SlideShare une entreprise Scribd logo
1  sur  38
Télécharger pour lire hors ligne
The dark universe and the
quantum vacuum
CPPM-CPT Marseille 25/04/16
Gilles Cohen-Tannoudji
Laboratoire de recherche sur les sciences de la Matière
(LARSIM CEA-Saclay)
www.gicotan.fr
25/04/16 The dark universe and the quantum vacuum 2
Space-time curvature The
cosmological
constant
Energy tensor of
matter
Matter tells space-time how it must be curved; space-
time tells matter how it must move
The unknown: the metric of
space-timeThe Einstein’s equation
Proportionality constant
1
( ) ( ) ( ) ( )
2
R x g x R g x T x       
2
/G c
25/04/16The dark universe and the quantum vacuum3
The Friedman Lemaître equations
 
 
1
8
2
1,000
Ng G T g
T pg p u u
u
   
   


   
   

Matter content of the universe, perfect fluid
velocity vector for the isotropic fluid
The Einstein equation
in comoving coordinates
 
 
2
2
2
;
8
3 3
0
3
4
3
3 3
NGR k
H
R R
T
H p
R G
p
R


 
 


  
    
 

  

  
Friedman-Lemaître equations
Energy conservation, via
25/04/16 The dark universe and the quantum vacuum 4
 
 
2
2 2
2
0
3
8
/
/ 1
/ 1
c
N
c
H
G
k R H
k R


 

 
  
      
tot
tot
M R V
Definition of cosmological parameters
0
1
M b DM
tot b R DM DE
In CDM
k


    
         
25/04/16 The dark universe and the quantum vacuum 5
“Eq. (19.8) has a simple classical mechanical analog if we neglect (for the moment) the
cosmological term . By interpreting −k/R2 Newtonianly as a ‘total energy’, then we
see that the evolution of the Universe is governed by a competition between the
potential energy, 8πGNρ/3, and the kinetic term (H0)2.”
Big bang cosmology,
K. Nakamura et al. (PDG), JP G 37 0750021 (2010)
Vanishing of spatial curvature = vanishing of “total energy”?
However, “the usage of referring –k/R0
2H0
2 as k is unfortunate: it encourages one to
think of curvature as a contribution to the energy density of the Universe, which is not
correct”
25/04/16 The dark universe and the quantum vacuum 6
Emergent perspective of gravity and dark energy
T. Padmanabhan ArXiv: 1207,0505
Gravity and/is thermodynamics ArXiv:1512,06546
Exploring the nature of gravity ArXiv: 1602.011474
In the conventional approach, gravity is treated as a field which couples to the energy density of matter. The
addition of a cosmological constant — or equivalently, shifting of the zero level of the energy — is not a
symmetry of the theory and the field equations (and their solutions) change under such a shift. In the emergent
perspective, it is the entropy density rather than the energy density which plays the crucial role.
In Friedman universe in expansion, there is a horizon with radius H-1 to which
is associated an entropy
During time interval dt the change of gravitational entropy is
   2 2 2
/ 4 / / 2p PS A L H L T H   and a temperature
    
    
2
/ 1/ 4 /
/ / 8 /
P
N
dS dt L dA dt
T dS dt H G dA dt


and the corresponding heat flux
25/04/16 The dark universe and the quantum vacuum 7
Gibbs-Duhem relation for matter
Energy conservation for matter
The entropy balance condition correctly
reproduces the field equation but with an arbitrary
cosmological constant acting as an integration
constant : the entropy density vanishes for the
cosmological constant: = - P
  
 
 
  2
1/
/
4 /
8
m
m
N
s T P
Ts A P A
TdS dt P A
H dA
P A A H
G dt
H



 

 
 
 
  

entropy density for matter is
with correspondig heat flux
balancing matter and gravitational heat fluxes leads to
which becomes
, which with gives
 4 NG P  
Which is the correct Friedman equation
 
 
3 3
2
3
3
4
3
constant
8
N
N
d a da
P
dt dt
HH
H P
G
H
G

 

  
 
 
   
   
25/04/16 The dark universe and the quantum vacuum 8
When the space-time responds in a manner maintaining entropy balance, it responds to
In other words, shifting the zero level of the energy is the symmetry of the theory in the emergent
perspective and gravity does not couple to the cosmological constant. The vanishing of CC would be a
direct consequence of this symmetry. The smallness of CC arises as a consequence of the smallness of the
symmetry breaking (‘t Hooft naturalness criterion)
Interpreting the CDM cosmology in the emergent perspective of gravity has led T. Padmanabhan to a
solution of the CC problem, and, as we are going to show, could lead to a new approach of the dark
matter problem
P T l l l 
  or more generally to (where is a null 4-vector)
which vanishes for the cosmological constant
25/04/16 The dark universe and the quantum vacuum 9
Scale factorPrimeval inflation Expansion Late inflation1
A B
C
D
E
L
Linf
a w
10-60
LP
Past event horizon
Future event horizon
Big-Bang ignition
Today
From radiation to matter dominance
Color confinement
CDM cosmological SM
HEP standard model
BSM physics
F
EW symmetry breaking
G
Hubble radius L=H-1
The CDM cosmology
CDM in the emergent perspective of cosmology
• A conservation law in CDM: all
the modes that exit from the
horizon between A and B go
through the horizon between B and
F and the re-exit the horizon
between F and G
• This conservation law applies to
degrees of freedom, that is to
entropy and not to energy
• This means that the emergent
perspective of gravity applies to
CDM
25/04/16 The dark universe and the quantum vacuum 10
The three stages of the CDM cosmology
• The primordial inflation stage (AB)
• A BSM (beyond the standard model) phase
(Quantum gravity? GUT?, SUSY? Superstrings?,
Baryo- and lepto-genesis? Axions and axion-like
particles? ) that replaces the “big bang”
• Relaxation of the quantum vacuum after a
quantum fluctuation of matter and gravitational
fields that occurred in the remote past: all the
particles of the SM (supposed to be mass less
before the BEH mechanism) and possible BSM
particles are virtual
• the scale factor grows exponentially while the
Hubble radius of order of a GUT scale remains
constant (de Sitter space-time geometry)
• Inflation stops at B when the lightest non
massless particles of the SM, possibly the
neutrinos (with masses of about 1/100 eV, of
order of the CC scale) decohere. Point B is called
in the literature the reheating point. (Bjorken
calls it the ignition of the big bang).
25/04/16 The dark universe and the quantum vacuum 11
• The conventional FLRW phase (BF)
• Radiation dominated phase (BE), with L
proportional to a2 that goes through
• the breaking of the electroweak symmetry at C by
means of the BEH mechanism when all SM particles
except photons and gluons became massive
• The confinement of color at D when colorless
hadrons (baryons and mesons) were formed.
• Pressure-less matter dominated phase (EF), with
L proportional to a1.5, a phase in which occurred
the events of the conventional big bang model.
• The late inflation phase (FG)
• The acceleration of the expansion observed
today is interpreted as due to a non vanishing CC
• Asymptotically in the future, CC implies the
existence of an event horizon at G beyond which
the whole matter will be unobservable
25/04/16 The dark universe and the quantum vacuum 12
The de Sitter geometry of the quantum vacuum
• Before A (the past event horizon) and after G (the future event horizon), space-
time of the observable universe is empty of matter:  (matter)=k=0. Inflation is
driven by a cosmological constant, an effective CC for the primordial inflation and
the observed CC for the late inflation; the geometry is the one of a de Sitter’s
universe
• A space-time empty of matter is not the nothingness: it is the quantum vacuum;
i.e. a complex medium in which the quantum fields of the standard model, and
possibly a quantized gravitational field are subject to quantum fluctuations.
• Such a complex medium can be considered as a perfect fluid with an equation of
state   P = 0
• To describe phenomenologically such a medium, we have to include besides the
quantum fields of the standard model a (quantum) field to account for gravitation
• In homogeneous and isotropic cosmologies, which are conformally flat, the
relevant gravitational field is not the metric itself but a scalar field related to the
determinant of the metric, the dilaton field f
25/04/16 The dark universe and the quantum vacuum 13
25/04/16 The dark universe and the quantum vacuum 14
CDM in the emergent perspective of gravity
With the dilaton field f we write the Friedman equation that translates the
balancing of the heat fluxes of matter and gravity through the horizon
In the conventional model
Dark matter associated with matter, not
with vacuum
Dark energy (CC) only component
associated with vacuum
 
