SlideShare une entreprise Scribd logo
1  sur  4
Télécharger pour lire hors ligne
International Refereed Journal of Engineering and Science (IRJES)
ISSN (Online) 2319-183X, (Print) 2319-1821
Volume 2, Issue 6 (June 2013), PP. 50-53
www.irjes.com
www.irjes.com 50 | Page
Distributed Localization in Wireless SensorNetworks
Mrs.P.D.Patil1
, Dr (Smt).R.S.Patil2
1
(Department of Electronics and Telecommunication, DYPatil college of Engg& Technology, India)
ABSTRACT: Due to the success of the emerging wireless sensor network (WSN) technology, localization has
newly received research interest. This interest is expected to grow further with the proliferation of wireless
sensor network applications such as medicine, military, transport. In this context routing, protocols and
technologies of communication on those wireless area are enormously applied to sensor networks in order to
improve the quality of service and communication. Related to this work, we present a distributed algorithm for
localization of nodes in a discrete model of a random ad hoc communication network.
Keywords: Localization, WSN.
I. INTRODUCTION
Recent advances in micro-electro-mechanical system(MEMS), computing, and communication
technology have fomented the emergence of massively distributed, wireless sensor networks consisting of
hundreds or thousands of nodes. Each node is able to sense the environment, perform simple computations, and
communicate with its peers or to an external observer. The challenges these networks present are far beyond the
reach of the current theory and algorithms[1]. One way of deploying a sensor network is to scatter the nodes
throughout some region of interest. This makes the network topology random. Since there is no a priori
communication protocol, the network is ad hoc. The first task that has to be solved is to localize the nodes i.e.,
to compute their positions in some fixed coordinate system. Since most applications (such as tracking an object
moving through the network, environmental monitoring, etc.) depend on a successful localization, it is of great
importance to design scalable localization algorithms and provide error estimates that will enable us to choose
optimal network parameters before deployment.
1.1. COMPARISON CENTRALIZED AND DISTRIBUTED ALGORITHMS
Centralized and distributed distance-based localization algorithms can be compared from perspectives
of location estimation accuracy, implementation and computation issues, and energy consumption. It is worth
noting that decentralized localization is strictly harder than centralized, i.e., any algorithm for decentralized
localization can always be applied to centralized problems, but not the reverse.
From the perspective of location estimation accuracy, centralized algorithms are likely to provide more
accurate location estimates than distributed algorithms. However centralized algorithms suffer from the
scalability problem and generally are not feasible to be implemented for large scale sensor networks. Other
disadvantages of centralized algorithms, as compared to distributed algorithms, are their requirement of higher
computational complexity and lower reliability due to accumulated information inaccuracies/losses caused by
multi-hop transmission over a wireless network[2].
On the other hand, distributed algorithms are more difficult to design because of the potentially
complicated relationship between local behavior and global behavior, e.g., algorithms that are locally optimal
may not perform well in a global sense. Optimal distribution of the computation of a centralized algorithm in a
distributed implementation in general is an unsolved research problem. Error propagation is another potential
problem in distributed algorithms. Moreover, distributed algorithms generally require multiple iterations to
arrive a stable solution which may cause the localization process to take longer time than the acceptable in some
cases.
To compare the centralized and distributed distance-based localization algorithms from the
communication energy consumption perspective, one needs to consider the individual amounts of energy
required for each type of operation in the localization algorithm in the specific hardware and the transmission
range setting. Depending on the setting, the energy required for transmitting a single bit could be used to
execute 1,000 to 2,000 instructions[3]. Centralized algorithms in large networks require each sensor’s
measurements to be sent over multiple hops to a central processor, while distributed algorithms require only
local information exchange between neighboring nodes but many such local exchanges may be required,
depending on the number of iterations needed to arrive at a stable solution.
1.2. BENEFITS OF DISTRIBUTED ALGORITHMS
Distributed Localization in Wireless Sensor Networks
www.irjes.com 51 | Page
Due to high long range communication costs and low battery power, it is natural to seek decentralized,
distributed algorithms for sensor networks. This means that instead of relaying data to a central location which
does all the computing, the nodes process information in a collaborative, distributed way. For instance, they can
form computational clusters, based on their distance from each other. The outcome of these distributed, local
computations is stored in local memory and can then be, when necessary, relayed to a centralized computing
unit. Robustness to node failures is another reason to seek distributed rather than centralized algorithms.
This paper is organized as follows. In Section 2, we establish the setting and introduce the basic terminology
and notation. In Section 3, we discuss the basic localization algorithm which described in Section 4, and provide
error estimates and simulation results.
II. PRIMARY WORKS
In this section we introduce the basic framework, terminology, and notation.We assume that in a square
region Q = [0, s] × [0, s], called the region of operations, we randomly scatter N nodes,S1 , . . . , SN , each of which
is equipped with an RF transceiver with communication range r > 0. In other words, a node Si can communicate
with every node which lies in its communication region, which is the disk with radius r centered at Si. Each
node has a unique ID which is a number between 1 and N. The nodes form an ad hoc network N in which there
is an edge between Si and Sj ,when their distance is less than r. We will call this the continuous model. Even
though it is a rather simplified model of how the network is formed, we adopt it because it leads to an easier
analytical treatment. However, instead of a disk of radius r, the communication range of a node could instead be
