SlideShare une entreprise Scribd logo
1  sur  18
Télécharger pour lire hors ligne
International Journal of Mathematics and Statistics Invention (IJMSI)
E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759
www.ijmsi.org ǁ Volume 2 ǁ Issue 3 ǁ March 2014 ǁ PP-14-30
www.ijmsi.org 14 | P a g e
The structure of determining matrices for a class of double –
delay control systems
Ukwu Chukwunenye
Department of Mathematics, University of Jos, P.M.B 2084 Jos, Plateau State, Nigeria.
ABSTRACT: This paper derived and established the structure of determining matrices for a class of double –
delay autonomous linear differential systems through a sequence of lemmas, theorems, corollaries and the
exploitation of key facts about permutations. The proofs were achieved using ingenious combinations of
summation notations, the multinomial distribution, the greatest integer function, change of variables technique
and compositions of signum and max functions.
The paper has extended the results on single–delay models, with more complexity in the structure of the
determining matrices.
KEYWORDS: Delay, Determining, Double, Structure, Systems.
I. INTRODUCTION
The importance of determining matrices stems from the fact that they constitute the optimal
instrumentality for the determination of Euclidean controllability and compactness of cores of Euclidean targets.
See Gabasov and Kirillova (1976) and Ukwu (1992, 1996, 2013a). In sharp contrast to determining matrices, the
use of indices of control systems on the one hand and the application of controllability Grammians on the other,
for the investigation of the Euclidean controllability of systems can at the very best be quite computationally
challenging and at the worst, mathematically intractable. Thus, determining matrices are beautiful brides for the
interrogation of the controllability disposition of delay control systems. Also see Ukwu (2013a).
However up-to-date review of literature on this subject reveals that there is currently no result on the
structure of determining matrices for double-delay systems. This could be attributed to the severe difficulty in
identifying recognizable mathematical patterns needed for inductive proof of any claimed result. Thus, this
paper makes a positive contribution to knowledge by correctly establishing the structure of such determining
matrices in this area of acute research need.
II. MATERIALS AND METHODS
The derivation of necessary and sufficient condition for the Euclidean controllability of system (1) on
the interval 1
[0, ],t using determining matrices depends on
1) obtaining workable expressions for the determining equations of the n n matrices for
1
: 0, 0, 1,j t jh k   
2) showing that = ( h),for j:
3) where
4) showing that 1( )Q t is a linear combination of
0 1 1
( ), ( ), , ( ); 0, , ( 1) .n
Q s Q s Q s s h n h
  
See Ukwu (2013a).
Our objective is to prosecute task (i) in all ramifications. Tasks (ii) and (iii) will be prosecuted in other papers.
2.1 Identification of Work-Based Double-Delay Autonomous Control System
We consider the double-delay autonomous control system:
         
     
0 1 2
2 ; 0 (1)
, 2 , 0 , 0 (2)
x t A x t A x t h A x t h B u t t
x t t t h h
      
   

The structure of determining matrices for a class of…
www.ijmsi.org 15 | P a g e
Where 0 1 2, ,A A A are n n constant matrices with real entries, B is an n m constant matrix with
real entries. The initial function  is in   2 , 0 , n
C h R , the space of continuous functions from [ 2 , 0]h
into the real n-dimension Euclidean space,
n
R with norm defined by
 
 
2 , 0
sup
t h
t 
 
 , (the sup norm). The
control u is in the space   10, , n
L t R , the space of essentially bounded measurable functions taking  0 1, t
into
n
R with norm  

ess u t
t t
sup ( )
[ , ]0 1
.
Any control   10, , n
u L t R will be referred to as an admissible control. For full discussion on
the spaces
1
and (or )p p
pC L L
, {1,2,..., }p  , see Chidume (2003 and 2007) and Royden (1988).
2.2 Preliminaries on the Partial Derivatives
( , )
, 0,1,
k
k
X t
k






Let  1
, 0,t t  . For fixed t, let  , t   satisfy the matrix differential equation:
       0 1 2, , , 2 , (3)X t X t A X h t A X h t A

   

     
for 0 , , 0,1,...t t k h k      where    ;
0;, nI t
tX t




See Chukwu (1992), Hale (1977) and Tadmore (1984) for properties of  ,t  . Of particular
importance is the fact that  ,t   is analytic on the
intervals     1 1 1
1 , , 0,1,..., 1 0t j h t j h j t j h       . Any such   1 1
1 ,t j h t j h     is
called a regular point of  ,t    . See also Analytic function (2010) for a discussion on analytic functions.
Let
 
 ,
k
t denote  1
,
k
k
t


 
 , the
th
k partial derivative of  1,t with respect to , where  is in
  1 1
1 , ; 0,1,...,t j h t j h j r    , for some integer r such that  t r h1 1 0   .
Write
 
   1
1 1, ,
k k
t t

 


   .
Define:
 
   
    
  1 1 1 1 1 1 1
1
, , , , , (4)
for 0,1,...; 0,1,...; 0,
k k k
t jh t t t j h t t j h t
k j t jh
 
       
   
where
 
  1 1
,
k
X t j h t

 and
 
  1 1 1
, ,
k
X t t j h t

 denote respectively the left and right hand
limits of
 
 1,
k
X t at   t j h1 . Hence:
 
 
 ( )
1 1
1
1 1
1
( 1)
( ) (5), lim ,k
k
X
t jh
t j h t jh
X t jh t t



 
    
 
The structure of determining matrices for a class of…
www.ijmsi.org 16 | P a g e
 
 
 1
1
1 1
( )
1 1
( 1)
,lim( ) , (6)
k
k
X
t jh
t jh t j h
tX t jh t



 
    
 
2.3 Definition, Existence and Uniqueness of Determining Matrices for System (1)
Let Q k (s) be then n n matrix function defined by:
       0 1 1 1 2 1 2 (7)k k k kQ s A Q s AQ s h A Q s h      
for 1,2, ; 0,k s  with initial conditions:
 0 0 (8)nQ I
 0
0; 0 (9)Q s s 
These initial conditions guarantee the unique solvability of (7). Cf. [1].
The stage is now set for the establishment of the expressions and the structure of the determining matrices for
system (1), as well as their relationships with
( )
( , )k
X t  through a sequence of lemmas, theorems and
corollaries and the exploitation of key facts about permutations.
2.4 Lemma on permutation products and sums
Let 0 1 2, ,r r r be nonnegative integers and let
   0 1 20 ,1 ,2( )r r r
P denote the set of all permutations of
  
10 2
timestimes times
the permutations of the objects 0,1,and 2 in which0,0,...0 1,1,...1 2,2,...2: appears times, 0,1,2 .i
rr r
i r i  
   0 1 20 ,1 ,2( )
Let
iL
r r r
P denote the subset of    0 1 20 ,1 ,2( )r r r
P with leading i , that is, those with i occupying the first
position.    0 1 20 ,1 ,2( )
Let
iT
r r r
P denote the subset of    0 1 20 ,1 ,2( )r r r
P with trailing i , that is, those with i occupying the
last position. Set 0 1 2.r r r r   Then for any fixed 0 1 2, , ,r r r
 
              
1 1
1 10 , 1 ,1 0 , 1 ,10 1 2 0 1 2
2 2
0 1 2 0 1 2
,... ,...0 0
a ..., ( , , ) ..., ( , , )
  
    r riL
r rr r r r r r
iL
v v r v v r
v v P v v Pi i
A A S r r r A A S r r r
               
     
1 1 1 1
1 1 1 10 max 0, 1 , 1 ,1 0( ), 1 max 0, 1 ,10 1 2 0 1 2
1 1
1 1 0( ), 1 , 2 max 0, 10 1 2
0 0 1 1
,... ,...
22
,...
..., sgn( ) ..., sgn( )
sgn( )...,
 
  
 
 
 

 
 

   
     
   
   
 
 
 
  

r r
r rr r r r r r
r
r r r r
v v v v
v v P v v P
v v
v v P
A A A r A A A r
rA A A
 
              
1 1
1 10 , 1 ,1 0 , 1 ,10 1 2 0 1 2
2 2
0 1 2 0 1 2
,... ,...0 0
b ..., ( , , ) ..., ( , , )
  
    r riT
r rr r r r r r
iT
v v r v v r
v v P v v Pi i
A A S r r r A A S r r r
               
     
1 1 1 1
1 1 1 10 max 0, 1 , 1 ,1 0( ), 1 max 0, 1 ,10 1 2 0 1 2
1 1
1 1 0( ), 1 , 2 max 0, 10 1 2
0 0 1 1
,... ,...
2 2
,...
..., sgn( ) ..., sgn( )
sgn( )...,
 
  
 
 
 

 
 

   
     
   
   
 
 
 
  

r r
r rr r r r r r
r
r r r r
v v v v
v v P v v P
v v
v v P
A A A r A A A r
A rA A
(c) Hence for all nonnegative integers 0 1 2, ,r r r such that 0 1 2 ,r r r r  
The structure of determining matrices for a class of…
www.ijmsi.org 17 | P a g e
              
0 1 2
1 1
1 10 , 1 ,1 0 , 1 ,10 1 2 0 1 2
0 1 2 0 1 2
2
0 1 2
0
2
0 1 2
,... ,...0
( , , )
..., ( , , ) ...,
  
   
 
  

  
 
r riL
r rr r r r r r
r r r r
iL
r
i r r r r
v v r v v
v v P v v Pi
r r r r
S r r r
A A S r r r A A
Similar statements hold with respect to the remaining relations. Note that
         
0
1
10 1 0 , 1 , 20 1 2
1
1 0 ,1 ,20 1 2
0 1 2
2
,...0 0 0
2
0 ,...
...,...,
     
     
     
  

   
   riL
r r r r
r
iL
r r r r
r r r r
r rr
v v
v v Pi r r
v v
i v v P
A AA A
sgn( )ir ensures that the corresponding expression vanishes if 0i ir A  does not appear and so cannot be
factored out. max{0, 1}ir  ensures that the resulting permutations are well-defined.
In order not to clutter the work with ‘ max{0, 1}ir  ’ and ‘ sgn( )ir ’, the standard convention of letting
       
1
1 0 , 1 ,10 1 2
0 1 2 0 1 2
,...
..., 0, for any fixed , , ; : 0,for some {0,1,2}r
r r r r
v v i
v v P
A A r r r r r r r r i

     
  
      
would be adopted, as needed.
Proofs of (a), (b) and (c)
Every permutation involving 0, 1, and 2 must be led by one of those objects. If 0, 1 and 2 appear at least once,
then each of them must lead at least once. Equivalent statements hold with ‘led’ replaced by ‘trailed’ and ‘lead’
replaced by ‘trail’. Hence the sum of the products of the permutations must be the sum of the products of those
permutations led (trailed) by 0 1 2, , and respectively.A A A Consequently,
       
0 0
1
0 1 0 1
0
0 1
1 0 , 1 , 20 1 0 1
0 1 2
0 1 0 1
0 0 0 0
2
0 1 0 1
0 0 0
,...
restricted to those permutations with leading(trailing )
..., ( , , )
( , , )
r
i
r r r r r r
r r r r
r r r rr r
v v r
r r r r
r rr
r
i r r
v v P
A
A A S r r r r r
S r r r r r
 
  
 
   

  

  
 
   
 
 
   
 
   
 
   
