SlideShare une entreprise Scribd logo
1  sur  4
Télécharger pour lire hors ligne
International Journal of Trend in Scientific Research and Development (IJTSRD)
Volume 4 Issue 6, September-October 2020 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470
@ IJTSRD | Unique Paper ID – IJTSRD33696 | Volume – 4 | Issue – 6 | September-October 2020 Page 1750
The Analytical Nature of the Green's
Function in the Vicinity of a Simple Pole
Ghulam Hazrat Aimal Rasa
PhD Doctoral, AL-Farabi Kazakh National University, Almaty, Kazakhstan,
Shaheed Prof. Rabbani Education University, Kabul, Afghanistan
ABSTRACT
It is known that the Green function of a boundary value problem is a
meromorphic function of a spectral parameter. Whenthe boundaryconditions
contain integro-differential terms, then the meromorphism of the Green's
function of such a problem can also be proved. In this case, it is possible to
write out the structure of the residue at the singular points of the Green's
function of the boundary value problem with integro-differential
perturbations. An analysis of the structure of the residue allows us to state
that the corresponding functions of the original operator are sufficiently
smooth functions. Surprisingly, the adjoint operator can have non-smooth
eigenfunctions. The degree of non-smoothness of the eigenfunction of the
adjoint operator to an operator with integro-differential boundaryconditions
is clarified. It is indicated that even those conjugationsto multipointboundary
value problems have non-smooth eigenfunctions.
KEYWORDS: boundary conditions, Green's function Operator, strongly regular
boundary conditions, Riesz basis, asymptotics, Resolution, boundary functions,
simple zero, adjoint operator
How to cite this paper: Ghulam Hazrat
Aimal Rasa "The Analytical Nature of the
Green's Function in the Vicinity of a
Simple Pole"
Published in
International Journal
of Trend in Scientific
Research and
Development(ijtsrd),
ISSN: 2456-6470,
Volume-4 | Issue-6,
October 2020, pp.1750-1753, URL:
www.ijtsrd.com/papers/ijtsrd33696.pdf
Copyright © 2020 by author(s) and
International Journal ofTrendinScientific
Research and Development Journal. This
is an Open Access article distributed
under the terms of
the Creative
CommonsAttribution
License (CC BY 4.0)
(http://creativecommons.org/licenses/by/4.0)
1. INTRODUCTION
Let be 0 1x< < and a differential expression is given
1
( ) (k)
0
(y) y ( ) (x)y (x), 0 x 1
n
n
k
k
L x p
−
=
= + < <∑
With smooth coefficients [0,1], k 0,1,...,n 1k
kp C∈ = −
All further arguments are shown for case n, however, the
presented results (with their corresponding modification)
are satisfied for arbitrary n.
Find a set of numbers
1 1 1 2 2 2 1 1 1, , , , , ,..., , , , , ,n n n n n nα β γ α β γ α β γ α β γ− − − suchthat 0 0θ ≠ at
1 0θ ≠ , where
1 1 1 1 1
2 2 2 2 2
1 1 1 1 1 1 1 1 1
2 1 2 1 2 2 2 1 2
0 1
1 1
( )
( )
.
( )n n n n n
n
n
n n n n n n n
s
s
s
s
γ γ γ γ γ
µ µ µ
γ γ γ γ γ
µ µ µ
γ γ γ γ γ
µ µ µ µ
α ω α ω α β ω β ω β ω
α ω α ω α β ω β ω β ω
θ θ
α ω α ω α β ω β ω β ω
− +
− +
− +
+
+
+ =
+
L L
L L
M M M M M O M
L L
From the results of [1], [2] it follows that the set of boundary
conditions
1 1
2 2
( ) ( )
1 1 1
( ) ( )
2 2 2
( ) ( )
( ) (0) (1) 0,
( ) (0) (1) 0
( ) (0) (1) 0n n
n n n
U y y y
U y y y
U y y y
γ γ
γ γ
γ γ
α β
α β
α β
= + =
= + =
= + =
L L
(1)
represent intensely regular boundary conditions.Therefore,
the system of eigen functions of the eigenvalue problem
( ) , 0 1L y y xλ= < < (2)
With boundary conditions (1) form a Riesz basis in the
functional space 2(0,1)L .
According to the monograph [3], the asymptotics of one
series of eigenvalues of the boundary value problem (1), (2)
has the following form
(1)
' 3 0
2
3ln 1
( 2 ) 1 ( )
2
k k i O
k i k
ξ
λ π
π
 