an annulus (in case a node is able to decide when a nearby node is at a distance greater than some threshold,
based, e.g., on signal strength), an angular sector (if a node is equipped, say, with laser transmitters and
receivers that can scan through some angle) or an intersection of an annulus and an angular sector. More
information on these types of constraints is available in [4].
We assume that a certain positive number K of nodes know their location in Q, i.e., they are able to
compute their position relative to some fixed coordinate system in Q.In practice this can be achieved by
equipping K motes with GPS or a priori (meaning before deploying the ad hoc network) placing in Q .A certain
number of beacons which can serve to compute the position of the nodes which are within certain distance from
them. We call nodes that know their position as known nodes or beacon nodes and all other ones, unknown
nodes. Furthermore, each node has communication as well as sensing capabilities [5].
The problems we address in this paper are:
 Design a distributed algorithm for localization of nodes in.N.
 Estimate the complexity and error of the above algorithm.
 Find an optimal number of known nodes depending on Q, N and r, which minimizes the error of the
algorithm.
Centralized algorithms for localization were studied in [1, 2]. The reason we are interested in a
distributed rather than a centralized solution is that we envision a massively distributed network in which
communication with a centralized computer is expensive both because the power supply of each node is very
limited and long-range multi-hop data transmission is costly and often inefficient.
However, one quickly discovers that obtaining analytical estimates even in this simple setting can be rather
challenging. Furthermore, in the design of a decentralized algorithm relying on node-based data processing, one
must take into account that nodes have very limited computational power. This motivates the following discrete
approach to the above problems.
Let n > 0 be an integer. Partition Q into n2
congruent squares called cells of area
s
n
2
and suppose that for every
known node S, we are only interested in finding the cell which contains S. To make this problem tractable, we
make a simplifying assumption that the communication range is ρ cells in the max metric, distancedenoted by
dist∞. It is defined by
dist∞ ((i, j), (i` , j` )) = max(|i–i` |, |j – j`|)
Where (i, j) is initial distance vector, (i`, j`) is final distance vector. It is possible for several nodes to lie inthe
same cell. We call this the discretemodel of the network. For example, we can take
ρ =
nr
s 2
Each node S can communicate with every node lying in the square centered at S and containing
(2ρ + 1)2
cells. Since all our results are independent of the choice of ρ as a function of r and n, we can clearly
select a different value for it. The situation where r is fixed and s, n → ∞ corresponds to increasing the size of
the region of operations, while the situation where r/n and s stay constant while n → ∞ corresponds to refining
the position estimate. We usually think of n as large and r as much smaller than n. In particular, 2ρ + 1 < n.
Distributed Localization in Wireless Sensor Networks
www.irjes.com 52 | Page
Figure 1: Discrete model. Filled circles denote unknown nodes. The dashed line bounds thecommunication
range of the node at its center, with ρ = 3.
III. DISTRIBUTED ALGORITHM FOR LOCALIZATION
In this section we present a simple distributed algorithm for localization, based on the ideas in the
previous section.
Let S be an arbitrary unknown node in N. The localization algorithm LOCS at S then goes as follows –
Step 1. INITIALIZE the estimate:Ls = Q.
Step 2.SEND “Hello, can you hear me?”
Each known neighbor sends back (1, a, b), where (a, b) is its grid position, while each unknown neighbor sends
(0, 0, 0).
Step 3.For each response (1, a, b), UPDATE the estimate by
Ls ≔ Ls ∩ a − ρ, a + ρ × [b − ρ, b + ρ]
Step 4.STOP when all responses have been received. The position estimate is 𝐿 𝑠
IV. SIMULATION RESULTS
To analyze performance of algorithm, we have taken three scenarios by varying number of nodes, n
and number of beacon nodes, K in the network, where –
n = Unknown nodes + K;
Scenario 1: Chose No. of beacon nodes, K= 5.
Case 1: Chose unknown nodes=45 and calculated their positions.
Case 2: Chose unknown nodes=95 and calculated their positions.
Case 3: Chose unknown nodes=145 and calculated their positions.
Then we have calculated the performance of algorithm as shown in Fig. 2.
Figure 2: Performance of Network for K=5 and n=50,100 and 150.
Scenario 2: Chose No. of beacon nodes, K= 10.
Case 1: Chose unknown nodes=40 and calculated their positions.
Case 2: Chose unknown nodes=90 and calculated their positions.
Case 3: Chose unknown nodes=140 and calculated their positions.Then we have calculated the performance of
algorithm as shown in Fig. 3.
Distributed Localization in Wireless Sensor Networks
www.irjes.com 53 | Page
Figure 3: Performance of Network for K=10 and n=50,100 and 150.
Scenario 3: Chose No. of beacon nodes, K= 15.
Case 1: Chose unknown nodes=35 and calculated their positions.
Case 2: Chose unknown nodes=85 and calculated their positions.
Case 3: Chose unknown nodes=135 and calculated their positions.
Then we have calculated the performance of algorithm as shown in Fig. 4
Figure 4: Performance of Network for K=15 and n=50,100 and 150.
Observe that the error of the algorithm steadily increases as total no. of nodes (n) increases. However,
the error does not change considerably for K>=10.
V. CONCLUSION
The main contributions of this paper are a distributed algorithm for localization of nodes in a wireless
ad hoc communication network and estimates of its error. There are many possible improvements of the
algorithm.
REFERENCES
[1]. AmitangshuPal,“Localization Algorithms in Wireless Sensor. Networks: Current Approaches and Future
Challenges”, macrothink, 2010, Vol. 2, No. 1
[2]. Zhetao Li, Renfa Li, Yehua Wei and Tingrui Pei, 2010.” Survey of Localization Techniques in Wireless Sensor
Networks”. Information Technology Journal, 9: 1754-1757.
[3]. J. Chen, K. Yao, and R. Hudson, “Source localization and beamforming,” IEEE Signal Processing Magazine, vol.
19, no. 2, pp. 30–39, 2002.
[4]. L. Doherty. Algorithms for position and data recovery in wireless sensor networks. Master’s thesis, UC Berkeley,
2000.
[5]. J.M. Kahn, R.H. Katzand, and K.S.J. Pister. Mobile networking for Smart Dust. In ACM/IEEE Intl. Conf. on
Mobile Computing and Networking, Seattle, WA, August 1999