 
0 1 0 1 2 0 1 1 0 1 2 1
2 1 0 1 2 2
1 0 1 2 0 0 1 0 1 2 1 1
1 0 1 2 2 2
(max 0, 1 , , )sgn( ) ( ,max 0, 1 , )sgn( )
( , ,max 0, 1 )sgn( )
(max 0, 1 , , ) sgn( ) ( ,max 0, 1 , ) sgn( )
( , ,max 0, 1 ) sgn( )
r r
r
r r
r
A S r r r r A S r r r r
A S r r r r
S r r r A r S r r r A r
S r r r A r
 

 

   
 
   
 
2.5 Preliminary Lemma on Determining Matrices ( ),kQ s sR
(i)
(ii)
(iii)
(iv)
(v) 1( ) sgn(max{0, 3 }), 0.jQ jh A j j  
(vi)
The structure of determining matrices for a class of…
www.ijmsi.org 18 | P a g e
(vii)
(viii) 1 1
, if 0
( , )
0, otherwise
nI j
X t jh t

   

Proof
(i)
Then,
We need to prove that
Assertion:
Proof:
So the assertion is true for k = 1.
Assume that for some integer n. Then
,
by the induction hypothesis, since
Therefore, Hence proving that
(ii) Let k = 1 and let s for any integer r. Then
, since s 
Assume for some integer . Then
by the induction hypothesis. Hence for any integer r
(iii) This has already been proved.
(iv) by the definition of
 
1
1 0 1 1 ,1(1)
.v
v P
A


  So (iv) is true for k = 1.
Assume (iv) is true for for some integer . Then
by the induction hypothesis.
Therefore,
1 1
1 1 0( 1 1),1(1)( , , )
n
n n
v v
v v P
A A 
  
 
 1 1
1 1 0( 1 1),1(1)( , , )
n
n n
v v
v v P
A A 
  
 

So (iv) is true for .
(v) by (i) and (ii) respectively
For
The structure of determining matrices for a class of…
www.ijmsi.org 19 | P a g e
Now
(by the definition of ), proving (v).
(vi)
For k = l, this yields
Therefore . Note that for sufficiently, close to
Assume that for ,3 nk  for some integer n.
Then  
   
   
  011111
1
,,, AttXtXttX n
t
nn 








 



   
  211111
)(
,)2(,) AthtXAthtX nn 
    2100 0011 AAAAnn
   1
0
1
1 
 nn
A .
Therefore
 
    ,1, 011
kkk
AttX 
proving (vi)
(vii)
 
 , 11 

ttX k lim
11 htt 
 
  ,0, 1 tX k
 since
1
t  . Therefore
( )
1 1( , ) 0k
X t t
 , proving
(viii)         ,,2,,, 2111011 AthXAthXAtXtX 




for , where
Let j be a non-negative number such that .
Then we integrate the system (3), apply the above initial matrix function condition and the fundamental theorem
of calculus, (F.T.C.) to get:
(by the F.T.C.)
Similarly,
+
, )
Therefore,
since is bounded and integrable (being of bounded
variation) and the fact that
for any bounded integrable function, f. Therefore
For we have completing the proof of (viii). See
Bounded variation (2012) for detailed discussion on functions of bounded variation.
2.6 Lemma on ( ); {2 2,2 1, }, 1k
Q jh j k k k   
For
The structure of determining matrices for a class of…
www.ijmsi.org 20 | P a g e
Proof
Note that the first summations in (iv), yield
   
k
kk
vv
vv
AA
p


1
22,211 ),,(


)]12([)2()]12([)]12([ 121110 hkQAkhQAhkQAhkQ kkkk  
by lemma 1.4. Clearly for
So the lemma is valid for when
Assume that the lemma is valid for for every integer, k such that
. Then
  hnQn 12  (10)
(by the induction hypothesis), since
Equivalently, on the right-hand side of (1.10) set
in the first term;
Then clearly k < n and j > 2 k + 1
Hence the induction hypothesis applies to the right-hand side of (1.10), yielding 0 in each term and consequently
0 for the sum of the terms.    012,Therefore  hnQn
For any ,
Now and .
Hence Combine this with the case to conclude that
proving that as required in (i) of lemma 2.5.
(ii) Consider this yields by lemma 1.5.
So (ii) is valid for k =1.
Assume the validity of (ii) for for some integer n. Then
  hnQn 121 
and of lemma 2.5, and
.
by the induction hypothesis; therefore,
and Hence , , proving
(iii) For k = 1, by lemma 1.5 .
Now
1 1
1 11(1),2( 1) 1(1)
1
( , , )
, for 1.k
k k
v v v
v v P v P
kA A A A
 
  
 So (iii) is valid for k = 1
Assume the validity of (iii) for 1 < k < n, for some integer n. Then
=
Now ,
Therefore,
The structure of determining matrices for a class of…
www.ijmsi.org 21 | P a g e
with leading in each permutation of the ,1,1,  njA svj
 in the above summation.
Since appears only once in each permutation it can only lead in one and only one permutation, in this case
In all other permutations will occupy positions 2, 3, … up the last position So the above
expression for
is the same as:
proving that
thatnotepart,secondtheproveTo 1
21
1
0
2
rk
k
r
r
AAA 


 is the sum of the permutations of 21 and AA
which A1 appears once and A2 appears k – 1 times in each permutation.
In the first permutation, corresponding to r = 0, A1 occupies the first postion (A1 leads), …, in the last
permutation, corresponding to r = k – 1, A1 occupies the last position (A1 trails).
Thus
st
1
the term under the summation represents the permutation in which occupies the ( 1) position.A r 
1 0
(iv) Consider ([2 2] ), for 1; this yields (0) (by lemma 2.5).k
Q k h k Q A  
Let us look at the right-hand side of (iv) in lemma 1.6.
       
ity.infeasibilsummationby the,0...then,22and,1If
12,211
1
12,211
1
)...,,(
 
  Pv
vv
Pvv
v AAAkjk k
k
     
.1forvalidis(iv)So,.1for,...Now 0
)...,,( 101
1
12,101
1
   
kkAAAA
Pv
vv
Pvv
v k
kk
Assume the validity of (iv) for 1 < k < n for some integer n. Then
( ) = , by (ii)
1
1 1(1), 2( 1)
1
1
2 1 2
( , , ) 0
([2 1] ) , by (iii).n
n n
n
r n r
n v v
v v P r
Q n h A A A A A


 
 
   

1 1
1 1(2 [2 2]), 2(2 2 ) 1 0(1), 2( 1)( , , ) ( , , )
([2 2] ) ,
(by the induction hypothesis)
n n
n n n n n n n
n v v v v
v v P v v P
Q n h A A A A
     
    
 
1 1
1 1(2),2( 2) 1 0(1),2( 1)( , , ) ( , , )
.n n
n n n n
v v v v
v v P v v P
A A A A
  
   
  Consequently,
1
1 1(2), 2( 1)
1 1
1 1(1), 2( 2) 1 0(1), 2( 1)
1 0 2 1
( , , )
2 2
( , , ) ( , , )
(2 )
.
n
n n
n n
n n n n
n
n v v
v v P
v v v v
v v P v v P
Q nh A A A A A
A A A A A A

 


 
 
 

 

 

 
The structure of determining matrices for a class of…
www.ijmsi.org 22 | P a g e
1 1
1 1 0(1), 2( )
1 1
1 1 1(2), 2( 1)
2
1
0 2
( , , )
( , , )
(with a leading )
(with a leading )
n
n n
n
n n
n
v v
v v P
v v
v v P
A
A
A A A A
A A



 


 







21 1
1 1 1(2),2( 1)( , , )
(with a leading )n
n n
v v
v v P
AA A 
 
 

1 1 1 1
1 1 0(1),2( ) 1 1 1(2),2( 1)( , , ) ( , , )
n n
n n n n
v v v v
v v P v v P
A A A A 
   
   
 
Notice that if 1 and 2( 1) 2 2 , then 2 2 and 1.k n j n n k j j k n           So (iv) is proved for
1k n  , and hence (iv) is valid . This completes the proof of the lemma.
Lemma 2.6 can be restated in an equivalent form, devoid of explicit piece-wise representation as follows:
2.7 Lemma on ( ); {2 2,2 1, }, 1k
Q jh j k k k    using a composite function
For all nonnegative integers and ,j k such that 2 2, 1,j k k  
1
1 1(2 ), 2( )( , , )
( )
sgn(max{0,2 1 })k
k k j j k
k
v v
v v P
Q jh
A A k j
 
 
   
  


.
( , , )1 0(1),2( 1)
1
sgn(max{0, 2 1 })
v v Pk k
kv vA A k j
 
 
  
  
 


Proof: If 2 1j k  , both signum functions vanish, proving (i) of lemma 2.6.
If 2j k , the second signum vanishes and the first yields 1, proving (ii).
If 2 1j k  , the second signum vanishes and the first yields 1, proving (iii).
If 2 2j k  , both signum functions yields 1, proving (iv).
III. RESULTS AND DISCUSSIONS
3.1 Theorem on ( ); 0 , 0k
Q jh j k k  
1
1 0( ),1( 2 ),2( )
2
0 ( , , )
For 0 , , integers, 0,
( ) k
k r k j j r r
k
j
v v
r v v P
j k j k k
Q jh A A
  
  
  
  
 
  
  

Proof
1
1 0( ),1( )
1
1 0(0 0),1(0 0),2(0)
1 1
1 0(0 1),1(1 0),2(0) 1 0( 1),1(1
0
( , , )
0
( , , )
( , , ) ( , , )
(by lemma 2.5)1 (0) , ( ) ,
0 0 rhs
1 0 rhs
k
k k j j
k
k k
k k
k k k k
k
k k v v
v v P
k
v v
v v P
v v v v
v v P v v P
k Q A Q h A A
j r A A A
j r A A A A

  
   


 
   
     
     





 


 
)

The structure of determining matrices for a class of…
www.ijmsi.org 23 | P a g e
1 2 1 2
1 2 1 20(0 0 0),1(2 0),2(0) 0(1 2 2).1(2 2),2(1)
2 0 1 1 1 2 1
0 2 1 1 2 0
2
1 0 2 2 0
( , ) ( , )
2, 2 (2 ) (2 ) ( ) (0)
(by lemma 2.5 )
2 {0,1} rhs v v v v
v v P v v P
j k Q h A Q h AQ h A Q
A A A A A A
j r A A A A
A A A A A
      
     
  
     
  
 
So, the theorem is true for {0, 1}, 1 and for 2 .j k j k   
Assume that the theorem is valid for all triple pairs , , ( ); , , ( )kk
j k Q jh j k Q jh
 
for which ,for some , : 3.j k j k j k k j     Then
1 0 1 2( ) ( ) ([ 1] ) ([ 2] )k k k kQ jh A Q jh A Q j h A Q j h     
Now, 1 1 and 2 1 .j k j k j k k         So, we may apply the induction hypothesis to the right-
hand side of ( to get:
1
1 0( ),1( 2 ),2( )
1
1 0( ( 1)),1( 1 2 ),2( )
1
1 0( ( 2)),1( 2 2 ),2( )
2
01
0 ( , , )
1
2
1
0 ( , , )
2
0 ( , , )
( ) (11)
(12)
k
k r k j j r r
k
k r k j j r r
k r k j j r r
j
v vk
r v v P
j
v v
r v v P
j
v
r v v P
Q jh A A A
A A A
A A
  
    
    
  
  
   
  
  
   

 

 

 



 
 






2
2
(13)kvA
  
  
   
 
Two cases arise: even and odd
Case 1: even. Then is odd are is even; thus
1 2
1 and
2 2 2 2 2
j j j j j            
                       
The summations in (11) are all feasible, since noting that 1,2, ,
2
j
r
 
 
 