= − − + 
 
Another series of eigenvaluesoftheboundaryvalueproblem
(1), (2) has a similar form.
From the results of [4], it follows that the following
boundary conditions
1
( )
0 0
( ) ( ) ( ) ( ) 0, 1,...,
j
J
s
j j s
s
V y U y y t t dt j n
γ
ρ
=
≡ + = =∑ ∫ (3)
also represent reinforced- edge conditions. Therefore, the
results of [1], [2] remain valid, so that the system of
eigenfunctions and associated functionsoftheoperator with
boundary conditions (3) form a Riesz basis in the function
space 2(0,1)L .
IJTSRD33696
International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470
@ IJTSRD | Unique Paper ID – IJTSRD33696 | Volume – 4 | Issue – 6 | September-October 2020 Page 1751
For further purposes, boundary conditions (3) are
conveniently rewritten in the canonical form proposed in
[5].
The equation ( ) (x), 0 1L y f x= < < with integral-
differential conditions of the form
1
0
(y) (y) (y) (x) 0, 1,2,...,j j jV U L dx j nσ≡ − = =∫ (4)
for an arbitrary set of boundary functions
1 2 2 2 2(0,1), (0,1),..., (0,1).nL L Lσ σ σ∈ ∈ ∈
Has the only solution (x)y for any f of 2L (0,1) moreover,
the estimate
2 2(0,1) (0,1)
(x)L L
y c f≤ . The converse is also
true. If the equation ( ) (x), 0 1L y f x= < < with some
additional linear conditional for any f of 2L (0,1) has the
onlysolutionrequiring
2 2(0,1) (0,1)
(x)L L
y c f≤ then there
is such a set of boundary
functions 1 2 2 2 2(0,1), (0,1),..., (0,1)nL L Lσ σ σ∈ ∈ ∈ ,that
additional conditions will be equivalent to conditions (3).
According to the above theorem, conditions (3) are
equivalent to conditions (4) for
some 1 2 2 2 2(0,1), (0,1),..., (0,1)nL L Lσ σ σ∈ ∈ ∈ Details
of the calculation of boundary functions 1 2, ,..., nσ σ σ by
function { }(t)s jρ can be found in [6].
Objectives of this research
The main purpose of this research paper is to obtain the
analytical nature of Green's functions in the vicinity of a
simple pole.
Methodology:
A descriptive research project to focusandidentifytheeffect
of differential equations on the analytical nature of the
Green's functions in the vicinity of a simple pole. Books,
journals, and websites have been used to advance and
complete this research.
2. Literature review
The article is devoted to the construction of the Green
function of the boundary value problem for a differential
equation with strongly regular boundary conditions in the
vicinity of the pole. Questions such as the constructionofthe
Green function and expansion in eigenfunctions for
differential operators with strongly regular boundary
conditions are poorly understood. To study the analytical
nature of the Green's function, we develop the ideas of
[Kanguzhin, The residue and spectral decompositions of a
differential operator on a star graph, VestnikKazNU, 2018],
[Keldysh]. We note the papers [9], [10] devoted to the
expansion in eigenfunctions of differential self-adjoint and
non-self-adjoint operators.
The inverse problems for differential operators with
regularly boundary conditions for the second order were
studied in [14]. In [17], spectral problems for an odd-order
differential operator are considered. In [13], [15], [18], [19],
[20] some questions of spectral analysisofinverseproblems
for differential operators are presented.
And in this paper, we derive a formula for expanding the
Green's function into eigenfunctions of a third-order
differential operator with strongly regular boundary
conditions.
3. Green functionofanunperturbationboundaryvalue
problem
Consideration of the boundary value eigenvalue problem
1 2
( ) (x), 0 1
( ) 0, ( ) 0,..., ( ) 0n
L y f x
U y U y U y
= < <
= = =
Operator resolution L has the form
1
1
0 0
0
( ) ( , , ) ( )L I f G x t f t dtλ λ−
− = ∫
where
1 2
1 1 1 2 1 1
1 2
0
0
( , ) ( , ) ( , ) ( , )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( , , ) ( 1)
( )
n
n
n n n n nn
y x y x y x g x t
U y U y U y U g
U y U y U y U g
G x t
λ λ λ
λ
λ
= −
∆
L
L
M M O M M
L
-is the Green's function of the operator.
Here at tx > function ),( txg has the following form:
1 2
(1) (1) (1)
1 2
( 2) ( 2) ( 2)
1 2
1 2
( ) ( ) ( )
( ) ( ) ( )
( , ) ,
( ) ( ) ( )
( ) ( ) ( )
n
n
n n n
n
n
y t y t y t
y t y t y t
g x t
y t y t y t
y x y x y x
− − −
=
L
L
M M O M
L
L
If ,tx ≤ then 0),( =txg .
1 1 1 2 1
2 1 2 2 2
0
1 2
( ) ( ) ( )
( ) ( ) ( )
( )
( ) ( ) ( )
n
n
n n n n
U y U y U y
U y U y U y
U y U y U y
λ∆ =
L
L
M M O M
L
3.1. Perturbed boundary value problem and its Green
function
Consider the boundary value eigenvalue problem
1
1 1 1
0
2 3
( ) (x), 0 1
( ) ( ) ( ) ( ) 0
( ) 0, ( ) 0,..., ( ) 0n
L y f x
V y U y L y x dx
U y U y U y
σ
= < <
≡ − =
= = =
∫
Operator Resolution L has the form
10,)(),,()()(
1
0
1
<<=− ∫
−
xdttftxGxfIL λλ
International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470
@ IJTSRD | Unique Paper ID – IJTSRD33696 | Volume – 4 | Issue – 6 | September-October 2020 Page 1752
Where
)(
)(),(
),,(
)(
)()(
),,(),(
),,(
11
011
0
11
0111
01
κ
λκ
λ
κ
κ
λλκ
λ
V
GVx
txG
V
GVV
txGx
txG −==
- Green's function of the operator L .
Here ),(1 λκ x - solution of a homogeneous equation
,10,)( 11 <<= xL λκκ
With heterogeneous boundary conditions
1 1 2 1 1( ) 1, ( ) 0,..., ( ) 0.nU U Uκ κ κ= = =
3.2. The main part of the Laurent series expansion of
the Green function
In this section, the main part of the Laurent expansion of the
Green function of the perturbed operator in a neighborhood
of a simple eigenvalue is calculated. In our case, the zero of
the function )( 11 κV are the poles of the resolvent 1
)( −
− IL λ .
Let be −0λ simple zero function
1 1( ) 0V κ = and 0)(
0
1 ≠
λ
κ
λ
V
d
d . Then the expansion in the
