0, 𝑥1, 𝑦1) ≤ 0 , ∆1 0, 𝑥2, 𝑦2 = ∆1𝑚 0, 𝑥2, 𝑦2 + ∆1 0, 𝑥2, 𝑦2 − ∆1𝑚 (0, 𝑥2, 𝑦2) ≤ 0 . ⋯ 3.11 ∆2 0, 𝑥1, 𝑦1 = ∆2𝑚 0, 𝑥1, 𝑦1 + ∆2 0, 𝑥1, 𝑦1 − ∆2𝑚 (0, 𝑥1, 𝑦1) ≤ 0 , ∆2 0, 𝑥2, 𝑦2 = ∆2𝑚 0, 𝑥2, 𝑦2 + ∆2 0, 𝑥2, 𝑦2 − ∆2𝑚 (0, 𝑥2, 𝑦2) ≤ 0 . ⋯ 3.12 It follows from the inequalities ( 3.11) and ( 3.12) in virtue of the continuity of the functions ∆1(0, 𝑥0, 𝑦0) and ∆1(0, 𝑥0, 𝑦0) that there exists an isolated singular point (𝑥0 , 𝑦0 ) = (𝑥0, 𝑦0) , 𝑥0 ∈ 𝑥1, 𝑥2 and 𝑦0 ∈ 𝑦1, 𝑦2 , so that ∆1(0, 𝑥0 , 𝑦0 ) = 0 and ∆2(0, 𝑥0 , 𝑦0 ) = 0. This means that the system ( 3.1) and (4.3.2) has a periodic solutions 𝑥 𝑡, 𝑥0, 𝑦0 , 𝑦 𝑡, 𝑥0, 𝑦0 for which 𝑥0 ∈ [𝑎 + 𝑇 2 𝑀1, 𝑏 − 𝑇 2 𝑀1] and 𝑦0 ∈ [𝑐 + 𝑇 2 𝑀2, 𝑑 − 𝑇 2 𝑀2]. ∎ Remark 3.1. Theorem 3.2 is proved when 𝑅 𝑛 = 𝑅1 , on the other hand as 𝑥0, 𝑦0 are a scalar singular point which should be isolated (For this remark, see [5]). IV. Stability Theorem Of Solution (𝑰 𝟏) And (𝑰 𝟐) In this section, we study theorem on stability of a periodic solution for the integral equations ( 𝐼1) and ( 𝐼2). Theorem 4.1. If the function ∆1 0, 𝑥0, 𝑦0 , Δ2(0, 𝑥0, 𝑦0) are defined by equations ( 3.1) and ( 3.2), where the function 𝑥0 (𝑡, 𝑥0, 𝑦0) is a limit of the sequence of the functions ( 2.1) , the function 𝑦0 (𝑡, 𝑥0, 𝑦0) is the limit of the sequence of the functions ( 2.2) , Then the following inequalities yields: ∆1 0, 𝑥0, 𝑦0 ≤ 𝑀1 ⋯ 4.1 ∆2 0, 𝑥0, 𝑦0 ≤ 𝑀2 ⋯ 4.2 and ∆2 0, 𝑥0 1 , 𝑦0 1 − ∆2 0, 𝑥0 2 , 𝑦0 2 ≤ 𝐹1 𝐹2 𝐸3 𝐹0 1 𝑡 − 𝐹0 2 𝑡 + + 𝑇 2 𝐹1 𝐹2 𝐸2( 𝐸3 + 𝐸4 + 𝐹1 𝐸4(1 − 𝑇 2 𝐸1)) 𝐺0 1 𝑡 − 𝐺0 2 (𝑡) ⋯ 4.4 for all 𝑥0 , 𝑥0 1 , 𝑥0 2 ∈ 𝐷𝑓1 , 𝑦0 , 𝑦0 1 , 𝑦0 2 ∈ 𝐷1𝑓2 , and 𝛼 𝑡 = 2𝑡(1 − 𝑡 𝑇 ) ≤ 𝑇 2 , where 𝐸1 = [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)], 𝐸2 = [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)],
  • 13. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 13 𝐸3 = [𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)], 𝐸4 = [𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)], 𝐹1 = [(1 − 𝑇 2 𝐸1)(1 − 𝑇 2 𝐸4)]−1 and 𝐹2 = (1 − 𝑇2 4 𝑁2 𝑁3 𝐹1)−1 Proof. From the properties of the functions 𝑥0 𝑡, 𝑥0, 𝑦0 and 𝑦0 𝑡, 𝑥0, 𝑦0 as in the theorem 4.2.1, the functions Δ1 = ∆1 𝑥0, 𝑦0 , Δ1 = ∆1 𝑥0, 𝑦0 , 𝑥0 ∈ 𝐷𝑓1 , 𝑦0 ∈ 𝐷1𝑓2 are continuous and bounded by 𝑀1, 𝑀2 in the domain ( 1.3). From relation ( 3.1), we find: ∆1 (0, 𝑥0 , 𝑦0 ≤ 1 𝑇 𝑓1(𝑡, 𝑥0 𝑡, 𝑥0, 𝑦0 , 𝑦0 𝑡, 𝑥0, 𝑦0 , 𝑇 0 , 𝐺1 𝑡, 𝑠 𝑔1 𝑠, 𝑥0 𝑠, 𝑥0, 𝑦0 , 𝑦0 𝑠, 𝑥0, 𝑦0 𝑑𝑠, 𝑡 −∞ , 𝑔1 𝑠, 𝑥0 𝑠, 𝑥0, 𝑦0 , 𝑦0 𝑠, 𝑥0, 𝑦0 𝑑 𝑠) 𝑏(𝑡) 𝑎(𝑡) 𝑑𝑡 by using the Lemma 4.1.1, gives: ∆1(0, 𝑥0, 𝑦0) ≤ 𝑀1. And from relation ( 3.2), we get: ∆2 (0, 𝑥0 , 𝑦0 ≤ 1 𝑇 𝑓2(𝑡, 𝑥0 𝑡, 𝑥0, 𝑦0 , 𝑦0 𝑡, 𝑥0, 𝑦0 , 𝑇 0 , 𝐺2 𝑡, 𝑠 𝑔2 𝑠, 𝑥0 𝑠, 𝑥0, 𝑦0 , 𝑦0 𝑠, 𝑥0, 𝑦0 𝑑𝑠, 𝑡 −∞ , 𝑔2 𝑠, 𝑥0 𝑠, 𝑥0, 𝑦0 , 𝑦0 𝑠, 𝑥0, 𝑦0 𝑑𝑠) 𝑏(𝑡) 𝑎(𝑡) 𝑑𝑡 and using Lemma 4.1.1, we have: ∆2(0, 𝑥0, 𝑦0) ≤ 𝑀2 By using equation ( 3.1) and lemma 1.1, we get: ∆1 0, 𝑥0 1 , 𝑦0 1 − ∆1 0, 𝑥0 2 , 𝑦0 2 ≤ 1 𝑇 [𝐾1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + 𝑇 0 +𝐾2 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 + + 𝛾 𝜆1 𝐾3(𝑅1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + +𝑅2 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 ) + + 