SlideShare une entreprise Scribd logo
1  sur  11
ISA Transactions 51 (2012) 702–712

Contents lists available at SciVerse ScienceDirect

ISA Transactions
journal homepage: www.elsevier.com/locate/isatrans

Delay-dependent fuzzy static output feedback control for discrete-time fuzzy
stochastic systems with distributed time-varying delays$
ZhiLe Xia a,b,n, JunMin Li a, JiangRong Li a
a
b

School of Science, Xidian University, ShanXi, Xi’an 710071, China
School of Mathematics and Information Engineering, Taizhou University, ZheJiang, Taizhou 317000, China

a r t i c l e i n f o

a b s t r a c t

Article history:
Received 18 April 2010
Received in revised form
19 June 2012
Accepted 20 June 2012
Available online 12 July 2012

This paper is concerned with the delay-dependent H1 fuzzy static output feedback control scheme for
discrete-time Takagi–Sugeno (T–S) fuzzy stochastic systems with distributed time-varying delays. To
begin with, the T–S fuzzy stochastic system is transformed to an equivalent switching fuzzy stochastic
system. Then, based on novel matrix decoupling technique, improved free-weighting matrix technique
and piecewise Lyapunov–Krasovskii function (PLKF), a new delay-dependent H1 fuzzy static output
feedback controller design approach is first derived for the switching fuzzy stochastic system. Some
drawbacks existing in the previous papers such as matrix equalities constraint, coordinate transformation, the same output matrices, diagonal structure constraint on Lyapunov matrices and BMI problem
have been eliminated. Since only a set of LMIs is involved, the controller parameters can be solved
directly by the Matlab LMI toolbox. Finally, two examples are provided to illustrate the validity of the
proposed method.
& 2012 ISA. Published by Elsevier Ltd. All rights reserved.

Keywords:
Piecewise Lyapunov–Krasovskii function
(PLKF)
Linear matrix inequalities (LMIs)
Fuzzy static output feedback
Switching fuzzy stochastic system
Delay-dependent

1. Introduction
The well-known Takagi–Sugeno (T–S) fuzzy model [1] has
been recognized as a popular and powerful tool in approximating
complex nonlinear systems. As a consequence, the study of T–S
fuzzy systems has attracted an increasing interest in the past
decades (see [2–6] for more details). Moreover, system state
variables are often not fully available for practical systems. Some
state variables may be difficult/costly to measure and sometimes
have no physical meaning and thus cannot be measured at all. It
may be possible to use an observer to estimate unknown states,
but this approach not only requires more hardware resources, but
also makes the dimension of the system increase greatly. In this
situation, the static output feedback (SOF) control is more suitable
for practical application. Syrmos et al. [20] show that any
dynamic output feedback [29] problem can be transformed into
a SOF problem, but the converse is not true.
Recently, the fuzzy SOF control for T–S fuzzy systems has
drawn intensive attention [18,19,21,23–28]. As stated in
[16,17,25], the fuzzy SOF controller design for T–S fuzzy system

$
This work was supported by the National Natural Science Foundation of China
(60974139) and Fundamental Research Funds for the Central Universities
(72103676).
n
Corresponding author at: School of Mathematics and Information Engineering,
Taizhou University, ZheJiang, Taizhou 317000, China. Tel.: þ 86 13736515790.
E-mail address: zhle_xia@yahoo.com.cn (Z. Xia).

is not easy, due to the fact that many rules interference effects are
increased. Moreover, the fuzzy SOF control design becomes much
more difficult and complex than state feedback one because it
belongs to a nonlinear matrix inequalities problem. In [19], the
fuzzy SOF control law was given in terms of bilinear matrix
inequalities which cannot be solved with ease by a convex
optimization algorithm. An iterative linear matrix inequality
algorithm was proposed in [21,27] and an optimization technique
was investigated in [26]. The problem of designing robust SOF
controllers for linear discrete-time systems with time-varying
polytopic uncertainties was studied in [22]. In [23], three drawbacks existing in the previous papers such as coordinate transformation, the same output matrices and BMI problem have been
eliminated. But linear matrix equalities (LMEs) (i.e. MC yi ¼
C yi P, i ¼ 1, . . . ,r) were included in [23]. By using coordination
transformation, a less conservative result was derived in [24] by
removing the constraint that the considered Lyapunov matrix is
diagonal. In [24], all the local output matrices were assumed to be
the same (i.e. C yi ¼ C 2 , i ¼ 1, . . . ,r). If the local output matrices are
not the same, coordinate transformation is almost impossible.
Hybrid approaches for regional T–S fuzzy SOF controller design
was considered in [25]. The authors in [28] investigated the
reliable mixed L2 =H1 fuzzy SOF control for nonlinear systems
with sensor faults.
On the other hand, time delay often occurs in many dynamic
systems, such as rolling mill systems, biological systems, metallurgical processing systems, network systems, and so on. Their

0019-0578/$ - see front matter & 2012 ISA. Published by Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.isatra.2012.06.011
Z. Xia et al. / ISA Transactions 51 (2012) 702–712

existence is frequently a cause of instability and poor performance. The T–S fuzzy model was first used to deal with the
stability analysis and control synthesis of nonlinear time delay
systems in [7]. After that, many people devoted a great deal of
effort to both theoretical research and implementation techniques for T–S fuzzy systems with time delays [8,9]. However, these
results rely on the existence of a common positive definite matrix
P for all linear models, which in general leads to a conservative
result. To reduce this conservatism, the piecewise Lyapunov
function approach [10,11] and the fuzzy Lyapunov function
approach [12,13] have been proposed. The delay-independent
SOF stabilization for T–S fuzzy system with interval time-delay
was investigated in [18] by using the common Lyapunov function
approach, which typically led to conservative results. Moreover,
as well known as, the delay-independent results [18] are generally more conservative than the delay-dependent ones [8],
especially when the size of time delay is small [10–13].
It should be noted that all the above-mentioned results are in
the deterministic setting. It is well known that stochastic disturbance often exist in many practical systems. Their existence is
a source of instability of control systems, so the investigation on
stability analysis and control design of stochastic systems has
received increasing attention in recent years [31,32,37,38]. It
should be pointed out that, so far, there have been only a few
papers that have taken the stochastic phenomena into account in
the fuzzy systems [30–37,39]. Research in this area should be
interesting yet challenging as it involves the combination of two
classes of important systems, namely, stochastic systems and
fuzzy systems [37]. The problem of delay-dependent robust fuzzy
control for stochastic fuzzy systems with parameter uncertainties
and time-varying delay was studied in [31]. Robust stability
analysis for uncertain stochastic fuzzy systems with time delay
was investigated in [32], and some delay-independent stability
conditions were derived. The authors in [33] investigated the
passivity and passification problems of the stochastic discretetime T–S fuzzy systems with delay. A sliding mode control
approach was proposed in [35] to investigate the fuzzy control
problem for uncertain stochastic systems. The problem of stabilization for T–S fuzzy stochastic delay systems was considered in
[36,39]. The filtering problem was investigated in [30,34,37]. In
addition, the distributed delays in discrete-time systems [40–43]
are seldom found in the literature when compared with the
distributed delay in continuous-time systems that are described
in the form of either finite or infinite integral [44]. As pointed in
[40,41], a large-scale system network usually has a spatial nature
due to the presence of an amount of parallel pathways of a variety
of subsystem sizes and lengths, which gives rise to possible
distributed delays for discrete-time systems. With the increasing
application of digitalization, distributed delays may emerge in a
discrete-time manner, and therefore, it becomes desirable to
study the discrete-time systems with distributed delays. The
research on discrete-time fuzzy systems with distributed delays
remains as an open topic for further investigation. To the best of
the authors’ knowledge, there have not been any reported results
on the fuzzy SOF control for discrete-time fuzzy stochastic system
with distributed time-varying delay.
Motivated by the aforementioned discussion, we investigate
the H1 fuzzy SOF control for discrete-time T–S fuzzy stochastic
systems with distributed time-varying delays. By using improved
free-weighting technique and piecewise Lyapunov–Krasovskii
function, a new delay-dependent H1 fuzzy SOF controller design
approach is derived. Adopting a new matrix decoupling technique, some drawbacks existing in the previous papers such as
coordinate transformation, the same output matrices, the diagonal constraint condition on Lyapunov matrices, matrix equalities
constraint and BMI problem have been eliminated. Since only a

703

set of LMIs is involved, the fuzzy SOF controller parameters can be
solved directly. Finally, two examples are given to illustrate the
validity of the proposed method.
Notation. For a real matrix S, He fSg denotes S þ ST . The symmetric elements of the symmetric matrix will be denoted by n.
Efng stands for the mathematical expectation of the stochastic
process or vector. I and 0 represent, respectively, identity matrix
and zero matrix.
We first introduce the following lemmas, which are crucial to
the development of our main results.
Lemma 1. For the real positive-definite symmetric matrix P1,
matrices A1, A2, B1, B2, D1 ,D2 , D3 and P2 with compatible dimensions,
the following inequalities are equivalent, where aI are extra slack
nonsingular matrix:
" T
#
A1 P 1 A1 þ BT P 1 B1 þAT A2 þ BT B2 ÀHe fAT P 2 g þ D1 D2
1
2
2
1
ðaÞ
o0,
n
D3
2

0

0

0

ÀaB1

n

P1 À2aI

0

0

ÀP 2 þ aA1

n

n

ð1À2aÞI

0

ÀaA2

n

n

n

ð1À2aÞI

n

n

n

n

ÀaB2
D1

n

ðbÞ

6
6
6
6
6
6
6
6
6
4

P1 À2aI

n

n

n

n

0

3

7
0 7
7
0 7
7
7 o0:
0 7
7
D2 7
5
D3

Proof. See the Appendix.
Remark 1. By the introduction of the auxiliary slack matrix
variable aI, the matrices P1, P2 and A1 , A2 , B1 , B2 are decoupled.
This novel technique is proposed in this paper to transform the
nonlinear matrix inequalities (30) into a set of linear matrix
inequalities (LMIs), which can be easily solved by LMI Toolbox in
Matlab.
Lemma 2 (Wei et al. [40,41]). Let M A RnÂn be a positive semidefinite matrix, xðmÞ A Rn , we have
!T
!
t
t
t
X
X
1 X
xT ðmÞMxðmÞ r À
xðmÞ M
xðmÞ :
À

t

m¼1

m¼1

m¼1

Lemma 3 (Tian et al. [46] and Lin et al. [47]). Let L, L1 A RpÂp be
symmetric matrices. Then

L þ tðtÞL1 o0
holds for all tðtÞ A ½t1 , t2 Š if and only if

L þ tn L1 o0, n ¼ 1; 2:
2. Problem formulation
Consider the following discrete-time Takagi–Sugeno (T–S)
fuzzy stochastic system with distributed time-varying delays:
Plant Rule i: IF y1 ðtÞ is mi1 and y and yp ðtÞ is mip THEN
"
#
tÀ1
X
xðnÞ þ Bi oðtÞ þB1i uðtÞ
xðt þ1Þ ¼ Ai xðtÞ þ Adi
n ¼ tÀtðtÞ

"

tÀ1
X

þ M i xðtÞ þ M di

#
xðnÞ þ B2i uðtÞ vðtÞ,

n ¼ tÀtðtÞ

"
zðtÞ ¼ C i xðtÞ þ C di
"

tÀ1
X

#
xðnÞ þ Di oðtÞ þ D1i uðtÞ

n ¼ tÀtðtÞ

þ N i xðtÞ þ Ndi

tÀ1
X
n ¼ tÀtðtÞ

#
xðnÞ þ D2i uðtÞ vðtÞ,
704

Z. Xia et al. / ISA Transactions 51 (2012) 702–712

yðtÞ ¼ Gi xðtÞ,
t ¼ Àt2 ,Àt2 þ1, . . . ,0, i ¼ 1; 2, . . . ,r,

xðtÞ ¼ fðtÞ,

ð1Þ

where r is the number of IF–THEN rules; yj and mij ðj ¼ 1; 2, . . .Þ are
the premise variables and the fuzzy sets, respectively;
xðtÞ A Rn , yðtÞ A Rn1 , zðtÞ A Rn2 and fðtÞ are the state, the measured
output, the controlled output to be estimated, and the initial
condition, respectively; oðtÞ is the disturbance input which
belongs to l2 ½0,1Þ; tðtÞ denotes distributed time-varying delays
and satisfies 0 o t1 r tðtÞ r t2 ; Ai , Adi , Bi , M i , M di , C i , C di , Di , Ni ,
Ndi , B1i , B2i , D1i , D2i and Gi are all constant matrices with appropriate dimensions; v(t) is a real scalar stochastic process with
Efv2 ðtÞg ¼ 1,

EfvðtÞg ¼ 0,

EfvðlÞvðmÞg ¼ 0 ðl amÞ:

The final output of the switching fuzzy stochastic system (3) is
inferred as follows:
("
#
bðjÞ
tÀ1
X
X
xðt þ1Þ ¼
hjk Ajk xðtÞ þ Adjk
xðnÞ þ Bjk oðtÞ þ B1jk uðtÞ
"

tÀ1
X

þ M jk xðtÞ þ M djk

#

)

xðnÞ þ B2jk uðtÞ vðtÞ ,

n ¼ tÀtðtÞ

("

bðjÞ
X

zðtÞ ¼

hjk

tÀ1
X

C jk xðtÞ þ C djk

#
xðnÞ þDjk oðtÞ þ D1jk uðtÞ

n ¼ tÀtðtÞ

k¼1

"

tÀ1
X

þ N jk xðtÞ þ Ndjk

ð2Þ

Remark 2. As mentioned in introduction, the research on discrete-time fuzzy systems with distributed delays remains as an
open topic for further investigation. In [40,41,45], the authors
introduced the distributed delays in the form of constant delay
P1
PÀ1
t ¼ Àd hðxðk þ tÞÞ or infinite delay
t ¼ 1 xðtÀtÞ. The authors in
[42,43] investigated the distributed time-varying delays in the
PÀ1
form of
m ¼ ÀdðkÞ f ðxðk þmÞÞ, where nonlinear function f ðÞ was
assumed to satisfy sector-bounded condition. For the sake of
simplicity, this paper studies the distributed time-varying delay
PtÀ1
in the form of
m ¼ tÀtðtÞ xðmÞ and a new delay-dependent H 1
fuzzy static output feedback controller design approach is proposed for discrete-time T–S fuzzy stochastic system. In contrast to
aforementioned results, two new techniques, improved freeweighting technique and new matrix decoupling technique, are
developed.

n ¼ tÀtðtÞ

k¼1

#

)

xðnÞ þD2jk uðtÞ vðtÞ ,

n ¼ tÀtðtÞ

bðjÞ
X

yðtÞ ¼

hjk Gjk xðtÞ,

k¼1

xðtÞ ¼ fðtÞ,

t ¼ Àt2 ,Àt2 þ 1, . . . ,0,

yðtÞ A Oj , j ¼ 1, . . . ,s,

ð4Þ

where
Qp

mjkl ðyl ðtÞÞ
:
m ðy ðtÞÞ
l ¼ 1 jkl l

hjk ¼ hjk ðyðtÞÞ ¼ PbðjÞ l ¼ 1p
Q
k¼1

Considering the fuzzy system (3) in each subregion, we choose
the following fuzzy SOF controller:
Region Rule j:
IF yðtÞ A Oj THEN
Local Plant Rule k
IF y1 ðtÞ is mjk1 , . . . , and yp ðtÞ is mjkp THEN
uðtÞ ¼ ÀF jk yðtÞ,

k ¼ 1, . . . , bðjÞ, j ¼ 1, . . . ,s,

ð5Þ

As illustrated in [11], we will define open subregions as
Op ðp ¼ 1, . . . ,sÞ in the state-space. The corresponding close subregions are defined as O p , which satisfy

where Fjk is a local controller gain to be designed.
The final output of (5) is inferred by

O p  O q ¼ @Ou , p a q, p,q ¼ 1, . . . ,s, i ¼ 1; 2, . . . ,r,
i

uðtÞ ¼ À

n ¼ tÀtðtÞ



tÀ1
X

þ M jk xðtÞ þM djk

#



tÀ1
X

#

þ Njk xðtÞ þ N djk

tÀ1
X

xðnÞ þ D2jk uðtÞ vðtÞ,

yðtÞ ¼ Gjk xðtÞ,
t ¼ Àt2 ,Àt2 þ1, . . . ,0, i ¼ 1; 2, . . . ,r,

xðt þ1Þ ¼

bðjÞ bðjÞ bðjÞ
XX X

hjk hjl hjm ½f jklm xðtÞ þ g jklm xðtÞvðtÞŠ

k¼1l¼1m¼1

9f jklm xðtÞ þ g jklm xðtÞvðtÞ,
zðtÞ ¼

bðjÞ bðjÞ bðjÞ
XX X

hjk hjl hjm ½f zjklm xðtÞ þ g zjklm xðtÞvðtÞŠ

k¼1l¼1m¼1

9f zjklm xðtÞ þg zjklm xðtÞvðtÞ,
t ¼ Àt2 ,Àt2 þ1, . . . ,0,

j ¼ 1, . . . ,s, yðtÞ A Oj ,

ð7Þ

Definition 1 (Gao et al. [38]). The closed-loop system (7) is said
to be mean-square stable if, under oðtÞ ¼ 0, for any E 40, there is
2
a dðEÞ 4 0 such that Ef9xðtÞ9 g o E,t 4 0 when supÀt2 r s r 0
2
2
Ef9xðsÞ9 g o dðEÞ. In addition, if limt-1 Ef9xðtÞ9 g ¼ 0 for any initial
conditions, then it is said to be mean-square asymptotically
stable.