Contenu connexe

Tendances

CP-NR Distributed Range Free Localization Algorithm in WSN
CP-NR Distributed Range Free Localization Algorithm in WSNCP-NR Distributed Range Free Localization Algorithm in WSN
CP-NR Distributed Range Free Localization Algorithm in WSNIJAAS Team
 
Energy efficient approach based on evolutionary algorithm for coverage contro...
Energy efficient approach based on evolutionary algorithm for coverage contro...Energy efficient approach based on evolutionary algorithm for coverage contro...
Energy efficient approach based on evolutionary algorithm for coverage contro...ijcseit
 
Optimum Sensor Node Localization in Wireless Sensor Networks
Optimum Sensor Node Localization in Wireless Sensor NetworksOptimum Sensor Node Localization in Wireless Sensor Networks
Optimum Sensor Node Localization in Wireless Sensor Networkspaperpublications3
 
International Journal of Advanced Smart Sensor Network Systems (IJASSN)
International Journal of Advanced Smart Sensor Network Systems (IJASSN)International Journal of Advanced Smart Sensor Network Systems (IJASSN)
International Journal of Advanced Smart Sensor Network Systems (IJASSN)ijcseit
 
Intrusion detection in heterogeneous network by multipath routing based toler...
Intrusion detection in heterogeneous network by multipath routing based toler...Intrusion detection in heterogeneous network by multipath routing based toler...
Intrusion detection in heterogeneous network by multipath routing based toler...eSAT Journals
 
Intrusion detection in heterogeneous network by multipath routing based toler...
Intrusion detection in heterogeneous network by multipath routing based toler...Intrusion detection in heterogeneous network by multipath routing based toler...
Intrusion detection in heterogeneous network by multipath routing based toler...eSAT Publishing House
 
localization in wsn
localization in wsnlocalization in wsn
localization in wsnnehabsairam
 
Spatial Correlation Based Medium Access Control Protocol Using DSR & AODV Rou...
Spatial Correlation Based Medium Access Control Protocol Using DSR & AODV Rou...Spatial Correlation Based Medium Access Control Protocol Using DSR & AODV Rou...
Spatial Correlation Based Medium Access Control Protocol Using DSR & AODV Rou...IOSR Journals
 
On Multihop Distances in Wireless Sensor Networks with Random Node Locations
On Multihop Distances in Wireless Sensor Networks with Random Node LocationsOn Multihop Distances in Wireless Sensor Networks with Random Node Locations
On Multihop Distances in Wireless Sensor Networks with Random Node Locationsambitlick
 
Wireless Sensor Network: Topology Issues
Wireless Sensor Network: Topology IssuesWireless Sensor Network: Topology Issues
Wireless Sensor Network: Topology Issuesijsrd.com
 
Uwb localization of nodes for
Uwb localization of nodes forUwb localization of nodes for
Uwb localization of nodes forijistjournal
 
Energy efficient routing in wireless sensor networks
Energy efficient routing in wireless sensor networksEnergy efficient routing in wireless sensor networks
Energy efficient routing in wireless sensor networksSpandan Spandy
 

Tendances (16)

CP-NR Distributed Range Free Localization Algorithm in WSN
CP-NR Distributed Range Free Localization Algorithm in WSNCP-NR Distributed Range Free Localization Algorithm in WSN
CP-NR Distributed Range Free Localization Algorithm in WSN
 
Ijetr012022
Ijetr012022Ijetr012022
Ijetr012022
 
Energy efficient approach based on evolutionary algorithm for coverage contro...
Energy efficient approach based on evolutionary algorithm for coverage contro...Energy efficient approach based on evolutionary algorithm for coverage contro...
Energy efficient approach based on evolutionary algorithm for coverage contro...
 
Ijnsa050209
Ijnsa050209Ijnsa050209
Ijnsa050209
 
Optimum Sensor Node Localization in Wireless Sensor Networks
Optimum Sensor Node Localization in Wireless Sensor NetworksOptimum Sensor Node Localization in Wireless Sensor Networks
Optimum Sensor Node Localization in Wireless Sensor Networks
 
Ijcnc050207
Ijcnc050207Ijcnc050207
Ijcnc050207
 
International Journal of Advanced Smart Sensor Network Systems (IJASSN)
International Journal of Advanced Smart Sensor Network Systems (IJASSN)International Journal of Advanced Smart Sensor Network Systems (IJASSN)
International Journal of Advanced Smart Sensor Network Systems (IJASSN)
 
Intrusion detection in heterogeneous network by multipath routing based toler...
Intrusion detection in heterogeneous network by multipath routing based toler...Intrusion detection in heterogeneous network by multipath routing based toler...
Intrusion detection in heterogeneous network by multipath routing based toler...
 
Intrusion detection in heterogeneous network by multipath routing based toler...
Intrusion detection in heterogeneous network by multipath routing based toler...Intrusion detection in heterogeneous network by multipath routing based toler...
Intrusion detection in heterogeneous network by multipath routing based toler...
 
localization in wsn
localization in wsnlocalization in wsn
localization in wsn
 
Spatial Correlation Based Medium Access Control Protocol Using DSR & AODV Rou...
Spatial Correlation Based Medium Access Control Protocol Using DSR & AODV Rou...Spatial Correlation Based Medium Access Control Protocol Using DSR & AODV Rou...
Spatial Correlation Based Medium Access Control Protocol Using DSR & AODV Rou...
 
On Multihop Distances in Wireless Sensor Networks with Random Node Locations
On Multihop Distances in Wireless Sensor Networks with Random Node LocationsOn Multihop Distances in Wireless Sensor Networks with Random Node Locations
On Multihop Distances in Wireless Sensor Networks with Random Node Locations
 
Wireless Sensor Network: Topology Issues
Wireless Sensor Network: Topology IssuesWireless Sensor Network: Topology Issues
Wireless Sensor Network: Topology Issues
 
Uwb localization of nodes for
Uwb localization of nodes forUwb localization of nodes for
Uwb localization of nodes for
 
Energy efficient routing in wireless sensor networks
Energy efficient routing in wireless sensor networksEnergy efficient routing in wireless sensor networks
Energy efficient routing in wireless sensor networks
 
F04503057062
F04503057062F04503057062
F04503057062
 

Similaire à International Refereed Journal of Engineering and Science (IRJES)

International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)inventionjournals
 
Direct_studies_report13
Direct_studies_report13Direct_studies_report13
Direct_studies_report13Farhad Gholami
 
CUBOID-BASED WIRELESS SENSOR NETWORK LOCALIZATION ALGORITHM
CUBOID-BASED WIRELESS SENSOR NETWORK LOCALIZATION ALGORITHM CUBOID-BASED WIRELESS SENSOR NETWORK LOCALIZATION ALGORITHM
CUBOID-BASED WIRELESS SENSOR NETWORK LOCALIZATION ALGORITHM ijassn
 