 .
So the right hand side of (11) can be rewritten as:
1
1 1 0( ( 1) ),1( 2 ),2( )
0
2
0 ( , , )
with a leading
, (14)k
k r k j j r r
j
v v
r v v P
A
A A
    
  
  
  
 
 

(12) can be rewritten in the form:
1
1 0( ( 1)),1( 1 2 ),2( )
1
2
1
0 ( , , )
(15)k
k r k j j r r
j
v v
r v v P
A A A
    

 
 

We need to incorporate
2
j
in the range of r. If
2
j
r  , then
The structure of determining matrices for a class of…
www.ijmsi.org 24 | P a g e
Therefore, the summation
1
1
0( 1 )),1( 1),2( )
2 2
( , , )
k
k j j
k
v v
v v P
A A
  


 is infeasible; hence it is set equal to 0. Thus the
case
2
j
r  may be included in the expression (2.5) to yield:
1 1 1
1
1 10( ( 1) )),1( 1 2 ),2( ) 1 0( ( 1) )),1( 1 2 ),2( )
2 2
1
0 0( , , ) ( , , )
with a leading
, (16)k k
k r k j j r r k r k j j r r
j j
v v v v
r rv v P v v P
A
A A A A A 
            
    
 
(2.3) may be rewritten in the form:
1
1 0( 1 ( 1) )),1( 2( 1)),2( )
1
2
2
0 ( , , )
(17)k
k r k j j r r
j
v v
r v v P
A A A
     

 
 

If ,
2
j
r  then so the summations with ,
2
j
r  may be set equal to 0,
being infeasible, yielding:
1 1
1 10( 1 ( 1) )),1( 2( 1)),2( ) 0( ( 1) )),1( 2 )),2( 1)
1
2 2
2 2
0 1( , , ) ( , , )
(18)k k
k r k j j r r k r k j j r r
j j
v v v v
r rv v P v v P
A A A A A A
          

  
    
 
(We used the change of variables technique: 1r r  in the summand, 1r r  in the limits).
If + 1, then -2r = so the summations with r = + 1 may be equated to 0 and dropped.
If r = 0, then 1 1r    . Therefore the summations with
r = 0 are infeasible and hence set equal to 0. Thus (18) is the same as:
2
1 1
2 2
2
0 01 10( ( 1) )),1( 2 )),2( 1) 0( ( 1) )),1( 2 )),2( )( , , ) ( , , )
with a leading .
, (19)k k
j j
v v v v
r rk r k j j r r k r k j j r rv v P v v P
A
A A A A A
          
    
 
Therefore 1( )kQ jh
1 1
2
0
0 1 1 0( ( 1) ),1( 2 ),2( )( , , )
, with a leadingk
j
v v
r k r k j j r rv v P
A A A
  
  
  
     
  

1 1
2
1
0 1 1 0( ( 1) ),1( 2 ),2( )( , , )
, with a leadingk
j
v v
r k r k j j r rv v P
A A A
  
  
  
     
  

The structure of determining matrices for a class of…
www.ijmsi.org 25 | P a g e
1 1
2
2
0 1 1 0( ( 1) ),1( 2 ),2( )( , , )
, with a leadingk
j
v v
r k r k j j r rv v P
A A A
  
  
  
     
  

1 1 1 1
22
0 01 11 0( ( 1) ),1( 2 ),2( ) 1 0( ( 1) ),1( 2 ),2( )( , , ) ( , , )
k k
jj
v v v v
r rk r k j j r r k r k j j r rv v P v v P
A A A A 
  
  
  
           
     
 
This concludes the proof of the theorem for even.
If k = 0, then since 0 ,j k  yielding (0) = the n n identity.
Case 2: j odd. Then is even, is odd and is even. Hence
1 1 1 1 1 1 1
( 1) ( 1) , and ( 2) ( 3) ( 3) 1
2 2 2 2 2 2 2
j j j j j j j
                  
                                               A
gain (11) is the same as:
2
0
0
1 1
1 1 0( ( 1) ),1( 2 ),2( )( , , )
, (with a leading ) (20)
j
r
k
k r k j j r r
v v
v v P
A A A
  
  
  


    
 

(2.5) is the same as:
1 1
1
1
2 2
1
0 01 11 0( ( 1) ),1( 1 2 ),2( ) 1 0( ( 1) ),1( 2 ),2( )( , , ) ( , , )
with a leading , since ( 1) , 1 2 and are all nonnegat
, (21)k k
j j
v v v
r rk r k j j r r k r k j j r r
v
v v P v v P
A r k j j r r
A A A A A 
      
      
      
            
    
    
 
ive for
1 1
0,1, , 0,1, , ( 1) .
2 2
r j j
         
                    
 
(2.7) can be rewritten in the form:
1
2
2
0
2
2
1
1
1
1 0( 1 ( 1) ),1( 2( 1)),2( )
1 0( 1 ( 1) ),1( 2 )),2( 1)
( , , )
( , , )
(22)
j
r
j
r
k
k
k r k j j r r
k r k j j r r
v v
v v
v v P
v v P
A A A
A A A
  
  
   
  
  
   



     
     



 
 




The structure of determining matrices for a class of…
www.ijmsi.org 26 | P a g e
If r = 0, then r – 1 = -1 < 0. Therefore, the summations with r = 0 vanish, with (2.12) transforming to:
2
1
1 1
2
2
0
2
1
1 0( 1 ( 1) ),1( 2 ),2( 1)
1 1 0( 1 ( 1) ),1( 2 )),2( )
( , , )
( , , )
with leading .
, (23)
k
k
j
r
j
r
k r k j j r r
k r k j j r r
v v
v v
v v P
v v P
A
A A A
A A 
  
  
  

  
  
  

     
     



 
 




Finally, 1( )kQ jh = (20) + (21) + (23), the same expression in each summation, but with
leading 0 1 2, andA A A respectively. Consequently,
1 1
2
1
0 1 1 0( ( 1) ),1( 2 ),2( )( , , )
( ) ,k
j
k
r k r k j j r r
v v
v v P
Q jh A A 
  
  
  

     
  

completing the proof of the theorem for j odd. Hence the theorem has been proved for both cases; therefore, the
validity of the theorem is established.
3.2 Theorem on ( ); 1k
Q jh j k 
1
2
2
0 1 0( ),1(2 2 ),2( )( , , )
For 1, , integers,
( ) , 1 2
0, 2 1
k
k
k j
r k r k j r r j k
v v
v v P
j k j k
Q jh A A j k
j k
  
  
  
    
 


  


  
 

Proof
Consider ( ),for 1.k
Q jh j k 
1
1
2For 1, we appeal to lemma 1.4 to obtain ( ) ( )
, if 1
, if 2
0, if 3
k
k Q jh Q jh
A j
A j
j
 


 
 
Hence, 1
( ) sgn(max{0, 3 }), 1.j
Q jh A j j  
If j = 1, then
2 1
2 2
k j
 ; so r = 0 and the rhs summation 1.A
If j = 2, then
2
0
2
k j
 ; so r = 0, and the rhs summation
2.A
2 1
If 3, then ;so is infeasible the rhs summation 0,for 3.
2 2
k j
j r j

     
Therefore, in the stated formula, 1( ) sgn(max{0, 3 }),jQ jh A j  in agreement with lemma 2.5. Therefore
the theorem is valid for 1, .k j k 
Assume that the theorem is valid for 1 ,for some integer . Then, for 1,k n j n j n    
1 0 1 2( ) ( ) ([ 1] ) ([ 2] ).n n n nQ jh A Q jh A Q j h A Q j h     
The structure of determining matrices for a class of…
www.ijmsi.org 27 | P a g e
We may apply the induction hypothesis to ( )nQ jh to get
1
2
2
0 1 0( ),1(2 2 ),2( )( , , )
since .( ) ,
n j
n
r
n
n r n j r r j n
v v
v v P
j nQ jh A A
  
  
  
    
  

Now, 1 1 , or 1.j n j n n j       So, we may apply the induction principle to ([ 1] )n
Q j h to get
2 [ 1]
2
0
1
1 0( ),1(2 [ 1] 2 ),2( [ 1] )( , , )
([ 1] ) ,n
n j
r
n
n r n j r r j n
v v
v v P
Q j h A A
   
  
  
      
   

where all permutations are feasible. If 2 ,j n  apply the induction hypothesis to ([ 2] )n
Q j h , to get
2 [ 2]
2
0
1
1 0( ),1(2 [ 2] 2 ),2( [ 2] )( , , )
([ 2] ) .
n j
n
r
n
n r n j r r j n
v v
v v P
Q j h A A
   
  
  
      
   

Hence, 1( )nQ jh
2 2 [ 1]
2 2
0 1
0 0
1 1
1 10( ),1(2 2 ),2( ) 0( ),1(2 [ 1] 2 ),2( [ 1] )( , , ) ( , , )
n j n j
r r
n n
n nr n j r r j n r n j r r j n
v v v v
v v P v v P
A A A A A A
        
      
      
           
     
 
1
2 [ 2]
2
2
0 1 0( ),1(2 [ 2] 2 ),2( [ 2] )( , , )
n
n j
v v
r n r n j r r j nv v P
A A A
   
  
  
      
  

Case: j even. Then 2n j is even. So
1 1
(2 ) ; 2 ( 2) is even,so (2 [ 2]) 1
2 2 2 2
j j
n j n n j n j n n j
      
                       
2 [ 1]n j  is odd. So
1 1
(2 [ 1]) (2 [ 1] 1) .
2 2 2
j
n j n j n
      
                   
1
2( 1) is even; so (2[ 1] ) 1 .
2 2
j
n j n j n
  
          
Hence:
1
1 0( ),1(2 2 ),2( )
2
1 0
0 ( , , )
(24)( ) n
n r n j r r j n
j
n
v vn
r v v P
Q jh A A A
   


 
  

1
2
1
0
1 0( ),1(2 1 2 ),2( 1 )( , , )
(25)n
j
n
v v
r n r n j r r j nv v P
A A A


     
  


The structure of determining matrices for a class of…
www.ijmsi.org 28 | P a g e
1
1
2
2
0
1 0( ),1(2[ 1] 2 ),2( [ 1] 1)( , , )
(26)n
j
n
v v
r n r n j r r j nv v P
A A A
 

      
  


Use the change of variables 1, in (2.14) to getr r 
1 1
1 10( 1),1(2 2[ 1]),2( 1 ) 0( 1),1(2[ 1] 2 ),2( [ 1])
1
1 0( 1),1(2[ 1] 2 ),2( [ 1])
1 1
2 2
0 0
1 ( , , ) 1 ( , , )
1
2
0
0 ( , , )
,
n n
n nr n j r r j n r n j r r j n
n
n r n j r r j n
j j
n n
v v v v
r v v P r v v P
j
n
v v
r v v P
A A A A A A
A A A
             
      
   
   
 
 


   
 
    

 

(since the summation with 0r  is infeasible and hence equals 0).
1 1 0
1 1 0( ),1(2[ 1] 2 ),2( [ 1])
2( 1)
2
0 ( , , )
with a leading . (27),n
n r n j r r j n
n j
v v
r v v P
AA A 
  
  
   
      
 
 
  

If we set 1 ,in (25), then
2
j
r n   2 1 2 2 1 2 2 1; so then j r n j n j          
Therefore (2.15) is the same expression as:summations with 1 vanish, being infeasible.
2
j
r n  
1
2
1
0
2( 1)
2
0
1
1 0( ),1(2 1 2 ),2( [ 1])
1 1
1 1 0( ),1(2 1 2 ),2( [ 1])
( , , )
( , , )
, (28)
j
n
r
n j
r
n
n r n j r r j n
n
n r n j r r j n
v v
v v P
v v
v v P
A A A
A A
 