#

n ¼ tÀtðtÞ

xðtÞ ¼ fðtÞ,

j ¼ 1, . . . ,s, yðtÞ A Oj :

g jklm ¼ ½M jk ÀB2jk F jl Gjm
where
f jklm ¼ ½Ajk ÀB1jk F jl Gjm Adjk Bjk Š,
Mdjk 0Š, f zjklm ¼ ½C jk ÀD1jk F jl Gjm C djk Djk Š, g zjklm ¼ ½Njk ÀD2jk F jl Gjm
PtÀ1
T
T
T
Ndjk 0Š, xðtÞ ¼ ½xT ðtÞ
n ¼ tÀtðtÞ x ðnÞ o ðtÞŠ .

xðnÞ þ Djk oðtÞ þ D1jk uðtÞ

n ¼ tÀtðtÞ



hjl hjm F jl Gjm xðtÞ,

l¼1m¼1

Applying the fuzzy SOF controller (6) to the global fuzzy
system (4), we have the following closed-loop system:

T

n ¼ tÀtðtÞ

zðtÞ ¼ C jk xðtÞ þC djk

bðjÞ bðjÞ
X X

ð6Þ

xðtÞ ¼ f ðtÞ,

xðnÞ þ B2jk uðtÞ vðtÞ,

hjl F jl yðtÞ ¼ À

l¼1

@Ou
i

¼ fyðtÞ9hi ðyðtÞÞ ¼ 1; 0 r hi ðyðtÞ þ EÞ o 1,80 o 9E9 51g, u is
where
the set of face indexes of the polyhedral hull @Oi ¼ [@Ou ,
i
P
hi ðyðtÞÞ ¼ oi ðyðtÞÞ= r ¼ 1 oi ðyðtÞÞ, oi ðyðtÞÞ ¼ Pp¼ 1 mij ðyj ðtÞÞ, yðtÞ ¼
i
j
½y1 ðtÞ, . . . , yp ðtÞŠ.
Next, we follow the idea of [14] to rewrite the system (1) to be
an equivalent discrete-time switching fuzzy stochastic system as
the following form:
Region Rule j:
IF yðtÞ A Oj THEN
Local Plant Rule k
IF y1 ðtÞ is mjk1 , . . ., and yp ðtÞ is mjkp THEN

#
tÀ1
X
xðnÞ þBjk oðtÞ þB1jk uðtÞ
xðt þ 1Þ ¼ Ajk xðtÞ þ Adjk

bðjÞ
X

ð3Þ

where Oj denotes the jth subregion, s is the number of subregions
partitioned on the state space, and bðjÞ is the number of rules in
the subregion Oj .

Definition 2 (Gao et al. [38]). Given g 40, the closed-loop system
(7) is said to be mean-square asymptotically stable with H1
performance g if it is mean-square asymptotically stable and, under
zero-initial conditions, for all nonzero disturbance oðtÞ A l2 ½0,1Þ,
Z. Xia et al. / ISA Transactions 51 (2012) 702–712

satisfies
EfJzðtÞJ2 g o gJoðtÞJ2 ,

ð8Þ

where
8
!1=2 9
 X
=
1
,
zT ðtÞzðtÞ
EfJzðtÞJ2 g9E
: t¼0
;

f jklm ¼ ½aj Ajk ÀB1jk U jl Gjm aj Adjk aj Bjk Š,
gjklm ¼ ½aj M jk ÀB2jk U jl Gjm aj M djk aj Bjk Š,
f zjklm ¼ ½aj C jk ÀD1jk U jl Gjm aj C djk aj Djk Š,
gzjklm ¼ ½aj Njk ÀD2jk U jl Gjm aj N djk 0Š:

1
X

JoðtÞJ2 9

705

oT ðtÞoðtÞÞ1=2 :

Moreover, the switching fuzzy SOF controllers are given by

t¼0

ð9Þ
The main purpose of this paper is to design fuzzy SOF
controller of the form (6) such that the closed-loop system
(7) is mean-square asymptotically stable with an H1 performance
g.

F jl ¼ aÀ1 U jl ,
j

l ¼ 1, . . . , bðjÞ, j ¼ 1, . . . ,s:

Proof. Let

ZðnÞ ¼ xðn þ1ÞÀxðnÞ:

ð14Þ

Then,
I

ZðtÞ ¼ xðt þ 1ÞÀxðtÞ9f jklm xðtÞ þ g jklm xðtÞvðtÞ,
3. Main results
In this section, the delay-dependent H1 fuzzy SOF controller
design approach is presented for the T–S fuzzy stochastic systems
described in the previous section. Let the subregion transition
from Oj to Oi be denoted by O ¼ fðj,iÞ9yðtÞ A Oj , yðt þ 1Þ A Oi g. Here, i
may be equal to j in O, when yðtÞ and yðt þ1Þ are in the same
subregion. Consequently, we have the following result.
Theorem 1. Given a constant g 40, the closed-loop system (7) is
mean-square asymptotically stable with H1 performance g, if there exist
a set of positive-definite symmetric matrices Pj, Z 1 , Z 2 , Q 1 , Q 2 , Q 3 ,
matrices Ujl, Tj, Wj, Sj, Xj, Yj and the nonsingular matrices aj I, j¼1,y,s,
l ¼ 1, . . . , bðjÞ, such that the following LMIs are satisfied:

Pn o0, l ¼ 1, . . . , bðjÞ, ðj,iÞ A O, n ¼ 1; 2,
ijlll

Xj

Tj

n

Z1

#

Yj

Sj

n

4 0,

Z2



ð11Þ

V 2 ðtÞ ¼

t2
X

tÀ1
X

m ¼ 1 n ¼ tÀm

V 3 ðtÞ ¼

tðtÞ
X

tÀ1
X

t2
X

xT ðnÞQ 1 xðnÞ þ

ZT ðnÞZ 2 ZðnÞ,

mÀ1
X

tÀ1
X

xT ðsÞQ 1 xðsÞ,

m ¼ t1 þ 1 n ¼ 1 s ¼ tÀn

xT ðmÞQ 2 xðmÞ þ

tÀ1
X

xT ðmÞQ 3 xðmÞ,

yðtÞ A Oj ,

m ¼ tÀt2

where Pj, Q 1 ,Q 2 ,Q 3 , Z1 and Z2 are the real symmetric positive
definite matrices to be determined. Then along the solution of the
closed-loop system (7), we have

#

Xj þ Y j

Wj
Z1 þ Z2

¼ EfDV 1 ðtÞ9xðtÞg þ EfDV 2 ðtÞ9xðtÞg þ EfDV 3 ðtÞ9xðtÞg þ EfDV 4 ðtÞ9xðtÞg,
where

40,

ð13Þ

EfDV 1 ðtÞ9xðtÞg ¼ Ef½xT ðt þ 1ÞP i xðt þ 1ÞÀxT ðtÞPj xðtÞŠ9xðtÞg
T

T

T

¼ Ef½x ðtÞf jklm Pi f jklm xðtÞ þ2vT ðtÞx ðtÞg T P i f jklm xðtÞ
jklm

where
2
6
6
6
6
n
Pijklm ¼ 6
6
6
6
6
4

P1 À2aj I
n

0
P1 À2aj I

n

n

0
0
ð1À2aj ÞI

n

n

n

0
0
0
ð1À2aj ÞI

n

n

n

n

n

n

n

D1

n

Àgjklm
ÀP2 þ f jklm
Àf zjklm
Àgzjklm
n

0
0
0
0

3

7
7
7
7
7
7,
7
7
D2 7
5

D3

T

þ vT ðtÞx ðtÞg T Pi g jklm xðtÞvðtÞÀxT ðtÞPj xðtÞŠ9xðtÞg,
jklm
ð16Þ
ÈÂ
EfDV 2 ðtÞ9xðtÞg ¼ E ZT ðtÞðt2 Z 1 þ t21 Z 2 ÞZðtÞ
À

tÀ1
X

ZT ðnÞZ 1 ZðnÞÀ

n ¼ tÀt2

with

¼E

t21 ¼ t2 Àt1 , n ¼ 1; 2, P1 ¼ Pi þ t2 Z 1 þ t21 Z 2 ,
P2 ¼ ðt2 Z 1 þ t21 Z 2 Þ½I 0 0Š,
2

D11 D12
D22

D1 ¼ 6 n
4
n

n

0

3

0 7
5,
Àg2 I

0

Sj
D2 ¼ B 0
@
0

ÀW j

1

C
0 A,
0

D3 ¼ diagfÀQ 2 ,ÀQ 3 g,
D11 ¼ t2 Q 1 þ 1t21 ðt2 þ t1 À1ÞQ 1 þ Q 2 þQ 3 þ t2 X j þ t21 Y j
2
þ He fT j g þ t2 Z 1 þ t21 Z 2 ÀPj ,
1

tn

ðW j ÀT j ÀSj Þ,

D22 ¼ À

1

tn

Q 1,

tÀt1 À1
X
n ¼ tÀt2

(

D12 ¼

tÀ1
X

m ¼ t1 þ 1 n ¼ tÀm

m ¼ 1 n ¼ tÀm
tÀ1
X

t2
X

ZT ðnÞZ 1 ZðnÞ þ

J9EfVðt þ1Þ9xðtÞgÀVðtÞ ¼ Ef½Vðt þ 1ÞÀVðtÞŠ9xðtÞg
ð12Þ

n

4 0,

V 1 ðtÞ ¼ xT ðtÞPj xðtÞ,

m ¼ tÀt1

m ¼ 1, . . . , bðjÞÀ2, k ¼ m þ 1, . . . , bðjÞÀ1,
l ¼ k þ1, . . . , bðjÞ, ðj,iÞ A O, n ¼ 1; 2,


VðtÞ ¼ V 1 ðtÞ þ V 2 ðtÞ þ V 3 ðtÞ þ V 4 ðtÞ,

V 4 ðtÞ ¼

Pn þ Pn þ Pn þ Pn þ Pn þ Pn o 0,
ijklm
ijkml
ijlmk
ijlkm
ijmlk
ijmlk

#

where f
¼ f jklm À½I 0 0Š.
Consider a discrete-time piecewise Lyapunov–Krasovskii function candidate for the closed-loop system (7) as following:

ð10Þ

Pn þ Pn þ Pn o0, k ¼ 1, . . . , bðjÞÀ1,
ijkll
ijlkl
ijllk
l ¼ kþ 1, . . . , bðjÞ, ðj,iÞ A O, n ¼ 1; 2,



ð15Þ

I
jklm

tðtÞ
X

ZT ðtÞðt2 Z 1 þ t21 Z 2 ÞZðtÞÀ
tðtÞ
X

tÀt1 À1
X

ZT ðnÞ

m ¼ 1 n ¼ tÀt2

1
Z ZðnÞ
tðtÞ 2

ÈÂ
¼ E ZT ðtÞðt2 Z 1 þ t21 Z 2 ÞZðtÞ

tÀ1
X

ZT ðnÞ

1

tðtÞ

Z 1 ZðnÞ

)
#


xðtÞ


tðtÞ
X tÀt1 À1
X
1
1
Z 1 ZðnÞÀ
Z ZðnÞ
ZT ðnÞ
tðtÞ
tðtÞ 2
m ¼ 1 n ¼ tÀm
m ¼ 1 n ¼ tÀm
)
#
tðtÞ

X
X tÀmÀ1
1

ðZ 1 þ Z 2 ÞZðnÞ xðtÞ
ZT ðnÞ
À

tðtÞ
m ¼ 1 n ¼ tÀt2
nh
I
I
T
¼ E x ðtÞðf jklm ÞT ðt2 Z 1 þ t21 Z 2 Þf jklm xðtÞ

À

tðtÞ
X

)



m ¼ 1 n ¼ tÀt2

À

#


ZT ðnÞZ 2 ZðnÞ xðtÞ


tÀ1
X

T

ZT ðnÞ

I

þ2vT ðtÞx ðtÞg T ðt2 Z 1 þ t21 Z 2 Þf jklm xðtÞ
jklm
706

Z. Xia et al. / ISA Transactions 51 (2012) 702–712



T

þ vT ðtÞx ðtÞg T ðt2 Z 1 þ t21 Z 2 Þg jklm xðtÞvðtÞ
jklm
tðtÞ
X
X tÀt1 À1
1
1
Z 1 ZðnÞÀ
Z ZðnÞ
ZT ðnÞ
tðtÞ
tðtÞ 2
m ¼ 1 n ¼ tÀm
m ¼ 1 n ¼ tÀm
)
#
tðtÞ

X
X tÀmÀ1
1

T
ð17Þ
ðZ þ Z ÞZðnÞ xðtÞ ,
Z ðnÞ
À

tðtÞ 1 2
m ¼ 1 n ¼ tÀt

À

tðtÞ
X

tÀ1
X

#
tðtÞ
tÀ1
tÀ1
X
1
1 X X
w1 ¼ 2x ðtÞT j xðtÞÀ
xðmÞÀ
ZðnÞ ¼ 0,
tðtÞ m ¼ tÀtðtÞ
tðtÞ m ¼ 1 n ¼ tÀm
T

ZT ðnÞ

ð21Þ


w2 ¼ 2xT ðtÞW j

EfDV 3 ðtÞ9xðtÞg ¼ E

ð22Þ
tðt þ 1Þ
X

t
X



T

x ðnÞQ 1 xðnÞ

tðtÞ
X

tÀ1
X

t2
X

tÀ1
X

m ¼ t1 þ 1 n ¼ tÀm þ 1

(
¼E

1
t21 ðt2 þ t1 À1ÞxT ðtÞQ 1 xðtÞ
2
)
#


xT ðnÞQ 1 xðnÞ xðtÞ


tðt þ 1Þ
X

tÀ1
X

T

x ðnÞQ 1 xðnÞ þ

tðt þ 1Þ
X

m ¼ 1 n ¼ t þ 1Àm

À

tðtÞ
X

tÀ1
X

ð23Þ
On the other hand, for any appropriately dimensioned matrices
X j ¼ X T Z 0 and Y j ¼ Y T Z0, the following hold:
j
j

T

x ðnÞQ 1 xðnÞÀ

T

x ðtÞQ 1 xðtÞ

tðtÞ
X

T

x ðtÀmÞQ 1 xðtÀmÞ

xT ðnÞQ 1 xðnÞÀ

1
À
x ðmÞQ 1 xðmÞ r À
tðtÞ
m ¼ tÀtðtÞ

x ðmÞ Q 1

m ¼ tÀtðtÞ

X j xðtÞ

X j xðtÞ

tðtÞ
X

tÀt1 À1
X

tðtÞ
X

xT ðtÞ

m ¼ 1 n ¼ tÀt2

tðtÞ
X

tÀt1 À1
X

xT ðtÞ

tÀmÀ1
X

xT ðtÞ

1

tðtÞ

1

tðtÞ

1

tðtÞ

Y j xðtÞ

Y j xðtÞ

Y j xðtÞ
ð25Þ

From (16)–(25) and considering the closed-loop system (7),
we obtain
J þ EfzT ðtÞzðtÞgÀg2 wT ðtÞwðtÞ ¼ J þ EfzT ðtÞzðtÞg