Laurent series in the vicinity of a simple pole takes the
following form
0
0
( , , )
( , , ) ,
resG x t
G x t Right part
λ
λ
λ
λ λ
= − +
−
where
0
0
)(
)(),(
),,(
11
011
λλ
λ
κ
λ
λκ
λ
=
−=
V
d
d
GVx
txGres (5)
By the Keldysh theorem [7] it is known that
0 0
0
0
( ) ( )
( , , ) ( , , ),
u x v t
G x t h x tλ λ
λ λ
= − +
−
(6)
where 0( , , )h x t λ −regular in a neighborhood of a point 0λ .
Here −)(0 xu own operator function L , and )(0 tv -
eigenfunction of the adjoint operator ∗
L to theoperator L ,
that is to say
).(,)(
),(,)(
0000
0000
∗∗
∈=
∈=
LDvvvL
LDuuuL
λ
λ
comparing relations (5) and (6), we obtain the equalities
0
)(
)(
)(),,()(
11
01
0010
λλ
κ
λ
λκ
=
==
V
d
d
GV
tvxxu
Theorem 1. If 0λ - simple eigenvalue of the operator L ,
then the eigenfunction of the operator L has the following
form
1 2
2 1 2 2 2 2
1 2
1 0
0
( , ) ( , ) ( , )
( ) ( ) ( )
( ) ( ) ( )
( , )
( )
n
n n n n
y x y x y x
U y U y U y
U y U y U y
k x
λ λ λ
λ
λ
=
∆
L
L
M M O M
L
That is, it satisfies the following perturbed boundary value
problem
1 0 0 1 0
1
1 1 0 1 1 0 1 0 1
0
2 1 0 1 0
( ( , )) ( , ),
( ( , )) ( ( , )) ( ( , )) ( ) 0,
( ( , )) ( ( , )) 0n
L x x
V x U x L x x dx
U x U x
κ λ λ κ λ
κ λ κ λ κ λ σ
κ λ κ λ
=
= − =
= = =
∫
L
Theorem 2.Let be −0λ simple zero function )( 11 κV . Then
the Green's function of the operator L in the vicinity of a
simple pole has the representation
),,(
)(
)(),(
),,( 00
0
11
0101
0
λ
λλ
κ
λ
λκ
λ
λλ
txG
V
d
d
GVx
txG +
−
=
=
Here ),( 01 λκ x - own operator function L , )( 01 GV - eigenfunction of the adjoint operator ∗
L to the operator L . Moreover,itis
determined by the following formula
1
1 0 1 0 1
1 2
(1) (1) (1)
1 2
0
( 2) ( 2) ( 2)
1 20 0
1 11 1
( ) ( ) ( )
1 1 1, 2 1 1 2 1, 2 1 1
1 10 0
( ) ( ) ( , , ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )( )
(1) ( ) (1) ( ) (1
t
n
n
k k k
n
n n
k k k
k n k k n k k n
k k
V G t g x t x dx
y t y t y t
y t y t y t
y t y t y t
y A x dx y A x dx y
σ λ λ σ
λ
λ
β σ β σ β
− − −
− −
+ + + + + + +
= =
= + +
+
∆
∫
∑ ∑∫ ∫
M M M
1 1
1, 2 1
10
) ( )
n
n k
k
A x dxσ
−
+ +
=
∑∫
International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470
@ IJTSRD | Unique Paper ID – IJTSRD33696 | Volume – 4 | Issue – 6 | September-October 2020 Page 1753
4. Conclusion
In conclusion, we note that the eigenfunction of the original
operator is a smooth function. At the same time, the
eigenfunction of the adjoint operator cannot be smooth and
the degree of its smoothness depends on the smoothness of
the boundary perturbation. These conclusions follow from
the representation of the eigenfunctions of the data in
Theorem 2. In particular, even those conjugations to
multipoint boundary value problems possess non-smooth
eigenfunctions. In this theorem 2, wegiveresultsconcerning
the perturbation of only one boundary condition. Similar
results are obtained when all three boundary conditions are
perturbed.
References
[1] Михайлов В.П. О базисах Рисса // ДАН СССР. –
2018. – № 5 (144). – С.981-984.
[2] Кесельман Г. М. Обезусловной сходимости
разложений по собственным функциям
некоторыхдифференциальныхоператоров//Изв.
Вузов СССР, Математика.–2017.–№2.–С.82-93.
[3] Наймарк М. А. Линейные дифференциальные
операторы. – М., 2019. –528с.
[4] Шкаликов А. А. О базисности собственных
функций обыкновенных дифференциальных
операторов с интегральными краевыми
условиями//Вестн.МГУ.Сер.Мат.Мех.–2019.–№6.–
С.12-21.
[5] Кокебаев Б. К., Отелбаев М., Шыныбеков А. Н. К
вопросам расширений и сужений операторов //
Докл. АН СССР.– 1983. – № 6 (271). – С.1307-1313.
[6] КангужинБ. Е., Даирбаева Г., Мадибайулы Ж.
Идентификация граничных условий
дифференциального оператора//ВестникКазНУ.
Серия математика, механика, информатика. –
2019. – № 3 (103). – С.13-18
[7] ДезинА. А. Дифференциально-
операторныеуравнения. Метод модельных
операторов в теории граничных задач// Тр.
МИАН. М., Наука. МАИК
«Наука/Интерпериодика».–2000.–№229.–С.3-175
[8] Левитан Б. М. Обратная задача для оператора
Штурма-Лиувилля в случае конечно-зонных и
бесконечно –зонныхпотенциалов // Труды Моск.
Матем.об-во.-МГУ.-М.–1982.–С.3-36.
[9] Березанский Ю.М. Разложение по собственным
функциям. – М.-Л, 1950.
[10] БерезанскийЮ. М. Разложение по собственным
функциям самосопряженныхоператоров.–Киев:
НауковаДумка, 1965.–798с.
[11] Марченко В. А. Операторы Штурма-Луивилляиих
приложения. – Киев: НауковаДумка, 1977.–329с.
[12] ато Т. Теория возмущенний линейных
операторов. – М.: Мир, 1972. – 740с.
[13] Лейбензон З.Л. Обратная задача спектрального
анализа обыкновенных
дифференциальныхоператоров высших
порядков /З.Л. Лейбензон //Труды Москов. мат.
об-ва. – 1966. – Т. 15. – С.70-144.
[14] Юрко В.А. Обратная задача для
дифференциальных операторов второгопорядка
с регулярными краевыми условиями / В.А. Юрко
// Мат. заметки.–1975.–Т.18.–№4.–С.569-576.
[15] Садовничий В. А. О связи между спектром
дифференциальногооператора ссимметричными
коэффицентами икраевыми условиями / В. А.
Садовничий, Б. Е. Кангужин // ДАН СССР. – 1982. –
Т. 267. – №2. – С.310-313.
[16] Шкаликов А. А. О базисности собственных
функций обыкновенных дифференциальных
операторов с интегральными краевыми
условиями / А.А. Шкаликов // Вестник МГУ. Сер.
Мат. Мех. – 1982. – № 6. – С.12-21
[17] Станкевич М. Об одной обратной задаче
спектрального анализа для обыкнове иного
дифференциального операторачетногопорядка /
М. Станкевич // Bестник МГУ. Сер. Мат. Мех. –
1981. – № 4. – С.24-28.
[18] Ахтямов А. М. Обобщения теоремы
единственности Борга на случай
неразделенныхграничных условий/А.М.
Ахтямов В.А. Садовничий, Я. Т. Султанаев //
Евразийская математика. – 2012. – Т. 3. – №4. –
С.10-22.