3D Localization Algorithms for Wireless Sensor Networks
3D Localization Algorithms for Wireless Sensor Networks3D Localization Algorithms for Wireless Sensor Networks
3D Localization Algorithms for Wireless Sensor NetworksIOSR Journals
 
DISTRIBUTED COVERAGE AND CONNECTIVITY PRESERVING ALGORITHM WITH SUPPORT OF DI...
DISTRIBUTED COVERAGE AND CONNECTIVITY PRESERVING ALGORITHM WITH SUPPORT OF DI...DISTRIBUTED COVERAGE AND CONNECTIVITY PRESERVING ALGORITHM WITH SUPPORT OF DI...
DISTRIBUTED COVERAGE AND CONNECTIVITY PRESERVING ALGORITHM WITH SUPPORT OF DI...IJCSEIT Journal
 
The Expansion of 3D wireless sensor network Bumps localization
The Expansion of 3D wireless sensor network Bumps localizationThe Expansion of 3D wireless sensor network Bumps localization
The Expansion of 3D wireless sensor network Bumps localizationIJERA Editor
 
International Journal of Computer Science, Engineering and Information Techno...
International Journal of Computer Science, Engineering and Information Techno...International Journal of Computer Science, Engineering and Information Techno...
International Journal of Computer Science, Engineering and Information Techno...ijcseit
 
ENERGY EFFICIENT APPROACH BASED ON EVOLUTIONARY ALGORITHM FOR COVERAGE CONTRO...
ENERGY EFFICIENT APPROACH BASED ON EVOLUTIONARY ALGORITHM FOR COVERAGE CONTRO...ENERGY EFFICIENT APPROACH BASED ON EVOLUTIONARY ALGORITHM FOR COVERAGE CONTRO...
ENERGY EFFICIENT APPROACH BASED ON EVOLUTIONARY ALGORITHM FOR COVERAGE CONTRO...ijcseit
 
Shortest path algorithm for data transmission in wireless ad hoc sensor networks
Shortest path algorithm for data transmission in wireless ad hoc sensor networksShortest path algorithm for data transmission in wireless ad hoc sensor networks
Shortest path algorithm for data transmission in wireless ad hoc sensor networksijasuc
 
2015 11-07 -ad_hoc__network architectures and protocol stack
2015 11-07 -ad_hoc__network architectures and protocol stack2015 11-07 -ad_hoc__network architectures and protocol stack
2015 11-07 -ad_hoc__network architectures and protocol stackSyed Ariful Islam Emon
 
An Adaptive Cluster Based Routing Protocol for WSN
An Adaptive Cluster Based Routing Protocol for WSNAn Adaptive Cluster Based Routing Protocol for WSN
An Adaptive Cluster Based Routing Protocol for WSNEswar Publications
 
Energy Efficient Modeling of Wireless Sensor Networks using Random Graph Theory
Energy Efficient Modeling of Wireless Sensor Networks using Random Graph TheoryEnergy Efficient Modeling of Wireless Sensor Networks using Random Graph Theory
Energy Efficient Modeling of Wireless Sensor Networks using Random Graph Theoryidescitation
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Computational Geometry based Remote Networking
Computational Geometry based Remote NetworkingComputational Geometry based Remote Networking
Computational Geometry based Remote Networkingidescitation
 
A STRUCTURED DEEP NEURAL NETWORK FOR DATA-DRIVEN LOCALIZATION IN HIGH FREQUEN...
A STRUCTURED DEEP NEURAL NETWORK FOR DATA-DRIVEN LOCALIZATION IN HIGH FREQUEN...A STRUCTURED DEEP NEURAL NETWORK FOR DATA-DRIVEN LOCALIZATION IN HIGH FREQUEN...
A STRUCTURED DEEP NEURAL NETWORK FOR DATA-DRIVEN LOCALIZATION IN HIGH FREQUEN...IJCNCJournal
 
Modified Coverage Hole Detection Algorithm for Distributed WSNs
Modified Coverage Hole Detection Algorithm for Distributed WSNsModified Coverage Hole Detection Algorithm for Distributed WSNs
Modified Coverage Hole Detection Algorithm for Distributed WSNsidescitation
 
NS2 Projects 2014
NS2 Projects 2014 NS2 Projects 2014
NS2 Projects 2014 Senthilvel S
 

Similaire à International Refereed Journal of Engineering and Science (IRJES) (20)

International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
Q026201030106
Q026201030106Q026201030106
Q026201030106
 
Direct_studies_report13
Direct_studies_report13Direct_studies_report13
Direct_studies_report13
 
CUBOID-BASED WIRELESS SENSOR NETWORK LOCALIZATION ALGORITHM
CUBOID-BASED WIRELESS SENSOR NETWORK LOCALIZATION ALGORITHM CUBOID-BASED WIRELESS SENSOR NETWORK LOCALIZATION ALGORITHM
CUBOID-BASED WIRELESS SENSOR NETWORK LOCALIZATION ALGORITHM
 
3D Localization Algorithms for Wireless Sensor Networks
3D Localization Algorithms for Wireless Sensor Networks3D Localization Algorithms for Wireless Sensor Networks
3D Localization Algorithms for Wireless Sensor Networks
 
DISTRIBUTED COVERAGE AND CONNECTIVITY PRESERVING ALGORITHM WITH SUPPORT OF DI...
DISTRIBUTED COVERAGE AND CONNECTIVITY PRESERVING ALGORITHM WITH SUPPORT OF DI...DISTRIBUTED COVERAGE AND CONNECTIVITY PRESERVING ALGORITHM WITH SUPPORT OF DI...
DISTRIBUTED COVERAGE AND CONNECTIVITY PRESERVING ALGORITHM WITH SUPPORT OF DI...
 
The Expansion of 3D wireless sensor network Bumps localization
The Expansion of 3D wireless sensor network Bumps localizationThe Expansion of 3D wireless sensor network Bumps localization
The Expansion of 3D wireless sensor network Bumps localization
 
International Journal of Computer Science, Engineering and Information Techno...
International Journal of Computer Science, Engineering and Information Techno...International Journal of Computer Science, Engineering and Information Techno...
International Journal of Computer Science, Engineering and Information Techno...
 
