SlideShare une entreprise Scribd logo
1  sur  5
Télécharger pour lire hors ligne
International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6



                      Feasibility study of a roof top Solar room heater
                                              Tejinder Kumar Jindal
                                                    Assistant Professor
                                            Aerospace Engineering Department
                                          PEC University of Technology Chandigarh

Abstract:
          The present work describes a low cost solar space heater. The device is the replacement of the concrete cantilevers
used above the windows in houses facing the south direction. An experiment was conducting by making a suitable device for
use for the purpose. It has been observed that the device can be used to heat the space for the south facing room windows
directly and for the other directions by circulating the air through the device kept at the roof top making an angle of about 38
degree with the roof top.

Key words: duct, draught, heat transfer, rooftop, solar collector, solar chimney, ventilation.

1. Introduction
        With the exponential growth of energy demand, efforts are being made all over the world to conserve energy. As non-
renewable sources are consumed, the mankind must turn its attention to longer-term, permanent type of energy sources. Solar
energy one of the abundant source promise of becoming a dependable energy because it is environmentally clean source of
energy and available free of cost. Solar energy has been identified as one of the promising alternative energy source for the
future.
        On average the extraterrestrial irradiance is 1367 W/m2, which is also known as Solar Constant. Total power from the
sun intercepted by the earth is approximately 1.8 X 1011 MW, which is many thousand of times larger than the present
consumption rate on earth. In addition to its size, solar energy can be used in a decentralized manner, reducing the cost of
transmission and distribution of power.
        There are two distinct methods for converting solar energy to work: thermodynamic conversion and direct conversion.
In thermodynamic conversion, solar collectors first convert solar energy to heat. This heat is then partially converted to work
in accordance with second law of thermodynamics. There is a well defined theoretical upper limit to the efficiency of any
process that converts heat to work. Efficiencies of direct conversion processes are not limited by second law of
thermodynamics, but they have their own practical limitations.
        There are some problems associated with the use of solar energy. The main problem is that it is a dilute source of
energy. Even in the hottest regions on earth, the solar radiation flux available rarely exceeds 1 KW/m 2 and total radiation
over a day is best about 7 KW/m2. These are low values from the point of view of technological utilization. Consequently
large collecting areas are required in many applications and these results in excessive costs.
        The major technical obstacle for solar thermal application is the intermittent nature of the source, both on daily and
short time scale. The intermittent nature leads to a storage requirement, generally not present in non solar systems. The extra
cost and complexity of storage is a negative point to solar systems. Solar systems also require a good solar climate for
efficient operation. This is favorable in case of India: land for solar collector is abundant and where energy demand is high,
the solar flux is also high and direct beam component maximum. Finally, solar system must meet the criteria of economic
competitiveness in order to be widely accepted. On the other hand, solar energy has an advantageous position compared with
scarce fossil fuels. Most of the energy demands in India (and elsewhere also) can be met by simple solar systems. There are
very few new components like collectors, controls which are complex. By proper application of solar techniques, an excellent
thermodynamic match between the solar energy resources and many end-uses can be achieved.

2. Solar Chimney
        Like natural draught chimney, solar chimney is a vertical tubular structure of transparent material, steel, reinforced
concrete or reinforced plastic built for the purpose of enclosing a column of hot air heated by the solar collector. So, solar
chimney has one side (facing the sun) made of transparent material like glass to absorb solar energy. The draught produced
by the chimney is due to the density difference between the column of hot air inside the chimney and the cold air outside. The
efficiency of the chimney is directly proportional to the height of the chimney.There are mainly two applications of solar
chimneys[1,2].




Issn 2250-3005(online)                                 October| 2012                                         Page 105
International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6


2.1   Ventilation in buildings
        Ventilation is a widely used technique for removal of indoor contaminants as a measure of pollutant source control.
Natural ventilation is usually used in regions with mild climates and in spaces where some variation in indoor climate is
tolerable. A solar chimney is a good configuration to implement natural ventilation in buildings where solar energy is
available. It is similar to a conventional chimney except that the south wall is replaced by glazing, which enables solar energy
collection. The flow caused is directly influenced by the pressure distribution on the building envelope and the characteristics
of the different openings. The pressure distribution is the driving force for ventilation while the characteristics of each
opening, among other things, determine the flow resistance[3,4].