Contenu connexe

Tendances

Tendances (19)

Analytic Solutions of an Iterative Functional Differential Equation with Dela...
Analytic Solutions of an Iterative Functional Differential Equation with Dela...Analytic Solutions of an Iterative Functional Differential Equation with Dela...
Analytic Solutions of an Iterative Functional Differential Equation with Dela...
 
Fixed Point Theorem in Fuzzy Metric Space
Fixed Point Theorem in Fuzzy Metric SpaceFixed Point Theorem in Fuzzy Metric Space
Fixed Point Theorem in Fuzzy Metric Space
 
B0560508
B0560508B0560508
B0560508
 
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
 
Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model
 
Discrete time prey predator model with generalized holling type interaction
Discrete time prey predator model with generalized holling type interactionDiscrete time prey predator model with generalized holling type interaction
Discrete time prey predator model with generalized holling type interaction
 
F023064072
F023064072F023064072
F023064072
 
Hybrid Block Method for the Solution of First Order Initial Value Problems of...
Hybrid Block Method for the Solution of First Order Initial Value Problems of...Hybrid Block Method for the Solution of First Order Initial Value Problems of...
Hybrid Block Method for the Solution of First Order Initial Value Problems of...
 
Significance of Mathematical Analysis in Operational Methods [2014]
Significance of Mathematical Analysis in Operational Methods [2014]Significance of Mathematical Analysis in Operational Methods [2014]
Significance of Mathematical Analysis in Operational Methods [2014]
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
 
College algebra 7th edition by blitzer solution manual
College algebra 7th edition by blitzer solution manualCollege algebra 7th edition by blitzer solution manual
College algebra 7th edition by blitzer solution manual
 
[IJCT-V3I2P19] Authors: Jieyin Mai, Xiaojun Li
[IJCT-V3I2P19] Authors: Jieyin Mai, Xiaojun Li[IJCT-V3I2P19] Authors: Jieyin Mai, Xiaojun Li
[IJCT-V3I2P19] Authors: Jieyin Mai, Xiaojun Li
 
Uniform Order Legendre Approach for Continuous Hybrid Block Methods for the S...
Uniform Order Legendre Approach for Continuous Hybrid Block Methods for the S...Uniform Order Legendre Approach for Continuous Hybrid Block Methods for the S...
Uniform Order Legendre Approach for Continuous Hybrid Block Methods for the S...
 
Paper id 71201906
Paper id 71201906Paper id 71201906
Paper id 71201906
 
optimal solution method of integro-differential equaitions under laplace tran...
optimal solution method of integro-differential equaitions under laplace tran...optimal solution method of integro-differential equaitions under laplace tran...
optimal solution method of integro-differential equaitions under laplace tran...
 
11.a common fixed point theorem for compatible mapping
11.a common fixed point theorem for compatible mapping11.a common fixed point theorem for compatible mapping
11.a common fixed point theorem for compatible mapping
 
Errors in the Discretized Solution of a Differential Equation
Errors in the Discretized Solution of a Differential EquationErrors in the Discretized Solution of a Differential Equation
Errors in the Discretized Solution of a Differential Equation
 
C024015024
C024015024C024015024
C024015024
 
A03401001005
A03401001005A03401001005
A03401001005
 

Similaire à The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole

Formulas for Surface Weighted Numbers on Graph
Formulas for Surface Weighted Numbers on GraphFormulas for Surface Weighted Numbers on Graph
Formulas for Surface Weighted Numbers on Graph
ijtsrd
 

Similaire à The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole (20)

Formulas for Surface Weighted Numbers on Graph
Formulas for Surface Weighted Numbers on GraphFormulas for Surface Weighted Numbers on Graph
Formulas for Surface Weighted Numbers on Graph
 
Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology
 
On approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials withinOn approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials within
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
On prognozisys of manufacturing doublebase
On prognozisys of manufacturing doublebaseOn prognozisys of manufacturing doublebase
On prognozisys of manufacturing doublebase
 
A05330107
A05330107A05330107
A05330107
 
Comparative study of results obtained by analysis of structures using ANSYS, ...
Comparative study of results obtained by analysis of structures using ANSYS, ...Comparative study of results obtained by analysis of structures using ANSYS, ...
Comparative study of results obtained by analysis of structures using ANSYS, ...
 
Strum Liouville Problems in Eigenvalues and Eigenfunctions
Strum Liouville Problems in Eigenvalues and EigenfunctionsStrum Liouville Problems in Eigenvalues and Eigenfunctions
Strum Liouville Problems in Eigenvalues and Eigenfunctions
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
 
ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...
ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...
ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...
 
On prognozisys of manufacturing double base
On prognozisys of manufacturing double baseOn prognozisys of manufacturing double base
On prognozisys of manufacturing double base
 
Hardy-Steklov operator on two exponent Lorentz spaces for non-decreasing func...
Hardy-Steklov operator on two exponent Lorentz spaces for non-decreasing func...Hardy-Steklov operator on two exponent Lorentz spaces for non-decreasing func...
Hardy-Steklov operator on two exponent Lorentz spaces for non-decreasing func...
 