 
 
 
2
0
3
8
B DM
DE
c
B DM DE c
The flatness sum rule
Matter
Matter
!
N
P
H
P
G
  
 f 
f 

   

 

   
  
    
     
0
( ) 0
Matter
Matter Matter
T T l l
P P
 
 f
 f f 
 
   
25/04/16 The dark universe and the quantum vacuum 15
Our model
Dark matter and dark energy that have no non-gravitational interactions are
components of the quantum vacuum and not of the non-vacuum matter
The critical density is identified with the contribution of an effective
« running » CC
 
 
 
 
2
0
3
8 8N N
P
H
P
G G
 
 f  
f 
 
   


 

     
  
B
DE DM
eff
c
B DM DE c
The flatness
Matter
Mat
sum ru
ter
le !
    
     
0
( ) 0
Matter
Matter Matter
T T l l
P P
 
 f
 f f 
 
   
Dark energy and sterile neutrinos
• The masses of the neutrinos and the BEH mechanism
• The SM is compatible with mass less neutrinos: right handed neutrinos would
be isospin singlet, and hypercharge neutral and thus sterile with respect to
the SM. If no right handed neutrinos the Yukawa couplings of the BEH does
not lead to massive neutrinos.
• If neutrinos are not mass less, one needs some BSM physics.
• Simplest assumption: there exist right handed neutrinos, sterile with respect
to the SM
• The seesaw mechanism leading to very small masses for the
neutrinos (Ramond Neutrinos: precursors of new physics, C. R. Physique 6 (2005) 719-728)
25/04/16 The dark universe and the quantum vacuum 16
• Yukawa couplings to the BEH boson gives Dirac masses to neutrinos
• Right handed neutrinos can get Majorana masses
• Seesaw mechanism between a large Majorana mass (of the order of lepton
number breaking, i.e. GUT or primordial inflation scale) and the Dirac mass, of
the order of EW symmetry breaking, leads to
• Neutrino masses much smaller than charged particle masses
• A small sterile component of each physical neutrino, possible candidates for the dark
energy particles
• Through the so-called “sphaleron” mechanism, breaking of lepton
number can lead to breaking of baryon number at the GUT scale, and
thus to the breaking of the matter-antimatter symmetry. (W. Buchrnüller,
Neutrinos in the early universe C. R. Physique 6 (2005) 798-809)
25/04/16 The dark universe and the quantum vacuum 17
The BEH boson as the electroweak dark
matter
The well known interpretation of the BEH mechanism that generates
masses to all the particles coupled to the BEH field with a coupling
proportional to the mass or the squared mass, shows that the BEH
boson acts as a (massive) dilaton, i.e. as anEW ether or EW dark matter
25/04/16 The dark universe and the quantum vacuum 18
Dark matter and the QCD vacuum
• As an unbroken Yang Mills theory, QCD with no quarks or with mass less
quarks, is scale invariant
• But, because of infrared divergences, this symmetry is spontaneously
broken through the trace anomaly and dynamically realized
• In a cosmological context, the Nambu-Golstone boson of this spontaneous
symmetry breaking is our field f
• At the color confinement scale (about 1 GeV), since dark energy is
negligible, dark matter density is the density of the QCD vacuum.
• The known parton distribution functions of the nucleon at Q2 about 1
GeV2 show that the energy-momentum carried by the vacuum (gluons
plus sea quark pairs) is about five times the one carried by the valence
quarks: a factor 5 that is quite comparable with the observed ratio of
dark to baryonic matter
25/04/16 The dark universe and the quantum vacuum 19
A QUANTUM LIQUID MODEL FOR THE QCD VACUUM
H.B. NIELSEN and P. OLESEN Nuclear Physics
B160 (1979) 380-396
• “We show that domains are formed in a homogeneous SU(2) color magnetic
field. Due to quantum fluctuations the domains have fluid properties. It is then
argued that, quantum mechanically superpositions of such domains must be
considered. The resulting state is gauge and rotational invariant, in spite of the
fact that the original color magnetic field breaks these invariances. We point out
that in our model for the QCD vacuum, color magnetic monopoles are not
confined”
• The magnetic tubes therefore form a three-dimensional pattern which
resembles spaghetti.
25/04/16 The dark universe and the quantum vacuum 20
25/04/16 The dark universe and the quantum vacuum 21
25/04/16 The dark universe and the quantum vacuum 22
25/04/16 The dark universe and the quantum vacuum 23
25/04/16 The dark universe and the quantum vacuum 24
25/04/16 The dark universe and the quantum vacuum 25
Le vide quantique, le lieu de la reconciliation
de la relativité et de la quantique
25/04/16 The dark universe and the quantum vacuum 26
25/04/16 The dark universe and the quantum vacuum 27
• « D'où l'on peut voir qu'il y autant de
différence entre le néant et l'espace vide, que
de l'espace vide au corps matériel ; et
qu'ainsi l'espace vide tient le milieu entre le
matière et le néant. C'est pourquoi la
maxime d'Aristote dont vous parlez, "que les
non-êtres ne sont point différents", s'entend
du véritable néant, et non pas de l'espace
vide. » Réponse de Blaise Pascal au très
révérend père Noël, recteur de la Société de
Jésus, à Paris, 29 octobre 1647 Pascal, Œuvres
complètes, La Pléiade, p 384, ed. 1998
25/04/16 The dark universe and the quantum vacuum 28
Ces constatations ont amené la Physique quantique contemporaine à devenir de plus en plus consciente du fait
que ce que nous nommons le vide n'est pas du tout un milieu dénué de propriétés physiques, mais bien plutôt une
sorte d'immense réservoir d'où peuvent émerger au niveau microphysique des unités ou des paires corpusculaires
et où aussi ces unités et ces paires disparaissant du niveau microphysique peuvent s'engloutir.