ð18Þ

tÀ1
X

!
xðmÞ :

ð20Þ

From (14), we have

Àg2 wT ðtÞwðtÞ þ w1 þ w2 þ w3 þ w4 þ w5
1
T
¼ z ðtÞðXijkl þ
CÞzðtÞ
tðtÞ
!T 
!
#
tðtÞ
tÀ1
xðtÞ
xðtÞ
Xj T j
1 X X
À
ZðnÞ
n Z1
tðtÞ m ¼ 1 n ¼ tÀm ZðnÞ
!T 
!
#
tðtÞ tÀt1 À1
xðtÞ
xðtÞ
Y j Sj
1 X X
À
Â
ZðnÞ
ZðnÞ
n Z2
tðtÞ m ¼ 1 n ¼ tÀm
!T 
!
#
tðtÞ tÀmÀ1
xðtÞ
xðtÞ
Xj þ Y j
Wj
1 X X
À
ZðnÞ
n
Z1 þ Z2
tðtÞ m ¼ 1 n ¼ tÀt2 ZðnÞ


1
T
9z ðtÞ Xijklm þ
C zðtÞÀUðxðtÞ, ZðnÞÞ
tðtÞ

ð26Þ

T

xðmÞÀ

m ¼ tÀtðtÞ

tðtÞ
X

tÀ1
X

ZðnÞ,

m ¼ 1 n ¼ tÀm

xðmÞÀtðtÞxðtÀt2 ÞÀ

tðtÞ
X

tÀmÀ1
X

ZðnÞ,

m ¼ 1 n ¼ tÀt2

m ¼ tÀtðtÞ

0 ¼ tðtÞxðtÀt1 ÞÀ

1

tðtÞ

X j xðtÞ

¼ 0:

EfDV 4 ðtÞ9xðtÞg ¼ Ef½xT ðtÞðQ 2 þQ 3 ÞxðtÞÀxT ðtÀt1 ÞQ 2 xðtÀt1 Þ

0¼

1

tðtÞ

xT ðtÞY j xðtÞÀ

m ¼ 1 n ¼ tÀt2

m ¼ tÀtðtÞ

ÀxT ðtÀt2 ÞQ 3 xðtÀt2 ÞŠ9xðtÞg:

xT ðtÞ

m ¼ 1 n ¼ tÀm

ð19Þ

tÀ1
X

xT ðtÞ

n ¼ tÀt2

À

T

tÀ1
X

1

tðtÞ

ð24Þ

tÀt1 À1
X

w5 ¼

xT ðmÞQ 1 xðmÞ

!

tÀ1
X

xT ðtÞ

¼ 0,

m ¼ tÀtðtÞ

T

0 ¼ tðtÞxðtÞÀ

tÀmÀ1
X

m ¼ 1 n ¼ tÀt2

Using Lemma 2, we have

tÀ1
X

tðtÞ
X

À

1
þ t21 ðt2 þ t1 À1ÞxT ðtÞQ 1 xðtÞ
2
#
)
t2

tÀ1
X
X

xT ðnÞQ 1 xðnÞ xðtÞ
À

m ¼ t1 þ 1 n ¼ tÀm þ 1

1
¼ E t2 xT ðtÞQ 1 xðtÞ þ t21 ðt2 þ t1 À1ÞxT ðtÞQ 1 xðtÞ
2
)
#

tÀ1
X

xT ðmÞQ 1 xðmÞ xðtÞ :
À

m ¼ tÀtðtÞ

tÀ1
X

tðtÞ
X

¼ t21 xT ðtÞY j xðtÞÀ

m ¼ 1 n ¼ t þ 1Àm

tÀ1
X

m ¼ 1 n ¼ tÀm

m¼1

tÀ1
X

tðtÞ
X

m ¼ 1 n ¼ tÀt2

¼ t2 xT ðtÞX j xðtÞÀ

m ¼ 1 n ¼ t þ 1Àm

À

xT ðtÞX j xðtÞÀ

n ¼ tÀt2

1
þ t21 ðt2 þ t1 À1ÞxT ðtÞQ 1 xðtÞ
2
)
#
t2

tÀ1
X
X

T
x ðnÞQ 1 xðnÞ xðtÞ
À

m ¼ t1 þ 1 n ¼ tÀm þ 1
(
t2
tÀ1
X
X
rE
xT ðnÞQ 1 xðnÞ þ t2 xT ðtÞQ 1 xðtÞ
tÀ1
X

tÀ1
X

w4 ¼

m¼1

m ¼ 1 n ¼ t þ 1Àm

t1
X

tðtÞ
tÀ1
X
X
1
1 X tÀt1 À1
xðmÞÀ
ZðnÞ ¼ 0:
tðtÞ m ¼ tÀtðtÞ
tðtÞ m ¼ 1 n ¼ tÀm

xT ðnÞQ 1 xðnÞ: þ

m ¼ 1 n ¼ tÀm

À

#

w3 ¼ 2xT ðtÞSj xðtÀt1 ÞÀ

m ¼ 1 n ¼ t þ 1Àm

À

tðtÞ
tÀ1
X
X
1
1 X tÀmÀ1
xðmÞÀxðtÀt2 ÞÀ
ZðnÞ ¼ 0,
tðtÞ m ¼ tÀtðtÞ
tðtÞ m ¼ 1 n ¼ tÀt
2

2

(

#

tÀ1
X
m ¼ tÀtðtÞ

xðmÞÀ

tðtÞ
X

tÀt1 À1
X

ZðnÞ:

m ¼ 1 n ¼ tÀm

Then, the following equations hold for any matrices T j ,W j ,Sj with
appropriate dimensions:

where zðtÞ ¼ ½x ðtÞ,xT ðtÀt1 Þ,xT ðtÀt2 ÞŠT , and
2
0

D11

T
6
B
6 X þf zjklm f zjklm þg T g zjklm þ @ n
zjklm
Xijklm ¼ 6
6
n
4

n

2

0
6n
6
6
C¼6n
6
6
4n
n

with

3

W j ÀT j ÀSj

0

0

0

ÀQ 1

0

0

n

0

0

n

n

0

n

n

n

07
7
7
0 7,
7
7
05
0

0
0
n

1

3

0 C
A
Àg2 I

D2 7

0

D3

7
7,
7
5
Z. Xia et al. / ISA Transactions 51 (2012) 702–712
T

T

with

X ¼ f jklm P1 f jklm þ g T P1 g jklm ÀHe ff jklm P2 g:
jklm
Then

ð28Þ

By Lemma 3, (28) is equivalent to
ð29Þ

which can be rewritten as follows:

#
T
X þf zjklm f zjklm þg T g zjklm þ D1 D2
zjklm

D3

n

Using Lemma 1, we have
2
P1 À2aj I
0
0
6
n
P1 À2aj I
0
6
6
6
n
n
ð1À2aj ÞI
6
6
6
n
n
n
6
6
n
n
n
4
n

o 0:

ð30Þ

0

Àaj g jklm

0

ÀP2 þ aj f jklm

0
ð1À2aj ÞI

Àaj f zjklm
Àaj g zjklm

n

D1

n

n

n

0

3

7
0 7
7
7
0 7
7 o 0,
0 7
7
7
D2 5

D3

hjk hjl hjm
0

n

P1 À2aj I

n

n

0
0
ð1À2aj ÞI

n

n

n
n

n

0
0
0
ð1À2aj ÞI

Àaj g jklm
ÀP2 þ aj f jklm
Àaj f zjklm
Àaj g zjklm

n

n

n

D1

n

n

n

n

0
0
0
0

7
7
7
7
7
7 o0:
7
7
D2 7
5

D3

hjk hjl hjm Pn
ijklm

k¼1l¼1m¼1

¼

bðjÞ
X

3

hjk Pn þ
ijkkk

k¼1

þ

bX
ðjÞÀ1

bðjÞ
X

2

hjk hjl ðPn þ Pn þ Pn Þ
ijkll
ijlkl
ijllk

bX bX
ðjÞÀ2 ðjÞÀ1

bðjÞ
X

hjk hjl hjm

k ¼ 1 l ¼ kþ1 m ¼ lþ1

ðPn þ Pn þ Pn þ Pn þ Pn þ Pn Þ:
ijklm
ijkml
ijlkm
ijlmk
ijmkl
ijmlk

C9wðtÞ ¼ 0 o0:

1
C9
ÞFðtÞÀUðxðtÞ, ZðnÞÞ,
J9wðtÞ ¼ 0 ¼ F ðtÞðXijkl 9wðtÞ ¼ 0 þ
tðtÞ wðtÞ ¼ 0
P
where FðtÞ ¼ ½xT ðtÞ tÀ1 tÀtðtÞ xT ðnÞxT ðtÀt1 ÞxT ðtÀt2 ÞŠT and
n¼
2

3
Sj ÀW j
6 Lijkl
7
0
0
Xijkl 9wðtÞ ¼ 0 ¼ 4
5,
T

D3

n

ð34Þ

Then, we can conclude that the closed-loop system (7) with
wðtÞ ¼ 0 is mean-square asymptotically stable by following the
same lines as in the proof of Theorem 1 in [38].
Now, to establish the H1 performance for the closed-loop
system (7), consider the following index:
(
)
1
X
T
2 T
½e ðtÞeðtÞÀg o ðtÞoðtÞŠ :
ð36Þ
J2 ¼ E
t¼0

Under zero initial condition and (27), we have
(
)
1
X
½ÀDVðtÞŠ ¼ EfÀVð1Þ þ Vð0Þg ¼ EfÀVð1Þg o0,
J2 r E
t¼0

3

W j ÀT j ÀSj

0

0

ÀQ 1

0

n

0

07
7
7:
05

n

n

0



4. Simulation
In this section, two examples are used to verify the performance of the proposed SOF controller.
Example 1. Nowadays, it is often to consider the cases of
monitoring and control through networks. Due to the existence
of transmission delay in networks for different environments.
Consider system (1) with the following parameters:
2
3
2
3
0:12 À0:01 0:03
0:11 À0:15 0:03
6 0:05 0:14 À0:08 7
6 0
À0:1 À0:07 7
A1 ¼ 4
5, A2 ¼ 4
5,
0:11

À0:6

À0:01

0

0:01

0

0:01

0:13 0:09 À0:21
2
3
0:06
0
0:05
6
7
0:02
0
Ad2 ¼ 4 0
5,
0:001
0
À0:005

3

À0:03

7
5,

ð32Þ

If (10), (11) and (12) hold, P o0 which implies that (27) holds.
Therefore, when assuming the zero disturbance input, from
(16)-(25), we obtain

n

!
0
:
0

ð35Þ

B1 ¼ ½0:14 0:25 0:31Š,

0
6n
C9wðtÞ ¼ 0 ¼ 6
6
4n

D11
7
I 5þ
n
0

J9wðtÞ ¼ 0 o 0:

0:07
2
0:02
6
Ad1 ¼ 4 0
0

k ¼ 1 l ¼ kþ1

2

3

3

Let F jl ¼ aÀ1 U jl , we obtain
j
bðjÞ bðjÞ bðjÞ
XX X

1

tðtÞ

The proof is completed.

P1 À2aj I

P¼

0

EfJeðtÞJ2 g o gJoðtÞJ2 :

k¼1l¼1m¼1

6
6
6
6
6
6
6
6
6
4

2
i I
6
40
0

which means that

which is equivalent to

2

0

Xijkl 9wðtÞ ¼ 0 þ

ð31Þ

bðjÞ bðjÞ bðjÞ
XX X

I

Xþf

T
T
zjklm f zjklm þ g zjklm g zjklm

From (13) and (34), we have

C o 0, n ¼ 1; 2,

n

!
0 h

By Schur complement and Lemma 3, LMI (30) implies

1
Xijklm þ
C o 0:
tðtÞ

tn

0

0

ð27Þ

If (13) hold and

Xijklm þ

I

Lijkl ¼

J þ EfzT ðtÞzðtÞgÀg2 oT ðtÞoðtÞ o0:

1

707

ð33Þ

D1 ¼ ½0:1 À0:3 0:4Š,
2

0:61

0:33

B2 ¼ ½0:22 0:18 0:37Š,
D2 ¼ ½0:3 À0:2 0:4Š,

3

2

0

0:37

tðtÞ ¼ 3þ ðÀ1Þt ,
3

6
7
6
7
0 5,
B11 ¼ 4 0:02 0:34 5, B12 ¼ 4 0:91
0:16 0:06
0
0:28
2
3
2
0:08
0
0:13
0
À0:31
6
7
6
0:51
0 5, M 2 ¼ 4 0
0:42
M1 ¼ 4 0
2

0

0

0:15

0

0:39
3

2

0:03

0
3

0

0:02

0:03

6
7
6
0:24 5, M d1 ¼ 4 0
D21 ¼ 4 0
0:32
0
0
2
3
0
0
0
6
7
0 5,
Md2 ¼ 4 0 À0:02

0:02

7
0 5,
0:01

0

0

0:01

0

0

3

7
0 5,
0:11
708

Z. Xia et al. / ISA Transactions 51 (2012) 702–712

0:61

0:33

3

2

0

0:31

3

6
7
6
0 7
B21 ¼ 4 0:02 0:34 5, B22 ¼ 4 0:35
5,
0:16 0:06
0
0:28
2
3
2
3
0:02 0
0:1
0
0
0:03
6 0
7
6 0 0:05
0:3
0 5, C 2 ¼ 4
0 7,
C1 ¼ 4
5
0
0 0:08
0
0
À0:02
2
3
0:01
0
0:003
6
0:01
0 7
C d1 ¼ 4 0
5,
0:02

2

0:03
6
C d2 ¼ 4 0
0
2

0

À0:03

0

0

À0:03
0
0:13

3

3

2

0:11
6
D11 ¼ 4 0
0:15

0:02 7,
5
0:04
2

0:05

0

3

0

À0:12 7,
5

0:01

6
Nd2 ¼ 4
G1 ¼

0:002
0

0
0:013

0:021

0

0:16

0:31

0:19

0:31

3

0:018
0 7
5,

2

0:41
6
D22 ¼ 4 0:22
0:7

0:001
!
0:68
0:27
, G2 ¼
À0:35
0:63

h1

Membership functions

0.6
0.4

Ω2

Ω1
0

3

0

π/18

0
0:001

3

3

0
0:33 7
5,

2

0:09

0:31

0:17

0:42

0:41

!
:

1
0
−1
−2
−3
0

20

80

100

Suppose the unknown disturbance input v(t) to be random
noise, as is shown in Fig. 3. Let g ¼ 3:18, if we use a common
Lyapunov matrix P instead of piecewise Lyapunov matrix
Pi ði ¼ 1; 2,3Þ in LMIs (10)-(12), no feasible solution can be found
for switching fuzzy SOF controller design. However, based on
Theorem 1, we can obtain feasible solution as follows:
2:0863
6 0:2038
P1 ¼ 4
0:3742

0.6
0.5

0:2038
3:9144

2:7773
6
P2 ¼ 4 0:1060
1:1422

0.3
0.2

1 π/3

1.5 π/2

2:3044
6
P3 ¼ 4 0:0486
0:4124

|x1|
F 11 ¼
Fig. 1. The membership functions.

3

À0:2419 7
5,
4:0821

0:1060

1:1422

5:4118

3

À0:2770 7,
5

À0:2770

4:6235

0:0486

0:4124

2

0.1

0:3742

À0:2419

2

0.4

0.5

40
60
Time(Sec)

Fig. 3. The unknown disturbance input v(t).

2

π/18

1.5 π/2

7
5,

0.7

0

1 π/3

0.5

Fig. 2. The partition of subspaces Oi , i ¼1,2,3.