2.2    Solar Chimney Turbine
        Solar Chimney Turbine utilizes the airflow inside the chimney to run a turbine. The turbine being coupled to a
generator produces electric power. Turbines are always placed at the base of the chimney. Using turbines, mechanical output
in the form of rotational energy can be derived from the air current in the chimney. Turbines in a solar chimney do not work
with staged velocity as a free running wind energy converter, but as a cased pressure-staged wind turbo generator, in which
similar to a hydroelectric power station, static pressure is converted to rotational energy using a cased turbine.

     There are large numbers of applications of solar energy, and even larger is the number of systems and their
components achieving the energy conversion goal. To maximize the efficiency of any complete system, the efficiencies of the
components must be maximized/optimized[5,6].

3. Roof Top Solar System
       The solar flat plate collector and the solar chimney concept have been integrated in the present study. An open flat
plate solar thermal collector has been fitted with a solar chimney to enhance the speed of the outgoing hot air through the
collector the temperature of the air is sufficient to heat the room. Small fan can be installed at the entry to the room for
smooth entry of the hot air.

4.    Experimental setup
        An experimental setup was fabricated for the purpose of study the heating power of an about 1.5 m2 flat plate
collector. The dimensional sizes for collector are 1700 mm X 850 mm X 115mm. The inclination of collector on the stand
iskept at 180, 280, 380 and 480 by suitably lifting the base of the stand. The collector-chimney assembly is supported by a steel
structure and can be tilted at different angles. The absorber plate is 0.6 mm thick GI sheet painted black. The bottom of the
collector is insulated using 5 cm thick glass wool. Thermal conductivity of glass wool is 0.04 W/m K. Two sidewalls are also
insulated by 6cm thick glass wool, with 12mm wooden backing. The top cover, the collector is 5mm thick window glass this
is in four pieces made airtight using adhesive and transparent cello tape. The properties of Glass and parameters of the setup
are as follows.

Thermal Conductivity       0.937 W/m K
Density (at 20º C)         2.44 g/cm³
Thermal Expansion          8.6 x 10 -6/°C
Collector Area             1.445 m2
Chimney Exit Area          0.00866 m2
Hot air flow rate          0.01014 * V
Enthalpy change of air     m Cp T

Where,
T     Temperature difference
V      Velocity of air in m/s is

       The air temperature inside the channel was recorded by eleven k-type thermocouples. Six arranged at a spacing of
25cm along the centre line of the absorber plate along the airflow direction and five arranged in the chimney at spacing of
20cm. The distance from the channel inlet to these temperature measurement sections were 450, 700, 950, 1200, 1450, 1700,
1900, 2100, 2300, 2500 and 2700 mm, respectively. Atmospheric temperature noted made by k-type thermocouple, which is
portable with the display unit, this thermocouple is named thermocouple number 1.




Issn 2250-3005(online)                                 October| 2012                                          Page 106
International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6


        The velocity of air at outlet of the channel is measured by a vane type anemometer. For pressure measurement in the
chimney section static pressure ports were also provided and connected to water tube manometer. As there were not any
significant pressure changes in the system, so these ports were closed in the early experimentation stage.




                                            Figure-1 Photo of the Experimental Setup

5.       Results And Discussions
        Experiments were carried out at different inclination angles of the collector and at different times of the day. Various
angles taken were 180, 280, 380, 480 the collector. Measurements were made from 9:00 to 17:00h, at an interval of one hour.
The measured and calculated values of the parameters are shown in the following figures.
        The most important is to study the effect of collector inclination on the performance of the system. Mass flow rate is
directly related with the power output of a solar chimney power plant, hence has been taken as the optimization criteria.
Second reason to choose mass flow rate as the controlling factor is due to the size and scale of the system. From a small
chimney height and 1.4 m2 collector area it is not possible to run a turbine and hence take turbine output as the criteria. Solar
radiation angle also affects the mass flow rate with inclination. For buoyant flow higher inclination angle causes higher stack
pressure for driving natural ventilation. However, under otherwise identical conditions, the convective heat transfer
coefficient inside the air channel decreases with the increase of inclination angle, which results in the reduction of natural
ventilation airflow rate.
          Figure 5 shows that, initially, the natural ventilation air-flow rate enhances with the increase of inclination angle,
and then it reaches the peak value at about 380 inclination angle. Finally, it begins to fall off, which indicates that the decrease
of convection heat transfer overwhelms the increase of stack pressure after the inclination angle is beyond 38 0, the
phenomena being also governed by solar angles.