Si cette conception est exacte (et il semble bien aujourd'hui qu'elle le soit), il y aurait trois niveaux de la
réalité physique :
- le niveau microphysique ou quantique qui est celui des molécules, des atomes, des noyaux ou plus
généralement des particules élémentaires, qui est le domaine propre de la Physique quantique ;
- le niveau macrophysique des phénomènes macroscopiques directement observables à notre échelle qui est le
domaine propre de la Physique dite "classique";
- le niveau le plus profond, hypomicrophysique ou subquantique pourrait-on dire, constitué par ce "vide"
réservoir immense d'énergie sous-jacente dont nous ignorons encore presque tout. (,,,)
L'expression "substratum universel" (ou une autre de ce genre) serait meilleure. J'emploierai cependant
habituellement le mot vide couramment usité, mais vous devez imaginer qu'il doit être mis entre guillemets ("le
vide'').
Louis de Broglie, cours à la Sorbonne 1957-1958
25/04/16 The dark universe and the quantum vacuum 29
Nous ne savons pas si, quand un boson apparaît au niveau microphysique sortant du "vide", il existait déjà dans ce
substratum à l'état préformé, ou s'il est "créé" au moment de son apparition. Nous ne savons pas davantage si,
quand un boson disparaît du niveau microphysique pour s'engloutir dans le "vide", il subsiste dans ce substratum
dans un état indécelable ou s'il est "détruit" au moment de sa disparition.
On est évidemment amené à penser que toute particule, même quand elle nous paraît isolée, est en contact avec
un milieu subquantique caché qui constitue une sorte d'invisible thermostat ..... La particule échangerait ainsi
continuellement de l'énergie et de la quantité de mouvement avec ce milieu subquantique.
Dès qu'on a admis l'existence d'un "milieu subquantique" caché, on est amené à se demander quelle est la
nature de ce milieu. Il a certainement une nature très complexe. En effet, il doit d'abord ne pas pouvoir servir
de milieu de référence universel, ce qui serait en opposition avec la théorie de la Relativité. De plus nous
verrons qu'il se comporte non pas comme un thermostat unique, mais plutôt comme un ensemble de
thermostats dont les températures seraient reliées aux énergies propres des diverses sortes de particules.
25/04/16 The dark universe and the quantum vacuum 30
“There can be no space nor any part of space without gravitational potentials; for
these confer upon space its metrical qualities, without which it cannot be imagined at
all. The existence of the gravitational field is inseparably bound up with the existence of
space. On the other hand a part of space may very well be imagined without an
electromagnetic field; thus in contrast with the gravitational field, the electromagnetic
field seems to be only secondarily linked to the ether, the formal nature of the
electromagnetic field being as yet in no way determined by that of gravitational ether.
From the present state of theory it looks as if the electromagnetic field, as opposed to
the gravitational field, rests upon an entirely new formal motif, as though nature might
just as well have endowed the gravitational ether with fields of quite another type, for
example, with fields of a scalar potential, instead of fields of the electromagnetic type.”
A. Einstein, Einstein, L’éther et la théorie de la relativité Œuvres choisies, 5, Vol. 5 Science, éthique,
philosophie, pp. 81-88, Le Seuil, CNRS, 1991
The Mach’s ether
25/04/16 The dark universe and the quantum vacuum 31
Recapitulating, we may say that according to the general theory of relativity space is endowed with
physical qualities; in this sense, therefore, there exists an ether. According to the general theory of
relativity space without ether is unthinkable; for in such space there not only would be no
propagation of light, but also no possibility of existence for standards of space and time (measuring-
rods and clocks), nor therefore any space-time intervals in the physical sense. But this ether may not
be thought of as endowed with the quality characteristic of ponderable media, as consisting of parts
which may be tracked through time. The idea of motion may not be applied to it.
Albert Einstein
An address delivered in 1920, at the University
of Leiden
Of course it would be a great advance if we could succeed in comprehending the gravitational field and
the electromagnetic field together as one unified conformation. Then for the first time the epoch of
theoretical physics founded by Faraday and Maxwell would reach a satisfactory conclusion. The contrast
between ether and matter would fade away, and, through the general theory of relativity, the whole of
physics would become a complete system of thought, like geometry, kinematics, and the theory of
gravitation. An exceedingly ingenious attempt in this direction has been made by the mathematician H.
Weyl; but I do not believe that his theory will hold its ground in relation to reality. Further, in
contemplating the immediate future of theoretical physics we ought not unconditionally to reject the
possibility that the facts comprised in the quantum theory may set bounds to the field theory beyond
which it cannot pass.
25/04/16 The dark universe and the quantum vacuum 32
25/04/16 The dark universe and the quantum vacuum 33
Figure from T. Padmanabhan, The atoms of space, gravity and
CC, arXiv:1603.08658
23/04/2016
Où en sommes-nous de la réconciliation de la relativité et de la
quantique?
34
Le cube des théories
25/04/16 The dark universe and the quantum vacuum 35
h
kB
AP
G (AP/h)
U (h/kB)
B(kB/AP)
QFT
CFT
QIT