𝑕𝐾4(𝑅1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + +𝑅2 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 )]𝑑𝑡 ≤ [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + +[𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 so, ∆1 0, 𝑥0 1 , 𝑦0 1 − ∆1 0, 𝑥0 2 , 𝑦0 2 ≤ 𝐸1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + +𝐸2 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 ⋯ 4.5 And also by using equation ( 3.2) and lemma 1.1, gives: ∆2 0, 𝑥0 1 , 𝑦0 1 − ∆2 0, 𝑥0 2 , 𝑦0 2 ≤ 1 𝑇 [𝐿1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + 𝑇 0 +𝐿2 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 +
  • 14. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 14 + 𝛿 𝜆2 𝐿3(𝐻1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + +𝐻2 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 ) + + 𝑕𝐿4(𝐻1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + +𝐻2 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 )]𝑑𝑡 ≤ [𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + +[𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 . Therefore, ∆2 0, 𝑥0 1 , 𝑦0 1 − ∆2 0, 𝑥0 2 , 𝑦0 2 ≤ 𝐸3 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + +𝐸4 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 ⋯ 4.6 where the functions 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 , 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 , 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 and 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 are solutions of the equation: 𝑥 𝑡, 𝑥0 𝑘 , 𝑦0 𝑘 = 𝐹0 𝑘 𝑡 + [𝑓1(𝑠, 𝑥(𝑠, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑦(𝑠, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑡 0 , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑦(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 )) 𝑠 −∞ 𝑑𝜏, , 𝑔1(𝜏, 𝑥(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑦(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 ))𝑑𝜏 𝑏 𝑠 𝑎 𝑠 ) − − 1 𝑇 𝑓1(𝑠, 𝑥(𝑠, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑦(𝑠, 𝑥0 𝑘 , 𝑦0 𝑘 ) 𝑇 0 , , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑦(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 )) 𝑠 −∞ 𝑑𝜏, , 𝑔1(𝜏, 𝑥(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑦(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 ))𝑑𝜏 𝑏 𝑠 𝑎 𝑠 )𝑑𝑠]𝑑𝑠 ⋯ ( 4.7) and 𝑦 𝑡, 𝑥0 𝑘 , 𝑦0 𝑘 = 𝐺0 𝑘 𝑡 + [𝑓2(𝑠, 𝑥(𝑠, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑦(𝑠, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑡 0 , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑦(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 )) 𝑠 −∞ 𝑑𝜏, , 𝑔2(𝜏, 𝑥(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑦(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 ))𝑑𝜏 𝑏 𝑠 𝑎 𝑠 ) − − 1 𝑇 𝑓2(𝑠, 𝑥(𝑠, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑦(𝑠, 𝑥0 𝑘 , 𝑦0 𝑘 ) 𝑇 0 , , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑦(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 )) 𝑠 −∞ 𝑑𝜏, , 𝑔2(𝜏, 𝑥(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑦(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 ))𝑑𝜏 𝑏 𝑠 𝑎 𝑠 )𝑑𝑠]𝑑𝑠 ⋯ ( 4.8) where 𝑘 = 1, 2. From (4.4.7), we get: 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 −𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ 𝐹0 1 𝑡 − 𝐹0 2 𝑡 +