3

0

0.8

0

Ω3

|x1|

h2

0.9

∂Ω1
3

∂Ω1
2

0.2

The membership functions are shown in Fig. 1.
As illustrated in [8,11], we divide the state space into three
subregions. The membership functions hji and partition of
subregions are stated in Fig. 2. The system matrices are
A11 ¼ A21 ¼ A1 , A22 ¼ A31 ¼ A2 , Ad11 ¼ Ad21 ¼ Ad1 , Ad22 ¼ Ad31 ¼ Ad2 ,
B11 ¼ B21 ¼ B1 , B21 ¼ B31 ¼ B2 , B111 ¼ B121 ¼ B11 , B122 ¼ B131 ¼ B12 ,
M 11 ¼ M 21 ¼ M1 , M 22 ¼ M 31 ¼ M2 , M d11 ¼ M d21 ¼ Md1 , Md22 ¼
M d31 ¼ Md2 , B211 ¼ B221 ¼ B21 , B222 ¼ B231 ¼ B22 , C 11 ¼ C 21 ¼ C 1 ,
C 22 ¼ C 31 ¼ C 2 , C d11 ¼ C d21 ¼ C d1 , C d22 ¼ C d31 ¼ C d2 , D11 ¼ D21 ¼ D1 ,
D22 ¼ D31 ¼ D2 , D111 ¼ D121 ¼ D11 , D122 ¼ D131 ¼ D12 , N 11 ¼ N 21 ¼
N1 , N 22 ¼ N 31 ¼ N 2 , Nd11 ¼ N d21 ¼ Nd1 , Nd22 ¼ Nd31 ¼ N d2 , D211 ¼
D221 ¼ D21 , D222 ¼ D231 ¼ D22 , G11 ¼ G21 ¼ G1 , G22 ¼ G31 ¼ G2 . The
membership functions are h11 [ h21 ¼ h1 , h22 [ h31 ¼ h2 .

1

h31

h22

∂Ω1 ∂Ω2
1
1

0.8

0

6
0 7 N1 ¼ 6 0
0:14
0 7
D12 ¼ 4 0:2
5,
4
5,
0 0:17
0:02
0
À0:13
2
3
2
0:02
0
0:21
0:001 0:013
6
0 7, Nd1 ¼ 6 0:04 0:002
N2 ¼ 4 À0:13 0:04
5
4
0:15
0
0:11
0
0:015
2

Membership functions

0

h21

h11

1

v(t)

2

3:4077
À0:1979

0:0828
À0:9788

3

7
À0:1979 5,
3:0487

!
1:0874
,
0:0050

F 21 ¼

À0:7167
À0:4143

!
À0:0785
,
1:3926
Z. Xia et al. / ISA Transactions 51 (2012) 702–712

!
À0:5569
,
0:6786

0:6118
À0:9752

F 31 ¼

À1:6217
À1:3740

0.6

!
0:4802
:
1:1860

0.4
0.2

y1(t)

F 22 ¼

Based on the proposed fuzzy SOF controller (6), the state
responses of the closed-loop system (7) are stated in Figs. 4–6
with the initial conditions xðtÞ ¼ ½p=8,Àp=5, p=3ŠT ðt ¼ À4, . . . ,0Þ
and the disturbance oðtÞ ¼ 0:1 Á cos t Á eÀ0:05t . Figs. 7–11 show
the corresponding output responses.

0
−0.2
−0.4

Example 2. In this example, the proposed fuzzy SOF control
technique is applied to backing up control of a truck–trailer. We
use the following modified truck–trailer model formulated in [48]
and assume that the states are perturbed by distributed timevarying delay and stochastic disturbances.
 


 X
tÀ1
vt
vt
x1 ðtÞ þ ð1Àl1 Þ 1À
x1 ðnÞ
x1 ðt þ 1Þ ¼ l1 1À
L
L n ¼ tÀtðtÞ
!
!
vt
vt
uðtÞ þ sinðWðtÞÞ þ
uðtÞ vðtÞ,
þ 0:01oðtÞ þ
l
l

50
Time(Sec)

100

0.4

y2(t)

0.2
0
−0.2

0.6
x1(t)

0

Fig. 7. Response curve of measured output y1 ðtÞ.

0.8

−0.4

0.4

−0.6

0.2
0
−0.2

709

0

20

40
60
Time(Sec)

80

100

Fig. 8. Response curve of measured output y2 ðtÞ.

0

50
Time(Sec)

100

0.25
0.2

Fig. 4. Response curve of state x1 ðtÞ.

0.15
Z1(t)

0.2

x2(t)

0

0.05
0

−0.2

−0.05

−0.4

−0.1

−0.6
−0.8

0.1

0

50
Time(Sec)

20

40
60
Time(Sec)

x2 ðt þ 1Þ ¼ l2 x2 ðtÞ þ ð1Àl2 Þ

tÀ1
X

x2 ðnÞ þ

n ¼ tÀtðtÞ

1.5
1

80

100

Fig. 9. Response curve of controlled output z1 ðtÞ.

100

Fig. 5. Response curve of state x2 ðtÞ.

0

x3 ðt þ 1Þ ¼ l3 x3 ðtÞ þ ð1Àl3 Þ

tÀ1
X

vt
x1 ðtÞ,
L

x3 ðnÞ þ vt sinðWðtÞÞ,

x3(t)

n ¼ tÀtðtÞ

0.5
zðtÞ ¼ À

0

vt
vt
x1 ðtÞ þsinðWðtÞÞ þ
uðtÞ,
L
l

yðtÞ ¼ GxðtÞ,

−0.5
−1
0

50
Time(Sec)

Fig. 6. Response curve of state x3 ðtÞ.

100

ð37Þ

where x1 ðtÞ is the angle difference of truck and trailer, x2 ðtÞ is the
angle of trailer, x3 ðtÞ is the vertical position of rear end of trailer,
oðtÞ ¼ 0:1eÀt þsinðtÞ is the external disturbance, and v(t) is
stochastic disturbance. l is the length of truck, L is the length
of trailer, t is sampling time, v is the constant speed of backing
710

Z. Xia et al. / ISA Transactions 51 (2012) 702–712

2

0.05

6
6
A11 ¼ A22 ¼ 6
6
4

Z2(t)

0
−0.05



l1 1À vt
L



−0.15
50
Time(Sec)

l3

0

vt
L

2 2

6
Ad11 ¼ Ad12 ¼ Ad21 ¼ Ad22 ¼ 6
4
2

0.1

l3

p

2

3

7
7
0 7,
7
5

vt 10À2

100

Fig. 10. Response curve of controlled output z2 ðtÞ.

0

l2

v t 10À2
2Lp

3

7
7
0 7,
7
5

vt


−0.2
0

0

l2

2 2

v t
2L

l 1À vt
L
6 1

6
A12 ¼ A21 ¼ 6
6
4

0

vt
L

2

−0.1





l1 1À vt
L

0:01



0

0
3

0
1Àl2

0

0

0

1Àl3

Z3(t)

2

−0.1

2

vt
2L

1

6
M11 ¼ M 22 ¼ 4 0

50
Time(Sec)

100

2
6
M12 ¼ M 21 ¼ 4

0

3

0

3

0

7
0 5,

0

0

0

Fig. 11. Response curve of controlled output z3 ðtÞ.

0

vt 10À2
2Lp

10À2

0

0

p

0

3

7
0 5,

0
0
0

#
!
vt
vt10À2 vt 10À2
1 0 , C 12 ¼ C 21 ¼
À
0 ,
C 11 ¼ C 22 ¼ À
2L
L
2Lp
p

up, and

WðtÞ ¼ x2 ðtÞ þ

vt
x1 ðtÞ:
2L

D111 ¼ D112 ¼ D121 ¼ D122 ¼

The model parameters are given as l ¼ 2:8 m, L ¼ 5:5 m, v ¼
À1:0 m=s, t ¼ 2:0 s, l1 ¼ l2 ¼ l3 ¼ 0:8, tðtÞ ¼ 2:5 þ 0:5nðÀ1Þt , and
G ¼ diagfÀ1,À1,À1g.
Under the condition À179:42701 o WðtÞ o 179:42701, the nonlinear system (37) can be exactly represented by the following
switching fuzzy system:
bðjÞ
X

xðt þ 1Þ ¼

(
hjk

Ajk xðtÞ þ Adjk

tÀ1
X

xðnÞ

3
217:9
À295:5 7
5,
1016:3

F 12 ¼ ½0:4926 0:2187 À0:2072Š,
F 22 ¼ ½1:0882 À0:2040 0:0789Š:

Under the initial conditions fðÀ3Þ ¼ ½11; 4,À9ŠT , fðÀ2Þ ¼ ½12; 3,
6Š , fðÀ1Þ ¼ ½À13,À4,À3ŠT and fð0Þ ¼ ½2,0:1,À10ŠT , the simulation
results for the system (38) with stochastic disturbances are
shown in Fig. 12.

hjk ½C jk xðtÞ þ D1jk uðtÞŠ,

hjk Gjk xðtÞ,

Letting g ¼ 1:6 and using Theorem 1, we obtain
2
3
2
384:7 À35:8
151
566:5
85:3
6
7
6
193:2
P 1 ¼ 4 À35:8 202:7 À332 5, P 2 ¼ 4 85:3
151
À332 1066:7
217:9 À295:5

T

k¼1

bðjÞ
X

G11 ¼ G12 ¼ G21 ¼ G22 ¼ diagfÀ1,À1,À1g:

F 21 ¼ ½1:1493 0:0937 À0:0230Š,

!
'
þ Bjk oðtÞ þ B1jk uðtÞ þ ½M jk xðtÞ þ B2jk uðtÞŠvðtÞ ,

bðjÞ
X

vt
,
l

F 11 ¼ ½0:2721 À0:8158 0:0526Š,

n ¼ tÀtðtÞ

k¼1

yðtÞ ¼

vt

6 l 7
B111 ¼ B112 ¼ B121 ¼ B122 ¼ B211 ¼ B212 ¼ B221 ¼ B222 ¼ 4 0 5,

−0.2

zðtÞ ¼

7
7,
5

6
7
B11 ¼ B12 ¼ B21 ¼ B22 ¼ 4 0 5,
0

0

−0.3

3

ð38Þ

5. Conclusion

k¼1

where xðtÞ ¼ ½x1 ðtÞ x2 ðtÞ x3 ðtÞŠT and hjk ðj ¼ 1; 2, bð1Þ ¼ bð2Þ ¼ 2Þ are
the membership functions with
8
À2
 sinðWðtÞÞÀWðtÞÁ10 =p , WðtÞ a 0,
WðtÞÁð1À10À2 =pÞ
h11 ¼ h22 ¼
: 1,
WðtÞ ¼ 0,

h12 ¼ h21 ¼

8


WðtÞÀsinðWðtÞÞ
,
WðtÞÁð1À10À2 =pÞ

: 0,

WðtÞ a 0,
WðtÞ ¼ 0,

Based on the switching fuzzy stochastic system, piecewise
Lyapunov–Krasovskii function, and state transitions between
all possible subregions, a new delay-dependent H1 fuzzy SOF
controller design approach is proposed for discrete-time
fuzzy stochastic systems with distributed time-varying
delays. In contrast to the existing results, two new techniques,
improved free-weighting technique and new matrix decoupling
technique, are developed. If the conditions are feasible, the
controller parameters can be easily constructed by solving a set
of LMIs. The theoretic results obtained in the paper have
4
2

5

0
−2

0
−5

−4

−10
0

20

40
Time(Sec)

60

80

0

20

40
Time(Sec)

60

80

0

20

40
Time(Sec)

60

80

0

20

40
Time(Sec)

60

80

2
x2(t)

4

10
x1(t)

20

0
−10
−20

0
−2

0

20

40
Time(Sec)

60

−4

80

10

5

5
z(t)

10

x3(t)

711

10

u(t)

Stochastic disturbances v(t)

Z. Xia et al. / ISA Transactions 51 (2012) 702–712

0
−5
−10

0
−5

0

20

40
Time(Sec)

60

80

−10

Fig. 12. Control results of trucker–trailer.

some potential applications, such as image processing via a
large-scale system networks, which gives rise to possible
distributed time-varying delays for discrete-time systems.
Two examples are presented to demonstrate the validity of the
proposed approach.

Appendix A. Proof of Lemma 1



where
2
6
6
6
6
S0 ¼ 6
6
6
6
6
4

S0 S2
ST 0
2

S3
o 0,
S1

P1
0

0
P1

0
0

0
0

0
ÀP 2

0
0

0
0

I
0

0
I

0
0

0

ÀP T
2

0

0

D1

0

DT
2

0

0

0

ÀaI

0

0

0

ÀaI

0

6
6
6
6
S2 ¼ 6
6
6
6
4

0

0

ÀaI

0

0

0

0
0

0
0

0
0

0

3

0 7
7
7
0 7
7,
ÀaI 7
7
7
0 5

S3 ¼ diagfI,I,I,I,I,Ig:

0

Then we choose the orthogonal complement of S1 as

#
ÀBT AT ÀAT ÀBT I 0
1
2
1
2
ST ¼
,
1?
0
0
0
0
0 I

Motivated by [11,15], we can rewrite the inequality (b) as
#T 
#
#

S3
S1

2

ðA:1Þ

3
0
0 7
7
7
0 7
7
,
0 7
7
7
D2 7
5
D3

which satisfies S1 S1? ¼ 0. Moreover, ½ST , S1? Š is of column full
1
rank. Then it follows that (A.1) is equivalent to the following
matrix inequality:
2

I

6
60
40

S1 ¼ 6
6

0

0

0

0

B1

I
0

0
I

0
0

ÀA1
A2

0

0

I

B2

0

3

7
07
7,
07
5
0



ST
1?

S3
S1

#T 

S0 S2
ST 0
2

#

#

S3
S o 0,
S1 1?

which can be further reduced to

ST S0 S1? o 0:
1?

ðA:2Þ
712

Z. Xia et al. / ISA Transactions 51 (2012) 702–712

Thus, we have shown that the inequality (b) is equivalent to
(A.2). It is also easily seen that matrix inequality (a) can also be
rewritten as (A.2).
References
[1] Takagi T, Sugeno M. Fuzzy identification of systems and its applications to
modeling and control. IEEE Transactions on Systems, Man, and Cybernetics
1985;15(1):116–32.
[2] Guerra TM, Kruszewski A, Lauber J. Discrete Takagi–Sugeno models for
control: where are we? Annual Reviews in Control 2009;33(1):37–47.
[3] Feng G. A survey on analysis and design of model-based fuzzy control
systems. IEEE Transactions on Fuzzy Systems 2006;14(1):676–97.
[4] Chang WJ, Ku CC, Huang PH, Chang W. Fuzzy controller design for passive
continuous-time affine T–S fuzzy models with relaxed stability conditions.
ISA Transactions 2009;48(3):295–303.
[5] Chang WJ, Wu WY, Ku CC. H1 constrained fuzzy control via state observer
feedback for discrete-time Takagi–Sugeno fuzzy systems with multiplicative
noises. ISA Transactions 2011;50(1):37–43.
´
[6] Nachidi M, Rodrıguez F, Tadeo F, Guzman JL. Takagi–Sugeno control of
nocturnal temperature in greenhouses using air heating. ISA Transactions
2011;50(2):315–20.
[7] Cao YY, Frank PM. Analysis and synthesis of nonlinear time-delay systems via
fuzzy control approach. IEEE Transactions on Fuzzy Systems 2000;8(2):
200–11.
[8] Guan XP, Chen CL. Delay-dependent guaranteed cost control for T–S fuzzy
systems with time delays. IEEE Transactions on Fuzzy Systems 2004;12(2):
236–49.
[9] Chen B, Liu XP, Tong SC, Lin C. Observer-based stabilization of T–S fuzzy
systems with input delay. IEEE Transactions on Fuzzy Systems 2008;16(3):
652–63.
[10] Chen CL, Feng G. Delay-dependent piecewise control for time-delay T–S fuzzy
systems with application to chaos control. In: Proceedings of the 14th international conference on fuzzy systems. Reno, USA: IEEE; 2005. p. 1056–61.
[11] Chen CL, Feng G, Guan XP. Delay-dependent stability analysis and controller
synthesis for discrete-time T–S fuzzy systems with time delays. IEEE
Transactions on Fuzzy Systems 2005;13(5):630–43.
[12] Wu HN. Delay-dependent stability analysis and stabilization for discretetime fuzzy systems with state delay: a fuzzy Lyapunov–Krasovskii functional
approach. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics 2006;36(4):954–62.
[13] Wu HN, Li HX. New approach to delay-dependent stability analysis and
stabilization for continuous-time fuzzy systems with time-varying delay.
IEEE Transactions on Fuzzy Systems 2007;15(3):482–93.
[14] Wang WJ, Chen YJ, Sun CH. Relaxed stabilization criteria for discrete-time
T–S fuzzy control systems based on a switching fuzzy model and piecewise
Lyapunov function. IEEE Transactions on Systems, Man, and Cybernetics—
Part B: Cybernetics 2007;37(3):551–9.
[15] Wu L, Shi P, Wang C, Gao H. Delay-dependent robust H1 and L2 ÀL1 filtering
for LPV systems with both discrete and distributed delays. IEEE
Proceedings—Control Theory and Applications 2006;153(4):483–92.
[16] Lee HJ, Kim DW. Fuzzy static output feedback may be possible in LMI
framework. IEEE Transactions on Fuzzy Systems 2009;17(5):1229–30.
[17] Fang CH, Liu YS, Kau SW, Hong L, Lee CH. A new LMI-based approach to
relaxed quadratic stabilization of T–S fuzzy control systems. IEEE Transactions on Fuzzy Systems 2006;14(3):386–97.
[18] Chang YC, Chen SS, Suc SF, Lee TT. Static output feedback stabilization for
nonlinear interval time-delay systems via fuzzy control approach. Fuzzy Sets
and Systems 2004;148(3):395–410.
[19] Huang D, Nguang SK. Static output feedback controller design for fuzzy
systems: an ILMI approach. Information Sciences 2007;177(14):3005–15.
[20] Syrmos VL, Abdallah CT, Dorato P, Grigoriadis K. Static output feedback: a
survey. Automatica 1997;33(2):125–37.
[21] Wu HN. An ILMI approach to robust H2 static output feedback fuzzy control
for uncertain discrete-time nonlinear systems. Automatica 2008;44(9):
2333–9.
[22] Dong JX, Yang GH. Robust static output feedback control for linear discretetime systems with time-varying uncertainties. Systems  Control Letters
2008;57(2):123–31.