c
The triple quantization or generalized complementarity
equivalence
holography
complementarity
Generalized complementarity
(h, kB, c, G, )
Quasi-classical
physics
(de l’atome à la
galaxie)
G,h, k, c,
HEP SM CDM
Decoherence,
entanglement
h,kB
Holography
AP,kB
Quantum vacuum
{G,c,h,k,}
Subhadronic
scales
Extragalactic and
cosmic scales
{h, c}
QFT
{G, c, }
General relativity
BSM Physics
h,AP
Was the 1917 Einstein’s universe so wrong?
• CDM can be interpreted as a quasi-classical, quasi-Newtonian,
quasi “perfect”, quasi-Machian Einstein’s universe, in which dark
matter and energy and a “running” cosmological constant, exactly
compensate, at all epochs, the effects of gravity
• Such an unstable equilibrium would be unacceptable if the universe
was static
• But in an expanding universe, such an equilibrium is perfectly
admissible, because it is dynamical
• Rather that “running”, the CC in such an Einstein’s universe should be
said “biking”
25/04/16 The dark universe and the quantum vacuum 37
25/04/16 The dark universe and the quantum vacuum 38

Contenu connexe

Tendances

Hilbert Space and pseudo-Riemannian Space: The Common Base of Quantum Informa...
Hilbert Space and pseudo-Riemannian Space: The Common Base of Quantum Informa...Hilbert Space and pseudo-Riemannian Space: The Common Base of Quantum Informa...
Hilbert Space and pseudo-Riemannian Space: The Common Base of Quantum Informa...
Vasil Penchev
 
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
Global HeavyLift Holdings, LLC
 
Original Paper From Astrophysicist Dr. Andrew Beckwith (Journal of Modern Phy...
Original Paper From Astrophysicist Dr. Andrew Beckwith (Journal of Modern Phy...Original Paper From Astrophysicist Dr. Andrew Beckwith (Journal of Modern Phy...
Original Paper From Astrophysicist Dr. Andrew Beckwith (Journal of Modern Phy...
Global HeavyLift Holdings, LLC
 
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
Global HeavyLift Holdings, LLC
 
The britannica guide to relativity and quantum mechanics (physics explained)
The britannica guide to relativity and quantum mechanics (physics explained) The britannica guide to relativity and quantum mechanics (physics explained)
The britannica guide to relativity and quantum mechanics (physics explained)
أحمد عبد القادر
 
QED: Quantum Electrodynamics
QED: Quantum ElectrodynamicsQED: Quantum Electrodynamics
QED: Quantum Electrodynamics
Tristan Roddis
 

Tendances (20)

Hilbert Space and pseudo-Riemannian Space: The Common Base of Quantum Informa...
Hilbert Space and pseudo-Riemannian Space: The Common Base of Quantum Informa...Hilbert Space and pseudo-Riemannian Space: The Common Base of Quantum Informa...
Hilbert Space and pseudo-Riemannian Space: The Common Base of Quantum Informa...
 
Fundamental principle of information to-energy conversion.
Fundamental principle of information to-energy conversion.Fundamental principle of information to-energy conversion.
Fundamental principle of information to-energy conversion.
 
Ph 101-6
Ph 101-6Ph 101-6
Ph 101-6
 
Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk
Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk
Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk
 
Theory of Relativity
Theory of RelativityTheory of Relativity
Theory of Relativity
 
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
 
Original Paper From Astrophysicist Dr. Andrew Beckwith (Journal of Modern Phy...
Original Paper From Astrophysicist Dr. Andrew Beckwith (Journal of Modern Phy...Original Paper From Astrophysicist Dr. Andrew Beckwith (Journal of Modern Phy...
Original Paper From Astrophysicist Dr. Andrew Beckwith (Journal of Modern Phy...
 
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto SesanaLOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
 
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
 
Ecl astana 28_september_2017_shrt
Ecl astana 28_september_2017_shrtEcl astana 28_september_2017_shrt
Ecl astana 28_september_2017_shrt
 
Binary Black Holes & Tests of GR - Luis Lehner
Binary Black Holes & Tests of GR - Luis LehnerBinary Black Holes & Tests of GR - Luis Lehner
Binary Black Holes & Tests of GR - Luis Lehner
 
Caldwell seminar
Caldwell seminarCaldwell seminar
Caldwell seminar
 
Quantum cosmologyjj halliwell
Quantum cosmologyjj halliwellQuantum cosmologyjj halliwell
Quantum cosmologyjj halliwell
 
The britannica guide to relativity and quantum mechanics (physics explained)
The britannica guide to relativity and quantum mechanics (physics explained) The britannica guide to relativity and quantum mechanics (physics explained)
The britannica guide to relativity and quantum mechanics (physics explained)
 
Physics 2 (Modern Physics)
Physics 2 (Modern Physics)Physics 2 (Modern Physics)
Physics 2 (Modern Physics)
 
QED: Quantum Electrodynamics
QED: Quantum ElectrodynamicsQED: Quantum Electrodynamics
QED: Quantum Electrodynamics
 
A Holographic origin for the big bang
A Holographic origin for the big bang A Holographic origin for the big bang
A Holographic origin for the big bang
 
Modern phyiscs lecture 1
Modern phyiscs lecture 1Modern phyiscs lecture 1
Modern phyiscs lecture 1
 
Redshift (2)
Redshift (2)Redshift (2)
Redshift (2)
 
Mc2e nash intereq.r
Mc2e nash intereq.rMc2e nash intereq.r
Mc2e nash intereq.r
 

Similaire à Dark universe and quantum vacuum

Dynamical dark energy in light of the latest observations
Dynamical dark energy in light of the latest observationsDynamical dark energy in light of the latest observations
Dynamical dark energy in light of the latest observations
Sérgio Sacani
 

Similaire à Dark universe and quantum vacuum (20)

MASSIVE PHOTON HYPOTHESIS OPENS DOORS TO NEW FIELDS OF RESEARCH
MASSIVE PHOTON HYPOTHESIS OPENS DOORS TO NEW FIELDS OF RESEARCHMASSIVE PHOTON HYPOTHESIS OPENS DOORS TO NEW FIELDS OF RESEARCH
MASSIVE PHOTON HYPOTHESIS OPENS DOORS TO NEW FIELDS OF RESEARCH
 
Hadronic1z 1
Hadronic1z  1 Hadronic1z  1
Hadronic1z 1
 
Introduction to Cosmology
Introduction to CosmologyIntroduction to Cosmology
Introduction to Cosmology
 
The dark universe and the quantum vacuum
The dark universe and the quantum vacuumThe dark universe and the quantum vacuum
The dark universe and the quantum vacuum
 