ENERGY EFFICIENT APPROACH BASED ON EVOLUTIONARY ALGORITHM FOR COVERAGE CONTRO...
ENERGY EFFICIENT APPROACH BASED ON EVOLUTIONARY ALGORITHM FOR COVERAGE CONTRO...ENERGY EFFICIENT APPROACH BASED ON EVOLUTIONARY ALGORITHM FOR COVERAGE CONTRO...
ENERGY EFFICIENT APPROACH BASED ON EVOLUTIONARY ALGORITHM FOR COVERAGE CONTRO...
 
Shortest path algorithm for data transmission in wireless ad hoc sensor networks
Shortest path algorithm for data transmission in wireless ad hoc sensor networksShortest path algorithm for data transmission in wireless ad hoc sensor networks
Shortest path algorithm for data transmission in wireless ad hoc sensor networks
 
O026084087
O026084087O026084087
O026084087
 
2015 11-07 -ad_hoc__network architectures and protocol stack
2015 11-07 -ad_hoc__network architectures and protocol stack2015 11-07 -ad_hoc__network architectures and protocol stack
2015 11-07 -ad_hoc__network architectures and protocol stack
 
An Adaptive Cluster Based Routing Protocol for WSN
An Adaptive Cluster Based Routing Protocol for WSNAn Adaptive Cluster Based Routing Protocol for WSN
An Adaptive Cluster Based Routing Protocol for WSN
 
Energy Efficient Modeling of Wireless Sensor Networks using Random Graph Theory
Energy Efficient Modeling of Wireless Sensor Networks using Random Graph TheoryEnergy Efficient Modeling of Wireless Sensor Networks using Random Graph Theory
Energy Efficient Modeling of Wireless Sensor Networks using Random Graph Theory
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Computational Geometry based Remote Networking
Computational Geometry based Remote NetworkingComputational Geometry based Remote Networking
Computational Geometry based Remote Networking
 
L046027479
L046027479L046027479
L046027479
 
A STRUCTURED DEEP NEURAL NETWORK FOR DATA-DRIVEN LOCALIZATION IN HIGH FREQUEN...
A STRUCTURED DEEP NEURAL NETWORK FOR DATA-DRIVEN LOCALIZATION IN HIGH FREQUEN...A STRUCTURED DEEP NEURAL NETWORK FOR DATA-DRIVEN LOCALIZATION IN HIGH FREQUEN...
A STRUCTURED DEEP NEURAL NETWORK FOR DATA-DRIVEN LOCALIZATION IN HIGH FREQUEN...
 
Modified Coverage Hole Detection Algorithm for Distributed WSNs
Modified Coverage Hole Detection Algorithm for Distributed WSNsModified Coverage Hole Detection Algorithm for Distributed WSNs
Modified Coverage Hole Detection Algorithm for Distributed WSNs
 
NS2 Projects 2014
NS2 Projects 2014 NS2 Projects 2014
NS2 Projects 2014
 

Plus de irjes

Automatic Safety Door Lock System for Car
Automatic Safety Door Lock System for CarAutomatic Safety Door Lock System for Car
Automatic Safety Door Lock System for Carirjes
 
Squared Multi-hole Extrusion Process: Experimentation & Optimization
Squared Multi-hole Extrusion Process: Experimentation & OptimizationSquared Multi-hole Extrusion Process: Experimentation & Optimization
Squared Multi-hole Extrusion Process: Experimentation & Optimizationirjes
 
Analysis of Agile and Multi-Agent Based Process Scheduling Model
Analysis of Agile and Multi-Agent Based Process Scheduling ModelAnalysis of Agile and Multi-Agent Based Process Scheduling Model
Analysis of Agile and Multi-Agent Based Process Scheduling Modelirjes
 
Effects of Cutting Tool Parameters on Surface Roughness
Effects of Cutting Tool Parameters on Surface RoughnessEffects of Cutting Tool Parameters on Surface Roughness
Effects of Cutting Tool Parameters on Surface Roughnessirjes
 
Possible limits of accuracy in measurement of fundamental physical constants
Possible limits of accuracy in measurement of fundamental physical constantsPossible limits of accuracy in measurement of fundamental physical constants
Possible limits of accuracy in measurement of fundamental physical constantsirjes
 
Performance Comparison of Energy Detection Based Spectrum Sensing for Cogniti...
Performance Comparison of Energy Detection Based Spectrum Sensing for Cogniti...Performance Comparison of Energy Detection Based Spectrum Sensing for Cogniti...
Performance Comparison of Energy Detection Based Spectrum Sensing for Cogniti...irjes
 
Comparative Study of Pre-Engineered and Conventional Steel Frames for Differe...
Comparative Study of Pre-Engineered and Conventional Steel Frames for Differe...Comparative Study of Pre-Engineered and Conventional Steel Frames for Differe...
Comparative Study of Pre-Engineered and Conventional Steel Frames for Differe...irjes
 
Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model irjes
 
Energy Awareness and the Role of “Critical Mass” In Smart Cities
Energy Awareness and the Role of “Critical Mass” In Smart CitiesEnergy Awareness and the Role of “Critical Mass” In Smart Cities
Energy Awareness and the Role of “Critical Mass” In Smart Citiesirjes
 
A Firefly Algorithm for Optimizing Spur Gear Parameters Under Non-Lubricated ...
A Firefly Algorithm for Optimizing Spur Gear Parameters Under Non-Lubricated ...A Firefly Algorithm for Optimizing Spur Gear Parameters Under Non-Lubricated ...
A Firefly Algorithm for Optimizing Spur Gear Parameters Under Non-Lubricated ...irjes
 
The Effect of Orientation of Vortex Generators on Aerodynamic Drag Reduction ...
The Effect of Orientation of Vortex Generators on Aerodynamic Drag Reduction ...The Effect of Orientation of Vortex Generators on Aerodynamic Drag Reduction ...
The Effect of Orientation of Vortex Generators on Aerodynamic Drag Reduction ...irjes
 
An Assessment of The Relationship Between The Availability of Financial Resou...
An Assessment of The Relationship Between The Availability of Financial Resou...An Assessment of The Relationship Between The Availability of Financial Resou...
An Assessment of The Relationship Between The Availability of Financial Resou...irjes
 