  • 15. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 15 +𝛼(𝑡)[𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + +𝛼 𝑡 [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ 𝐹0 1 𝑡 − 𝐹0 2 𝑡 + + 𝑇 2 [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + + 𝑇 2 [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 such that: 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 −𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ 𝐹0 1 𝑡 − 𝐹0 2 𝑡 + + 𝑇 2 𝐸1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + + 𝑇 2 𝐸2 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 therefore: 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 −𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ (1 − 𝑇 2 𝐸1)−1 𝐹0 1 𝑡 − 𝐹0 2 𝑡 + + 𝑇 2 𝐸2(1 − 𝑇 2 𝐸1)−1 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 ⋯ 4.9 And also from relation ( 4.8), we have: 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 −𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ ≤ 𝐺0 1 𝑡 − 𝐺0 2 𝑡 + +𝛼(𝑡)[𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + +𝛼(𝑡)[𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ ≤ 𝐺0 1 𝑡 − 𝐺0 2 𝑡 + + 𝑇 2 [𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + + 𝑇 2 [𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 so that: 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 −𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ 𝐺0 1 𝑡 − 𝐺0 2 𝑡 + + 𝑇 2 𝐸3 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + + 𝑇 2 𝐸4 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 and hence: 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 −𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ (1 − 𝑇 2 𝐸4)−1 𝐺0 1 𝑡 − 𝐺0 2 𝑡 + + 𝑇 2 𝐸3(1 − 𝑇 2 𝐸4)−1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ⋯ 4.10 Now, by substituting inequality ( 4.10) in ( 4.9), we get: 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ (1 − 𝑇 2 𝐸1)−1 𝐹0 1 𝑡 − 𝐹0 2 𝑡 + + 𝑇 2 𝐸2(1 − 𝑇 2 𝐸1)−1 [(1 − 𝑇 2 𝐸4)−1 𝐺0 1 𝑡 − 𝐺0 2 𝑡 + + 𝑇 2 𝐸3(1 − 𝑇 2 𝐸4)−1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ] ≤ (1 − 𝑇 2 𝐸1)−1 𝐹0 1 𝑡 − 𝐹0 2 𝑡 + + 𝑇 2 𝐸2[(1 − 𝑇 2 𝐸1)(1 − 𝑇 2 𝐸4)]−1 𝐺0 1 𝑡 − 𝐺0 2 𝑡 + + 𝑇2 4 𝐸2 𝐸3[(1 − 𝑇 2 𝐸1)(1 − 𝑇 2 𝐸4)]−1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ] putting 𝐹1 = [(1 − 𝑇 2 𝐸1)(1 − 𝑇 2 𝐸4)]−1 , and substituting in the last inequality, we obtain:
  • 16. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 16 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ (1 − 𝑇 2 𝐸1)−1 𝐹0 1 𝑡 − 𝐹0 2 𝑡 + + 𝑇 2 𝐸2 𝐹1 𝐺0 1 𝑡 − 𝐺0 2 𝑡 + + 𝑇2 4 𝐸2 𝐸3 𝐹1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ] as the 𝐹1(1 − 𝑇 2 𝐸4) = (1 − 𝑇 2 𝐸1)−1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ 𝐹1(1 − 𝑇 2 𝐸4) 𝐹0 1 𝑡 − 𝐹0 2 𝑡 + + 𝑇 2 𝐸2 𝐹1 𝐺0 1 𝑡 − 𝐺0 2 𝑡 + 𝑇2 4 𝐸2 𝐸3 𝐹1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ] which implies that: 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ≤≤ 𝐹1(1 − 𝑇 2 𝐸4)(1 − 𝑇2 4 𝐸2 𝐸3 𝐹1)−1 𝐹0 1 𝑡 − 𝐹0 2 𝑡 + + 𝑇 2 𝐸2 𝐹1(1 − 𝑇2 4 𝐸2 𝐸3 𝐹1)−1 𝐺0 1 