Neven Bilic, "Dark Matter, Dark Energy, and Unification Models"
Neven Bilic, "Dark Matter, Dark Energy, and Unification Models"Neven Bilic, "Dark Matter, Dark Energy, and Unification Models"
Neven Bilic, "Dark Matter, Dark Energy, and Unification Models"
 
Universal constants, standard models and fundamental metrology
Universal constants, standard models and fundamental metrologyUniversal constants, standard models and fundamental metrology
Universal constants, standard models and fundamental metrology
 
諾貝爾物理學獎揭曉 3學者分享
諾貝爾物理學獎揭曉 3學者分享諾貝爾物理學獎揭曉 3學者分享
諾貝爾物理學獎揭曉 3學者分享
 
statistical physics assignment help
statistical physics assignment helpstatistical physics assignment help
statistical physics assignment help
 
gravitywaves
gravitywavesgravitywaves
gravitywaves
 
Final_Paper
Final_PaperFinal_Paper
Final_Paper
 
Holographic Dark Energy in LRS Bianchi Type-II Space Time
Holographic Dark Energy in LRS Bianchi Type-II Space TimeHolographic Dark Energy in LRS Bianchi Type-II Space Time
Holographic Dark Energy in LRS Bianchi Type-II Space Time
 
Possible interaction between baryons and dark-matter particles revealed by th...
Possible interaction between baryons and dark-matter particles revealed by th...Possible interaction between baryons and dark-matter particles revealed by th...
Possible interaction between baryons and dark-matter particles revealed by th...
 
Dynamical dark energy in light of the latest observations
Dynamical dark energy in light of the latest observationsDynamical dark energy in light of the latest observations
Dynamical dark energy in light of the latest observations
 
Universe from nothing
Universe from nothingUniverse from nothing
Universe from nothing
 
Energy in form of space may solve the dark energy problem
Energy in form of space may solve the dark energy problemEnergy in form of space may solve the dark energy problem
Energy in form of space may solve the dark energy problem
 
Fire.cit
Fire.citFire.cit
Fire.cit
 
Master robin schlenga
Master robin schlengaMaster robin schlenga
Master robin schlenga
 
Bec
BecBec
Bec
 
Presentation1
Presentation1Presentation1
Presentation1
 
Quantum Gravity
Quantum GravityQuantum Gravity
Quantum Gravity
 

Plus de Laboratoire de recherche sur les sciences de la matière (LARSIM CEA-Saclay)

Plus de Laboratoire de recherche sur les sciences de la matière (LARSIM CEA-Saclay) (20)

Critical hadronization
Critical hadronizationCritical hadronization
Critical hadronization
 
Critical hadronization
Critical hadronizationCritical hadronization
Critical hadronization
 
Cr fcs-11-04-2018
Cr fcs-11-04-2018Cr fcs-11-04-2018
Cr fcs-11-04-2018
 
Lamda, the fifth foundational constant considered by Einstein
Lamda, the fifth foundational constant considered by EinsteinLamda, the fifth foundational constant considered by Einstein
Lamda, the fifth foundational constant considered by Einstein
 
Lambda, the 5th foundational constant considered by Einstein
Lambda, the 5th foundational constant considered by EinsteinLambda, the 5th foundational constant considered by Einstein
Lambda, the 5th foundational constant considered by Einstein
 
Gc t lyon-13-12-2016
Gc t lyon-13-12-2016Gc t lyon-13-12-2016
Gc t lyon-13-12-2016
 
Ou en sommes nous_Marseille_230416
Ou en sommes nous_Marseille_230416Ou en sommes nous_Marseille_230416
Ou en sommes nous_Marseille_230416
 
Réconciliation relativité-quantique, où en sommes nous?
Réconciliation relativité-quantique, où en sommes nous?Réconciliation relativité-quantique, où en sommes nous?
Réconciliation relativité-quantique, où en sommes nous?
 
Actualité de la philosophie de Ferdinand GonsethRevuesynthèse
Actualité de la philosophie de Ferdinand GonsethRevuesynthèseActualité de la philosophie de Ferdinand GonsethRevuesynthèse
Actualité de la philosophie de Ferdinand GonsethRevuesynthèse
 
Ferdinand Gonseth, un mathématicien et philosophe pleinement engagé dans la s...
Ferdinand Gonseth, un mathématicien et philosophe pleinement engagé dans la s...Ferdinand Gonseth, un mathématicien et philosophe pleinement engagé dans la s...
Ferdinand Gonseth, un mathématicien et philosophe pleinement engagé dans la s...
 
Tqc et individuation
Tqc et individuationTqc et individuation
Tqc et individuation
 
Mise en perspective second cours
Mise en perspective second coursMise en perspective second cours
Mise en perspective second cours
 
Mise en perspective premier cours
Mise en perspective premier coursMise en perspective premier cours
Mise en perspective premier cours
 
Comm slc accord-de-paris-2015-final
Comm slc accord-de-paris-2015-finalComm slc accord-de-paris-2015-final
Comm slc accord-de-paris-2015-final
 
Préface à l'hypothèse de l'atome primitif
Préface à l'hypothèse de l'atome primitifPréface à l'hypothèse de l'atome primitif
Préface à l'hypothèse de l'atome primitif
 
Ferdinand Gonseth, un mathématicien et philosophe pleinement engagé dans la s...
Ferdinand Gonseth, un mathématicien et philosophe pleinement engagé dans la s...Ferdinand Gonseth, un mathématicien et philosophe pleinement engagé dans la s...
Ferdinand Gonseth, un mathématicien et philosophe pleinement engagé dans la s...
 
La science pense-t-elle encore ?
La science pense-t-elle encore ?La science pense-t-elle encore ?
La science pense-t-elle encore ?
 