   
  
  

     

      



 
 




with a leading 1A .
Clearly (2.16) is the same expression as:
1 1
1 1 0( ),1(2 1 2 ),2( [ 1])
2( 1)
2
0 ( , , )
, (29)n
n r n j r r j n
n j
v v
r v v P
A A
  
  
    

      
 
 
 

with a leading 2.A
Add up (27), (28) and (29) to obtain:
The structure of determining matrices for a class of…
www.ijmsi.org 29 | P a g e
1 1
1 1 0( ),1(2 1 2 ),2( [ 1])
2( 1)
2
1
0 ( , , )
( ) .n
n r n j r r j n
n j
v vn
r v v P
Q jh A A
  
  
    

      
 

 
  

Hence, the theorem is valid for all 1;j n  this completes the proof for the case j even.
Now consider the case: j odd. Then 2n – is odd. Therefore,
1 1 1
(2 ) (2 1) ( 1),
2 2 2
1 1 1
2 ( 2) is odd;so, (2 ( 2) (2 ( 2) 1) 1 ( 1)
2 2 2
n j n j n j
n j n j n j n j
      
                  
      
                       
1 1 1
(2 ) (2 1) ( 1). Clearly, 2 ( 1) is even;
2 2 2
1 1 1 1
so, (2 ( 1) (2 ( 1) (2[ 1] 1 ) 1 ( 1)
2 2 2 2
n j n j n j n j
n j n j n j n j
      
                    
  
                
1 1 1
2( 1) is odd; so, (2[ 1] ) (2[ 1] 1) 1 ( 1).
2 2 2
n j n j n j n j
      
                       
Hence: 1( )nQ jh
1
1 0( ),1(2 2 ),2( )
( 1)
2
0
0 ( , , )
(30)n
n r n j r r j n
j
n
v v
r v v P
A A A
   


 
  

1
1 0( ),1(2 1 2 ),2( 1 )
( 1)
1
2
1
0 ( , , )
(31)n
n r n j r r j n
j
n
v v
r v v P
A A A
     

 
 
  

1
1 0( ),1(2[ 1] 2 ),2( [ 1] 1)
( 1)
1
2
2
0 ( , , )
(32)n
n r n j r r j n
j
n
v v
r v v P
A A A
      

 
 
  

Note that
  as earlier established
2( 1)1
1 ( 1) ,
2 2
n j
n j
   
      
   
.Therefore using the
change of variables 1r r  ,in (30),we see that (30) is exactly the same expression as
The structure of determining matrices for a class of…
www.ijmsi.org 30 | P a g e
0
1
1 0( 1),1(2[ 1] 2 ),2( [ 1])
1 1
1 1 0( ),1(2[ 1] 2 ),2( [ 1])
11 ( 1)
2
0
0 ( , , )
2( 1)
2
0 ( , , )
with a leading . (33),
n
n r n j r r j n
n
n r n j r r j n
n j
v v
r v v P
n j
v v
r v v P
A
A A A
A A
  
  
    
      

      
  
 
 
 

 
 




(31) is exactly the same expression as:
1 1
1 1 0( ),1(2[ 1] 2 ),2( [ 1])
1
2( 1)
2
0 ( , , )
with a leading ., (34)n
n r n j r r j n
n j
v v
r v v P
AA A 
      
  
  
   
 
 
 

(32) is exactly the same expression as:
1 1
1 1 0( ),1(2[ 1] 2 ),2( [ 1])
2
2( 1)
2
0 ( , , )
with a leading ., (35)n
n r n j r r j n
n j
v v
r v v P
AA A 
      
  
  
   
 
 
 

Add up (33), (34) and (35) to obtain:
1 1
1 1 0( ),1(2[ 1] 2 ),2( [ 1])
2( 1)
2
1
0 ( , , )
( ) , (36)n
n r n j r r j n
n j
v vn
r v v P
Q jh A A 
      
  
  
   
 

 
  

proving the theorem for j odd, for the contingency 2 .j n 
Last case: – 2 < n . Then 2;but 1,forcing 1.j n j n j n      We invoke theorem 3.1 to conclude
that
1 1
1 1 0( 1 ( 1)),1( 1 2 ),2( )
1)
2
1
0 ( , , )
([ 1] ) .n
n r n n n r r
n
v vn
r v v P
Q n h A A
  
  
    

      


 
   

Now set 1j n  , in the expression for 1( )nQ jh , in theorem 3.2, to get
1 1
1 1 0( )),1( 1 2 ),2( )
1)
2
1
0 ( , , )
([ 1] ) ,n
n r n r r
n
v vn
r v v P
Q n h A A
  
  
    

  


 
   

exactly the same expression as in theorem 3.1. This completes the proof of theorem 3.2.
Remarks
The expressions for ( )kQ jh in theorems 3.1 and 3.2 coincide when 0,j k  as should be expected.
IV. CONCLUSION
The results in this article bear eloquent testimony to the fact that we have comprehensively extended
the previous single-delay result by Ukwu (1992) together with appropriate embellishments through the
The structure of determining matrices for a class of…
www.ijmsi.org 31 | P a g e
unfolding of intricate inter–play of the greatest integer function and the permutation objects in the course of
deriving the expressions for the determining matrices.
By using the greatest integer function analysis, change of variables technique and deft application of
mathematical induction principles we were able to obtain the structure of the determining matrices for the
double–delay control model, without which the computational investigation of Euclidean controllability would
be impossible.
The mathematical icing on the cake was our deft application of the max and sgn functions and their
composite function sgn (max {.,.}) in the expressions for determining matrices. Such applications are optimal, in
the sense that they obviate the need for explicit piece–wise representations of those and many other discrete
mathematical objects and some others in the continuum.
REFERENCES
[1] Gabasov, R. and Kirillova, F. The qualitative theory of optimal processes ( Marcel Dekker Inc., New York, 1976).
[2] Ukwu, C. Euclidean controllability and cores of euclidean targets for differential difference systems Master of Science Thesis in
Applied Math. with O.R. (Unpublished), North Carolina State University, Raleigh, N. C. U.S.A., 1992.
[3] Ukwu, C. An exposition on Cores and Controllability of differential difference systems, ABACUS, Vol. 24, No. 2, 1996, pp. 276-
285.
[4] Ukwu, C. On determining matrices, controllability and cores of targets of certain classes of autonomous functional
differential systems with software development and implementation. Doctor of Philosophy Thesis, UNIJOS, 2013a (In progress).
[5] Chidume, C. An introduction to metric spaces. The Abdus Salam, International Centre for Theoretical Physics, Trieste,
Italy, (2003).
[6] Chidume, C. Applicable functional analysis (The Abdus Salam, International Centre for Theoretical Physics, Trieste,
Italy, 2007).
[7] Royden, H.L. Real analysis (3rd
Ed. Macmillan Publishing Co., New York, 1988).
[8] Chukwu, E. N. Stability and time-optimal control of hereditary systems (Academic Press, New York, 1992).
[9] Hale, J. K. Theory of functional differential equations. Applied Mathematical Science, Vol. 3, 1977, Springer-Verlag, New York.
[10] Tadmore, G. Functional differential equations of retarded and neutral types: Analytical solutions and piecewise
continuous controls, Journal of Differential Equations, Vol. 51, No. 2, 1984, Pp. 151-181.
[11] Wikipedia, Analytic function. Retrieved September 11, 2010 from http://en.wikipedia.org/wiki/Analytic_function.
[12] Wikipedia, Bounded variation, Retrieved December 30, 2012 from http://en.wikipedia.org/wiki/Bounded_variation.

Contenu connexe

Tendances

APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...ijfls
 
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...IOSR Journals
 
Solvability of Fractionl q -Difference Equations of Order 2   3 Involving ...
Solvability of Fractionl q -Difference Equations of Order 2   3 Involving ...Solvability of Fractionl q -Difference Equations of Order 2   3 Involving ...
Solvability of Fractionl q -Difference Equations of Order 2   3 Involving ...journal ijrtem
 
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURESTUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURESurender Singh
 
Relative superior mandelbrot sets and relative
Relative superior mandelbrot sets and relativeRelative superior mandelbrot sets and relative
Relative superior mandelbrot sets and relativeeSAT Publishing House
 
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...hirokazutanaka
 
Fuzzy Group Ideals and Rings
Fuzzy Group Ideals and RingsFuzzy Group Ideals and Rings
Fuzzy Group Ideals and RingsIJERA Editor
 
Active Controller Design for Regulating the Output of the Sprott-P System
Active Controller Design for Regulating the Output of the Sprott-P SystemActive Controller Design for Regulating the Output of the Sprott-P System
Active Controller Design for Regulating the Output of the Sprott-P Systemijccmsjournal
 
A current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsA current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsAlexander Decker
 
Successive approximation of neutral stochastic functional differential equati...
Successive approximation of neutral stochastic functional differential equati...Successive approximation of neutral stochastic functional differential equati...
Successive approximation of neutral stochastic functional differential equati...Editor IJCATR
 
Notions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsNotions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsStavros Vologiannidis
 
Some Other Properties of Fuzzy Filters on Lattice Implication Algebras
Some Other Properties of Fuzzy Filters on Lattice Implication AlgebrasSome Other Properties of Fuzzy Filters on Lattice Implication Algebras
Some Other Properties of Fuzzy Filters on Lattice Implication Algebrasijceronline
 
Lecture 3: Stochastic Hydrology
Lecture 3: Stochastic HydrologyLecture 3: Stochastic Hydrology
Lecture 3: Stochastic HydrologyAmro Elfeki
 

Tendances (15)

APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
 
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
 
Solvability of Fractionl q -Difference Equations of Order 2   3 Involving ...
Solvability of Fractionl q -Difference Equations of Order 2   3 Involving ...Solvability of Fractionl q -Difference Equations of Order 2   3 Involving ...
Solvability of Fractionl q -Difference Equations of Order 2   3 Involving ...
 
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURESTUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
 
Relative superior mandelbrot sets and relative
Relative superior mandelbrot sets and relativeRelative superior mandelbrot sets and relative
Relative superior mandelbrot sets and relative
 
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
 
Ichimura 1993: Semiparametric Least Squares (non-technical)
Ichimura 1993: Semiparametric Least Squares (non-technical)Ichimura 1993: Semiparametric Least Squares (non-technical)
Ichimura 1993: Semiparametric Least Squares (non-technical)
 
Fuzzy Group Ideals and Rings
Fuzzy Group Ideals and RingsFuzzy Group Ideals and Rings
Fuzzy Group Ideals and Rings
 
Active Controller Design for Regulating the Output of the Sprott-P System
Active Controller Design for Regulating the Output of the Sprott-P SystemActive Controller Design for Regulating the Output of the Sprott-P System
Active Controller Design for Regulating the Output of the Sprott-P System
 
A current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsA current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systems
 
Successive approximation of neutral stochastic functional differential equati...
Successive approximation of neutral stochastic functional differential equati...Successive approximation of neutral stochastic functional differential equati...
Successive approximation of neutral stochastic functional differential equati...
 