The Choice of Antenatal Care and Delivery Place in Surabaya (Based on Prefere...
The Choice of Antenatal Care and Delivery Place in Surabaya (Based on Prefere...The Choice of Antenatal Care and Delivery Place in Surabaya (Based on Prefere...
The Choice of Antenatal Care and Delivery Place in Surabaya (Based on Prefere...irjes
 
Prediction of the daily global solar irradiance received on a horizontal surf...
Prediction of the daily global solar irradiance received on a horizontal surf...Prediction of the daily global solar irradiance received on a horizontal surf...
Prediction of the daily global solar irradiance received on a horizontal surf...irjes
 
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...irjes
 
The Role of Community Participation in Planning Processes of Emerging Urban C...
The Role of Community Participation in Planning Processes of Emerging Urban C...The Role of Community Participation in Planning Processes of Emerging Urban C...
The Role of Community Participation in Planning Processes of Emerging Urban C...irjes
 
Understanding the Concept of Strategic Intent
Understanding the Concept of Strategic IntentUnderstanding the Concept of Strategic Intent
Understanding the Concept of Strategic Intentirjes
 
The (R, Q) Control of A Mixture Inventory Model with Backorders and Lost Sale...
The (R, Q) Control of A Mixture Inventory Model with Backorders and Lost Sale...The (R, Q) Control of A Mixture Inventory Model with Backorders and Lost Sale...
The (R, Q) Control of A Mixture Inventory Model with Backorders and Lost Sale...irjes
 
Relation Between Stress And Menstrual Cycle At 18-21 Years Of Age
Relation Between Stress And Menstrual Cycle At 18-21 Years Of AgeRelation Between Stress And Menstrual Cycle At 18-21 Years Of Age
Relation Between Stress And Menstrual Cycle At 18-21 Years Of Ageirjes
 
Wave Transmission on Submerged Breakwater with Interlocking D-Block Armor
Wave Transmission on Submerged Breakwater with Interlocking D-Block ArmorWave Transmission on Submerged Breakwater with Interlocking D-Block Armor
Wave Transmission on Submerged Breakwater with Interlocking D-Block Armorirjes
 

Plus de irjes (20)

Automatic Safety Door Lock System for Car
Automatic Safety Door Lock System for CarAutomatic Safety Door Lock System for Car
Automatic Safety Door Lock System for Car
 
Squared Multi-hole Extrusion Process: Experimentation & Optimization
Squared Multi-hole Extrusion Process: Experimentation & OptimizationSquared Multi-hole Extrusion Process: Experimentation & Optimization
Squared Multi-hole Extrusion Process: Experimentation & Optimization
 
Analysis of Agile and Multi-Agent Based Process Scheduling Model
Analysis of Agile and Multi-Agent Based Process Scheduling ModelAnalysis of Agile and Multi-Agent Based Process Scheduling Model
Analysis of Agile and Multi-Agent Based Process Scheduling Model
 
Effects of Cutting Tool Parameters on Surface Roughness
Effects of Cutting Tool Parameters on Surface RoughnessEffects of Cutting Tool Parameters on Surface Roughness
Effects of Cutting Tool Parameters on Surface Roughness
 
Possible limits of accuracy in measurement of fundamental physical constants
Possible limits of accuracy in measurement of fundamental physical constantsPossible limits of accuracy in measurement of fundamental physical constants
Possible limits of accuracy in measurement of fundamental physical constants
 
Performance Comparison of Energy Detection Based Spectrum Sensing for Cogniti...
Performance Comparison of Energy Detection Based Spectrum Sensing for Cogniti...Performance Comparison of Energy Detection Based Spectrum Sensing for Cogniti...
Performance Comparison of Energy Detection Based Spectrum Sensing for Cogniti...
 
Comparative Study of Pre-Engineered and Conventional Steel Frames for Differe...
Comparative Study of Pre-Engineered and Conventional Steel Frames for Differe...Comparative Study of Pre-Engineered and Conventional Steel Frames for Differe...
Comparative Study of Pre-Engineered and Conventional Steel Frames for Differe...
 
Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model
 
Energy Awareness and the Role of “Critical Mass” In Smart Cities
Energy Awareness and the Role of “Critical Mass” In Smart CitiesEnergy Awareness and the Role of “Critical Mass” In Smart Cities
Energy Awareness and the Role of “Critical Mass” In Smart Cities
 
A Firefly Algorithm for Optimizing Spur Gear Parameters Under Non-Lubricated ...
A Firefly Algorithm for Optimizing Spur Gear Parameters Under Non-Lubricated ...A Firefly Algorithm for Optimizing Spur Gear Parameters Under Non-Lubricated ...
A Firefly Algorithm for Optimizing Spur Gear Parameters Under Non-Lubricated ...
 
The Effect of Orientation of Vortex Generators on Aerodynamic Drag Reduction ...
The Effect of Orientation of Vortex Generators on Aerodynamic Drag Reduction ...The Effect of Orientation of Vortex Generators on Aerodynamic Drag Reduction ...
The Effect of Orientation of Vortex Generators on Aerodynamic Drag Reduction ...
 
An Assessment of The Relationship Between The Availability of Financial Resou...
An Assessment of The Relationship Between The Availability of Financial Resou...An Assessment of The Relationship Between The Availability of Financial Resou...
An Assessment of The Relationship Between The Availability of Financial Resou...
 
The Choice of Antenatal Care and Delivery Place in Surabaya (Based on Prefere...
The Choice of Antenatal Care and Delivery Place in Surabaya (Based on Prefere...The Choice of Antenatal Care and Delivery Place in Surabaya (Based on Prefere...
The Choice of Antenatal Care and Delivery Place in Surabaya (Based on Prefere...
 
Prediction of the daily global solar irradiance received on a horizontal surf...
Prediction of the daily global solar irradiance received on a horizontal surf...Prediction of the daily global solar irradiance received on a horizontal surf...
Prediction of the daily global solar irradiance received on a horizontal surf...
 
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
 
The Role of Community Participation in Planning Processes of Emerging Urban C...
The Role of Community Participation in Planning Processes of Emerging Urban C...The Role of Community Participation in Planning Processes of Emerging Urban C...
The Role of Community Participation in Planning Processes of Emerging Urban C...
 