Strong convergence of an algorithm about strongly quasi nonexpansive mappings
Strong convergence of an algorithm about strongly quasi nonexpansive mappingsStrong convergence of an algorithm about strongly quasi nonexpansive mappings
Strong convergence of an algorithm about strongly quasi nonexpansive mappings
 
On the Principle of Optimality for Linear Stochastic Dynamic System
On the Principle of Optimality for Linear Stochastic Dynamic System On the Principle of Optimality for Linear Stochastic Dynamic System
On the Principle of Optimality for Linear Stochastic Dynamic System
 
02_AJMS_297_21.pdf
02_AJMS_297_21.pdf02_AJMS_297_21.pdf
02_AJMS_297_21.pdf
 
On the principle of optimality for linear stochastic dynamic system
On the principle of optimality for linear stochastic dynamic systemOn the principle of optimality for linear stochastic dynamic system
On the principle of optimality for linear stochastic dynamic system
 
Krishna
KrishnaKrishna
Krishna
 
Numerical Solutions of Second Order Boundary Value Problems by Galerkin Resid...
Numerical Solutions of Second Order Boundary Value Problems by Galerkin Resid...Numerical Solutions of Second Order Boundary Value Problems by Galerkin Resid...
Numerical Solutions of Second Order Boundary Value Problems by Galerkin Resid...
 

Plus de ijtsrd

‘Six Sigma Technique’ A Journey Through its Implementation
‘Six Sigma Technique’ A Journey Through its Implementation‘Six Sigma Technique’ A Journey Through its Implementation
‘Six Sigma Technique’ A Journey Through its Implementation
ijtsrd
 
Dynamics of Communal Politics in 21st Century India Challenges and Prospects
Dynamics of Communal Politics in 21st Century India Challenges and ProspectsDynamics of Communal Politics in 21st Century India Challenges and Prospects
Dynamics of Communal Politics in 21st Century India Challenges and Prospects
ijtsrd
 
Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...
Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...
Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...
ijtsrd
 
The Impact of Digital Media on the Decentralization of Power and the Erosion ...
The Impact of Digital Media on the Decentralization of Power and the Erosion ...The Impact of Digital Media on the Decentralization of Power and the Erosion ...
The Impact of Digital Media on the Decentralization of Power and the Erosion ...
ijtsrd
 
Problems and Challenges of Agro Entreprenurship A Study
Problems and Challenges of Agro Entreprenurship A StudyProblems and Challenges of Agro Entreprenurship A Study
Problems and Challenges of Agro Entreprenurship A Study
ijtsrd
 
Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...
Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...
Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...
ijtsrd
 
A Study on the Effective Teaching Learning Process in English Curriculum at t...
A Study on the Effective Teaching Learning Process in English Curriculum at t...A Study on the Effective Teaching Learning Process in English Curriculum at t...
A Study on the Effective Teaching Learning Process in English Curriculum at t...
ijtsrd
 
The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...
The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...
The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...
ijtsrd
 
Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...
Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...
Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...
ijtsrd
 
Sustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. Sadiku
Sustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. SadikuSustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. Sadiku
Sustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. Sadiku
ijtsrd
 
Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...
Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...
Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...
ijtsrd
 
Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...
Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...
Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...
ijtsrd
 
Activating Geospatial Information for Sudans Sustainable Investment Map
Activating Geospatial Information for Sudans Sustainable Investment MapActivating Geospatial Information for Sudans Sustainable Investment Map
Activating Geospatial Information for Sudans Sustainable Investment Map
ijtsrd
 
Educational Unity Embracing Diversity for a Stronger Society
Educational Unity Embracing Diversity for a Stronger SocietyEducational Unity Embracing Diversity for a Stronger Society
Educational Unity Embracing Diversity for a Stronger Society
ijtsrd
 
DeepMask Transforming Face Mask Identification for Better Pandemic Control in...
DeepMask Transforming Face Mask Identification for Better Pandemic Control in...DeepMask Transforming Face Mask Identification for Better Pandemic Control in...
DeepMask Transforming Face Mask Identification for Better Pandemic Control in...
ijtsrd
 

Plus de ijtsrd (20)

‘Six Sigma Technique’ A Journey Through its Implementation
‘Six Sigma Technique’ A Journey Through its Implementation‘Six Sigma Technique’ A Journey Through its Implementation
‘Six Sigma Technique’ A Journey Through its Implementation
 
Edge Computing in Space Enhancing Data Processing and Communication for Space...
Edge Computing in Space Enhancing Data Processing and Communication for Space...Edge Computing in Space Enhancing Data Processing and Communication for Space...
Edge Computing in Space Enhancing Data Processing and Communication for Space...
 
Dynamics of Communal Politics in 21st Century India Challenges and Prospects
Dynamics of Communal Politics in 21st Century India Challenges and ProspectsDynamics of Communal Politics in 21st Century India Challenges and Prospects
Dynamics of Communal Politics in 21st Century India Challenges and Prospects
 
Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...
Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...
Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...
 
The Impact of Digital Media on the Decentralization of Power and the Erosion ...
The Impact of Digital Media on the Decentralization of Power and the Erosion ...The Impact of Digital Media on the Decentralization of Power and the Erosion ...
The Impact of Digital Media on the Decentralization of Power and the Erosion ...
 
Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...
Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...
Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...
 
Problems and Challenges of Agro Entreprenurship A Study
Problems and Challenges of Agro Entreprenurship A StudyProblems and Challenges of Agro Entreprenurship A Study
Problems and Challenges of Agro Entreprenurship A Study
 
Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...
Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...
Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...
 
The Impact of Educational Background and Professional Training on Human Right...
The Impact of Educational Background and Professional Training on Human Right...The Impact of Educational Background and Professional Training on Human Right...
The Impact of Educational Background and Professional Training on Human Right...
 
A Study on the Effective Teaching Learning Process in English Curriculum at t...
A Study on the Effective Teaching Learning Process in English Curriculum at t...A Study on the Effective Teaching Learning Process in English Curriculum at t...
A Study on the Effective Teaching Learning Process in English Curriculum at t...
 
The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...
The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...
The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...
 
Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...
Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...
Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...
 
Sustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. Sadiku
Sustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. SadikuSustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. Sadiku
Sustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. Sadiku
 
Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...
Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...
Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...
 
Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...
Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...
Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...
 