Matrices ii
Matrices iiMatrices ii
Matrices ii
 
Notions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsNotions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systems
 
Some Other Properties of Fuzzy Filters on Lattice Implication Algebras
Some Other Properties of Fuzzy Filters on Lattice Implication AlgebrasSome Other Properties of Fuzzy Filters on Lattice Implication Algebras
Some Other Properties of Fuzzy Filters on Lattice Implication Algebras
 
Lecture 3: Stochastic Hydrology
Lecture 3: Stochastic HydrologyLecture 3: Stochastic Hydrology
Lecture 3: Stochastic Hydrology
 

En vedette

นำเสนอตรีโกณมิติจริง
นำเสนอตรีโกณมิติจริงนำเสนอตรีโกณมิติจริง
นำเสนอตรีโกณมิติจริงNittaya Noinan
 
Syngg archit.3b.ger lands.2013
Syngg archit.3b.ger lands.2013Syngg archit.3b.ger lands.2013
Syngg archit.3b.ger lands.2013vimann
 
Voz pasiva actividad 3 primer trimestre
Voz pasiva actividad 3 primer trimestreVoz pasiva actividad 3 primer trimestre
Voz pasiva actividad 3 primer trimestrePriauto Multimarca
 
La chapelle du rosaire
La chapelle du rosaireLa chapelle du rosaire
La chapelle du rosaireeramthgin
 
Email Marketing: Simple Techniques That Still Work
Email Marketing: Simple Techniques That Still WorkEmail Marketing: Simple Techniques That Still Work
Email Marketing: Simple Techniques That Still Workyswaytogo
 
Syngg archit.lecture 6a.it.dutch.dt js
Syngg archit.lecture 6a.it.dutch.dt jsSyngg archit.lecture 6a.it.dutch.dt js
Syngg archit.lecture 6a.it.dutch.dt jsvimann
 
Torque systems mdm_servo_motor_food_grade_product_guide
Torque systems mdm_servo_motor_food_grade_product_guideTorque systems mdm_servo_motor_food_grade_product_guide
Torque systems mdm_servo_motor_food_grade_product_guideElectromate
 
Imagemappe Welfen SC Braunschweig
Imagemappe Welfen SC BraunschweigImagemappe Welfen SC Braunschweig
Imagemappe Welfen SC BraunschweigBjoernSF
 
Зелений Пакет - Атмосфера, її склад та будова
Зелений Пакет - Атмосфера, її склад та будоваЗелений Пакет - Атмосфера, її склад та будова
Зелений Пакет - Атмосфера, її склад та будоваgreenpack-ukraine
 
New developments in reproductive medicine (1)
New developments in reproductive medicine (1)New developments in reproductive medicine (1)
New developments in reproductive medicine (1)鋒博 蔡
 

En vedette (18)

นำเสนอตรีโกณมิติจริง
นำเสนอตรีโกณมิติจริงนำเสนอตรีโกณมิติจริง
นำเสนอตรีโกณมิติจริง
 
Syngg archit.3b.ger lands.2013
Syngg archit.3b.ger lands.2013Syngg archit.3b.ger lands.2013
Syngg archit.3b.ger lands.2013
 
Angelo State Belle Notes
Angelo State Belle NotesAngelo State Belle Notes
Angelo State Belle Notes
 
Voz pasiva actividad 3 primer trimestre
Voz pasiva actividad 3 primer trimestreVoz pasiva actividad 3 primer trimestre
Voz pasiva actividad 3 primer trimestre
 
La chapelle du rosaire
La chapelle du rosaireLa chapelle du rosaire
La chapelle du rosaire
 
G325 – AS work
G325 – AS workG325 – AS work
G325 – AS work
 
Planeacion fiscal para repecos
Planeacion fiscal para repecosPlaneacion fiscal para repecos
Planeacion fiscal para repecos
 
Email Marketing: Simple Techniques That Still Work
Email Marketing: Simple Techniques That Still WorkEmail Marketing: Simple Techniques That Still Work
Email Marketing: Simple Techniques That Still Work
 
Syngg archit.lecture 6a.it.dutch.dt js
Syngg archit.lecture 6a.it.dutch.dt jsSyngg archit.lecture 6a.it.dutch.dt js
Syngg archit.lecture 6a.it.dutch.dt js
 
The universe
The universeThe universe
The universe
 
Torque systems mdm_servo_motor_food_grade_product_guide
Torque systems mdm_servo_motor_food_grade_product_guideTorque systems mdm_servo_motor_food_grade_product_guide
Torque systems mdm_servo_motor_food_grade_product_guide
 
Imagemappe Welfen SC Braunschweig
Imagemappe Welfen SC BraunschweigImagemappe Welfen SC Braunschweig
Imagemappe Welfen SC Braunschweig
 
Зелений Пакет - Атмосфера, її склад та будова
Зелений Пакет - Атмосфера, її склад та будоваЗелений Пакет - Атмосфера, її склад та будова
Зелений Пакет - Атмосфера, її склад та будова
 
G02402054057
G02402054057G02402054057
G02402054057
 
New developments in reproductive medicine (1)
New developments in reproductive medicine (1)New developments in reproductive medicine (1)
New developments in reproductive medicine (1)
 
Tareas y pruebas
Tareas y pruebasTareas y pruebas
Tareas y pruebas
 
Tkp 2
Tkp 2Tkp 2
Tkp 2
 
Apresentação1
Apresentação1Apresentação1
Apresentação1
 

Similaire à C023014030

Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...inventionjournals
 
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)paperpublications3
 
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable CoefficientsDecay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable CoefficientsEditor IJCATR
 
Estimating structured vector autoregressive models
Estimating structured vector autoregressive modelsEstimating structured vector autoregressive models
Estimating structured vector autoregressive modelsAkira Tanimoto
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) inventionjournals
 
Stability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-MetricStability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-MetricKomal Goyal
 
Existence of positive solutions for fractional q-difference equations involvi...
Existence of positive solutions for fractional q-difference equations involvi...Existence of positive solutions for fractional q-difference equations involvi...
Existence of positive solutions for fractional q-difference equations involvi...IJRTEMJOURNAL
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...Wireilla
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical SystemPurnima Pandit
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) inventionjournals
 
17 16512 32451-1-sm (edit ari)
17 16512 32451-1-sm (edit ari)17 16512 32451-1-sm (edit ari)
17 16512 32451-1-sm (edit ari)IAESIJEECS
 

Similaire à C023014030 (20)

C024015024
C024015024C024015024
C024015024
 
D024025032
D024025032D024025032
D024025032
 
D023031047
D023031047D023031047
D023031047
 
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
 
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
 
F023064072
F023064072F023064072
F023064072
 
The scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equationsThe scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equations
 
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable CoefficientsDecay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
 
E028047054
E028047054E028047054
E028047054
 
Estimating structured vector autoregressive models
Estimating structured vector autoregressive modelsEstimating structured vector autoregressive models
Estimating structured vector autoregressive models
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
Stability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-MetricStability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-Metric
 
D025030035
D025030035D025030035
D025030035
 
Existence of positive solutions for fractional q-difference equations involvi...
Existence of positive solutions for fractional q-difference equations involvi...Existence of positive solutions for fractional q-difference equations involvi...
Existence of positive solutions for fractional q-difference equations involvi...
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
 
D028036046
D028036046D028036046
D028036046
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical System
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
Conference ppt
Conference pptConference ppt
Conference ppt
 
17 16512 32451-1-sm (edit ari)
17 16512 32451-1-sm (edit ari)17 16512 32451-1-sm (edit ari)
17 16512 32451-1-sm (edit ari)
 

Dernier

Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsRoshan Dwivedi
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024The Digital Insurer
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...apidays
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Principled Technologies
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
Top 10 Most Downloaded Games on Play Store in 2024
Top 10 Most Downloaded Games on Play Store in 2024Top 10 Most Downloaded Games on Play Store in 2024
Top 10 Most Downloaded Games on Play Store in 2024SynarionITSolutions
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024The Digital Insurer
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 

Dernier (20)

Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Top 10 Most Downloaded Games on Play Store in 2024
Top 10 Most Downloaded Games on Play Store in 2024Top 10 Most Downloaded Games on Play Store in 2024
Top 10 Most Downloaded Games on Play Store in 2024
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 