The position of the Energy group of the EPS
The position of the Energy group of the EPSThe position of the Energy group of the EPS
The position of the Energy group of the EPS
 
Diagrammes et amplitudes de Feynman, la partition du modèle standard
Diagrammes et amplitudes de Feynman, la partition du modèle standardDiagrammes et amplitudes de Feynman, la partition du modèle standard
Diagrammes et amplitudes de Feynman, la partition du modèle standard
 
Constantes universelles et limites du possible en physique
Constantes universelles et limites du possible en physiqueConstantes universelles et limites du possible en physique
Constantes universelles et limites du possible en physique
 

Dernier

Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Dernier (20)

FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 

Dark universe and quantum vacuum

  • 1. The dark universe and the quantum vacuum CPPM-CPT Marseille 25/04/16 Gilles Cohen-Tannoudji Laboratoire de recherche sur les sciences de la Matière (LARSIM CEA-Saclay) www.gicotan.fr
  • 2. 25/04/16 The dark universe and the quantum vacuum 2 Space-time curvature The cosmological constant Energy tensor of matter Matter tells space-time how it must be curved; space- time tells matter how it must move The unknown: the metric of space-timeThe Einstein’s equation Proportionality constant 1 ( ) ( ) ( ) ( ) 2 R x g x R g x T x        2 /G c
  • 3. 25/04/16The dark universe and the quantum vacuum3 The Friedman Lemaître equations     1 8 2 1,000 Ng G T g T pg p u u u                    Matter content of the universe, perfect fluid velocity vector for the isotropic fluid The Einstein equation in comoving coordinates     2 2 2 ; 8 3 3 0 3 4 3 3 3 NGR k H R R T H p R G p R                           Friedman-Lemaître equations Energy conservation, via
  • 4. 25/04/16 The dark universe and the quantum vacuum 4     2 2 2 2 0 3 8 / / 1 / 1 c N c H G k R H k R                  tot tot M R V Definition of cosmological parameters 0 1 M b DM tot b R DM DE In CDM k                 
  • 5. 25/04/16 The dark universe and the quantum vacuum 5 “Eq. (19.8) has a simple classical mechanical analog if we neglect (for the moment) the cosmological term . By interpreting −k/R2 Newtonianly as a ‘total energy’, then we see that the evolution of the Universe is governed by a competition between the potential energy, 8πGNρ/3, and the kinetic term (H0)2.” Big bang cosmology, K. Nakamura et al. (PDG), JP G 37 0750021 (2010) Vanishing of spatial curvature = vanishing of “total energy”? However, “the usage of referring –k/R0 2H0 2 as k is unfortunate: it encourages one to think of curvature as a contribution to the energy density of the Universe, which is not correct”
  • 6. 25/04/16 The dark universe and the quantum vacuum 6 Emergent perspective of gravity and dark energy T. Padmanabhan ArXiv: 1207,0505 Gravity and/is thermodynamics ArXiv:1512,06546 Exploring the nature of gravity ArXiv: 1602.011474 In the conventional approach, gravity is treated as a field which couples to the energy density of matter. The addition of a cosmological constant — or equivalently, shifting of the zero level of the energy — is not a symmetry of the theory and the field equations (and their solutions) change under such a shift. In the emergent perspective, it is the entropy density rather than the energy density which plays the crucial role. In Friedman universe in expansion, there is a horizon with radius H-1 to which is associated an entropy During time interval dt the change of gravitational entropy is    2 2 2 / 4 / / 2p PS A L H L T H   and a temperature           2 / 1/ 4 / / / 8 / P N dS dt L dA dt T dS dt H G dA dt   and the corresponding heat flux
  • 7. 25/04/16 The dark universe and the quantum vacuum 7 Gibbs-Duhem relation for matter Energy conservation for matter The entropy balance condition correctly reproduces the field equation but with an arbitrary cosmological constant acting as an integration constant : the entropy density vanishes for the cosmological constant: = - P          2 1/ / 4 / 8 m m N s T P Ts A P A TdS dt P A H dA P A A H G dt H                 entropy density for matter is with correspondig heat flux balancing matter and gravitational heat fluxes leads to which becomes , which with gives  4 NG P   Which is the correct Friedman equation     3 3 2 3 3 4 3 constant 8 N N d a da P dt dt HH H P G H G                   
  • 8. 25/04/16 The dark universe and the quantum vacuum 8 When the space-time responds in a manner maintaining entropy balance, it responds to In other words, shifting the zero level of the energy is the symmetry of the theory in the emergent perspective and gravity does not couple to the cosmological constant. The vanishing of CC would be a direct consequence of this symmetry. The smallness of CC arises as a consequence of the smallness of the symmetry breaking (‘t Hooft naturalness criterion) Interpreting the CDM cosmology in the emergent perspective of gravity has led T. Padmanabhan to a solution of the CC problem, and, as we are going to show, could lead to a new approach of the dark matter problem P T l l l    or more generally to (where is a null 4-vector) which vanishes for the cosmological constant
  • 9. 25/04/16 The dark universe and the quantum vacuum 9 Scale factorPrimeval inflation Expansion Late inflation1 A B C D E L Linf a w 10-60 LP Past event horizon Future event horizon Big-Bang ignition Today From radiation to matter dominance Color confinement CDM cosmological SM HEP standard model BSM physics F EW symmetry breaking G Hubble radius L=H-1 The CDM cosmology
  • 10. CDM in the emergent perspective of cosmology • A conservation law in CDM: all the modes that exit from the horizon between A and B go through the horizon between B and F and the re-exit the horizon between F and G • This conservation law applies to degrees of freedom, that is to entropy and not to energy • This means that the emergent perspective of gravity applies to CDM 25/04/16 The dark universe and the quantum vacuum 10
  • 11. The three stages of the CDM cosmology • The primordial inflation stage (AB) • A BSM (beyond the standard model) phase (Quantum gravity? GUT?, SUSY? Superstrings?, Baryo- and lepto-genesis? Axions and axion-like particles? ) that replaces the “big bang” • Relaxation of the quantum vacuum after a quantum fluctuation of matter and gravitational fields that occurred in the remote past: all the particles of the SM (supposed to be mass less before the BEH mechanism) and possible BSM particles are virtual • the scale factor grows exponentially while the Hubble radius of order of a GUT scale remains constant (de Sitter space-time geometry) • Inflation stops at B when the lightest non massless particles of the SM, possibly the neutrinos (with masses of about 1/100 eV, of order of the CC scale) decohere. Point B is called in the literature the reheating point. (Bjorken calls it the ignition of the big bang). 25/04/16 The dark universe and the quantum vacuum 11