Activating Geospatial Information for Sudans Sustainable Investment Map
Activating Geospatial Information for Sudans Sustainable Investment MapActivating Geospatial Information for Sudans Sustainable Investment Map
Activating Geospatial Information for Sudans Sustainable Investment Map
 
Educational Unity Embracing Diversity for a Stronger Society
Educational Unity Embracing Diversity for a Stronger SocietyEducational Unity Embracing Diversity for a Stronger Society
Educational Unity Embracing Diversity for a Stronger Society
 
Integration of Indian Indigenous Knowledge System in Management Prospects and...
Integration of Indian Indigenous Knowledge System in Management Prospects and...Integration of Indian Indigenous Knowledge System in Management Prospects and...
Integration of Indian Indigenous Knowledge System in Management Prospects and...
 
DeepMask Transforming Face Mask Identification for Better Pandemic Control in...
DeepMask Transforming Face Mask Identification for Better Pandemic Control in...DeepMask Transforming Face Mask Identification for Better Pandemic Control in...
DeepMask Transforming Face Mask Identification for Better Pandemic Control in...
 
Streamlining Data Collection eCRF Design and Machine Learning
Streamlining Data Collection eCRF Design and Machine LearningStreamlining Data Collection eCRF Design and Machine Learning
Streamlining Data Collection eCRF Design and Machine Learning
 

Dernier

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Dernier (20)

Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 

The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole

  • 1. International Journal of Trend in Scientific Research and Development (IJTSRD) Volume 4 Issue 6, September-October 2020 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470 @ IJTSRD | Unique Paper ID – IJTSRD33696 | Volume – 4 | Issue – 6 | September-October 2020 Page 1750 The Analytical Nature of the Green's Function in the Vicinity of a Simple Pole Ghulam Hazrat Aimal Rasa PhD Doctoral, AL-Farabi Kazakh National University, Almaty, Kazakhstan, Shaheed Prof. Rabbani Education University, Kabul, Afghanistan ABSTRACT It is known that the Green function of a boundary value problem is a meromorphic function of a spectral parameter. Whenthe boundaryconditions contain integro-differential terms, then the meromorphism of the Green's function of such a problem can also be proved. In this case, it is possible to write out the structure of the residue at the singular points of the Green's function of the boundary value problem with integro-differential perturbations. An analysis of the structure of the residue allows us to state that the corresponding functions of the original operator are sufficiently smooth functions. Surprisingly, the adjoint operator can have non-smooth eigenfunctions. The degree of non-smoothness of the eigenfunction of the adjoint operator to an operator with integro-differential boundaryconditions is clarified. It is indicated that even those conjugationsto multipointboundary value problems have non-smooth eigenfunctions. KEYWORDS: boundary conditions, Green's function Operator, strongly regular boundary conditions, Riesz basis, asymptotics, Resolution, boundary functions, simple zero, adjoint operator How to cite this paper: Ghulam Hazrat Aimal Rasa "The Analytical Nature of the Green's Function in the Vicinity of a Simple Pole" Published in International Journal of Trend in Scientific Research and Development(ijtsrd), ISSN: 2456-6470, Volume-4 | Issue-6, October 2020, pp.1750-1753, URL: www.ijtsrd.com/papers/ijtsrd33696.pdf Copyright © 2020 by author(s) and International Journal ofTrendinScientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative CommonsAttribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0) 1. INTRODUCTION Let be 0 1x< < and a differential expression is given 1 ( ) (k) 0 (y) y ( ) (x)y (x), 0 x 1 n n k k L x p − = = + < <∑ With smooth coefficients [0,1], k 0,1,...,n 1k kp C∈ = − All further arguments are shown for case n, however, the presented results (with their corresponding modification) are satisfied for arbitrary n. Find a set of numbers 1 1 1 2 2 2 1 1 1, , , , , ,..., , , , , ,n n n n n nα β γ α β γ α β γ α β γ− − − suchthat 0 0θ ≠ at 1 0θ ≠ , where 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 1 2 1 2 2 2 1 2 0 1 1 1 ( ) ( ) . ( )n n n n n n n n n n n n n n s s s s γ γ γ γ γ µ µ µ γ γ γ γ γ µ µ µ γ γ γ γ γ µ µ µ µ α ω α ω α β ω β ω β ω α ω α ω α β ω β ω β ω θ θ α ω α ω α β ω β ω β ω − + − + − + + + + = + L L L L M M M M M O M L L From the results of [1], [2] it follows that the set of boundary conditions 1 1 2 2 ( ) ( ) 1 1 1 ( ) ( ) 2 2 2 ( ) ( ) ( ) (0) (1) 0, ( ) (0) (1) 0 ( ) (0) (1) 0n n n n n U y y y U y y y U y y y γ γ γ γ γ γ α β α β α β = + = = + = = + = L L (1) represent intensely regular boundary conditions.Therefore, the system of eigen functions of the eigenvalue problem ( ) , 0 1L y y xλ= < < (2) With boundary conditions (1) form a Riesz basis in the functional space 2(0,1)L . According to the monograph [3], the asymptotics of one series of eigenvalues of the boundary value problem (1), (2) has the following form (1) ' 3 0 2 3ln 1 ( 2 ) 1 ( ) 2 k k i O k i k ξ λ π π   = − − +    Another series of eigenvaluesoftheboundaryvalueproblem (1), (2) has a similar form. From the results of [4], it follows that the following boundary conditions 1 ( ) 0 0 ( ) ( ) ( ) ( ) 0, 1,..., j J s j j s s V y U y y t t dt j n γ ρ = ≡ + = =∑ ∫ (3) also represent reinforced- edge conditions. Therefore, the results of [1], [2] remain valid, so that the system of eigenfunctions and associated functionsoftheoperator with boundary conditions (3) form a Riesz basis in the function space 2(0,1)L . IJTSRD33696
  • 2. International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470 @ IJTSRD | Unique Paper ID – IJTSRD33696 | Volume – 4 | Issue – 6 | September-October 2020 Page 1751 For further purposes, boundary conditions (3) are conveniently rewritten in the canonical form proposed in [5]. The equation ( ) (x), 0 1L y f x= < < with integral- differential conditions of the form 1 0 (y) (y) (y) (x) 0, 1,2,...,j j jV U L dx j nσ≡ − = =∫ (4) for an arbitrary set of boundary functions 1 2 2 2 2(0,1), (0,1),..., (0,1).nL L Lσ σ σ∈ ∈ ∈ Has the only solution (x)y for any f of 2L (0,1) moreover, the estimate 2 2(0,1) (0,1) (x)L L y c f≤ . The converse is also true. If the equation ( ) (x), 0 1L y f x= < < with some additional linear conditional for any f of 2L (0,1) has the onlysolutionrequiring 2 2(0,1) (0,1) (x)L L y c f≤ then there is such a set of boundary functions 1 2 2 2 2(0,1), (0,1),..., (0,1)nL L Lσ σ σ∈ ∈ ∈ ,that additional conditions will be equivalent to conditions (3). According to the above theorem, conditions (3) are equivalent to conditions (4) for some 1 2 2 2 2(0,1), (0,1),..., (0,1)nL L Lσ σ σ∈ ∈ ∈ Details of the calculation of boundary functions 1 2, ,..., nσ σ σ by function { }(t)s jρ can be found in [6]. Objectives of this research The main purpose of this research paper is to obtain the analytical nature of Green's functions in the vicinity of a simple pole. Methodology: A descriptive research project to focusandidentifytheeffect of differential equations on the analytical nature of the Green's functions in the vicinity of a simple pole. Books, journals, and websites have been used to advance and complete this research. 2. Literature review The article is devoted to the construction of the Green function of the boundary value problem for a differential equation with strongly regular boundary conditions in the vicinity of the pole. Questions such as the constructionofthe Green function and expansion in eigenfunctions for differential operators with strongly regular boundary conditions are poorly understood. To study the analytical nature of the Green's function, we develop the ideas of [Kanguzhin, The residue and spectral decompositions of a differential operator on a star graph, VestnikKazNU, 2018], [Keldysh]. We note the papers [9], [10] devoted to the expansion in eigenfunctions of differential self-adjoint and non-self-adjoint operators. The inverse problems for differential operators with regularly boundary conditions for the second order were studied in [14]. In [17], spectral problems for an odd-order differential operator are considered. In [13], [15], [18], [19], [20] some questions of spectral analysisofinverseproblems for differential operators are presented. And in this paper, we derive a formula for expanding the Green's function into eigenfunctions of a third-order differential operator with strongly regular boundary conditions. 3. Green functionofanunperturbationboundaryvalue problem Consideration of the boundary value eigenvalue problem 1 2 ( ) (x), 0 1 ( ) 0, ( ) 0,..., ( ) 0n L y f x U y U y U y = < < = = = Operator resolution L has the form 1 1 0 0 0 ( ) ( , , ) ( )L I f G x t f t dtλ λ− − = ∫ where 1 2 1 1 1 2 1 1 1 2 0 0 ( , ) ( , ) ( , ) ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( , , ) ( 1) ( ) n n n n n n nn y x y x y x g x t U y U y U y U g U y U y U y U g G x t λ λ λ λ λ = − ∆ L L M M O M M L -is the Green's function of the operator. Here at tx > function ),( txg has the following form: 1 2 (1) (1) (1) 1 2 ( 2) ( 2) ( 2) 1 2 1 2 ( ) ( ) ( ) ( ) ( ) ( ) ( , ) , ( ) ( ) ( ) ( ) ( ) ( ) n n n n n n n y t y t y t y t y t y t g x t y t y t y t y x y x y x − − − = L L M M O M L L If ,tx ≤ then 0),( =txg . 1 1 1 2 1 2 1 2 2 2 0 1 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) n n n n n n U y U y U y U y U y U y U y U y U y λ∆ = L L M M O M L 3.1. Perturbed boundary value problem and its Green function Consider the boundary value eigenvalue problem 1 1 1 1 0 2 3 ( ) (x), 0 1 ( ) ( ) ( ) ( ) 0 ( ) 0, ( ) 0,..., ( ) 0n L y f x V y U y L y x dx U y U y U y σ = < < ≡ − = = = = ∫ Operator Resolution L has the form 10,)(),,()()( 1 0 1 <<=− ∫ − xdttftxGxfIL λλ