C023014030

  • 1. International Journal of Mathematics and Statistics Invention (IJMSI) E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759 www.ijmsi.org ǁ Volume 2 ǁ Issue 3 ǁ March 2014 ǁ PP-14-30 www.ijmsi.org 14 | P a g e The structure of determining matrices for a class of double – delay control systems Ukwu Chukwunenye Department of Mathematics, University of Jos, P.M.B 2084 Jos, Plateau State, Nigeria. ABSTRACT: This paper derived and established the structure of determining matrices for a class of double – delay autonomous linear differential systems through a sequence of lemmas, theorems, corollaries and the exploitation of key facts about permutations. The proofs were achieved using ingenious combinations of summation notations, the multinomial distribution, the greatest integer function, change of variables technique and compositions of signum and max functions. The paper has extended the results on single–delay models, with more complexity in the structure of the determining matrices. KEYWORDS: Delay, Determining, Double, Structure, Systems. I. INTRODUCTION The importance of determining matrices stems from the fact that they constitute the optimal instrumentality for the determination of Euclidean controllability and compactness of cores of Euclidean targets. See Gabasov and Kirillova (1976) and Ukwu (1992, 1996, 2013a). In sharp contrast to determining matrices, the use of indices of control systems on the one hand and the application of controllability Grammians on the other, for the investigation of the Euclidean controllability of systems can at the very best be quite computationally challenging and at the worst, mathematically intractable. Thus, determining matrices are beautiful brides for the interrogation of the controllability disposition of delay control systems. Also see Ukwu (2013a). However up-to-date review of literature on this subject reveals that there is currently no result on the structure of determining matrices for double-delay systems. This could be attributed to the severe difficulty in identifying recognizable mathematical patterns needed for inductive proof of any claimed result. Thus, this paper makes a positive contribution to knowledge by correctly establishing the structure of such determining matrices in this area of acute research need. II. MATERIALS AND METHODS The derivation of necessary and sufficient condition for the Euclidean controllability of system (1) on the interval 1 [0, ],t using determining matrices depends on 1) obtaining workable expressions for the determining equations of the n n matrices for 1 : 0, 0, 1,j t jh k    2) showing that = ( h),for j: 3) where 4) showing that 1( )Q t is a linear combination of 0 1 1 ( ), ( ), , ( ); 0, , ( 1) .n Q s Q s Q s s h n h    See Ukwu (2013a). Our objective is to prosecute task (i) in all ramifications. Tasks (ii) and (iii) will be prosecuted in other papers. 2.1 Identification of Work-Based Double-Delay Autonomous Control System We consider the double-delay autonomous control system:                 0 1 2 2 ; 0 (1) , 2 , 0 , 0 (2) x t A x t A x t h A x t h B u t t x t t t h h            
  • 2. The structure of determining matrices for a class of… www.ijmsi.org 15 | P a g e Where 0 1 2, ,A A A are n n constant matrices with real entries, B is an n m constant matrix with real entries. The initial function  is in   2 , 0 , n C h R , the space of continuous functions from [ 2 , 0]h into the real n-dimension Euclidean space, n R with norm defined by     2 , 0 sup t h t     , (the sup norm). The control u is in the space   10, , n L t R , the space of essentially bounded measurable functions taking  0 1, t into n R with norm    ess u t t t sup ( ) [ , ]0 1 . Any control   10, , n u L t R will be referred to as an admissible control. For full discussion on the spaces 1 and (or )p p pC L L , {1,2,..., }p  , see Chidume (2003 and 2007) and Royden (1988). 2.2 Preliminaries on the Partial Derivatives ( , ) , 0,1, k k X t k       Let  1 , 0,t t  . For fixed t, let  , t   satisfy the matrix differential equation:        0 1 2, , , 2 , (3)X t X t A X h t A X h t A             for 0 , , 0,1,...t t k h k      where    ; 0;, nI t tX t     See Chukwu (1992), Hale (1977) and Tadmore (1984) for properties of  ,t  . Of particular importance is the fact that  ,t   is analytic on the intervals     1 1 1 1 , , 0,1,..., 1 0t j h t j h j t j h       . Any such   1 1 1 ,t j h t j h     is called a regular point of  ,t    . See also Analytic function (2010) for a discussion on analytic functions. Let    , k t denote  1 , k k t      , the th k partial derivative of  1,t with respect to , where  is in   1 1 1 , ; 0,1,...,t j h t j h j r    , for some integer r such that  t r h1 1 0   . Write      1 1 1, , k k t t         . Define:              1 1 1 1 1 1 1 1 , , , , , (4) for 0,1,...; 0,1,...; 0, k k k t jh t t t j h t t j h t k j t jh               where     1 1 , k X t j h t   and     1 1 1 , , k X t t j h t   denote respectively the left and right hand limits of    1, k X t at   t j h1 . Hence:      ( ) 1 1 1 1 1 1 ( 1) ( ) (5), lim ,k k X t jh t j h t jh X t jh t t            
  • 3. The structure of determining matrices for a class of… www.ijmsi.org 16 | P a g e      1 1 1 1 ( ) 1 1 ( 1) ,lim( ) , (6) k k X t jh t jh t j h tX t jh t             2.3 Definition, Existence and Uniqueness of Determining Matrices for System (1) Let Q k (s) be then n n matrix function defined by:        0 1 1 1 2 1 2 (7)k k k kQ s A Q s AQ s h A Q s h       for 1,2, ; 0,k s  with initial conditions:  0 0 (8)nQ I  0 0; 0 (9)Q s s  These initial conditions guarantee the unique solvability of (7). Cf. [1]. The stage is now set for the establishment of the expressions and the structure of the determining matrices for system (1), as well as their relationships with ( ) ( , )k X t  through a sequence of lemmas, theorems and corollaries and the exploitation of key facts about permutations. 2.4 Lemma on permutation products and sums Let 0 1 2, ,r r r be nonnegative integers and let    0 1 20 ,1 ,2( )r r r P denote the set of all permutations of    10 2 timestimes times the permutations of the objects 0,1,and 2 in which0,0,...0 1,1,...1 2,2,...2: appears times, 0,1,2 .i rr r i r i      0 1 20 ,1 ,2( ) Let iL r r r P denote the subset of    0 1 20 ,1 ,2( )r r r P with leading i , that is, those with i occupying the first position.    0 1 20 ,1 ,2( ) Let iT r r r P denote the subset of    0 1 20 ,1 ,2( )r r r P with trailing i , that is, those with i occupying the last position. Set 0 1 2.r r r r   Then for any fixed 0 1 2, , ,r r r                  1 1 1 10 , 1 ,1 0 , 1 ,10 1 2 0 1 2 2 2 0 1 2 0 1 2 ,... ,...0 0 a ..., ( , , ) ..., ( , , )        r riL r rr r r r r r iL v v r v v r v v P v v Pi i A A S r r r A A S r r r                       1 1 1 1 1 1 1 10 max 0, 1 , 1 ,1 0( ), 1 max 0, 1 ,10 1 2 0 1 2 1 1 1 1 0( ), 1 , 2 max 0, 10 1 2 0 0 1 1 ,... ,... 22 ,... ..., sgn( ) ..., sgn( ) sgn( )...,                                              r r r rr r r r r r r r r r r v v v v v v P v v P v v v v P A A A r A A A r rA A A                  1 1 1 10 , 1 ,1 0 , 1 ,10 1 2 0 1 2 2 2 0 1 2 0 1 2 ,... ,...0 0 b ..., ( , , ) ..., ( , , )        r riT r rr r r r r r iT v v r v v r v v P v v Pi i A A S r r r A A S r r r                       1 1 1 1 1 1 1 10 max 0, 1 , 1 ,1 0( ), 1 max 0, 1 ,10 1 2 0 1 2 1 1 1 1 0( ), 1 , 2 max 0, 10 1 2 0 0 1 1 ,... ,... 2 2 ,... ..., sgn( ) ..., sgn( ) sgn( )...,                                              r r r rr r r r r r r r r r r v v v v v v P v v P v v v v P A A A r A A A r A rA A (c) Hence for all nonnegative integers 0 1 2, ,r r r such that 0 1 2 ,r r r r  
  • 4. The structure of determining matrices for a class of… www.ijmsi.org 17 | P a g e                0 1 2 1 1 1 10 , 1 ,1 0 , 1 ,10 1 2 0 1 2 0 1 2 0 1 2 2 0 1 2 0 2 0 1 2 ,... ,...0 ( , , ) ..., ( , , ) ...,                   r riL r rr r r r r r r r r r iL r i r r r r v v r v v v v P v v Pi r r r r S r r r A A S r r r A A Similar statements hold with respect to the remaining relations. Note that           0 1 10 1 0 , 1 , 20 1 2 1 1 0 ,1 ,20 1 2 0 1 2 2 ,...0 0 0 2 0 ,... ...,...,                              riL r r r r r iL r r r r r r r r r rr v v v v Pi r r v v i v v P A AA A sgn( )ir ensures that the corresponding expression vanishes if 0i ir A  does not appear and so cannot be factored out. max{0, 1}ir  ensures that the resulting permutations are well-defined. In order not to clutter the work with ‘ max{0, 1}ir  ’ and ‘ sgn( )ir ’, the standard convention of letting         1 1 0 , 1 ,10 1 2 0 1 2 0 1 2 ,... ..., 0, for any fixed , , ; : 0,for some {0,1,2}r r r r r v v i v v P A A r r r r r r r r i                  would be adopted, as needed. Proofs of (a), (b) and (c) Every permutation involving 0, 1, and 2 must be led by one of those objects. If 0, 1 and 2 appear at least once, then each of them must lead at least once. Equivalent statements hold with ‘led’ replaced by ‘trailed’ and ‘lead’ replaced by ‘trail’. Hence the sum of the products of the permutations must be the sum of the products of those permutations led (trailed) by 0 1 2, , and respectively.A A A Consequently,         0 0 1 0 1 0 1 0 0 1 1 0 , 1 , 20 1 0 1 0 1 2 0 1 0 1 0 0 0 0 2 0 1 0 1 0 0 0 ,... restricted to those permutations with leading(trailing ) ..., ( , , ) ( , , ) r i r r r r r r r r r r r r r rr r v v r r r r r r rr r i r r v v P A A A S r r r r r S r r r r r                                                0 1 0 1 2 0 1 1 0 1 2 1 2 1 0 1 2 2 1 0 1 2 0 0 1 0 1 2 1 1 1 0 1 2 2 2 (max 0, 1 , , )sgn( ) ( ,max 0, 1 , )sgn( ) ( , ,max 0, 1 )sgn( ) (max 0, 1 , , ) sgn( ) ( ,max 0, 1 , ) sgn( ) ( , ,max 0, 1 ) sgn( ) r r r r r r A S r r r r A S r r r r A S r r r r S r r r A r S r r r A r S r r r A r                   2.5 Preliminary Lemma on Determining Matrices ( ),kQ s sR (i) (ii) (iii) (iv) (v) 1( ) sgn(max{0, 3 }), 0.jQ jh A j j   (vi)
  • 5. The structure of determining matrices for a class of… www.ijmsi.org 18 | P a g e (vii) (viii) 1 1 , if 0 ( , ) 0, otherwise nI j X t jh t       Proof (i) Then, We need to prove that Assertion: Proof: So the assertion is true for k = 1. Assume that for some integer n. Then , by the induction hypothesis, since Therefore, Hence proving that (ii) Let k = 1 and let s for any integer r. Then , since s  Assume for some integer . Then by the induction hypothesis. Hence for any integer r (iii) This has already been proved. (iv) by the definition of   1 1 0 1 1 ,1(1) .v v P A     So (iv) is true for k = 1. Assume (iv) is true for for some integer . Then by the induction hypothesis. Therefore, 1 1 1 1 0( 1 1),1(1)( , , ) n n n v v v v P A A        1 1 1 1 0( 1 1),1(1)( , , ) n n n v v v v P A A        So (iv) is true for . (v) by (i) and (ii) respectively For