                                      Figure-2. Mass Flow Rate v/s Time at 380 inclination



Issn 2250-3005(online)                                  October| 2012                                            Page 107
International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6



                                                                               Temp

                                      80

                Temp (deg. Celsius)
                                      70
                                      60
                                      50
                                      40
                                      30
                                      20
                                      10
                                       0
                                          0

                                                 0

                                                        0
                                                             00

                                                             50

                                                             00

                                                             00

                                                             00

                                                             00

                                                             00

                                                             00
                                       45

                                              70

                                                     95
                                                          12

                                                          14

                                                          17

                                                          19

                                                          21

                                                          23

                                                          25

                                                          27
                                                                     Distance (mm)

                                            Figure-3 Temperature variation at Collector exit with Distance




                                                  Figure 4. Enthalpy Gain vs. Time at 380 inclination




Issn 2250-3005(online)                                            October| 2012                                       Page 108
International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6




                                        18 deg            28 deg           38 deg           48 deg

                                0.018
                                0.016
                                0.014
                                0.012
                     m (Kg/s)


                                 0.01
                                0.008
                                0.006
                                0.004
                                0.002
                                    0
                                          00

                                           0

                                           0

                                           0

                                           0

                                           0

                                           0

                                           0

                                           0
                                         :0

                                         :0

                                         :0

                                         :0

                                         :0

                                         :0

                                         :0

                                         :0
                                       9:

                                      10

                                      11

                                      12

                                      13

                                      14

                                      15

                                      16

                                      17
                                                                    Time (hrs)

                                Figure-5 Variation of Mass Flow Rate with Collector Inclination and time

       The inclined collector Solar Chimney has the potential to increase the overall performance of Solar Chimney Power
Plant. The inclination of collector greatly affects the mass flow through the chimney, which was taken as the optimization
parameter. Hence collector ingle inclination should be opted for and must be optimized in solar induced flow inside a solar
chimney power plant. By Experimentation the optimum collector tilt angle for Chandigarh (May month) has been found to be
in the range 35-400. The average power comes out to be 300W. It can be enhanced to 1.5 KW by putting double glass
collector and increasing area to 2-3 m2. Hence it is clear that a solar chimney roof collector is feasible

References
[1]   Anthony J. Gannon, Theodor W. von Backstr Öm, ”The Solar Chimney Air Standard Cycle” R & D Journal (South
      Africa) 2000.
[2]   A.J. Gannon and T.W. von Backström, “Solar Chimney Turbine Performance” ASME Journal of Solar Energy
      Engineering, February 2003, Vol. 125/101.
[3]   J. Hirunlabh, W. Kongduang, P. Namprakai, J. Khedari “Study of natural ventilation of houses by a metallic solar wall
      under tropical climate” Renewable Energy 18 (1999) 109-119.
[4]   Joseph Khedari, Weerapong Mansirisub, Sompong Chaima, Naris Pratinthong, Jongjit Hirunlabh, “Field
      measurements of performance of roof solar collector” Energy and Buildings 31 (2000),171–178.
[5]   Joseph Khedari, Boonlert Boonsri, Jongjit Hirunlabh, “Ventilation impact of a solar chimney on indoor temperature
      fluctuation and air change in a school building” Energy and Buildings 32 (2000) 89–93.
[6]   M. M. Sanchez, M. Lucas, P. Martinez, A. Sanchez and A. Viedma, “Climatic Solar Roof: An Ecological Alternative
      to Heat Dissipation in Buildings” Solar Energy Vol. 73, No. 6, pp. 419–432, 2002.




Issn 2250-3005(online)                                     October| 2012                                       Page 109

Contenu connexe

Tendances

Geothermal Energy Piles
Geothermal Energy PilesGeothermal Energy Piles
Geothermal Energy Piles
berberae
 
ppt on Earth air tunnel heat exchanger (eathe)
ppt on Earth air tunnel heat exchanger (eathe)ppt on Earth air tunnel heat exchanger (eathe)
ppt on Earth air tunnel heat exchanger (eathe)
Yuvraj Singh
 

Tendances (20)

Vertical axis wind turbiine
Vertical axis wind turbiineVertical axis wind turbiine
Vertical axis wind turbiine
 
Ieee 2009.,Harnessing Sola N Wind Energy.
Ieee 2009.,Harnessing Sola N Wind Energy.Ieee 2009.,Harnessing Sola N Wind Energy.
Ieee 2009.,Harnessing Sola N Wind Energy.
 