  • 3. International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470 @ IJTSRD | Unique Paper ID – IJTSRD33696 | Volume – 4 | Issue – 6 | September-October 2020 Page 1752 Where )( )(),( ),,( )( )()( ),,(),( ),,( 11 011 0 11 0111 01 κ λκ λ κ κ λλκ λ V GVx txG V GVV txGx txG −== - Green's function of the operator L . Here ),(1 λκ x - solution of a homogeneous equation ,10,)( 11 <<= xL λκκ With heterogeneous boundary conditions 1 1 2 1 1( ) 1, ( ) 0,..., ( ) 0.nU U Uκ κ κ= = = 3.2. The main part of the Laurent series expansion of the Green function In this section, the main part of the Laurent expansion of the Green function of the perturbed operator in a neighborhood of a simple eigenvalue is calculated. In our case, the zero of the function )( 11 κV are the poles of the resolvent 1 )( − − IL λ . Let be −0λ simple zero function 1 1( ) 0V κ = and 0)( 0 1 ≠ λ κ λ V d d . Then the expansion in the Laurent series in the vicinity of a simple pole takes the following form 0 0 ( , , ) ( , , ) , resG x t G x t Right part λ λ λ λ λ = − + − where 0 0 )( )(),( ),,( 11 011 λλ λ κ λ λκ λ = −= V d d GVx txGres (5) By the Keldysh theorem [7] it is known that 0 0 0 0 ( ) ( ) ( , , ) ( , , ), u x v t G x t h x tλ λ λ λ = − + − (6) where 0( , , )h x t λ −regular in a neighborhood of a point 0λ . Here −)(0 xu own operator function L , and )(0 tv - eigenfunction of the adjoint operator ∗ L to theoperator L , that is to say ).(,)( ),(,)( 0000 0000 ∗∗ ∈= ∈= LDvvvL LDuuuL λ λ comparing relations (5) and (6), we obtain the equalities 0 )( )( )(),,()( 11 01 0010 λλ κ λ λκ = == V d d GV tvxxu Theorem 1. If 0λ - simple eigenvalue of the operator L , then the eigenfunction of the operator L has the following form 1 2 2 1 2 2 2 2 1 2 1 0 0 ( , ) ( , ) ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( , ) ( ) n n n n n y x y x y x U y U y U y U y U y U y k x λ λ λ λ λ = ∆ L L M M O M L That is, it satisfies the following perturbed boundary value problem 1 0 0 1 0 1 1 1 0 1 1 0 1 0 1 0 2 1 0 1 0 ( ( , )) ( , ), ( ( , )) ( ( , )) ( ( , )) ( ) 0, ( ( , )) ( ( , )) 0n L x x V x U x L x x dx U x U x κ λ λ κ λ κ λ κ λ κ λ σ κ λ κ λ = = − = = = = ∫ L Theorem 2.Let be −0λ simple zero function )( 11 κV . Then the Green's function of the operator L in the vicinity of a simple pole has the representation ),,( )( )(),( ),,( 00 0 11 0101 0 λ λλ κ λ λκ λ λλ txG V d d GVx txG + − = = Here ),( 01 λκ x - own operator function L , )( 01 GV - eigenfunction of the adjoint operator ∗ L to the operator L . Moreover,itis determined by the following formula 1 1 0 1 0 1 1 2 (1) (1) (1) 1 2 0 ( 2) ( 2) ( 2) 1 20 0 1 11 1 ( ) ( ) ( ) 1 1 1, 2 1 1 2 1, 2 1 1 1 10 0 ( ) ( ) ( , , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) (1) ( ) (1) ( ) (1 t n n k k k n n n k k k k n k k n k k n k k V G t g x t x dx y t y t y t y t y t y t y t y t y t y A x dx y A x dx y σ λ λ σ λ λ β σ β σ β − − − − − + + + + + + + = = = + + + ∆ ∫ ∑ ∑∫ ∫ M M M 1 1 1, 2 1 10 ) ( ) n n k k A x dxσ − + + = ∑∫
  • 4. International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470 @ IJTSRD | Unique Paper ID – IJTSRD33696 | Volume – 4 | Issue – 6 | September-October 2020 Page 1753 4. Conclusion In conclusion, we note that the eigenfunction of the original operator is a smooth function. At the same time, the eigenfunction of the adjoint operator cannot be smooth and the degree of its smoothness depends on the smoothness of the boundary perturbation. These conclusions follow from the representation of the eigenfunctions of the data in Theorem 2. In particular, even those conjugations to multipoint boundary value problems possess non-smooth eigenfunctions. In this theorem 2, wegiveresultsconcerning the perturbation of only one boundary condition. Similar results are obtained when all three boundary conditions are perturbed. References [1] Михайлов В.П. О базисах Рисса // ДАН СССР. – 2018. – № 5 (144). – С.981-984. [2] Кесельман Г. М. Обезусловной сходимости разложений по собственным функциям некоторыхдифференциальныхоператоров//Изв. Вузов СССР, Математика.–2017.–№2.–С.82-93. [3] Наймарк М. А. Линейные дифференциальные операторы. – М., 2019. –528с. [4] Шкаликов А. А. О базисности собственных функций обыкновенных дифференциальных операторов с интегральными краевыми условиями//Вестн.МГУ.Сер.Мат.Мех.–2019.–№6.– С.12-21. [5] Кокебаев Б. К., Отелбаев М., Шыныбеков А. Н. К вопросам расширений и сужений операторов // Докл. АН СССР.– 1983. – № 6 (271). – С.1307-1313. [6] КангужинБ. Е., Даирбаева Г., Мадибайулы Ж. Идентификация граничных условий дифференциального оператора//ВестникКазНУ. Серия математика, механика, информатика. – 2019. – № 3 (103). – С.13-18 [7] ДезинА. А. Дифференциально- операторныеуравнения. Метод модельных операторов в теории граничных задач// Тр. МИАН. М., Наука. МАИК «Наука/Интерпериодика».–2000.–№229.–С.3-175 [8] Левитан Б. М. Обратная задача для оператора Штурма-Лиувилля в случае конечно-зонных и бесконечно –зонныхпотенциалов // Труды Моск. Матем.об-во.-МГУ.-М.–1982.–С.3-36. [9] Березанский Ю.М. Разложение по собственным функциям. – М.-Л, 1950. [10] БерезанскийЮ. М. Разложение по собственным функциям самосопряженныхоператоров.–Киев: НауковаДумка, 1965.–798с. [11] Марченко В. А. Операторы Штурма-Луивилляиих приложения. – Киев: НауковаДумка, 1977.–329с. [12] ато Т. Теория возмущенний линейных операторов. – М.: Мир, 1972. – 740с. [13] Лейбензон З.Л. Обратная задача спектрального анализа обыкновенных дифференциальныхоператоров высших порядков /З.Л. Лейбензон //Труды Москов. мат. об-ва. – 1966. – Т. 15. – С.70-144. [14] Юрко В.А. Обратная задача для дифференциальных операторов второгопорядка с регулярными краевыми условиями / В.А. Юрко // Мат. заметки.–1975.–Т.18.–№4.–С.569-576. [15] Садовничий В. А. О связи между спектром дифференциальногооператора ссимметричными коэффицентами икраевыми условиями / В. А. Садовничий, Б. Е. Кангужин // ДАН СССР. – 1982. – Т. 267. – №2. – С.310-313. [16] Шкаликов А. А. О базисности собственных функций обыкновенных дифференциальных операторов с интегральными краевыми условиями / А.А. Шкаликов // Вестник МГУ. Сер. Мат. Мех. – 1982. – № 6. – С.12-21 [17] Станкевич М. Об одной обратной задаче спектрального анализа для обыкнове иного дифференциального операторачетногопорядка / М. Станкевич // Bестник МГУ. Сер. Мат. Мех. – 1981. – № 4. – С.24-28. [18] Ахтямов А. М. Обобщения теоремы единственности Борга на случай неразделенныхграничных условий/А.М. Ахтямов В.А. Садовничий, Я. Т. Султанаев // Евразийская математика. – 2012. – Т. 3. – №4. – С.10-22.