  • 12. • The conventional FLRW phase (BF) • Radiation dominated phase (BE), with L proportional to a2 that goes through • the breaking of the electroweak symmetry at C by means of the BEH mechanism when all SM particles except photons and gluons became massive • The confinement of color at D when colorless hadrons (baryons and mesons) were formed. • Pressure-less matter dominated phase (EF), with L proportional to a1.5, a phase in which occurred the events of the conventional big bang model. • The late inflation phase (FG) • The acceleration of the expansion observed today is interpreted as due to a non vanishing CC • Asymptotically in the future, CC implies the existence of an event horizon at G beyond which the whole matter will be unobservable 25/04/16 The dark universe and the quantum vacuum 12
  • 13. The de Sitter geometry of the quantum vacuum • Before A (the past event horizon) and after G (the future event horizon), space- time of the observable universe is empty of matter:  (matter)=k=0. Inflation is driven by a cosmological constant, an effective CC for the primordial inflation and the observed CC for the late inflation; the geometry is the one of a de Sitter’s universe • A space-time empty of matter is not the nothingness: it is the quantum vacuum; i.e. a complex medium in which the quantum fields of the standard model, and possibly a quantized gravitational field are subject to quantum fluctuations. • Such a complex medium can be considered as a perfect fluid with an equation of state   P = 0 • To describe phenomenologically such a medium, we have to include besides the quantum fields of the standard model a (quantum) field to account for gravitation • In homogeneous and isotropic cosmologies, which are conformally flat, the relevant gravitational field is not the metric itself but a scalar field related to the determinant of the metric, the dilaton field f 25/04/16 The dark universe and the quantum vacuum 13
  • 14. 25/04/16 The dark universe and the quantum vacuum 14 CDM in the emergent perspective of gravity With the dilaton field f we write the Friedman equation that translates the balancing of the heat fluxes of matter and gravity through the horizon In the conventional model Dark matter associated with matter, not with vacuum Dark energy (CC) only component associated with vacuum         2 0 3 8 B DM DE c B DM DE c The flatness sum rule Matter Matter ! N P H P G     f  f                             0 ( ) 0 Matter Matter Matter T T l l P P    f  f f       
  • 15. 25/04/16 The dark universe and the quantum vacuum 15 Our model Dark matter and dark energy that have no non-gravitational interactions are components of the quantum vacuum and not of the non-vacuum matter The critical density is identified with the contribution of an effective « running » CC         2 0 3 8 8N N P H P G G    f   f                      B DE DM eff c B DM DE c The flatness Matter Mat sum ru ter le !            0 ( ) 0 Matter Matter Matter T T l l P P    f  f f       
  • 16. Dark energy and sterile neutrinos • The masses of the neutrinos and the BEH mechanism • The SM is compatible with mass less neutrinos: right handed neutrinos would be isospin singlet, and hypercharge neutral and thus sterile with respect to the SM. If no right handed neutrinos the Yukawa couplings of the BEH does not lead to massive neutrinos. • If neutrinos are not mass less, one needs some BSM physics. • Simplest assumption: there exist right handed neutrinos, sterile with respect to the SM • The seesaw mechanism leading to very small masses for the neutrinos (Ramond Neutrinos: precursors of new physics, C. R. Physique 6 (2005) 719-728) 25/04/16 The dark universe and the quantum vacuum 16
  • 17. • Yukawa couplings to the BEH boson gives Dirac masses to neutrinos • Right handed neutrinos can get Majorana masses • Seesaw mechanism between a large Majorana mass (of the order of lepton number breaking, i.e. GUT or primordial inflation scale) and the Dirac mass, of the order of EW symmetry breaking, leads to • Neutrino masses much smaller than charged particle masses • A small sterile component of each physical neutrino, possible candidates for the dark energy particles • Through the so-called “sphaleron” mechanism, breaking of lepton number can lead to breaking of baryon number at the GUT scale, and thus to the breaking of the matter-antimatter symmetry. (W. Buchrnüller, Neutrinos in the early universe C. R. Physique 6 (2005) 798-809) 25/04/16 The dark universe and the quantum vacuum 17
  • 18. The BEH boson as the electroweak dark matter The well known interpretation of the BEH mechanism that generates masses to all the particles coupled to the BEH field with a coupling proportional to the mass or the squared mass, shows that the BEH boson acts as a (massive) dilaton, i.e. as anEW ether or EW dark matter 25/04/16 The dark universe and the quantum vacuum 18
  • 19. Dark matter and the QCD vacuum • As an unbroken Yang Mills theory, QCD with no quarks or with mass less quarks, is scale invariant • But, because of infrared divergences, this symmetry is spontaneously broken through the trace anomaly and dynamically realized • In a cosmological context, the Nambu-Golstone boson of this spontaneous symmetry breaking is our field f • At the color confinement scale (about 1 GeV), since dark energy is negligible, dark matter density is the density of the QCD vacuum. • The known parton distribution functions of the nucleon at Q2 about 1 GeV2 show that the energy-momentum carried by the vacuum (gluons plus sea quark pairs) is about five times the one carried by the valence quarks: a factor 5 that is quite comparable with the observed ratio of dark to baryonic matter 25/04/16 The dark universe and the quantum vacuum 19
  • 20. A QUANTUM LIQUID MODEL FOR THE QCD VACUUM H.B. NIELSEN and P. OLESEN Nuclear Physics B160 (1979) 380-396 • “We show that domains are formed in a homogeneous SU(2) color magnetic field. Due to quantum fluctuations the domains have fluid properties. It is then argued that, quantum mechanically superpositions of such domains must be considered. The resulting state is gauge and rotational invariant, in spite of the fact that the original color magnetic field breaks these invariances. We point out that in our model for the QCD vacuum, color magnetic monopoles are not confined” • The magnetic tubes therefore form a three-dimensional pattern which resembles spaghetti. 25/04/16 The dark universe and the quantum vacuum 20
  • 21. 25/04/16 The dark universe and the quantum vacuum 21
  • 22. 25/04/16 The dark universe and the quantum vacuum 22
  • 23. 25/04/16 The dark universe and the quantum vacuum 23
  • 24. 25/04/16 The dark universe and the quantum vacuum 24
  • 25. 25/04/16 The dark universe and the quantum vacuum 25
  • 26. Le vide quantique, le lieu de la reconciliation de la relativité et de la quantique 25/04/16 The dark universe and the quantum vacuum 26
  • 27. 25/04/16 The dark universe and the quantum vacuum 27 • « D'où l'on peut voir qu'il y autant de différence entre le néant et l'espace vide, que de l'espace vide au corps matériel ; et qu'ainsi l'espace vide tient le milieu entre le matière et le néant. C'est pourquoi la maxime d'Aristote dont vous parlez, "que les non-êtres ne sont point différents", s'entend du véritable néant, et non pas de l'espace vide. » Réponse de Blaise Pascal au très révérend père Noël, recteur de la Société de Jésus, à Paris, 29 octobre 1647 Pascal, Œuvres complètes, La Pléiade, p 384, ed. 1998