[23] Kau SW, Lee HJ, Yang CM, Lee CH, Hong L, Fang CH. Robust H1 fuzzy static
output feedback control of T–S fuzzy systems with parametric uncertainties.
Fuzzy Sets and Systems 2007;158(2):135–46.
[24] Dong JX, Yang GH. Static outputfeedback H1 control of a class of nonlinear
discrete-time systems. Fuzzy Sets and Systems 2009;160(19):2844–59.
[25] Chung HY, Wu SM. Hybrid approaches for regional Takagi–Sugeno static
output feedback fuzzy controller design. Expert Systems with Applications
2009;36(2):1720–30.
[26] Lo JC, Lin ML. Robust H1 nonlinear control via fuzzy static output feedback.
IEEE Transactions on Circuits and Systems—I: Fundamental Theory and
Applications 2003;50(11):1494–502.
[27] Huang D, Nguang SK. Robust H1 static output feedback control of fuzzy
systems: an ILMI approach. IEEE Transactions on Systems, Man, and
Cybernetics—Part B: Cybernetics 2006;36(1):216–22.
[28] Wu HN, Zhang HY. Reliable mixed L2 =H1 fuzzy static output feedback
control for nonlinear systems with sensor faults. Automatica 2005;41(11):
1925–32.
[29] Dong JX, Yang GH. Dynamic output feedback H1 control synthesis for
discrete-time T–S fuzzy systems via switching fuzzy controllers. Fuzzy Sets
and Systems 2009;160(4):482–99.
ˆ
[30] Wu LG, Ho Daniel WC. Fuzzy filter design for Ito stochastic systems with
application to sensor fault detection. IEEE Transactions on Fuzzy Systems
2009;17(1):233–42.
[31] Huang H, Ho DWC. Delay-dependent robust control of uncertain stochastic
fuzzy systems with time-varying delay. IET Control Theory Application
2007;1(4):1075–85.
[32] Wang Z, Ho DWC, Liu X. A note on the robust stability of uncertain stochastic
fuzzy systems with time-delays. IEEE Transactions on Systems, Man, and
Cybernetics—Part A: Systems and Humans 2004;34(4):570–6.
[33] Liang JL, Wang ZD, Liu XH. On passivity and passification of stochastic fuzzy
systems with delays: the discrete-time case. IEEE Transactions on Systems,
Man, and Cybernetics-part B: Cybernetics 2010;40(3):964–9.
[34] Tseng CS. Robust fuzzy filter design for a class of nonlinear stochastic
systems. IEEE Transactions on Fuzzy Systems 2007;15(2):261–74.
[35] Ho Daniel WC, Niu YG. Robust fuzzy design for nonlinear uncertain stochastic
systems via sliding-mode control. IEEE Transactions on Fuzzy Systems
2007;15(3):350–8.
[36] Hu LJ, Yang A. Fuzzy model-based control of nonlinear stochastic systems with
time-delay. Nonlinear Analysis: Theory, Methods  Applications 2009;71(12):
2855–65.
[37] Wu LG, Wang ZD. Fuzzy filtering of nonlinear fuzzy stochastic systems with
time-varying delay. Signal Processing 2009;89(9):1739–53.
[38] Gao HJ, Lam J, Wang CH. Robust H1 filtering for discrete stochastic timedelay systems with nonlinear disturbances. Nonlinear Dynamics and Systems
Theory 2004;4(3):285–301.
[39] Zhang B, et al. Delay-dependent stabilization for stochastic fuzzy systems
with time delays. Fuzzy Sets and Systems 2007;158(20):2238–50.
[40] Wei GL, Feng G, Wang ZD. Robust H1 control for discrete-time fuzzy systems
with infinite distributed delays. IEEE Transactions on Fuzzy Systems
2009;17(1):224–32.
[41] Wang ZD, Wei GL, Feng G. Reliable H1 control discrete-time piecewise linear
systems with infinite distributed delays. Automatica 2009;45(12):2991–4.
[42] Tang Y, Fang JA, Xia M, Yu DM. Delay-distributed-dependent stability of
stochastic discrete-time neural networks with randomly mixed time-varying
delays. Neurocomputing 2009;72(16–18):3830–8.
[43] Tang Y, Fang JA, Xia M, Gu XJ. Synchronization of Takagi–Sugeno fuzzy
stochastic discrete-time complex networks with mixed time-varying delays.
Applied Mathematical Modelling 2010;34(4):843–55.
[44] Mahboobi Esfanjani R, Nikravesh SKY. Stabilizing model predictive control
for constrained nonlinear distributed delay systems. ISA Transactions
2011;50(2):201–6.
[45] Liu Y, Wang Z, Liang J, Liu X. Synchronization and state estimation for
discrete-time complex networks with distributed delays. IEEE Transactions
on System, Man and Cybernetics—Part B: Cybernetics 2008;38(5):1314–25.
[46] Tian EG, Yue D, Zhang YJ. Delay-dependent robust H1 control for T–S fuzzy
system with interval time-varying delay. Fuzzy Sets and Systems
2009;160(12):1708–19.
[47] Lin C, Wang ZD, Yang FW. Observer-based networked control for continuoustime systems with random sensor delays. Automatica 2009;45(2):578–84.
[48] Tanaka K, Sano M. A robust stabilization problem of fuzzy control systems
and its application to backing up control of a truck–trailer. IEEE Transactions
on Fuzzy Systems 1994;2(2):119–34.

Contenu connexe

Tendances

HYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROL
HYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROLHYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROL
HYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROLijait
 
Structural Dynamic Reanalysis of Beam Elements Using Regression Method
Structural Dynamic Reanalysis of Beam Elements Using Regression MethodStructural Dynamic Reanalysis of Beam Elements Using Regression Method
Structural Dynamic Reanalysis of Beam Elements Using Regression MethodIOSR Journals
 
Robust Exponential Stabilization for a Class of Uncertain Systems via a Singl...
Robust Exponential Stabilization for a Class of Uncertain Systems via a Singl...Robust Exponential Stabilization for a Class of Uncertain Systems via a Singl...
Robust Exponential Stabilization for a Class of Uncertain Systems via a Singl...ijtsrd
 
Metaheuristic Optimization: Algorithm Analysis and Open Problems
Metaheuristic Optimization: Algorithm Analysis and Open ProblemsMetaheuristic Optimization: Algorithm Analysis and Open Problems
Metaheuristic Optimization: Algorithm Analysis and Open ProblemsXin-She Yang
 
Fault detection based on novel fuzzy modelling
Fault detection based on novel fuzzy modelling Fault detection based on novel fuzzy modelling
Fault detection based on novel fuzzy modelling csijjournal
 
FEA Quiz - worksheets
FEA Quiz - worksheetsFEA Quiz - worksheets
FEA Quiz - worksheetsgokulfea
 
IRJET- Domestic Water Conservation by IoT (Smart Home)
IRJET- Domestic Water Conservation by IoT (Smart Home)IRJET- Domestic Water Conservation by IoT (Smart Home)
IRJET- Domestic Water Conservation by IoT (Smart Home)IRJET Journal
 
Finite Element Analysis - UNIT-1
Finite Element Analysis - UNIT-1Finite Element Analysis - UNIT-1
Finite Element Analysis - UNIT-1propaul
 
01. steps involved, merits, demerits & limitations of fem
01. steps involved, merits, demerits & limitations of fem01. steps involved, merits, demerits & limitations of fem
01. steps involved, merits, demerits & limitations of femSura Venkata Mahesh
 

Tendances (10)

HYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROL
HYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROLHYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROL
HYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROL
 
Structural Dynamic Reanalysis of Beam Elements Using Regression Method
Structural Dynamic Reanalysis of Beam Elements Using Regression MethodStructural Dynamic Reanalysis of Beam Elements Using Regression Method
Structural Dynamic Reanalysis of Beam Elements Using Regression Method
 
Robust Exponential Stabilization for a Class of Uncertain Systems via a Singl...
Robust Exponential Stabilization for a Class of Uncertain Systems via a Singl...Robust Exponential Stabilization for a Class of Uncertain Systems via a Singl...
Robust Exponential Stabilization for a Class of Uncertain Systems via a Singl...
 
Metaheuristic Optimization: Algorithm Analysis and Open Problems
Metaheuristic Optimization: Algorithm Analysis and Open ProblemsMetaheuristic Optimization: Algorithm Analysis and Open Problems
Metaheuristic Optimization: Algorithm Analysis and Open Problems
 
Fault detection based on novel fuzzy modelling
Fault detection based on novel fuzzy modelling Fault detection based on novel fuzzy modelling
Fault detection based on novel fuzzy modelling
 
FEA Quiz - worksheets
FEA Quiz - worksheetsFEA Quiz - worksheets
FEA Quiz - worksheets
 
Lecture 13 modeling_errors_and_accuracy
Lecture 13 modeling_errors_and_accuracyLecture 13 modeling_errors_and_accuracy
Lecture 13 modeling_errors_and_accuracy
 
IRJET- Domestic Water Conservation by IoT (Smart Home)
IRJET- Domestic Water Conservation by IoT (Smart Home)IRJET- Domestic Water Conservation by IoT (Smart Home)
IRJET- Domestic Water Conservation by IoT (Smart Home)
 
Finite Element Analysis - UNIT-1
Finite Element Analysis - UNIT-1Finite Element Analysis - UNIT-1
Finite Element Analysis - UNIT-1
 
01. steps involved, merits, demerits & limitations of fem
01. steps involved, merits, demerits & limitations of fem01. steps involved, merits, demerits & limitations of fem
01. steps involved, merits, demerits & limitations of fem
 

Similaire à Delay-dependent fuzzy static output feedback control for discrete-time fuzzy stochastic systems with distributed time-varying delays

Piecewise Controller Design for Affine Fuzzy Systems
Piecewise Controller Design for Affine Fuzzy SystemsPiecewise Controller Design for Affine Fuzzy Systems
Piecewise Controller Design for Affine Fuzzy SystemsISA Interchange
 
Piecewise controller design for affine fuzzy systems
Piecewise controller design for affine fuzzy systemsPiecewise controller design for affine fuzzy systems
Piecewise controller design for affine fuzzy systemsISA Interchange
 
Sufficient condition for stabilization of linear time invariant fractional or...
Sufficient condition for stabilization of linear time invariant fractional or...Sufficient condition for stabilization of linear time invariant fractional or...
Sufficient condition for stabilization of linear time invariant fractional or...ISA Interchange
 
Robust fault detection for switched positive linear systems with time varying...
Robust fault detection for switched positive linear systems with time varying...Robust fault detection for switched positive linear systems with time varying...
Robust fault detection for switched positive linear systems with time varying...ISA Interchange
 
Fault tolerant synchronization of chaotic heavy symmetric gyroscope systems v...
Fault tolerant synchronization of chaotic heavy symmetric gyroscope systems v...Fault tolerant synchronization of chaotic heavy symmetric gyroscope systems v...
Fault tolerant synchronization of chaotic heavy symmetric gyroscope systems v...ISA Interchange
 
Stability and stabilization of discrete-time systems with time-delay via Lyap...
Stability and stabilization of discrete-time systems with time-delay via Lyap...Stability and stabilization of discrete-time systems with time-delay via Lyap...
Stability and stabilization of discrete-time systems with time-delay via Lyap...IJERA Editor
 
Efficient decentralized iterative learning tracker for unknown sampled data i...
Efficient decentralized iterative learning tracker for unknown sampled data i...Efficient decentralized iterative learning tracker for unknown sampled data i...
Efficient decentralized iterative learning tracker for unknown sampled data i...ISA Interchange
 
Controller Design Based On Fuzzy Observers For T-S Fuzzy Bilinear Models
Controller Design Based On Fuzzy Observers For T-S Fuzzy Bilinear Models Controller Design Based On Fuzzy Observers For T-S Fuzzy Bilinear Models
Controller Design Based On Fuzzy Observers For T-S Fuzzy Bilinear Models ijctcm
 
Dimensionless Approach to Multi-Parametric Stability Analysis of Nonlinear Ti...
Dimensionless Approach to Multi-Parametric Stability Analysis of Nonlinear Ti...Dimensionless Approach to Multi-Parametric Stability Analysis of Nonlinear Ti...
Dimensionless Approach to Multi-Parametric Stability Analysis of Nonlinear Ti...Alvin Zhang
 
Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...
Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...
Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...IJECEIAES
 
On line Tuning Premise and Consequence FIS: Design Fuzzy Adaptive Fuzzy Slidi...
On line Tuning Premise and Consequence FIS: Design Fuzzy Adaptive Fuzzy Slidi...On line Tuning Premise and Consequence FIS: Design Fuzzy Adaptive Fuzzy Slidi...
On line Tuning Premise and Consequence FIS: Design Fuzzy Adaptive Fuzzy Slidi...Waqas Tariq
 
2-DOF BLOCK POLE PLACEMENT CONTROL APPLICATION TO:HAVE-DASH-IIBTT MISSILE
2-DOF BLOCK POLE PLACEMENT CONTROL APPLICATION TO:HAVE-DASH-IIBTT MISSILE2-DOF BLOCK POLE PLACEMENT CONTROL APPLICATION TO:HAVE-DASH-IIBTT MISSILE
2-DOF BLOCK POLE PLACEMENT CONTROL APPLICATION TO:HAVE-DASH-IIBTT MISSILEZac Darcy
 
Adaptive Control for the Stabilization and Synchronization of Nonlinear Gyros...
Adaptive Control for the Stabilization and Synchronization of Nonlinear Gyros...Adaptive Control for the Stabilization and Synchronization of Nonlinear Gyros...
Adaptive Control for the Stabilization and Synchronization of Nonlinear Gyros...ijccmsjournal
 
2-DOF Block Pole Placement Control Application To: Have-DASH-IIBITT Missile
2-DOF Block Pole Placement Control Application To: Have-DASH-IIBITT Missile2-DOF Block Pole Placement Control Application To: Have-DASH-IIBITT Missile
2-DOF Block Pole Placement Control Application To: Have-DASH-IIBITT MissileZac Darcy
 
2-DOF Block Pole Placement Control Application To: Have-DASH-IIBITT Missile
2-DOF Block Pole Placement Control Application To: Have-DASH-IIBITT Missile2-DOF Block Pole Placement Control Application To: Have-DASH-IIBITT Missile
2-DOF Block Pole Placement Control Application To: Have-DASH-IIBITT MissileZac Darcy
 
Adaptive control for the stabilization and Synchronization of nonlinear gyros...
Adaptive control for the stabilization and Synchronization of nonlinear gyros...Adaptive control for the stabilization and Synchronization of nonlinear gyros...
Adaptive control for the stabilization and Synchronization of nonlinear gyros...ijccmsjournal
 
Hybrid Fuzzy Sliding Mode Controller for Timedelay System
Hybrid Fuzzy Sliding Mode Controller for Timedelay SystemHybrid Fuzzy Sliding Mode Controller for Timedelay System
Hybrid Fuzzy Sliding Mode Controller for Timedelay Systemijaia
 
Novel Artificial Control of Nonlinear Uncertain System: Design a Novel Modifi...
Novel Artificial Control of Nonlinear Uncertain System: Design a Novel Modifi...Novel Artificial Control of Nonlinear Uncertain System: Design a Novel Modifi...
Novel Artificial Control of Nonlinear Uncertain System: Design a Novel Modifi...Waqas Tariq
 
1 Aminullah Assagaf_Estimation-of-domain-of-attraction-for-the-fract_2021_Non...
1 Aminullah Assagaf_Estimation-of-domain-of-attraction-for-the-fract_2021_Non...1 Aminullah Assagaf_Estimation-of-domain-of-attraction-for-the-fract_2021_Non...
1 Aminullah Assagaf_Estimation-of-domain-of-attraction-for-the-fract_2021_Non...Aminullah Assagaf
 

Similaire à Delay-dependent fuzzy static output feedback control for discrete-time fuzzy stochastic systems with distributed time-varying delays (20)

Piecewise Controller Design for Affine Fuzzy Systems
Piecewise Controller Design for Affine Fuzzy SystemsPiecewise Controller Design for Affine Fuzzy Systems
Piecewise Controller Design for Affine Fuzzy Systems
 
Piecewise controller design for affine fuzzy systems
Piecewise controller design for affine fuzzy systemsPiecewise controller design for affine fuzzy systems
Piecewise controller design for affine fuzzy systems
 
Sufficient condition for stabilization of linear time invariant fractional or...
Sufficient condition for stabilization of linear time invariant fractional or...Sufficient condition for stabilization of linear time invariant fractional or...
Sufficient condition for stabilization of linear time invariant fractional or...
 