PERFORMANCE STUDY OF A PHASE CHANGE MATERIAL ASSISTED SOLAR STILL
PERFORMANCE STUDY OF A PHASE CHANGE MATERIAL ASSISTED SOLAR STILLPERFORMANCE STUDY OF A PHASE CHANGE MATERIAL ASSISTED SOLAR STILL
PERFORMANCE STUDY OF A PHASE CHANGE MATERIAL ASSISTED SOLAR STILL
 
EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF CURTAIN-WALL-INTEGRATED ...
EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF CURTAIN-WALL-INTEGRATED ...EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF CURTAIN-WALL-INTEGRATED ...
EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF CURTAIN-WALL-INTEGRATED ...
 
Geothermal Energy Piles
Geothermal Energy PilesGeothermal Energy Piles
Geothermal Energy Piles
 
SOLAR AIR HEATER
SOLAR AIR HEATER SOLAR AIR HEATER
SOLAR AIR HEATER
 
C1302020913
C1302020913C1302020913
C1302020913
 
3439 2011 exergeticanalysisofsolardryingsystems-nr
3439 2011 exergeticanalysisofsolardryingsystems-nr3439 2011 exergeticanalysisofsolardryingsystems-nr
3439 2011 exergeticanalysisofsolardryingsystems-nr
 
Geo thermal system
 Geo thermal system Geo thermal system
Geo thermal system
 
Earth Air Tube Heat Exchanger
Earth Air Tube Heat ExchangerEarth Air Tube Heat Exchanger
Earth Air Tube Heat Exchanger
 
Geothermal heating & cooling
Geothermal heating & coolingGeothermal heating & cooling
Geothermal heating & cooling
 
latedt trends of earth air tunnel heat exchanger
latedt trends of earth air tunnel heat exchangerlatedt trends of earth air tunnel heat exchanger
latedt trends of earth air tunnel heat exchanger
 
Fq3310001010
Fq3310001010Fq3310001010
Fq3310001010
 
Green Building:Energy Efficient Air-Conditioning
Green Building:Energy Efficient Air-ConditioningGreen Building:Energy Efficient Air-Conditioning
Green Building:Energy Efficient Air-Conditioning
 
Three solar air heater having different absorber areas by er. vikas manushendra
Three solar air heater having different absorber areas by er. vikas manushendraThree solar air heater having different absorber areas by er. vikas manushendra
Three solar air heater having different absorber areas by er. vikas manushendra
 
Final ppt 26 slides
Final ppt 26 slidesFinal ppt 26 slides
Final ppt 26 slides
 
Enhancing Photoelectric Conversion Efficiency of Solar Panel by Water Cooling
Enhancing Photoelectric Conversion Efficiency of Solar Panel by Water CoolingEnhancing Photoelectric Conversion Efficiency of Solar Panel by Water Cooling
Enhancing Photoelectric Conversion Efficiency of Solar Panel by Water Cooling
 
ppt on Earth air tunnel heat exchanger (eathe)
ppt on Earth air tunnel heat exchanger (eathe)ppt on Earth air tunnel heat exchanger (eathe)
ppt on Earth air tunnel heat exchanger (eathe)
 
F012334045
F012334045F012334045
F012334045
 
Earth air tunnels
Earth air tunnelsEarth air tunnels
Earth air tunnels
 

Similaire à International Journal of Computational Engineering Research(IJCER)

ARTICLE 58 IJAET VOLII ISSUE III JULY SEPT 2011
ARTICLE 58 IJAET VOLII ISSUE III JULY SEPT 2011ARTICLE 58 IJAET VOLII ISSUE III JULY SEPT 2011
ARTICLE 58 IJAET VOLII ISSUE III JULY SEPT 2011
Nirav Soni
 
Three solar air heater having different absorber areas by Er. Vikas Manushendra
Three solar air heater having different absorber areas by Er. Vikas ManushendraThree solar air heater having different absorber areas by Er. Vikas Manushendra
Three solar air heater having different absorber areas by Er. Vikas Manushendra
Vikas Manushendra
 