Understanding the Concept of Strategic Intent
Understanding the Concept of Strategic IntentUnderstanding the Concept of Strategic Intent
Understanding the Concept of Strategic Intent
 
The (R, Q) Control of A Mixture Inventory Model with Backorders and Lost Sale...
The (R, Q) Control of A Mixture Inventory Model with Backorders and Lost Sale...The (R, Q) Control of A Mixture Inventory Model with Backorders and Lost Sale...
The (R, Q) Control of A Mixture Inventory Model with Backorders and Lost Sale...
 
Relation Between Stress And Menstrual Cycle At 18-21 Years Of Age
Relation Between Stress And Menstrual Cycle At 18-21 Years Of AgeRelation Between Stress And Menstrual Cycle At 18-21 Years Of Age
Relation Between Stress And Menstrual Cycle At 18-21 Years Of Age
 
Wave Transmission on Submerged Breakwater with Interlocking D-Block Armor
Wave Transmission on Submerged Breakwater with Interlocking D-Block ArmorWave Transmission on Submerged Breakwater with Interlocking D-Block Armor
Wave Transmission on Submerged Breakwater with Interlocking D-Block Armor
 

Dernier

Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAndikSusilo4
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 

Dernier (20)

Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & Application
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 

International Refereed Journal of Engineering and Science (IRJES)