Robust fault detection for switched positive linear systems with time varying...
Robust fault detection for switched positive linear systems with time varying...Robust fault detection for switched positive linear systems with time varying...
Robust fault detection for switched positive linear systems with time varying...
 
Fault tolerant synchronization of chaotic heavy symmetric gyroscope systems v...
Fault tolerant synchronization of chaotic heavy symmetric gyroscope systems v...Fault tolerant synchronization of chaotic heavy symmetric gyroscope systems v...
Fault tolerant synchronization of chaotic heavy symmetric gyroscope systems v...
 
Stability and stabilization of discrete-time systems with time-delay via Lyap...
Stability and stabilization of discrete-time systems with time-delay via Lyap...Stability and stabilization of discrete-time systems with time-delay via Lyap...
Stability and stabilization of discrete-time systems with time-delay via Lyap...
 
Efficient decentralized iterative learning tracker for unknown sampled data i...
Efficient decentralized iterative learning tracker for unknown sampled data i...Efficient decentralized iterative learning tracker for unknown sampled data i...
Efficient decentralized iterative learning tracker for unknown sampled data i...
 
Controller Design Based On Fuzzy Observers For T-S Fuzzy Bilinear Models
Controller Design Based On Fuzzy Observers For T-S Fuzzy Bilinear Models Controller Design Based On Fuzzy Observers For T-S Fuzzy Bilinear Models
Controller Design Based On Fuzzy Observers For T-S Fuzzy Bilinear Models
 
Dimensionless Approach to Multi-Parametric Stability Analysis of Nonlinear Ti...
Dimensionless Approach to Multi-Parametric Stability Analysis of Nonlinear Ti...Dimensionless Approach to Multi-Parametric Stability Analysis of Nonlinear Ti...
Dimensionless Approach to Multi-Parametric Stability Analysis of Nonlinear Ti...
 
Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...
Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...
Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...
 
On line Tuning Premise and Consequence FIS: Design Fuzzy Adaptive Fuzzy Slidi...
On line Tuning Premise and Consequence FIS: Design Fuzzy Adaptive Fuzzy Slidi...On line Tuning Premise and Consequence FIS: Design Fuzzy Adaptive Fuzzy Slidi...
On line Tuning Premise and Consequence FIS: Design Fuzzy Adaptive Fuzzy Slidi...
 
2-DOF BLOCK POLE PLACEMENT CONTROL APPLICATION TO:HAVE-DASH-IIBTT MISSILE
2-DOF BLOCK POLE PLACEMENT CONTROL APPLICATION TO:HAVE-DASH-IIBTT MISSILE2-DOF BLOCK POLE PLACEMENT CONTROL APPLICATION TO:HAVE-DASH-IIBTT MISSILE
2-DOF BLOCK POLE PLACEMENT CONTROL APPLICATION TO:HAVE-DASH-IIBTT MISSILE
 
Adaptive Control for the Stabilization and Synchronization of Nonlinear Gyros...
Adaptive Control for the Stabilization and Synchronization of Nonlinear Gyros...Adaptive Control for the Stabilization and Synchronization of Nonlinear Gyros...
Adaptive Control for the Stabilization and Synchronization of Nonlinear Gyros...
 
2-DOF Block Pole Placement Control Application To: Have-DASH-IIBITT Missile
2-DOF Block Pole Placement Control Application To: Have-DASH-IIBITT Missile2-DOF Block Pole Placement Control Application To: Have-DASH-IIBITT Missile
2-DOF Block Pole Placement Control Application To: Have-DASH-IIBITT Missile
 
2-DOF Block Pole Placement Control Application To: Have-DASH-IIBITT Missile
2-DOF Block Pole Placement Control Application To: Have-DASH-IIBITT Missile2-DOF Block Pole Placement Control Application To: Have-DASH-IIBITT Missile
2-DOF Block Pole Placement Control Application To: Have-DASH-IIBITT Missile
 
08764396
0876439608764396
08764396
 
Adaptive control for the stabilization and Synchronization of nonlinear gyros...
Adaptive control for the stabilization and Synchronization of nonlinear gyros...Adaptive control for the stabilization and Synchronization of nonlinear gyros...
Adaptive control for the stabilization and Synchronization of nonlinear gyros...
 
Hybrid Fuzzy Sliding Mode Controller for Timedelay System
Hybrid Fuzzy Sliding Mode Controller for Timedelay SystemHybrid Fuzzy Sliding Mode Controller for Timedelay System
Hybrid Fuzzy Sliding Mode Controller for Timedelay System
 
Novel Artificial Control of Nonlinear Uncertain System: Design a Novel Modifi...
Novel Artificial Control of Nonlinear Uncertain System: Design a Novel Modifi...Novel Artificial Control of Nonlinear Uncertain System: Design a Novel Modifi...
Novel Artificial Control of Nonlinear Uncertain System: Design a Novel Modifi...
 
1 Aminullah Assagaf_Estimation-of-domain-of-attraction-for-the-fract_2021_Non...
1 Aminullah Assagaf_Estimation-of-domain-of-attraction-for-the-fract_2021_Non...1 Aminullah Assagaf_Estimation-of-domain-of-attraction-for-the-fract_2021_Non...
1 Aminullah Assagaf_Estimation-of-domain-of-attraction-for-the-fract_2021_Non...
 

Plus de ISA Interchange

An optimal general type-2 fuzzy controller for Urban Traffic Network
An optimal general type-2 fuzzy controller for Urban Traffic NetworkAn optimal general type-2 fuzzy controller for Urban Traffic Network
An optimal general type-2 fuzzy controller for Urban Traffic NetworkISA Interchange
 
Embedded intelligent adaptive PI controller for an electromechanical system
Embedded intelligent adaptive PI controller for an electromechanical  systemEmbedded intelligent adaptive PI controller for an electromechanical  system
Embedded intelligent adaptive PI controller for an electromechanical systemISA Interchange
 
State of charge estimation of lithium-ion batteries using fractional order sl...
State of charge estimation of lithium-ion batteries using fractional order sl...State of charge estimation of lithium-ion batteries using fractional order sl...
State of charge estimation of lithium-ion batteries using fractional order sl...ISA Interchange
 
Fractional order PID for tracking control of a parallel robotic manipulator t...
Fractional order PID for tracking control of a parallel robotic manipulator t...Fractional order PID for tracking control of a parallel robotic manipulator t...
Fractional order PID for tracking control of a parallel robotic manipulator t...ISA Interchange
 
Fuzzy logic for plant-wide control of biological wastewater treatment process...
Fuzzy logic for plant-wide control of biological wastewater treatment process...Fuzzy logic for plant-wide control of biological wastewater treatment process...
Fuzzy logic for plant-wide control of biological wastewater treatment process...ISA Interchange
 
Design and implementation of a control structure for quality products in a cr...
Design and implementation of a control structure for quality products in a cr...Design and implementation of a control structure for quality products in a cr...
Design and implementation of a control structure for quality products in a cr...ISA Interchange
 
Model based PI power system stabilizer design for damping low frequency oscil...
Model based PI power system stabilizer design for damping low frequency oscil...Model based PI power system stabilizer design for damping low frequency oscil...
Model based PI power system stabilizer design for damping low frequency oscil...ISA Interchange
 
A comparison of a novel robust decentralized control strategy and MPC for ind...
A comparison of a novel robust decentralized control strategy and MPC for ind...A comparison of a novel robust decentralized control strategy and MPC for ind...
A comparison of a novel robust decentralized control strategy and MPC for ind...ISA Interchange
 
Fault detection of feed water treatment process using PCA-WD with parameter o...
Fault detection of feed water treatment process using PCA-WD with parameter o...Fault detection of feed water treatment process using PCA-WD with parameter o...
Fault detection of feed water treatment process using PCA-WD with parameter o...ISA Interchange
 
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...ISA Interchange
 
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...ISA Interchange
 
An artificial intelligence based improved classification of two-phase flow patte...
An artificial intelligence based improved classification of two-phase flow patte...An artificial intelligence based improved classification of two-phase flow patte...
An artificial intelligence based improved classification of two-phase flow patte...ISA Interchange
 
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...ISA Interchange
 
Load estimator-based hybrid controller design for two-interleaved boost conve...
Load estimator-based hybrid controller design for two-interleaved boost conve...Load estimator-based hybrid controller design for two-interleaved boost conve...
Load estimator-based hybrid controller design for two-interleaved boost conve...ISA Interchange
 
Effects of Wireless Packet Loss in Industrial Process Control Systems
Effects of Wireless Packet Loss in Industrial Process Control SystemsEffects of Wireless Packet Loss in Industrial Process Control Systems
Effects of Wireless Packet Loss in Industrial Process Control SystemsISA Interchange
 
Fault Detection in the Distillation Column Process
Fault Detection in the Distillation Column ProcessFault Detection in the Distillation Column Process
Fault Detection in the Distillation Column ProcessISA Interchange
 
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank SystemNeural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank SystemISA Interchange
 
A KPI-based process monitoring and fault detection framework for large-scale ...
A KPI-based process monitoring and fault detection framework for large-scale ...A KPI-based process monitoring and fault detection framework for large-scale ...
A KPI-based process monitoring and fault detection framework for large-scale ...ISA Interchange
 
An adaptive PID like controller using mix locally recurrent neural network fo...
An adaptive PID like controller using mix locally recurrent neural network fo...An adaptive PID like controller using mix locally recurrent neural network fo...
An adaptive PID like controller using mix locally recurrent neural network fo...ISA Interchange
 
A method to remove chattering alarms using median filters
A method to remove chattering alarms using median filtersA method to remove chattering alarms using median filters
A method to remove chattering alarms using median filtersISA Interchange
 

Plus de ISA Interchange (20)

An optimal general type-2 fuzzy controller for Urban Traffic Network
An optimal general type-2 fuzzy controller for Urban Traffic NetworkAn optimal general type-2 fuzzy controller for Urban Traffic Network
An optimal general type-2 fuzzy controller for Urban Traffic Network
 
Embedded intelligent adaptive PI controller for an electromechanical system
Embedded intelligent adaptive PI controller for an electromechanical  systemEmbedded intelligent adaptive PI controller for an electromechanical  system
Embedded intelligent adaptive PI controller for an electromechanical system
 
State of charge estimation of lithium-ion batteries using fractional order sl...
State of charge estimation of lithium-ion batteries using fractional order sl...State of charge estimation of lithium-ion batteries using fractional order sl...
State of charge estimation of lithium-ion batteries using fractional order sl...
 
Fractional order PID for tracking control of a parallel robotic manipulator t...
Fractional order PID for tracking control of a parallel robotic manipulator t...Fractional order PID for tracking control of a parallel robotic manipulator t...
Fractional order PID for tracking control of a parallel robotic manipulator t...
 
Fuzzy logic for plant-wide control of biological wastewater treatment process...
Fuzzy logic for plant-wide control of biological wastewater treatment process...Fuzzy logic for plant-wide control of biological wastewater treatment process...
Fuzzy logic for plant-wide control of biological wastewater treatment process...
 
Design and implementation of a control structure for quality products in a cr...
Design and implementation of a control structure for quality products in a cr...Design and implementation of a control structure for quality products in a cr...
Design and implementation of a control structure for quality products in a cr...
 
Model based PI power system stabilizer design for damping low frequency oscil...
Model based PI power system stabilizer design for damping low frequency oscil...Model based PI power system stabilizer design for damping low frequency oscil...
Model based PI power system stabilizer design for damping low frequency oscil...
 
A comparison of a novel robust decentralized control strategy and MPC for ind...
A comparison of a novel robust decentralized control strategy and MPC for ind...A comparison of a novel robust decentralized control strategy and MPC for ind...
A comparison of a novel robust decentralized control strategy and MPC for ind...
 
Fault detection of feed water treatment process using PCA-WD with parameter o...
Fault detection of feed water treatment process using PCA-WD with parameter o...Fault detection of feed water treatment process using PCA-WD with parameter o...
Fault detection of feed water treatment process using PCA-WD with parameter o...
 
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
 
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
 
An artificial intelligence based improved classification of two-phase flow patte...
An artificial intelligence based improved classification of two-phase flow patte...An artificial intelligence based improved classification of two-phase flow patte...
An artificial intelligence based improved classification of two-phase flow patte...
 
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
 
Load estimator-based hybrid controller design for two-interleaved boost conve...
Load estimator-based hybrid controller design for two-interleaved boost conve...Load estimator-based hybrid controller design for two-interleaved boost conve...
Load estimator-based hybrid controller design for two-interleaved boost conve...
 
Effects of Wireless Packet Loss in Industrial Process Control Systems
Effects of Wireless Packet Loss in Industrial Process Control SystemsEffects of Wireless Packet Loss in Industrial Process Control Systems
Effects of Wireless Packet Loss in Industrial Process Control Systems
 
Fault Detection in the Distillation Column Process
Fault Detection in the Distillation Column ProcessFault Detection in the Distillation Column Process
Fault Detection in the Distillation Column Process
 
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank SystemNeural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
 
A KPI-based process monitoring and fault detection framework for large-scale ...
A KPI-based process monitoring and fault detection framework for large-scale ...A KPI-based process monitoring and fault detection framework for large-scale ...
A KPI-based process monitoring and fault detection framework for large-scale ...
 
An adaptive PID like controller using mix locally recurrent neural network fo...
An adaptive PID like controller using mix locally recurrent neural network fo...An adaptive PID like controller using mix locally recurrent neural network fo...
An adaptive PID like controller using mix locally recurrent neural network fo...
 