  • 6. The structure of determining matrices for a class of… www.ijmsi.org 19 | P a g e Now (by the definition of ), proving (v). (vi) For k = l, this yields Therefore . Note that for sufficiently, close to Assume that for ,3 nk  for some integer n. Then             011111 1 ,,, AttXtXttX n t nn                     211111 )( ,)2(,) AthtXAthtX nn      2100 0011 AAAAnn    1 0 1 1   nn A . Therefore       ,1, 011 kkk AttX  proving (vi) (vii)    , 11   ttX k lim 11 htt      ,0, 1 tX k  since 1 t  . Therefore ( ) 1 1( , ) 0k X t t  , proving (viii)         ,,2,,, 2111011 AthXAthXAtXtX      for , where Let j be a non-negative number such that . Then we integrate the system (3), apply the above initial matrix function condition and the fundamental theorem of calculus, (F.T.C.) to get: (by the F.T.C.) Similarly, + , ) Therefore, since is bounded and integrable (being of bounded variation) and the fact that for any bounded integrable function, f. Therefore For we have completing the proof of (viii). See Bounded variation (2012) for detailed discussion on functions of bounded variation. 2.6 Lemma on ( ); {2 2,2 1, }, 1k Q jh j k k k    For
  • 7. The structure of determining matrices for a class of… www.ijmsi.org 20 | P a g e Proof Note that the first summations in (iv), yield     k kk vv vv AA p   1 22,211 ),,(   )]12([)2()]12([)]12([ 121110 hkQAkhQAhkQAhkQ kkkk   by lemma 1.4. Clearly for So the lemma is valid for when Assume that the lemma is valid for for every integer, k such that . Then   hnQn 12  (10) (by the induction hypothesis), since Equivalently, on the right-hand side of (1.10) set in the first term; Then clearly k < n and j > 2 k + 1 Hence the induction hypothesis applies to the right-hand side of (1.10), yielding 0 in each term and consequently 0 for the sum of the terms.    012,Therefore  hnQn For any , Now and . Hence Combine this with the case to conclude that proving that as required in (i) of lemma 2.5. (ii) Consider this yields by lemma 1.5. So (ii) is valid for k =1. Assume the validity of (ii) for for some integer n. Then   hnQn 121  and of lemma 2.5, and . by the induction hypothesis; therefore, and Hence , , proving (iii) For k = 1, by lemma 1.5 . Now 1 1 1 11(1),2( 1) 1(1) 1 ( , , ) , for 1.k k k v v v v v P v P kA A A A       So (iii) is valid for k = 1 Assume the validity of (iii) for 1 < k < n, for some integer n. Then = Now , Therefore,
  • 8. The structure of determining matrices for a class of… www.ijmsi.org 21 | P a g e with leading in each permutation of the ,1,1,  njA svj  in the above summation. Since appears only once in each permutation it can only lead in one and only one permutation, in this case In all other permutations will occupy positions 2, 3, … up the last position So the above expression for is the same as: proving that thatnotepart,secondtheproveTo 1 21 1 0 2 rk k r r AAA     is the sum of the permutations of 21 and AA which A1 appears once and A2 appears k – 1 times in each permutation. In the first permutation, corresponding to r = 0, A1 occupies the first postion (A1 leads), …, in the last permutation, corresponding to r = k – 1, A1 occupies the last position (A1 trails). Thus st 1 the term under the summation represents the permutation in which occupies the ( 1) position.A r  1 0 (iv) Consider ([2 2] ), for 1; this yields (0) (by lemma 2.5).k Q k h k Q A   Let us look at the right-hand side of (iv) in lemma 1.6.         ity.infeasibilsummationby the,0...then,22and,1If 12,211 1 12,211 1 )...,,(     Pv vv Pvv v AAAkjk k k       .1forvalidis(iv)So,.1for,...Now 0 )...,,( 101 1 12,101 1     kkAAAA Pv vv Pvv v k kk Assume the validity of (iv) for 1 < k < n for some integer n. Then ( ) = , by (ii) 1 1 1(1), 2( 1) 1 1 2 1 2 ( , , ) 0 ([2 1] ) , by (iii).n n n n r n r n v v v v P r Q n h A A A A A            1 1 1 1(2 [2 2]), 2(2 2 ) 1 0(1), 2( 1)( , , ) ( , , ) ([2 2] ) , (by the induction hypothesis) n n n n n n n n n n v v v v v v P v v P Q n h A A A A              1 1 1 1(2),2( 2) 1 0(1),2( 1)( , , ) ( , , ) .n n n n n n v v v v v v P v v P A A A A          Consequently, 1 1 1(2), 2( 1) 1 1 1 1(1), 2( 2) 1 0(1), 2( 1) 1 0 2 1 ( , , ) 2 2 ( , , ) ( , , ) (2 ) . n n n n n n n n n n n v v v v P v v v v v v P v v P Q nh A A A A A A A A A A A                    
  • 9. The structure of determining matrices for a class of… www.ijmsi.org 22 | P a g e 1 1 1 1 0(1), 2( ) 1 1 1 1 1(2), 2( 1) 2 1 0 2 ( , , ) ( , , ) (with a leading ) (with a leading ) n n n n n n n v v v v P v v v v P A A A A A A A A                 21 1 1 1 1(2),2( 1)( , , ) (with a leading )n n n v v v v P AA A       1 1 1 1 1 1 0(1),2( ) 1 1 1(2),2( 1)( , , ) ( , , ) n n n n n n v v v v v v P v v P A A A A            Notice that if 1 and 2( 1) 2 2 , then 2 2 and 1.k n j n n k j j k n           So (iv) is proved for 1k n  , and hence (iv) is valid . This completes the proof of the lemma. Lemma 2.6 can be restated in an equivalent form, devoid of explicit piece-wise representation as follows: 2.7 Lemma on ( ); {2 2,2 1, }, 1k Q jh j k k k    using a composite function For all nonnegative integers and ,j k such that 2 2, 1,j k k   1 1 1(2 ), 2( )( , , ) ( ) sgn(max{0,2 1 })k k k j j k k v v v v P Q jh A A k j              . ( , , )1 0(1),2( 1) 1 sgn(max{0, 2 1 }) v v Pk k kv vA A k j               Proof: If 2 1j k  , both signum functions vanish, proving (i) of lemma 2.6. If 2j k , the second signum vanishes and the first yields 1, proving (ii). If 2 1j k  , the second signum vanishes and the first yields 1, proving (iii). If 2 2j k  , both signum functions yields 1, proving (iv). III. RESULTS AND DISCUSSIONS 3.1 Theorem on ( ); 0 , 0k Q jh j k k   1 1 0( ),1( 2 ),2( ) 2 0 ( , , ) For 0 , , integers, 0, ( ) k k r k j j r r k j v v r v v P j k j k k Q jh A A                      Proof 1 1 0( ),1( ) 1 1 0(0 0),1(0 0),2(0) 1 1 1 0(0 1),1(1 0),2(0) 1 0( 1),1(1 0 ( , , ) 0 ( , , ) ( , , ) ( , , ) (by lemma 2.5)1 (0) , ( ) , 0 0 rhs 1 0 rhs k k k j j k k k k k k k k k k k k v v v v P k v v v v P v v v v v v P v v P k Q A Q h A A j r A A A j r A A A A                                        ) 
  • 10. The structure of determining matrices for a class of… www.ijmsi.org 23 | P a g e 1 2 1 2 1 2 1 20(0 0 0),1(2 0),2(0) 0(1 2 2).1(2 2),2(1) 2 0 1 1 1 2 1 0 2 1 1 2 0 2 1 0 2 2 0 ( , ) ( , ) 2, 2 (2 ) (2 ) ( ) (0) (by lemma 2.5 ) 2 {0,1} rhs v v v v v v P v v P j k Q h A Q h AQ h A Q A A A A A A j r A A A A A A A A A                            So, the theorem is true for {0, 1}, 1 and for 2 .j k j k    Assume that the theorem is valid for all triple pairs , , ( ); , , ( )kk j k Q jh j k Q jh   for which ,for some , : 3.j k j k j k k j     Then 1 0 1 2( ) ( ) ([ 1] ) ([ 2] )k k k kQ jh A Q jh A Q j h A Q j h      Now, 1 1 and 2 1 .j k j k j k k         So, we may apply the induction hypothesis to the right- hand side of ( to get: 1 1 0( ),1( 2 ),2( ) 1 1 0( ( 1)),1( 1 2 ),2( ) 1 1 0( ( 2)),1( 2 2 ),2( ) 2 01 0 ( , , ) 1 2 1 0 ( , , ) 2 0 ( , , ) ( ) (11) (12) k k r k j j r r k k r k j j r r k r k j j r r j v vk r v v P j v v r v v P j v r v v P Q jh A A A A A A A A                                                        2 2 (13)kvA             Two cases arise: even and odd Case 1: even. Then is odd are is even; thus 1 2 1 and 2 2 2 2 2 j j j j j                                     The summations in (11) are all feasible, since noting that 1,2, , 2 j r        . So the right hand side of (11) can be rewritten as: 1 1 1 0( ( 1) ),1( 2 ),2( ) 0 2 0 ( , , ) with a leading , (14)k k r k j j r r j v v r v v P A A A                    (12) can be rewritten in the form: 1 1 0( ( 1)),1( 1 2 ),2( ) 1 2 1 0 ( , , ) (15)k k r k j j r r j v v r v v P A A A            We need to incorporate 2 j in the range of r. If 2 j r  , then
  • 11. The structure of determining matrices for a class of… www.ijmsi.org 24 | P a g e Therefore, the summation 1 1 0( 1 )),1( 1),2( ) 2 2 ( , , ) k k j j k v v v v P A A       is infeasible; hence it is set equal to 0. Thus the case 2 j r  may be included in the expression (2.5) to yield: 1 1 1 1 1 10( ( 1) )),1( 1 2 ),2( ) 1 0( ( 1) )),1( 1 2 ),2( ) 2 2 1 0 0( , , ) ( , , ) with a leading , (16)k k k r k j j r r k r k j j r r j j v v v v r rv v P v v P A A A A A A                      (2.3) may be rewritten in the form: 1 1 0( 1 ( 1) )),1( 2( 1)),2( ) 1 2 2 0 ( , , ) (17)k k r k j j r r j v v r v v P A A A             If , 2 j r  then so the summations with , 2 j r  may be set equal to 0, being infeasible, yielding: 1 1 1 10( 1 ( 1) )),1( 2( 1)),2( ) 0( ( 1) )),1( 2 )),2( 1) 1 2 2 2 2 0 1( , , ) ( , , ) (18)k k k r k j j r r k r k j j r r j j v v v v r rv v P v v P A A A A A A                       (We used the change of variables technique: 1r r  in the summand, 1r r  in the limits). If + 1, then -2r = so the summations with r = + 1 may be equated to 0 and dropped. If r = 0, then 1 1r    . Therefore the summations with r = 0 are infeasible and hence set equal to 0. Thus (18) is the same as: 2 1 1 2 2 2 0 01 10( ( 1) )),1( 2 )),2( 1) 0( ( 1) )),1( 2 )),2( )( , , ) ( , , ) with a leading . , (19)k k j j v v v v r rk r k j j r r k r k j j r rv v P v v P A A A A A A                   Therefore 1( )kQ jh 1 1 2 0 0 1 1 0( ( 1) ),1( 2 ),2( )( , , ) , with a leadingk j v v r k r k j j r rv v P A A A                    1 1 2 1 0 1 1 0( ( 1) ),1( 2 ),2( )( , , ) , with a leadingk j v v r k r k j j r rv v P A A A                   
  • 12. The structure of determining matrices for a class of… www.ijmsi.org 25 | P a g e 1 1 2 2 0 1 1 0( ( 1) ),1( 2 ),2( )( , , ) , with a leadingk j v v r k r k j j r rv v P A A A                    1 1 1 1 22 0 01 11 0( ( 1) ),1( 2 ),2( ) 1 0( ( 1) ),1( 2 ),2( )( , , ) ( , , ) k k jj v v v v r rk r k j j r r k r k j j r rv v P v v P A A A A                               This concludes the proof of the theorem for even. If k = 0, then since 0 ,j k  yielding (0) = the n n identity. Case 2: j odd. Then is even, is odd and is even. Hence 1 1 1 1 1 1 1 ( 1) ( 1) , and ( 2) ( 3) ( 3) 1 2 2 2 2 2 2 2 j j j j j j j                                                                   A gain (11) is the same as: 2 0 0 1 1 1 1 0( ( 1) ),1( 2 ),2( )( , , ) , (with a leading ) (20) j r k k r k j j r r v v v v P A A A                    (2.5) is the same as: 1 1 1 1 2 2 1 0 01 11 0( ( 1) ),1( 1 2 ),2( ) 1 0( ( 1) ),1( 2 ),2( )( , , ) ( , , ) with a leading , since ( 1) , 1 2 and are all nonnegat , (21)k k j j v v v r rk r k j j r r k r k j j r r v v v P v v P A r k j j r r A A A A A                                                ive for 1 1 0,1, , 0,1, , ( 1) . 2 2 r j j                                  (2.7) can be rewritten in the form: 1 2 2 0 2 2 1 1 1 1 0( 1 ( 1) ),1( 2( 1)),2( ) 1 0( 1 ( 1) ),1( 2 )),2( 1) ( , , ) ( , , ) (22) j r j r k k k r k j j r r k r k j j r r v v v v v v P v v P A A A A A A                                              