Fabrication, Designing & Performance Analysis of Solar Parabolic Trough
Fabrication, Designing & Performance Analysis of Solar Parabolic TroughFabrication, Designing & Performance Analysis of Solar Parabolic Trough
Fabrication, Designing & Performance Analysis of Solar Parabolic Trough
IJERA Editor
 
Solar energy concentration techniques in flat plate collector
Solar energy concentration techniques in flat plate collectorSolar energy concentration techniques in flat plate collector
Solar energy concentration techniques in flat plate collector
IAEME Publication
 
Enhancement of the output power generated from a hybrid solar thermal system
Enhancement of the output power generated from a hybrid solar thermal systemEnhancement of the output power generated from a hybrid solar thermal system
Enhancement of the output power generated from a hybrid solar thermal system
eSAT Journals
 
Cf32949954
Cf32949954Cf32949954
Cf32949954
IJMER
 

Similaire à International Journal of Computational Engineering Research(IJCER) (20)

ARTICLE 58 IJAET VOLII ISSUE III JULY SEPT 2011
ARTICLE 58 IJAET VOLII ISSUE III JULY SEPT 2011ARTICLE 58 IJAET VOLII ISSUE III JULY SEPT 2011
ARTICLE 58 IJAET VOLII ISSUE III JULY SEPT 2011
 
Thermal Storage Comparison for Variable Basement Kinds of a Solar Chimney Pro...
Thermal Storage Comparison for Variable Basement Kinds of a Solar Chimney Pro...Thermal Storage Comparison for Variable Basement Kinds of a Solar Chimney Pro...
Thermal Storage Comparison for Variable Basement Kinds of a Solar Chimney Pro...
 
Three solar air heater having different absorber areas by Er. Vikas Manushendra
Three solar air heater having different absorber areas by Er. Vikas ManushendraThree solar air heater having different absorber areas by Er. Vikas Manushendra
Three solar air heater having different absorber areas by Er. Vikas Manushendra
 
IRJET- Design and Fabrication of Solar Air Heater to Increase Heat Transfer R...
IRJET- Design and Fabrication of Solar Air Heater to Increase Heat Transfer R...IRJET- Design and Fabrication of Solar Air Heater to Increase Heat Transfer R...
IRJET- Design and Fabrication of Solar Air Heater to Increase Heat Transfer R...
 
Fabrication, Designing & Performance Analysis of Solar Parabolic Trough
Fabrication, Designing & Performance Analysis of Solar Parabolic TroughFabrication, Designing & Performance Analysis of Solar Parabolic Trough
Fabrication, Designing & Performance Analysis of Solar Parabolic Trough
 
J1302036468
J1302036468J1302036468
J1302036468
 
Solar Chimney
Solar ChimneySolar Chimney
Solar Chimney
 
Solar energy concentration techniques in flat plate collector
Solar energy concentration techniques in flat plate collectorSolar energy concentration techniques in flat plate collector
Solar energy concentration techniques in flat plate collector
 
Solar Chimney Power Plant-A Review
Solar Chimney Power Plant-A ReviewSolar Chimney Power Plant-A Review
Solar Chimney Power Plant-A Review
 
IRJET- Heat Transfer Enhancement Analysis of Solar Parabolic Trough Collector...
IRJET- Heat Transfer Enhancement Analysis of Solar Parabolic Trough Collector...IRJET- Heat Transfer Enhancement Analysis of Solar Parabolic Trough Collector...
IRJET- Heat Transfer Enhancement Analysis of Solar Parabolic Trough Collector...
 
IRJET- Numerical Analysis of Twisted Tape Absorber Tube of Solar Parabolic Tr...
IRJET- Numerical Analysis of Twisted Tape Absorber Tube of Solar Parabolic Tr...IRJET- Numerical Analysis of Twisted Tape Absorber Tube of Solar Parabolic Tr...
IRJET- Numerical Analysis of Twisted Tape Absorber Tube of Solar Parabolic Tr...
 
Ijetae 0413 59
Ijetae 0413 59Ijetae 0413 59
Ijetae 0413 59
 
IRJET- Thermal Performance Evaluation of Evacuated Solar Water Heater wit...
IRJET-  	  Thermal Performance Evaluation of Evacuated Solar Water Heater wit...IRJET-  	  Thermal Performance Evaluation of Evacuated Solar Water Heater wit...
IRJET- Thermal Performance Evaluation of Evacuated Solar Water Heater wit...
 