A method to remove chattering alarms using median filters
A method to remove chattering alarms using median filtersA method to remove chattering alarms using median filters
A method to remove chattering alarms using median filters
 

Dernier

Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024The Digital Insurer
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Jeffrey Haguewood
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024The Digital Insurer
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...apidays
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKSpring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKJago de Vreede
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyKhushali Kathiriya
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Victor Rentea
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfOverkill Security
 
Cyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfCyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfOverkill Security
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdfSandro Moreira
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...apidays
 

Dernier (20)

Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKSpring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdf
 
Cyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfCyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdf
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 

Delay-dependent fuzzy static output feedback control for discrete-time fuzzy stochastic systems with distributed time-varying delays

  • 1. ISA Transactions 51 (2012) 702–712 Contents lists available at SciVerse ScienceDirect ISA Transactions journal homepage: www.elsevier.com/locate/isatrans Delay-dependent fuzzy static output feedback control for discrete-time fuzzy stochastic systems with distributed time-varying delays$ ZhiLe Xia a,b,n, JunMin Li a, JiangRong Li a a b School of Science, Xidian University, ShanXi, Xi’an 710071, China School of Mathematics and Information Engineering, Taizhou University, ZheJiang, Taizhou 317000, China a r t i c l e i n f o a b s t r a c t Article history: Received 18 April 2010 Received in revised form 19 June 2012 Accepted 20 June 2012 Available online 12 July 2012 This paper is concerned with the delay-dependent H1 fuzzy static output feedback control scheme for discrete-time Takagi–Sugeno (T–S) fuzzy stochastic systems with distributed time-varying delays. To begin with, the T–S fuzzy stochastic system is transformed to an equivalent switching fuzzy stochastic system. Then, based on novel matrix decoupling technique, improved free-weighting matrix technique and piecewise Lyapunov–Krasovskii function (PLKF), a new delay-dependent H1 fuzzy static output feedback controller design approach is first derived for the switching fuzzy stochastic system. Some drawbacks existing in the previous papers such as matrix equalities constraint, coordinate transformation, the same output matrices, diagonal structure constraint on Lyapunov matrices and BMI problem have been eliminated. Since only a set of LMIs is involved, the controller parameters can be solved directly by the Matlab LMI toolbox. Finally, two examples are provided to illustrate the validity of the proposed method. & 2012 ISA. Published by Elsevier Ltd. All rights reserved. Keywords: Piecewise Lyapunov–Krasovskii function (PLKF) Linear matrix inequalities (LMIs) Fuzzy static output feedback Switching fuzzy stochastic system Delay-dependent 1. Introduction The well-known Takagi–Sugeno (T–S) fuzzy model [1] has been recognized as a popular and powerful tool in approximating complex nonlinear systems. As a consequence, the study of T–S fuzzy systems has attracted an increasing interest in the past decades (see [2–6] for more details). Moreover, system state variables are often not fully available for practical systems. Some state variables may be difficult/costly to measure and sometimes have no physical meaning and thus cannot be measured at all. It may be possible to use an observer to estimate unknown states, but this approach not only requires more hardware resources, but also makes the dimension of the system increase greatly. In this situation, the static output feedback (SOF) control is more suitable for practical application. Syrmos et al. [20] show that any dynamic output feedback [29] problem can be transformed into a SOF problem, but the converse is not true. Recently, the fuzzy SOF control for T–S fuzzy systems has drawn intensive attention [18,19,21,23–28]. As stated in [16,17,25], the fuzzy SOF controller design for T–S fuzzy system $ This work was supported by the National Natural Science Foundation of China (60974139) and Fundamental Research Funds for the Central Universities (72103676). n Corresponding author at: School of Mathematics and Information Engineering, Taizhou University, ZheJiang, Taizhou 317000, China. Tel.: þ 86 13736515790. E-mail address: zhle_xia@yahoo.com.cn (Z. Xia). is not easy, due to the fact that many rules interference effects are increased. Moreover, the fuzzy SOF control design becomes much more difficult and complex than state feedback one because it belongs to a nonlinear matrix inequalities problem. In [19], the fuzzy SOF control law was given in terms of bilinear matrix inequalities which cannot be solved with ease by a convex optimization algorithm. An iterative linear matrix inequality algorithm was proposed in [21,27] and an optimization technique was investigated in [26]. The problem of designing robust SOF controllers for linear discrete-time systems with time-varying polytopic uncertainties was studied in [22]. In [23], three drawbacks existing in the previous papers such as coordinate transformation, the same output matrices and BMI problem have been eliminated. But linear matrix equalities (LMEs) (i.e. MC yi ¼ C yi P, i ¼ 1, . . . ,r) were included in [23]. By using coordination transformation, a less conservative result was derived in [24] by removing the constraint that the considered Lyapunov matrix is diagonal. In [24], all the local output matrices were assumed to be the same (i.e. C yi ¼ C 2 , i ¼ 1, . . . ,r). If the local output matrices are not the same, coordinate transformation is almost impossible. Hybrid approaches for regional T–S fuzzy SOF controller design was considered in [25]. The authors in [28] investigated the reliable mixed L2 =H1 fuzzy SOF control for nonlinear systems with sensor faults. On the other hand, time delay often occurs in many dynamic systems, such as rolling mill systems, biological systems, metallurgical processing systems, network systems, and so on. Their 0019-0578/$ - see front matter & 2012 ISA. Published by Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.isatra.2012.06.011
  • 2. Z. Xia et al. / ISA Transactions 51 (2012) 702–712 existence is frequently a cause of instability and poor performance. The T–S fuzzy model was first used to deal with the stability analysis and control synthesis of nonlinear time delay systems in [7]. After that, many people devoted a great deal of effort to both theoretical research and implementation techniques for T–S fuzzy systems with time delays [8,9]. However, these results rely on the existence of a common positive definite matrix P for all linear models, which in general leads to a conservative result. To reduce this conservatism, the piecewise Lyapunov function approach [10,11] and the fuzzy Lyapunov function approach [12,13] have been proposed. The delay-independent SOF stabilization for T–S fuzzy system with interval time-delay was investigated in [18] by using the common Lyapunov function approach, which typically led to conservative results. Moreover, as well known as, the delay-independent results [18] are generally more conservative than the delay-dependent ones [8], especially when the size of time delay is small [10–13]. It should be noted that all the above-mentioned results are in the deterministic setting. It is well known that stochastic disturbance often exist in many practical systems. Their existence is a source of instability of control systems, so the investigation on stability analysis and control design of stochastic systems has received increasing attention in recent years [31,32,37,38]. It should be pointed out that, so far, there have been only a few papers that have taken the stochastic phenomena into account in the fuzzy systems [30–37,39]. Research in this area should be interesting yet challenging as it involves the combination of two classes of important systems, namely, stochastic systems and fuzzy systems [37]. The problem of delay-dependent robust fuzzy control for stochastic fuzzy systems with parameter uncertainties and time-varying delay was studied in [31]. Robust stability analysis for uncertain stochastic fuzzy systems with time delay was investigated in [32], and some delay-independent stability conditions were derived. The authors in [33] investigated the passivity and passification problems of the stochastic discretetime T–S fuzzy systems with delay. A sliding mode control approach was proposed in [35] to investigate the fuzzy control problem for uncertain stochastic systems. The problem of stabilization for T–S fuzzy stochastic delay systems was considered in [36,39]. The filtering problem was investigated in [30,34,37]. In addition, the distributed delays in discrete-time systems [40–43] are seldom found in the literature when compared with the distributed delay in continuous-time systems that are described in the form of either finite or infinite integral [44]. As pointed in [40,41], a large-scale system network usually has a spatial nature due to the presence of an amount of parallel pathways of a variety of subsystem sizes and lengths, which gives rise to possible distributed delays for discrete-time systems. With the increasing application of digitalization, distributed delays may emerge in a discrete-time manner, and therefore, it becomes desirable to study the discrete-time systems with distributed delays. The research on discrete-time fuzzy systems with distributed delays remains as an open topic for further investigation. To the best of the authors’ knowledge, there have not been any reported results on the fuzzy SOF control for discrete-time fuzzy stochastic system with distributed time-varying delay. Motivated by the aforementioned discussion, we investigate the H1 fuzzy SOF control for discrete-time T–S fuzzy stochastic systems with distributed time-varying delays. By using improved free-weighting technique and piecewise Lyapunov–Krasovskii function, a new delay-dependent H1 fuzzy SOF controller design approach is derived. Adopting a new matrix decoupling technique, some drawbacks existing in the previous papers such as coordinate transformation, the same output matrices, the diagonal constraint condition on Lyapunov matrices, matrix equalities constraint and BMI problem have been eliminated. Since only a 703 set of LMIs is involved, the fuzzy SOF controller parameters can be solved directly. Finally, two examples are given to illustrate the validity of the proposed method. Notation. For a real matrix S, He fSg denotes S þ ST . The symmetric elements of the symmetric matrix will be denoted by n. Efng stands for the mathematical expectation of the stochastic process or vector. I and 0 represent, respectively, identity matrix and zero matrix. We first introduce the following lemmas, which are crucial to the development of our main results. Lemma 1. For the real positive-definite symmetric matrix P1, matrices A1, A2, B1, B2, D1 ,D2 , D3 and P2 with compatible dimensions, the following inequalities are equivalent, where aI are extra slack nonsingular matrix: " T # A1 P 1 A1 þ BT P 1 B1 þAT A2 þ BT B2 ÀHe fAT P 2 g þ D1 D2 1 2 2 1 ðaÞ o0, n D3 2 0 0 0 ÀaB1 n P1 À2aI 0 0 ÀP 2 þ aA1 n n ð1À2aÞI 0 ÀaA2 n n n ð1À2aÞI n n n n ÀaB2 D1 n ðbÞ 6 6 6 6 6 6 6 6 6 4 P1 À2aI n n n n 0 3 7 0 7 7 0 7 7 7 o0: 0 7 7 D2 7 5 D3 Proof. See the Appendix. Remark 1. By the introduction of the auxiliary slack matrix variable aI, the matrices P1, P2 and A1 , A2 , B1 , B2 are decoupled. This novel technique is proposed in this paper to transform the nonlinear matrix inequalities (30) into a set of linear matrix inequalities (LMIs), which can be easily solved by LMI Toolbox in Matlab. Lemma 2 (Wei et al. [40,41]). Let M A RnÂn be a positive semidefinite matrix, xðmÞ A Rn , we have !T ! t t t X X 1 X xT ðmÞMxðmÞ r À xðmÞ M xðmÞ : À t m¼1 m¼1 m¼1 Lemma 3 (Tian et al. [46] and Lin et al. [47]). Let L, L1 A RpÂp be symmetric matrices. Then L þ tðtÞL1 o0 holds for all tðtÞ A ½t1 , t2 Š if and only if L þ tn L1 o0, n ¼ 1; 2: 2. Problem formulation Consider the following discrete-time Takagi–Sugeno (T–S) fuzzy stochastic system with distributed time-varying delays: Plant Rule i: IF y1 ðtÞ is mi1 and y and yp ðtÞ is mip THEN " # tÀ1 X xðnÞ þ Bi oðtÞ þB1i uðtÞ xðt þ1Þ ¼ Ai xðtÞ þ Adi n ¼ tÀtðtÞ " tÀ1 X þ M i xðtÞ þ M di # xðnÞ þ B2i uðtÞ vðtÞ, n ¼ tÀtðtÞ " zðtÞ ¼ C i xðtÞ þ C di " tÀ1 X # xðnÞ þ Di oðtÞ þ D1i uðtÞ n ¼ tÀtðtÞ þ N i xðtÞ þ Ndi tÀ1 X n ¼ tÀtðtÞ # xðnÞ þ D2i uðtÞ vðtÞ,