  • 28. 25/04/16 The dark universe and the quantum vacuum 28 Ces constatations ont amené la Physique quantique contemporaine à devenir de plus en plus consciente du fait que ce que nous nommons le vide n'est pas du tout un milieu dénué de propriétés physiques, mais bien plutôt une sorte d'immense réservoir d'où peuvent émerger au niveau microphysique des unités ou des paires corpusculaires et où aussi ces unités et ces paires disparaissant du niveau microphysique peuvent s'engloutir. Si cette conception est exacte (et il semble bien aujourd'hui qu'elle le soit), il y aurait trois niveaux de la réalité physique : - le niveau microphysique ou quantique qui est celui des molécules, des atomes, des noyaux ou plus généralement des particules élémentaires, qui est le domaine propre de la Physique quantique ; - le niveau macrophysique des phénomènes macroscopiques directement observables à notre échelle qui est le domaine propre de la Physique dite "classique"; - le niveau le plus profond, hypomicrophysique ou subquantique pourrait-on dire, constitué par ce "vide" réservoir immense d'énergie sous-jacente dont nous ignorons encore presque tout. (,,,) L'expression "substratum universel" (ou une autre de ce genre) serait meilleure. J'emploierai cependant habituellement le mot vide couramment usité, mais vous devez imaginer qu'il doit être mis entre guillemets ("le vide''). Louis de Broglie, cours à la Sorbonne 1957-1958
  • 29. 25/04/16 The dark universe and the quantum vacuum 29 Nous ne savons pas si, quand un boson apparaît au niveau microphysique sortant du "vide", il existait déjà dans ce substratum à l'état préformé, ou s'il est "créé" au moment de son apparition. Nous ne savons pas davantage si, quand un boson disparaît du niveau microphysique pour s'engloutir dans le "vide", il subsiste dans ce substratum dans un état indécelable ou s'il est "détruit" au moment de sa disparition. On est évidemment amené à penser que toute particule, même quand elle nous paraît isolée, est en contact avec un milieu subquantique caché qui constitue une sorte d'invisible thermostat ..... La particule échangerait ainsi continuellement de l'énergie et de la quantité de mouvement avec ce milieu subquantique. Dès qu'on a admis l'existence d'un "milieu subquantique" caché, on est amené à se demander quelle est la nature de ce milieu. Il a certainement une nature très complexe. En effet, il doit d'abord ne pas pouvoir servir de milieu de référence universel, ce qui serait en opposition avec la théorie de la Relativité. De plus nous verrons qu'il se comporte non pas comme un thermostat unique, mais plutôt comme un ensemble de thermostats dont les températures seraient reliées aux énergies propres des diverses sortes de particules.
  • 30. 25/04/16 The dark universe and the quantum vacuum 30 “There can be no space nor any part of space without gravitational potentials; for these confer upon space its metrical qualities, without which it cannot be imagined at all. The existence of the gravitational field is inseparably bound up with the existence of space. On the other hand a part of space may very well be imagined without an electromagnetic field; thus in contrast with the gravitational field, the electromagnetic field seems to be only secondarily linked to the ether, the formal nature of the electromagnetic field being as yet in no way determined by that of gravitational ether. From the present state of theory it looks as if the electromagnetic field, as opposed to the gravitational field, rests upon an entirely new formal motif, as though nature might just as well have endowed the gravitational ether with fields of quite another type, for example, with fields of a scalar potential, instead of fields of the electromagnetic type.” A. Einstein, Einstein, L’éther et la théorie de la relativité Œuvres choisies, 5, Vol. 5 Science, éthique, philosophie, pp. 81-88, Le Seuil, CNRS, 1991 The Mach’s ether
  • 31. 25/04/16 The dark universe and the quantum vacuum 31 Recapitulating, we may say that according to the general theory of relativity space is endowed with physical qualities; in this sense, therefore, there exists an ether. According to the general theory of relativity space without ether is unthinkable; for in such space there not only would be no propagation of light, but also no possibility of existence for standards of space and time (measuring- rods and clocks), nor therefore any space-time intervals in the physical sense. But this ether may not be thought of as endowed with the quality characteristic of ponderable media, as consisting of parts which may be tracked through time. The idea of motion may not be applied to it. Albert Einstein An address delivered in 1920, at the University of Leiden
  • 32. Of course it would be a great advance if we could succeed in comprehending the gravitational field and the electromagnetic field together as one unified conformation. Then for the first time the epoch of theoretical physics founded by Faraday and Maxwell would reach a satisfactory conclusion. The contrast between ether and matter would fade away, and, through the general theory of relativity, the whole of physics would become a complete system of thought, like geometry, kinematics, and the theory of gravitation. An exceedingly ingenious attempt in this direction has been made by the mathematician H. Weyl; but I do not believe that his theory will hold its ground in relation to reality. Further, in contemplating the immediate future of theoretical physics we ought not unconditionally to reject the possibility that the facts comprised in the quantum theory may set bounds to the field theory beyond which it cannot pass. 25/04/16 The dark universe and the quantum vacuum 32
  • 33. 25/04/16 The dark universe and the quantum vacuum 33 Figure from T. Padmanabhan, The atoms of space, gravity and CC, arXiv:1603.08658
  • 34. 23/04/2016 Où en sommes-nous de la réconciliation de la relativité et de la quantique? 34 Le cube des théories
  • 35. 25/04/16 The dark universe and the quantum vacuum 35 h kB AP G (AP/h) U (h/kB) B(kB/AP) QFT CFT QIT  c The triple quantization or generalized complementarity equivalence holography complementarity Generalized complementarity (h, kB, c, G, )
  • 36. Quasi-classical physics (de l’atome à la galaxie) G,h, k, c, HEP SM CDM Decoherence, entanglement h,kB Holography AP,kB Quantum vacuum {G,c,h,k,} Subhadronic scales Extragalactic and cosmic scales {h, c} QFT {G, c, } General relativity BSM Physics h,AP
  • 37. Was the 1917 Einstein’s universe so wrong? • CDM can be interpreted as a quasi-classical, quasi-Newtonian, quasi “perfect”, quasi-Machian Einstein’s universe, in which dark matter and energy and a “running” cosmological constant, exactly compensate, at all epochs, the effects of gravity • Such an unstable equilibrium would be unacceptable if the universe was static • But in an expanding universe, such an equilibrium is perfectly admissible, because it is dynamical • Rather that “running”, the CC in such an Einstein’s universe should be said “biking” 25/04/16 The dark universe and the quantum vacuum 37
  • 38. 25/04/16 The dark universe and the quantum vacuum 38