Financial Evaluation of Solar Powered Absorption Cooling System for Computer ...
Financial Evaluation of Solar Powered Absorption Cooling System for Computer ...Financial Evaluation of Solar Powered Absorption Cooling System for Computer ...
Financial Evaluation of Solar Powered Absorption Cooling System for Computer ...
 
Sol Aura: Solar Air Heater
Sol Aura: Solar Air HeaterSol Aura: Solar Air Heater
Sol Aura: Solar Air Heater
 
Green building design
Green building designGreen building design
Green building design
 
EARTH TUBE HEAT EXCHANGER
EARTH TUBE HEAT EXCHANGEREARTH TUBE HEAT EXCHANGER
EARTH TUBE HEAT EXCHANGER
 
Enhancement of the output power generated from a hybrid solar thermal system
Enhancement of the output power generated from a hybrid solar thermal systemEnhancement of the output power generated from a hybrid solar thermal system
Enhancement of the output power generated from a hybrid solar thermal system
 
Cf32949954
Cf32949954Cf32949954
Cf32949954
 
Design and Performance Analysis of Solar Powered Absorption Cooling System fo...
Design and Performance Analysis of Solar Powered Absorption Cooling System fo...Design and Performance Analysis of Solar Powered Absorption Cooling System fo...
Design and Performance Analysis of Solar Powered Absorption Cooling System fo...
 

Dernier

Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
vu2urc
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
Earley Information Science
 

Dernier (20)

Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Evaluating the top large language models.pdf
Evaluating the top large language models.pdfEvaluating the top large language models.pdf
Evaluating the top large language models.pdf
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 

International Journal of Computational Engineering Research(IJCER)