  • 13. The structure of determining matrices for a class of… www.ijmsi.org 26 | P a g e If r = 0, then r – 1 = -1 < 0. Therefore, the summations with r = 0 vanish, with (2.12) transforming to: 2 1 1 1 2 2 0 2 1 1 0( 1 ( 1) ),1( 2 ),2( 1) 1 1 0( 1 ( 1) ),1( 2 )),2( ) ( , , ) ( , , ) with leading . , (23) k k j r j r k r k j j r r k r k j j r r v v v v v v P v v P A A A A A A                                             Finally, 1( )kQ jh = (20) + (21) + (23), the same expression in each summation, but with leading 0 1 2, andA A A respectively. Consequently, 1 1 2 1 0 1 1 0( ( 1) ),1( 2 ),2( )( , , ) ( ) ,k j k r k r k j j r r v v v v P Q jh A A                      completing the proof of the theorem for j odd. Hence the theorem has been proved for both cases; therefore, the validity of the theorem is established. 3.2 Theorem on ( ); 1k Q jh j k  1 2 2 0 1 0( ),1(2 2 ),2( )( , , ) For 1, , integers, ( ) , 1 2 0, 2 1 k k k j r k r k j r r j k v v v v P j k j k Q jh A A j k j k                              Proof Consider ( ),for 1.k Q jh j k  1 1 2For 1, we appeal to lemma 1.4 to obtain ( ) ( ) , if 1 , if 2 0, if 3 k k Q jh Q jh A j A j j         Hence, 1 ( ) sgn(max{0, 3 }), 1.j Q jh A j j   If j = 1, then 2 1 2 2 k j  ; so r = 0 and the rhs summation 1.A If j = 2, then 2 0 2 k j  ; so r = 0, and the rhs summation 2.A 2 1 If 3, then ;so is infeasible the rhs summation 0,for 3. 2 2 k j j r j        Therefore, in the stated formula, 1( ) sgn(max{0, 3 }),jQ jh A j  in agreement with lemma 2.5. Therefore the theorem is valid for 1, .k j k  Assume that the theorem is valid for 1 ,for some integer . Then, for 1,k n j n j n     1 0 1 2( ) ( ) ([ 1] ) ([ 2] ).n n n nQ jh A Q jh A Q j h A Q j h     
  • 14. The structure of determining matrices for a class of… www.ijmsi.org 27 | P a g e We may apply the induction hypothesis to ( )nQ jh to get 1 2 2 0 1 0( ),1(2 2 ),2( )( , , ) since .( ) , n j n r n n r n j r r j n v v v v P j nQ jh A A                   Now, 1 1 , or 1.j n j n n j       So, we may apply the induction principle to ([ 1] )n Q j h to get 2 [ 1] 2 0 1 1 0( ),1(2 [ 1] 2 ),2( [ 1] )( , , ) ([ 1] ) ,n n j r n n r n j r r j n v v v v P Q j h A A                       where all permutations are feasible. If 2 ,j n  apply the induction hypothesis to ([ 2] )n Q j h , to get 2 [ 2] 2 0 1 1 0( ),1(2 [ 2] 2 ),2( [ 2] )( , , ) ([ 2] ) . n j n r n n r n j r r j n v v v v P Q j h A A                       Hence, 1( )nQ jh 2 2 [ 1] 2 2 0 1 0 0 1 1 1 10( ),1(2 2 ),2( ) 0( ),1(2 [ 1] 2 ),2( [ 1] )( , , ) ( , , ) n j n j r r n n n nr n j r r j n r n j r r j n v v v v v v P v v P A A A A A A                                            1 2 [ 2] 2 2 0 1 0( ),1(2 [ 2] 2 ),2( [ 2] )( , , ) n n j v v r n r n j r r j nv v P A A A                      Case: j even. Then 2n j is even. So 1 1 (2 ) ; 2 ( 2) is even,so (2 [ 2]) 1 2 2 2 2 j j n j n n j n j n n j                                2 [ 1]n j  is odd. So 1 1 (2 [ 1]) (2 [ 1] 1) . 2 2 2 j n j n j n                            1 2( 1) is even; so (2[ 1] ) 1 . 2 2 j n j n j n               Hence: 1 1 0( ),1(2 2 ),2( ) 2 1 0 0 ( , , ) (24)( ) n n r n j r r j n j n v vn r v v P Q jh A A A             1 2 1 0 1 0( ),1(2 1 2 ),2( 1 )( , , ) (25)n j n v v r n r n j r r j nv v P A A A             
  • 15. The structure of determining matrices for a class of… www.ijmsi.org 28 | P a g e 1 1 2 2 0 1 0( ),1(2[ 1] 2 ),2( [ 1] 1)( , , ) (26)n j n v v r n r n j r r j nv v P A A A                Use the change of variables 1, in (2.14) to getr r  1 1 1 10( 1),1(2 2[ 1]),2( 1 ) 0( 1),1(2[ 1] 2 ),2( [ 1]) 1 1 0( 1),1(2[ 1] 2 ),2( [ 1]) 1 1 2 2 0 0 1 ( , , ) 1 ( , , ) 1 2 0 0 ( , , ) , n n n nr n j r r j n r n j r r j n n n r n j r r j n j j n n v v v v r v v P r v v P j n v v r v v P A A A A A A A A A                                                   (since the summation with 0r  is infeasible and hence equals 0). 1 1 0 1 1 0( ),1(2[ 1] 2 ),2( [ 1]) 2( 1) 2 0 ( , , ) with a leading . (27),n n r n j r r j n n j v v r v v P AA A                           If we set 1 ,in (25), then 2 j r n   2 1 2 2 1 2 2 1; so then j r n j n j           Therefore (2.15) is the same expression as:summations with 1 vanish, being infeasible. 2 j r n   1 2 1 0 2( 1) 2 0 1 1 0( ),1(2 1 2 ),2( [ 1]) 1 1 1 1 0( ),1(2 1 2 ),2( [ 1]) ( , , ) ( , , ) , (28) j n r n j r n n r n j r r j n n n r n j r r j n v v v v P v v v v P A A A A A                                        with a leading 1A . Clearly (2.16) is the same expression as: 1 1 1 1 0( ),1(2 1 2 ),2( [ 1]) 2( 1) 2 0 ( , , ) , (29)n n r n j r r j n n j v v r v v P A A                           with a leading 2.A Add up (27), (28) and (29) to obtain:
  • 16. The structure of determining matrices for a class of… www.ijmsi.org 29 | P a g e 1 1 1 1 0( ),1(2 1 2 ),2( [ 1]) 2( 1) 2 1 0 ( , , ) ( ) .n n r n j r r j n n j v vn r v v P Q jh A A                             Hence, the theorem is valid for all 1;j n  this completes the proof for the case j even. Now consider the case: j odd. Then 2n – is odd. Therefore, 1 1 1 (2 ) (2 1) ( 1), 2 2 2 1 1 1 2 ( 2) is odd;so, (2 ( 2) (2 ( 2) 1) 1 ( 1) 2 2 2 n j n j n j n j n j n j n j                                                          1 1 1 (2 ) (2 1) ( 1). Clearly, 2 ( 1) is even; 2 2 2 1 1 1 1 so, (2 ( 1) (2 ( 1) (2[ 1] 1 ) 1 ( 1) 2 2 2 2 n j n j n j n j n j n j n j n j                                                 1 1 1 2( 1) is odd; so, (2[ 1] ) (2[ 1] 1) 1 ( 1). 2 2 2 n j n j n j n j                                Hence: 1( )nQ jh 1 1 0( ),1(2 2 ),2( ) ( 1) 2 0 0 ( , , ) (30)n n r n j r r j n j n v v r v v P A A A             1 1 0( ),1(2 1 2 ),2( 1 ) ( 1) 1 2 1 0 ( , , ) (31)n n r n j r r j n j n v v r v v P A A A                1 1 0( ),1(2[ 1] 2 ),2( [ 1] 1) ( 1) 1 2 2 0 ( , , ) (32)n n r n j r r j n j n v v r v v P A A A                 Note that   as earlier established 2( 1)1 1 ( 1) , 2 2 n j n j                .Therefore using the change of variables 1r r  ,in (30),we see that (30) is exactly the same expression as
  • 17. The structure of determining matrices for a class of… www.ijmsi.org 30 | P a g e 0 1 1 0( 1),1(2[ 1] 2 ),2( [ 1]) 1 1 1 1 0( ),1(2[ 1] 2 ),2( [ 1]) 11 ( 1) 2 0 0 ( , , ) 2( 1) 2 0 ( , , ) with a leading . (33), n n r n j r r j n n n r n j r r j n n j v v r v v P n j v v r v v P A A A A A A                                             (31) is exactly the same expression as: 1 1 1 1 0( ),1(2[ 1] 2 ),2( [ 1]) 1 2( 1) 2 0 ( , , ) with a leading ., (34)n n r n j r r j n n j v v r v v P AA A                          (32) is exactly the same expression as: 1 1 1 1 0( ),1(2[ 1] 2 ),2( [ 1]) 2 2( 1) 2 0 ( , , ) with a leading ., (35)n n r n j r r j n n j v v r v v P AA A                          Add up (33), (34) and (35) to obtain: 1 1 1 1 0( ),1(2[ 1] 2 ),2( [ 1]) 2( 1) 2 1 0 ( , , ) ( ) , (36)n n r n j r r j n n j v vn r v v P Q jh A A                            proving the theorem for j odd, for the contingency 2 .j n  Last case: – 2 < n . Then 2;but 1,forcing 1.j n j n j n      We invoke theorem 3.1 to conclude that 1 1 1 1 0( 1 ( 1)),1( 1 2 ),2( ) 1) 2 1 0 ( , , ) ([ 1] ) .n n r n n n r r n v vn r v v P Q n h A A                             Now set 1j n  , in the expression for 1( )nQ jh , in theorem 3.2, to get 1 1 1 1 0( )),1( 1 2 ),2( ) 1) 2 1 0 ( , , ) ([ 1] ) ,n n r n r r n v vn r v v P Q n h A A                         exactly the same expression as in theorem 3.1. This completes the proof of theorem 3.2. Remarks The expressions for ( )kQ jh in theorems 3.1 and 3.2 coincide when 0,j k  as should be expected. IV. CONCLUSION The results in this article bear eloquent testimony to the fact that we have comprehensively extended the previous single-delay result by Ukwu (1992) together with appropriate embellishments through the
  • 18. The structure of determining matrices for a class of… www.ijmsi.org 31 | P a g e unfolding of intricate inter–play of the greatest integer function and the permutation objects in the course of deriving the expressions for the determining matrices. By using the greatest integer function analysis, change of variables technique and deft application of mathematical induction principles we were able to obtain the structure of the determining matrices for the double–delay control model, without which the computational investigation of Euclidean controllability would be impossible. The mathematical icing on the cake was our deft application of the max and sgn functions and their composite function sgn (max {.,.}) in the expressions for determining matrices. Such applications are optimal, in the sense that they obviate the need for explicit piece–wise representations of those and many other discrete mathematical objects and some others in the continuum. REFERENCES [1] Gabasov, R. and Kirillova, F. The qualitative theory of optimal processes ( Marcel Dekker Inc., New York, 1976). [2] Ukwu, C. Euclidean controllability and cores of euclidean targets for differential difference systems Master of Science Thesis in Applied Math. with O.R. (Unpublished), North Carolina State University, Raleigh, N. C. U.S.A., 1992. [3] Ukwu, C. An exposition on Cores and Controllability of differential difference systems, ABACUS, Vol. 24, No. 2, 1996, pp. 276- 285. [4] Ukwu, C. On determining matrices, controllability and cores of targets of certain classes of autonomous functional differential systems with software development and implementation. Doctor of Philosophy Thesis, UNIJOS, 2013a (In progress). [5] Chidume, C. An introduction to metric spaces. The Abdus Salam, International Centre for Theoretical Physics, Trieste, Italy, (2003). [6] Chidume, C. Applicable functional analysis (The Abdus Salam, International Centre for Theoretical Physics, Trieste, Italy, 2007). [7] Royden, H.L. Real analysis (3rd Ed. Macmillan Publishing Co., New York, 1988). [8] Chukwu, E. N. Stability and time-optimal control of hereditary systems (Academic Press, New York, 1992). [9] Hale, J. K. Theory of functional differential equations. Applied Mathematical Science, Vol. 3, 1977, Springer-Verlag, New York. [10] Tadmore, G. Functional differential equations of retarded and neutral types: Analytical solutions and piecewise continuous controls, Journal of Differential Equations, Vol. 51, No. 2, 1984, Pp. 151-181. [11] Wikipedia, Analytic function. Retrieved September 11, 2010 from http://en.wikipedia.org/wiki/Analytic_function. [12] Wikipedia, Bounded variation, Retrieved December 30, 2012 from http://en.wikipedia.org/wiki/Bounded_variation.