𝑡 − 𝐺0 2 𝑡 putting 𝐹2 = (1 − 𝑇2 4 𝐸2 𝐸3 𝐹1)−1 and substituting in the last inequality, we obtain: 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ 𝐹1 𝐹2(1 − 𝑇 2 𝐸4) 𝐹0 1 𝑡 − 𝐹0 2 𝑡 + + 𝑇 2 𝐸2 𝐹1 𝐹2 𝐺0 1 𝑡 − 𝐺0 2 𝑡 ⋯ 4.11 Also, substituting the inequalities ( 4.11) in ( 4.10), we find that: 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 −𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ (1 − 𝑇 2 𝐸4)−1 𝐺0 1 𝑡 − 𝐺0 2 𝑡 + + 𝑇 2 𝐸3(1 − 𝑇 2 𝐸4)−1 [𝐹1 𝐹2(1 − 𝑇 2 𝐸4) 𝐹0 1 𝑡 − 𝐹0 2 𝑡 + + 𝑇 2 𝐸2 𝐹1 𝐹2 𝐺0 1 𝑡 − 𝐺0 2 𝑡 ] and hence 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 −𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ 𝑇 2 𝐸3 𝐹1 𝐹2 𝐹0 1 𝑡 − 𝐹0 2 𝑡 + +[𝐹1(1 − 𝑇 2 𝐸1) + 𝑇 2 𝐹1 𝐹2 𝐸2] 𝐺0 1 𝑡 − 𝐺0 2 𝑡 ⋯ 4.12 so, substituting inequalities ( 4.11) and ( 4.12) in inequality ( 4.5), we get the inequality ( 4.3). and the same, substituting inequalities ( 4.11) and ( 4.12) in inequality ( 4.6), gives the inequality ( 4.4). ∎ REFERENCES [1] Aziz, M.A., (2006), Periodic solutions for some systems of non-linear ordinary differential equations, M. Sc. Thesis, college of Education, University of Mosul. [2] Butris, R. N. and Rafeq, A. Sh., (2011), Existence and Uniqueness, Solution for Non-linear Volterra Integral Equation, J. Duhok Univ. Vol.No. 1, (Pure and Eng. Sciences). [3] Jaswon, M. A. and Symm, G. T., (1977), Integral Equations Methods in Potential Theory and Elastostatics, A subsidiary of Hart court brace Jovanovich Publishers, Academic press, London. [4] Korol, I. I., (2005), On periodic solutions of one class of systems of differential equations, Ukraine, Math. J. Vol. 57, No. 4. [5] Mitropolsky, Yu. A. and Martynyuk, D. I., (1979), For Periodic Solutions for the Oscillations System with Retarded Argument, Kiev, Ukraine. [6] Rama, M. M., (1981), Ordinary Differential Equations Theory and Applications, Britain. [7] Rafeq, A. Sh., (2009), Periodic solutions for some classes of non-linear systems of integro-differential equations, M. Sc. Thesis, college of Education, University of Duhok. [8] Perestyuk, N. A., (1971), The periodic solutions for non-linear systems of differential equations, Math. and Meca. J., Univ. of Kiev, Kiev, Ukraine,5, 136-146. [9] Perestyuk, N. A. and Martynyuk, D. I., (1976), Periodic solutions of a certain class systems of differential equations, Math. J., Univ. of Kiev , Ukraine,No 3. [10] Samoilenko, A. M. and Ronto, N. I., (1976), A Numerical – Analytic Methods for Investigating of Periodic Solutions, Kiev, Ukraine. [11] Samoilenko, A. M., (1966), A numerical – analytic methods for investigations of periodic systems of ordinary differential equations II, Kiev, Ukraine, Math. J.,No 5. [12] Shestopalov, Y. V. and Smirnov, Y. G., (2002), Integral Equations, Karlstad University. [13] Struble, R. A., (1962), Non-Linear Differential Equations, Mc Graw-Hall Book Company Inc., New York. [14] Tarang, M., (2004), Stability of the spline collocation method for Volterra integro-differential equations, Thesis, University of Tartu. [15] Tricomi, F. G., (1965), Integral Equations, Turin University, Turin, Italy.