  • 1. International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6 Feasibility study of a roof top Solar room heater Tejinder Kumar Jindal Assistant Professor Aerospace Engineering Department PEC University of Technology Chandigarh Abstract: The present work describes a low cost solar space heater. The device is the replacement of the concrete cantilevers used above the windows in houses facing the south direction. An experiment was conducting by making a suitable device for use for the purpose. It has been observed that the device can be used to heat the space for the south facing room windows directly and for the other directions by circulating the air through the device kept at the roof top making an angle of about 38 degree with the roof top. Key words: duct, draught, heat transfer, rooftop, solar collector, solar chimney, ventilation. 1. Introduction With the exponential growth of energy demand, efforts are being made all over the world to conserve energy. As non- renewable sources are consumed, the mankind must turn its attention to longer-term, permanent type of energy sources. Solar energy one of the abundant source promise of becoming a dependable energy because it is environmentally clean source of energy and available free of cost. Solar energy has been identified as one of the promising alternative energy source for the future. On average the extraterrestrial irradiance is 1367 W/m2, which is also known as Solar Constant. Total power from the sun intercepted by the earth is approximately 1.8 X 1011 MW, which is many thousand of times larger than the present consumption rate on earth. In addition to its size, solar energy can be used in a decentralized manner, reducing the cost of transmission and distribution of power. There are two distinct methods for converting solar energy to work: thermodynamic conversion and direct conversion. In thermodynamic conversion, solar collectors first convert solar energy to heat. This heat is then partially converted to work in accordance with second law of thermodynamics. There is a well defined theoretical upper limit to the efficiency of any process that converts heat to work. Efficiencies of direct conversion processes are not limited by second law of thermodynamics, but they have their own practical limitations. There are some problems associated with the use of solar energy. The main problem is that it is a dilute source of energy. Even in the hottest regions on earth, the solar radiation flux available rarely exceeds 1 KW/m 2 and total radiation over a day is best about 7 KW/m2. These are low values from the point of view of technological utilization. Consequently large collecting areas are required in many applications and these results in excessive costs. The major technical obstacle for solar thermal application is the intermittent nature of the source, both on daily and short time scale. The intermittent nature leads to a storage requirement, generally not present in non solar systems. The extra cost and complexity of storage is a negative point to solar systems. Solar systems also require a good solar climate for efficient operation. This is favorable in case of India: land for solar collector is abundant and where energy demand is high, the solar flux is also high and direct beam component maximum. Finally, solar system must meet the criteria of economic competitiveness in order to be widely accepted. On the other hand, solar energy has an advantageous position compared with scarce fossil fuels. Most of the energy demands in India (and elsewhere also) can be met by simple solar systems. There are very few new components like collectors, controls which are complex. By proper application of solar techniques, an excellent thermodynamic match between the solar energy resources and many end-uses can be achieved. 2. Solar Chimney Like natural draught chimney, solar chimney is a vertical tubular structure of transparent material, steel, reinforced concrete or reinforced plastic built for the purpose of enclosing a column of hot air heated by the solar collector. So, solar chimney has one side (facing the sun) made of transparent material like glass to absorb solar energy. The draught produced by the chimney is due to the density difference between the column of hot air inside the chimney and the cold air outside. The efficiency of the chimney is directly proportional to the height of the chimney.There are mainly two applications of solar chimneys[1,2]. Issn 2250-3005(online) October| 2012 Page 105
  • 2. International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6 2.1 Ventilation in buildings Ventilation is a widely used technique for removal of indoor contaminants as a measure of pollutant source control. Natural ventilation is usually used in regions with mild climates and in spaces where some variation in indoor climate is tolerable. A solar chimney is a good configuration to implement natural ventilation in buildings where solar energy is available. It is similar to a conventional chimney except that the south wall is replaced by glazing, which enables solar energy collection. The flow caused is directly influenced by the pressure distribution on the building envelope and the characteristics of the different openings. The pressure distribution is the driving force for ventilation while the characteristics of each opening, among other things, determine the flow resistance[3,4]. 2.2 Solar Chimney Turbine Solar Chimney Turbine utilizes the airflow inside the chimney to run a turbine. The turbine being coupled to a generator produces electric power. Turbines are always placed at the base of the chimney. Using turbines, mechanical output in the form of rotational energy can be derived from the air current in the chimney. Turbines in a solar chimney do not work with staged velocity as a free running wind energy converter, but as a cased pressure-staged wind turbo generator, in which similar to a hydroelectric power station, static pressure is converted to rotational energy using a cased turbine. There are large numbers of applications of solar energy, and even larger is the number of systems and their components achieving the energy conversion goal. To maximize the efficiency of any complete system, the efficiencies of the components must be maximized/optimized[5,6]. 