  • 1. International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 2, Issue 6 (June 2013), PP. 50-53 www.irjes.com www.irjes.com 50 | Page Distributed Localization in Wireless SensorNetworks Mrs.P.D.Patil1 , Dr (Smt).R.S.Patil2 1 (Department of Electronics and Telecommunication, DYPatil college of Engg& Technology, India) ABSTRACT: Due to the success of the emerging wireless sensor network (WSN) technology, localization has newly received research interest. This interest is expected to grow further with the proliferation of wireless sensor network applications such as medicine, military, transport. In this context routing, protocols and technologies of communication on those wireless area are enormously applied to sensor networks in order to improve the quality of service and communication. Related to this work, we present a distributed algorithm for localization of nodes in a discrete model of a random ad hoc communication network. Keywords: Localization, WSN. I. INTRODUCTION Recent advances in micro-electro-mechanical system(MEMS), computing, and communication technology have fomented the emergence of massively distributed, wireless sensor networks consisting of hundreds or thousands of nodes. Each node is able to sense the environment, perform simple computations, and communicate with its peers or to an external observer. The challenges these networks present are far beyond the reach of the current theory and algorithms[1]. One way of deploying a sensor network is to scatter the nodes throughout some region of interest. This makes the network topology random. Since there is no a priori communication protocol, the network is ad hoc. The first task that has to be solved is to localize the nodes i.e., to compute their positions in some fixed coordinate system. Since most applications (such as tracking an object moving through the network, environmental monitoring, etc.) depend on a successful localization, it is of great importance to design scalable localization algorithms and provide error estimates that will enable us to choose optimal network parameters before deployment. 1.1. COMPARISON CENTRALIZED AND DISTRIBUTED ALGORITHMS Centralized and distributed distance-based localization algorithms can be compared from perspectives of location estimation accuracy, implementation and computation issues, and energy consumption. It is worth noting that decentralized localization is strictly harder than centralized, i.e., any algorithm for decentralized localization can always be applied to centralized problems, but not the reverse. From the perspective of location estimation accuracy, centralized algorithms are likely to provide more accurate location estimates than distributed algorithms. However centralized algorithms suffer from the scalability problem and generally are not feasible to be implemented for large scale sensor networks. Other disadvantages of centralized algorithms, as compared to distributed algorithms, are their requirement of higher computational complexity and lower reliability due to accumulated information inaccuracies/losses caused by multi-hop transmission over a wireless network[2]. On the other hand, distributed algorithms are more difficult to design because of the potentially complicated relationship between local behavior and global behavior, e.g., algorithms that are locally optimal may not perform well in a global sense. Optimal distribution of the computation of a centralized algorithm in a distributed implementation in general is an unsolved research problem. Error propagation is another potential problem in distributed algorithms. Moreover, distributed algorithms generally require multiple iterations to arrive a stable solution which may cause the localization process to take longer time than the acceptable in some cases. To compare the centralized and distributed distance-based localization algorithms from the communication energy consumption perspective, one needs to consider the individual amounts of energy required for each type of operation in the localization algorithm in the specific hardware and the transmission range setting. Depending on the setting, the energy required for transmitting a single bit could be used to execute 1,000 to 2,000 instructions[3]. Centralized algorithms in large networks require each sensor’s measurements to be sent over multiple hops to a central processor, while distributed algorithms require only local information exchange between neighboring nodes but many such local exchanges may be required, depending on the number of iterations needed to arrive at a stable solution. 1.2. BENEFITS OF DISTRIBUTED ALGORITHMS
  • 2. Distributed Localization in Wireless Sensor Networks www.irjes.com 51 | Page Due to high long range communication costs and low battery power, it is natural to seek decentralized, distributed algorithms for sensor networks. This means that instead of relaying data to a central location which does all the computing, the nodes process information in a collaborative, distributed way. For instance, they can form computational clusters, based on their distance from each other. The outcome of these distributed, local computations is stored in local memory and can then be, when necessary, relayed to a centralized computing unit. Robustness to node failures is another reason to seek distributed rather than centralized algorithms. This paper is organized as follows. In Section 2, we establish the setting and introduce the basic terminology and notation. In Section 3, we discuss the basic localization algorithm which described in Section 4, and provide error estimates and simulation results. II. PRIMARY WORKS In this section we introduce the basic framework, terminology, and notation.We assume that in a square region Q = [0, s] × [0, s], called the region of operations, we randomly scatter N nodes,S1 , . . . , SN , each of which is equipped with an RF transceiver with communication range r > 0. In other words, a node Si can communicate with every node which lies in its communication region, which is the disk with radius r centered at Si. Each node has a unique ID which is a number between 1 and N. The nodes form an ad hoc network N in which there is an edge between Si and Sj ,when their distance is less than r. We will call this the continuous model. Even though it is a rather simplified model of how the network is formed, we adopt it because it leads to an easier analytical treatment. However, instead of a disk of radius r, the communication range of a node could instead be an annulus (in case a node is able to decide when a nearby node is at a distance greater than some threshold, based, e.g., on signal strength), an angular sector (if a node is equipped, say, with laser transmitters and receivers that can scan through some angle) or an intersection of an annulus and an angular sector. More information on these types of constraints is available in [4]. We assume that a certain positive number K of nodes know their location in Q, i.e., they are able to compute their position relative to some fixed coordinate system in Q.In practice this can be achieved by equipping K motes with GPS or a priori (meaning before deploying the ad hoc network) placing in Q .A certain number of beacons which can serve to compute the position of the nodes which are within certain distance from them. We call nodes that know their position as known nodes or beacon nodes and all other ones, unknown nodes. Furthermore, each node has communication as well as sensing capabilities [5]. The problems we address in this paper are:  Design a distributed algorithm for localization of nodes in.N.  Estimate the complexity and error of the above algorithm.  Find an optimal number of known nodes depending on Q, N and r, which minimizes the error of the algorithm. Centralized algorithms for localization were studied in [1, 2]. The reason we are interested in a distributed rather than a centralized solution is that we envision a massively distributed network in which communication with a centralized computer is expensive both because the power supply of each node is very limited and long-range multi-hop data transmission is costly and often inefficient. However, one quickly discovers that obtaining analytical estimates even in this simple setting can be rather challenging. Furthermore, in the design of a decentralized algorithm relying on node-based data processing, one must take into account that nodes have very limited computational power. This motivates the following discrete approach to the above problems. Let n > 0 be an integer. Partition Q into n2 congruent squares called cells of area s n 2 and suppose that for every known node S, we are only interested in finding the cell which contains S. To make this problem tractable, we make a simplifying assumption that the communication range is ρ cells in the max metric, distancedenoted by dist∞. It is defined by dist∞ ((i, j), (i` , j` )) = max(|i–i` |, |j – j`|) Where (i, j) is initial distance vector, (i`, j`) is final distance vector. It is possible for several nodes to lie inthe same cell. We call this the discretemodel of the network. For example, we can take ρ = nr s 2 Each node S can communicate with every node lying in the square centered at S and containing (2ρ + 1)2 cells. Since all our results are independent of the choice of ρ as a function of r and n, we can clearly select a different value for it. The situation where r is fixed and s, n → ∞ corresponds to increasing the size of the region of operations, while the situation where r/n and s stay constant while n → ∞ corresponds to refining the position estimate. We usually think of n as large and r as much smaller than n. In particular, 2ρ + 1 < n.
  • 3. Distributed Localization in Wireless Sensor Networks www.irjes.com 52 | Page Figure 1: Discrete model. Filled circles denote unknown nodes. The dashed line bounds thecommunication range of the node at its center, with ρ = 3. III. DISTRIBUTED ALGORITHM FOR LOCALIZATION In this section we present a simple distributed algorithm for localization, based on the ideas in the previous section. Let S be an arbitrary unknown node in N. The localization algorithm LOCS at S then goes as follows – Step 1. INITIALIZE the estimate:Ls = Q. Step 2.SEND “Hello, can you hear me?” Each known neighbor sends back (1, a, b), where (a, b) is its grid position, while each unknown neighbor sends (0, 0, 0). Step 3.For each response (1, a, b), UPDATE the estimate by Ls ≔ Ls ∩ a − ρ, a + ρ × [b − ρ, b + ρ] Step 4.STOP when all responses have been received. The position estimate is 𝐿 𝑠 IV. SIMULATION RESULTS To analyze performance of algorithm, we have taken three scenarios by varying number of nodes, n and number of beacon nodes, K in the network, where – n = Unknown nodes + K; Scenario 1: Chose No. of beacon nodes, K= 5. Case 1: Chose unknown nodes=45 and calculated their positions. Case 2: Chose unknown nodes=95 and calculated their positions. Case 3: Chose unknown nodes=145 and calculated their positions. Then we have calculated the performance of algorithm as shown in Fig. 2. Figure 2: Performance of Network for K=5 and n=50,100 and 150. Scenario 2: Chose No. of beacon nodes, K= 10. Case 1: Chose unknown nodes=40 and calculated their positions. Case 2: Chose unknown nodes=90 and calculated their positions. Case 3: Chose unknown nodes=140 and calculated their positions.Then we have calculated the performance of algorithm as shown in Fig. 3.
  • 4. Distributed Localization in Wireless Sensor Networks www.irjes.com 53 | Page Figure 3: Performance of Network for K=10 and n=50,100 and 150. Scenario 3: Chose No. of beacon nodes, K= 15. Case 1: Chose unknown nodes=35 and calculated their positions. Case 2: Chose unknown nodes=85 and calculated their positions. Case 3: Chose unknown nodes=135 and calculated their positions. Then we have calculated the performance of algorithm as shown in Fig. 4 Figure 4: Performance of Network for K=15 and n=50,100 and 150. Observe that the error of the algorithm steadily increases as total no. of nodes (n) increases. However, the error does not change considerably for K>=10. V. CONCLUSION The main contributions of this paper are a distributed algorithm for localization of nodes in a wireless ad hoc communication network and estimates of its error. There are many possible improvements of the algorithm. REFERENCES [1]. AmitangshuPal,“Localization Algorithms in Wireless Sensor. Networks: Current Approaches and Future Challenges”, macrothink, 2010, Vol. 2, No. 1 [2]. Zhetao Li, Renfa Li, Yehua Wei and Tingrui Pei, 2010.” Survey of Localization Techniques in Wireless Sensor Networks”. Information Technology Journal, 9: 1754-1757. [3]. J. Chen, K. Yao, and R. Hudson, “Source localization and beamforming,” IEEE Signal Processing Magazine, vol. 19, no. 2, pp. 30–39, 2002. [4]. L. Doherty. Algorithms for position and data recovery in wireless sensor networks. Master’s thesis, UC Berkeley, 2000. [5]. J.M. Kahn, R.H. Katzand, and K.S.J. Pister. Mobile networking for Smart Dust. In ACM/IEEE Intl. Conf. on Mobile Computing and Networking, Seattle, WA, August 1999