3. Roof Top Solar System The solar flat plate collector and the solar chimney concept have been integrated in the present study. An open flat plate solar thermal collector has been fitted with a solar chimney to enhance the speed of the outgoing hot air through the collector the temperature of the air is sufficient to heat the room. Small fan can be installed at the entry to the room for smooth entry of the hot air. 4. Experimental setup An experimental setup was fabricated for the purpose of study the heating power of an about 1.5 m2 flat plate collector. The dimensional sizes for collector are 1700 mm X 850 mm X 115mm. The inclination of collector on the stand iskept at 180, 280, 380 and 480 by suitably lifting the base of the stand. The collector-chimney assembly is supported by a steel structure and can be tilted at different angles. The absorber plate is 0.6 mm thick GI sheet painted black. The bottom of the collector is insulated using 5 cm thick glass wool. Thermal conductivity of glass wool is 0.04 W/m K. Two sidewalls are also insulated by 6cm thick glass wool, with 12mm wooden backing. The top cover, the collector is 5mm thick window glass this is in four pieces made airtight using adhesive and transparent cello tape. The properties of Glass and parameters of the setup are as follows. Thermal Conductivity 0.937 W/m K Density (at 20º C) 2.44 g/cm³ Thermal Expansion 8.6 x 10 -6/°C Collector Area 1.445 m2 Chimney Exit Area 0.00866 m2 Hot air flow rate 0.01014 * V Enthalpy change of air m Cp T Where, T Temperature difference V Velocity of air in m/s is The air temperature inside the channel was recorded by eleven k-type thermocouples. Six arranged at a spacing of 25cm along the centre line of the absorber plate along the airflow direction and five arranged in the chimney at spacing of 20cm. The distance from the channel inlet to these temperature measurement sections were 450, 700, 950, 1200, 1450, 1700, 1900, 2100, 2300, 2500 and 2700 mm, respectively. Atmospheric temperature noted made by k-type thermocouple, which is portable with the display unit, this thermocouple is named thermocouple number 1. Issn 2250-3005(online) October| 2012 Page 106
  • 3. International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6 The velocity of air at outlet of the channel is measured by a vane type anemometer. For pressure measurement in the chimney section static pressure ports were also provided and connected to water tube manometer. As there were not any significant pressure changes in the system, so these ports were closed in the early experimentation stage. Figure-1 Photo of the Experimental Setup 5. Results And Discussions Experiments were carried out at different inclination angles of the collector and at different times of the day. Various angles taken were 180, 280, 380, 480 the collector. Measurements were made from 9:00 to 17:00h, at an interval of one hour. The measured and calculated values of the parameters are shown in the following figures. The most important is to study the effect of collector inclination on the performance of the system. Mass flow rate is directly related with the power output of a solar chimney power plant, hence has been taken as the optimization criteria. Second reason to choose mass flow rate as the controlling factor is due to the size and scale of the system. From a small chimney height and 1.4 m2 collector area it is not possible to run a turbine and hence take turbine output as the criteria. Solar radiation angle also affects the mass flow rate with inclination. For buoyant flow higher inclination angle causes higher stack pressure for driving natural ventilation. However, under otherwise identical conditions, the convective heat transfer coefficient inside the air channel decreases with the increase of inclination angle, which results in the reduction of natural ventilation airflow rate. Figure 5 shows that, initially, the natural ventilation air-flow rate enhances with the increase of inclination angle, and then it reaches the peak value at about 380 inclination angle. Finally, it begins to fall off, which indicates that the decrease of convection heat transfer overwhelms the increase of stack pressure after the inclination angle is beyond 38 0, the phenomena being also governed by solar angles. Figure-2. Mass Flow Rate v/s Time at 380 inclination Issn 2250-3005(online) October| 2012 Page 107
  • 4. International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6 Temp 80 Temp (deg. Celsius) 70 60 50 40 30 20 10 0 0 0 0 00 50 00 00 00 00 00 00 45 70 95 12 14 17 19 21 23 25 27 Distance (mm) Figure-3 Temperature variation at Collector exit with Distance Figure 4. Enthalpy Gain vs. Time at 380 inclination Issn 2250-3005(online) October| 2012 Page 108
  • 5. International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6 18 deg 28 deg 38 deg 48 deg 0.018 0.016 0.014 0.012 m (Kg/s) 0.01 0.008 0.006 0.004 0.002 0 00 0 0 0 0 0 0 0 0 :0 :0 :0 :0 :0 :0 :0 :0 9: 10 11 12 13 14 15 16 17 Time (hrs) Figure-5 Variation of Mass Flow Rate with Collector Inclination and time The inclined collector Solar Chimney has the potential to increase the overall performance of Solar Chimney Power Plant. The inclination of collector greatly affects the mass flow through the chimney, which was taken as the optimization parameter. Hence collector ingle inclination should be opted for and must be optimized in solar induced flow inside a solar chimney power plant. By Experimentation the optimum collector tilt angle for Chandigarh (May month) has been found to be in the range 35-400. The average power comes out to be 300W. It can be enhanced to 1.5 KW by putting double glass collector and increasing area to 2-3 m2. Hence it is clear that a solar chimney roof collector is feasible References [1] Anthony J. Gannon, Theodor W. von Backstr Öm, ”The Solar Chimney Air Standard Cycle” R & D Journal (South Africa) 2000. [2] A.J. Gannon and T.W. von Backström, “Solar Chimney Turbine Performance” ASME Journal of Solar Energy Engineering, February 2003, Vol. 125/101. [3] J. Hirunlabh, W. Kongduang, P. Namprakai, J. Khedari “Study of natural ventilation of houses by a metallic solar wall under tropical climate” Renewable Energy 18 (1999) 109-119. [4] Joseph Khedari, Weerapong Mansirisub, Sompong Chaima, Naris Pratinthong, Jongjit Hirunlabh, “Field measurements of performance of roof solar collector” Energy and Buildings 31 (2000),171–178. [5] Joseph Khedari, Boonlert Boonsri, Jongjit Hirunlabh, “Ventilation impact of a solar chimney on indoor temperature fluctuation and air change in a school building” Energy and Buildings 32 (2000) 89–93. [6] M. M. Sanchez, M. Lucas, P. Martinez, A. Sanchez and A. Viedma, “Climatic Solar Roof: An Ecological Alternative to Heat Dissipation in Buildings” Solar Energy Vol. 73, No. 6, pp. 419–432, 2002. Issn 2250-3005(online) October| 2012 Page 109