  • 3. 704 Z. Xia et al. / ISA Transactions 51 (2012) 702–712 yðtÞ ¼ Gi xðtÞ, t ¼ Àt2 ,Àt2 þ1, . . . ,0, i ¼ 1; 2, . . . ,r, xðtÞ ¼ fðtÞ, ð1Þ where r is the number of IF–THEN rules; yj and mij ðj ¼ 1; 2, . . .Þ are the premise variables and the fuzzy sets, respectively; xðtÞ A Rn , yðtÞ A Rn1 , zðtÞ A Rn2 and fðtÞ are the state, the measured output, the controlled output to be estimated, and the initial condition, respectively; oðtÞ is the disturbance input which belongs to l2 ½0,1Þ; tðtÞ denotes distributed time-varying delays and satisfies 0 o t1 r tðtÞ r t2 ; Ai , Adi , Bi , M i , M di , C i , C di , Di , Ni , Ndi , B1i , B2i , D1i , D2i and Gi are all constant matrices with appropriate dimensions; v(t) is a real scalar stochastic process with Efv2 ðtÞg ¼ 1, EfvðtÞg ¼ 0, EfvðlÞvðmÞg ¼ 0 ðl amÞ: The final output of the switching fuzzy stochastic system (3) is inferred as follows: (" # bðjÞ tÀ1 X X xðt þ1Þ ¼ hjk Ajk xðtÞ þ Adjk xðnÞ þ Bjk oðtÞ þ B1jk uðtÞ " tÀ1 X þ M jk xðtÞ þ M djk # ) xðnÞ þ B2jk uðtÞ vðtÞ , n ¼ tÀtðtÞ (" bðjÞ X zðtÞ ¼ hjk tÀ1 X C jk xðtÞ þ C djk # xðnÞ þDjk oðtÞ þ D1jk uðtÞ n ¼ tÀtðtÞ k¼1 " tÀ1 X þ N jk xðtÞ þ Ndjk ð2Þ Remark 2. As mentioned in introduction, the research on discrete-time fuzzy systems with distributed delays remains as an open topic for further investigation. In [40,41,45], the authors introduced the distributed delays in the form of constant delay P1 PÀ1 t ¼ Àd hðxðk þ tÞÞ or infinite delay t ¼ 1 xðtÀtÞ. The authors in [42,43] investigated the distributed time-varying delays in the PÀ1 form of m ¼ ÀdðkÞ f ðxðk þmÞÞ, where nonlinear function f ðÞ was assumed to satisfy sector-bounded condition. For the sake of simplicity, this paper studies the distributed time-varying delay PtÀ1 in the form of m ¼ tÀtðtÞ xðmÞ and a new delay-dependent H 1 fuzzy static output feedback controller design approach is proposed for discrete-time T–S fuzzy stochastic system. In contrast to aforementioned results, two new techniques, improved freeweighting technique and new matrix decoupling technique, are developed. n ¼ tÀtðtÞ k¼1 # ) xðnÞ þD2jk uðtÞ vðtÞ , n ¼ tÀtðtÞ bðjÞ X yðtÞ ¼ hjk Gjk xðtÞ, k¼1 xðtÞ ¼ fðtÞ, t ¼ Àt2 ,Àt2 þ 1, . . . ,0, yðtÞ A Oj , j ¼ 1, . . . ,s, ð4Þ where Qp mjkl ðyl ðtÞÞ : m ðy ðtÞÞ l ¼ 1 jkl l hjk ¼ hjk ðyðtÞÞ ¼ PbðjÞ l ¼ 1p Q k¼1 Considering the fuzzy system (3) in each subregion, we choose the following fuzzy SOF controller: Region Rule j: IF yðtÞ A Oj THEN Local Plant Rule k IF y1 ðtÞ is mjk1 , . . . , and yp ðtÞ is mjkp THEN uðtÞ ¼ ÀF jk yðtÞ, k ¼ 1, . . . , bðjÞ, j ¼ 1, . . . ,s, ð5Þ As illustrated in [11], we will define open subregions as Op ðp ¼ 1, . . . ,sÞ in the state-space. The corresponding close subregions are defined as O p , which satisfy where Fjk is a local controller gain to be designed. The final output of (5) is inferred by O p O q ¼ @Ou , p a q, p,q ¼ 1, . . . ,s, i ¼ 1; 2, . . . ,r, i uðtÞ ¼ À n ¼ tÀtðtÞ tÀ1 X þ M jk xðtÞ þM djk # tÀ1 X # þ Njk xðtÞ þ N djk tÀ1 X xðnÞ þ D2jk uðtÞ vðtÞ, yðtÞ ¼ Gjk xðtÞ, t ¼ Àt2 ,Àt2 þ1, . . . ,0, i ¼ 1; 2, . . . ,r, xðt þ1Þ ¼ bðjÞ bðjÞ bðjÞ XX X hjk hjl hjm ½f jklm xðtÞ þ g jklm xðtÞvðtÞŠ k¼1l¼1m¼1 9f jklm xðtÞ þ g jklm xðtÞvðtÞ, zðtÞ ¼ bðjÞ bðjÞ bðjÞ XX X hjk hjl hjm ½f zjklm xðtÞ þ g zjklm xðtÞvðtÞŠ k¼1l¼1m¼1 9f zjklm xðtÞ þg zjklm xðtÞvðtÞ, t ¼ Àt2 ,Àt2 þ1, . . . ,0, j ¼ 1, . . . ,s, yðtÞ A Oj , ð7Þ Definition 1 (Gao et al. [38]). The closed-loop system (7) is said to be mean-square stable if, under oðtÞ ¼ 0, for any E 40, there is 2 a dðEÞ 4 0 such that Ef9xðtÞ9 g o E,t 4 0 when supÀt2 r s r 0 2 2 Ef9xðsÞ9 g o dðEÞ. In addition, if limt-1 Ef9xðtÞ9 g ¼ 0 for any initial conditions, then it is said to be mean-square asymptotically stable. # n ¼ tÀtðtÞ xðtÞ ¼ fðtÞ, j ¼ 1, . . . ,s, yðtÞ A Oj : g jklm ¼ ½M jk ÀB2jk F jl Gjm where f jklm ¼ ½Ajk ÀB1jk F jl Gjm Adjk Bjk Š, Mdjk 0Š, f zjklm ¼ ½C jk ÀD1jk F jl Gjm C djk Djk Š, g zjklm ¼ ½Njk ÀD2jk F jl Gjm PtÀ1 T T T Ndjk 0Š, xðtÞ ¼ ½xT ðtÞ n ¼ tÀtðtÞ x ðnÞ o ðtÞŠ . xðnÞ þ Djk oðtÞ þ D1jk uðtÞ n ¼ tÀtðtÞ hjl hjm F jl Gjm xðtÞ, l¼1m¼1 Applying the fuzzy SOF controller (6) to the global fuzzy system (4), we have the following closed-loop system: T n ¼ tÀtðtÞ zðtÞ ¼ C jk xðtÞ þC djk bðjÞ bðjÞ X X ð6Þ xðtÞ ¼ f ðtÞ, xðnÞ þ B2jk uðtÞ vðtÞ, hjl F jl yðtÞ ¼ À l¼1 @Ou i ¼ fyðtÞ9hi ðyðtÞÞ ¼ 1; 0 r hi ðyðtÞ þ EÞ o 1,80 o 9E9 51g, u is where the set of face indexes of the polyhedral hull @Oi ¼ [@Ou , i P hi ðyðtÞÞ ¼ oi ðyðtÞÞ= r ¼ 1 oi ðyðtÞÞ, oi ðyðtÞÞ ¼ Pp¼ 1 mij ðyj ðtÞÞ, yðtÞ ¼ i j ½y1 ðtÞ, . . . , yp ðtÞŠ. Next, we follow the idea of [14] to rewrite the system (1) to be an equivalent discrete-time switching fuzzy stochastic system as the following form: Region Rule j: IF yðtÞ A Oj THEN Local Plant Rule k IF y1 ðtÞ is mjk1 , . . ., and yp ðtÞ is mjkp THEN # tÀ1 X xðnÞ þBjk oðtÞ þB1jk uðtÞ xðt þ 1Þ ¼ Ajk xðtÞ þ Adjk bðjÞ X ð3Þ where Oj denotes the jth subregion, s is the number of subregions partitioned on the state space, and bðjÞ is the number of rules in the subregion Oj . Definition 2 (Gao et al. [38]). Given g 40, the closed-loop system (7) is said to be mean-square asymptotically stable with H1 performance g if it is mean-square asymptotically stable and, under zero-initial conditions, for all nonzero disturbance oðtÞ A l2 ½0,1Þ,
  • 4. Z. Xia et al. / ISA Transactions 51 (2012) 702–712 satisfies EfJzðtÞJ2 g o gJoðtÞJ2 , ð8Þ where 8 !1=2 9 X = 1 , zT ðtÞzðtÞ EfJzðtÞJ2 g9E : t¼0 ; f jklm ¼ ½aj Ajk ÀB1jk U jl Gjm aj Adjk aj Bjk Š, gjklm ¼ ½aj M jk ÀB2jk U jl Gjm aj M djk aj Bjk Š, f zjklm ¼ ½aj C jk ÀD1jk U jl Gjm aj C djk aj Djk Š, gzjklm ¼ ½aj Njk ÀD2jk U jl Gjm aj N djk 0Š: 1 X JoðtÞJ2 9 705 oT ðtÞoðtÞÞ1=2 : Moreover, the switching fuzzy SOF controllers are given by t¼0 ð9Þ The main purpose of this paper is to design fuzzy SOF controller of the form (6) such that the closed-loop system (7) is mean-square asymptotically stable with an H1 performance g. F jl ¼ aÀ1 U jl , j l ¼ 1, . . . , bðjÞ, j ¼ 1, . . . ,s: Proof. Let ZðnÞ ¼ xðn þ1ÞÀxðnÞ: ð14Þ Then, I ZðtÞ ¼ xðt þ 1ÞÀxðtÞ9f jklm xðtÞ þ g jklm xðtÞvðtÞ, 3. Main results In this section, the delay-dependent H1 fuzzy SOF controller design approach is presented for the T–S fuzzy stochastic systems described in the previous section. Let the subregion transition from Oj to Oi be denoted by O ¼ fðj,iÞ9yðtÞ A Oj , yðt þ 1Þ A Oi g. Here, i may be equal to j in O, when yðtÞ and yðt þ1Þ are in the same subregion. Consequently, we have the following result. Theorem 1. Given a constant g 40, the closed-loop system (7) is mean-square asymptotically stable with H1 performance g, if there exist a set of positive-definite symmetric matrices Pj, Z 1 , Z 2 , Q 1 , Q 2 , Q 3 , matrices Ujl, Tj, Wj, Sj, Xj, Yj and the nonsingular matrices aj I, j¼1,y,s, l ¼ 1, . . . , bðjÞ, such that the following LMIs are satisfied: Pn o0, l ¼ 1, . . . , bðjÞ, ðj,iÞ A O, n ¼ 1; 2, ijlll Xj Tj n Z1 # Yj Sj n 4 0, Z2 ð11Þ V 2 ðtÞ ¼ t2 X tÀ1 X m ¼ 1 n ¼ tÀm V 3 ðtÞ ¼ tðtÞ X tÀ1 X t2 X xT ðnÞQ 1 xðnÞ þ ZT ðnÞZ 2 ZðnÞ, mÀ1 X tÀ1 X xT ðsÞQ 1 xðsÞ, m ¼ t1 þ 1 n ¼ 1 s ¼ tÀn xT ðmÞQ 2 xðmÞ þ tÀ1 X xT ðmÞQ 3 xðmÞ, yðtÞ A Oj , m ¼ tÀt2 where Pj, Q 1 ,Q 2 ,Q 3 , Z1 and Z2 are the real symmetric positive definite matrices to be determined. Then along the solution of the closed-loop system (7), we have # Xj þ Y j Wj Z1 þ Z2 ¼ EfDV 1 ðtÞ9xðtÞg þ EfDV 2 ðtÞ9xðtÞg þ EfDV 3 ðtÞ9xðtÞg þ EfDV 4 ðtÞ9xðtÞg, where 40, ð13Þ EfDV 1 ðtÞ9xðtÞg ¼ Ef½xT ðt þ 1ÞP i xðt þ 1ÞÀxT ðtÞPj xðtÞŠ9xðtÞg T T T ¼ Ef½x ðtÞf jklm Pi f jklm xðtÞ þ2vT ðtÞx ðtÞg T P i f jklm xðtÞ jklm where 2 6 6 6 6 n Pijklm ¼ 6 6 6 6 6 4 P1 À2aj I n 0 P1 À2aj I n n 0 0 ð1À2aj ÞI n n n 0 0 0 ð1À2aj ÞI n n n n n n n D1 n Àgjklm ÀP2 þ f jklm Àf zjklm Àgzjklm n 0 0 0 0 3 7 7 7 7 7 7, 7 7 D2 7 5 D3 T þ vT ðtÞx ðtÞg T Pi g jklm xðtÞvðtÞÀxT ðtÞPj xðtÞŠ9xðtÞg, jklm ð16Þ È EfDV 2 ðtÞ9xðtÞg ¼ E ZT ðtÞðt2 Z 1 þ t21 Z 2 ÞZðtÞ À tÀ1 X ZT ðnÞZ 1 ZðnÞÀ n ¼ tÀt2 with ¼E t21 ¼ t2 Àt1 , n ¼ 1; 2, P1 ¼ Pi þ t2 Z 1 þ t21 Z 2 , P2 ¼ ðt2 Z 1 þ t21 Z 2 Þ½I 0 0Š, 2 D11 D12 D22 D1 ¼ 6 n 4 n n 0 3 0 7 5, Àg2 I 0 Sj D2 ¼ B 0 @ 0 ÀW j 1 C 0 A, 0 D3 ¼ diagfÀQ 2 ,ÀQ 3 g, D11 ¼ t2 Q 1 þ 1t21 ðt2 þ t1 À1ÞQ 1 þ Q 2 þQ 3 þ t2 X j þ t21 Y j 2 þ He fT j g þ t2 Z 1 þ t21 Z 2 ÀPj , 1 tn ðW j ÀT j ÀSj Þ, D22 ¼ À 1 tn Q 1, tÀt1 À1 X n ¼ tÀt2 ( D12 ¼ tÀ1 X m ¼ t1 þ 1 n ¼ tÀm m ¼ 1 n ¼ tÀm tÀ1 X t2 X ZT ðnÞZ 1 ZðnÞ þ J9EfVðt þ1Þ9xðtÞgÀVðtÞ ¼ Ef½Vðt þ 1ÞÀVðtÞŠ9xðtÞg ð12Þ n 4 0, V 1 ðtÞ ¼ xT ðtÞPj xðtÞ, m ¼ tÀt1 m ¼ 1, . . . , bðjÞÀ2, k ¼ m þ 1, . . . , bðjÞÀ1, l ¼ k þ1, . . . , bðjÞ, ðj,iÞ A O, n ¼ 1; 2, VðtÞ ¼ V 1 ðtÞ þ V 2 ðtÞ þ V 3 ðtÞ þ V 4 ðtÞ, V 4 ðtÞ ¼ Pn þ Pn þ Pn þ Pn þ Pn þ Pn o 0, ijklm ijkml ijlmk ijlkm ijmlk ijmlk # where f ¼ f jklm À½I 0 0Š. Consider a discrete-time piecewise Lyapunov–Krasovskii function candidate for the closed-loop system (7) as following: ð10Þ Pn þ Pn þ Pn o0, k ¼ 1, . . . , bðjÞÀ1, ijkll ijlkl ijllk l ¼ kþ 1, . . . , bðjÞ, ðj,iÞ A O, n ¼ 1; 2, ð15Þ I jklm tðtÞ X ZT ðtÞðt2 Z 1 þ t21 Z 2 ÞZðtÞÀ tðtÞ X tÀt1 À1 X ZT ðnÞ m ¼ 1 n ¼ tÀt2 1 Z ZðnÞ tðtÞ 2 È ¼ E ZT ðtÞðt2 Z 1 þ t21 Z 2 ÞZðtÞ tÀ1 X ZT ðnÞ 1 tðtÞ Z 1 ZðnÞ ) # xðtÞ tðtÞ X tÀt1 À1 X 1 1 Z 1 ZðnÞÀ Z ZðnÞ ZT ðnÞ tðtÞ tðtÞ 2 m ¼ 1 n ¼ tÀm m ¼ 1 n ¼ tÀm ) # tðtÞ X X tÀmÀ1 1 ðZ 1 þ Z 2 ÞZðnÞ xðtÞ ZT ðnÞ À tðtÞ m ¼ 1 n ¼ tÀt2 nh I I T ¼ E x ðtÞðf jklm ÞT ðt2 Z 1 þ t21 Z 2 Þf jklm xðtÞ À tðtÞ X ) m ¼ 1 n ¼ tÀt2 À # ZT ðnÞZ 2 ZðnÞ xðtÞ tÀ1 X T ZT ðnÞ I þ2vT ðtÞx ðtÞg T ðt2 Z 1 þ t21 Z 2 Þf jklm xðtÞ jklm
  • 5. 706 Z. Xia et al. / ISA Transactions 51 (2012) 702–712 T þ vT ðtÞx ðtÞg T ðt2 Z 1 þ t21 Z 2 Þg jklm xðtÞvðtÞ jklm tðtÞ X X tÀt1 À1 1 1 Z 1 ZðnÞÀ Z ZðnÞ ZT ðnÞ tðtÞ tðtÞ 2 m ¼ 1 n ¼ tÀm m ¼ 1 n ¼ tÀm ) # tðtÞ X X tÀmÀ1 1 T ð17Þ ðZ þ Z ÞZðnÞ xðtÞ , Z ðnÞ À tðtÞ 1 2 m ¼ 1 n ¼ tÀt À tðtÞ X tÀ1 X # tðtÞ tÀ1 tÀ1 X 1 1 X X w1 ¼ 2x ðtÞT j xðtÞÀ xðmÞÀ ZðnÞ ¼ 0, tðtÞ m ¼ tÀtðtÞ tðtÞ m ¼ 1 n ¼ tÀm T ZT ðnÞ ð21Þ w2 ¼ 2xT ðtÞW j EfDV 3 ðtÞ9xðtÞg ¼ E ð22Þ tðt þ 1Þ X t X T x ðnÞQ 1 xðnÞ tðtÞ X tÀ1 X t2 X tÀ1 X m ¼ t1 þ 1 n ¼ tÀm þ 1 ( ¼E 1 t21 ðt2 þ t1 À1ÞxT ðtÞQ 1 xðtÞ 2 ) # xT ðnÞQ 1 xðnÞ xðtÞ tðt þ 1Þ X tÀ1 X T x ðnÞQ 1 xðnÞ þ tðt þ 1Þ X m ¼ 1 n ¼ t þ 1Àm À tðtÞ X tÀ1 X ð23Þ On the other hand, for any appropriately dimensioned matrices X j ¼ X T Z 0 and Y j ¼ Y T Z0, the following hold: j j T x ðnÞQ 1 xðnÞÀ T x ðtÞQ 1 xðtÞ tðtÞ X T x ðtÀmÞQ 1 xðtÀmÞ xT ðnÞQ 1 xðnÞÀ 1 À x ðmÞQ 1 xðmÞ r À tðtÞ m ¼ tÀtðtÞ x ðmÞ Q 1 m ¼ tÀtðtÞ X j xðtÞ X j xðtÞ tðtÞ X tÀt1 À1 X tðtÞ X xT ðtÞ m ¼ 1 n ¼ tÀt2 tðtÞ X tÀt1 À1 X xT ðtÞ tÀmÀ1 X xT ðtÞ 1 tðtÞ 1 tðtÞ 1 tðtÞ Y j xðtÞ Y j xðtÞ Y j xðtÞ ð25Þ From (16)–(25) and considering the closed-loop system (7), we obtain J þ EfzT ðtÞzðtÞgÀg2 wT ðtÞwðtÞ ¼ J þ EfzT ðtÞzðtÞg ð18Þ tÀ1 X ! xðmÞ : ð20Þ From (14), we have Àg2 wT ðtÞwðtÞ þ w1 þ w2 þ w3 þ w4 þ w5 1 T ¼ z ðtÞðXijkl þ CÞzðtÞ tðtÞ !T ! # tðtÞ tÀ1 xðtÞ xðtÞ Xj T j 1 X X À ZðnÞ n Z1 tðtÞ m ¼ 1 n ¼ tÀm ZðnÞ !T ! # tðtÞ tÀt1 À1 xðtÞ xðtÞ Y j Sj 1 X X À Â ZðnÞ ZðnÞ n Z2 tðtÞ m ¼ 1 n ¼ tÀm !T ! # tðtÞ tÀmÀ1 xðtÞ xðtÞ Xj þ Y j Wj 1 X X À ZðnÞ n Z1 þ Z2 tðtÞ m ¼ 1 n ¼ tÀt2 ZðnÞ 1 T 9z ðtÞ Xijklm þ C zðtÞÀUðxðtÞ, ZðnÞÞ tðtÞ ð26Þ T xðmÞÀ m ¼ tÀtðtÞ tðtÞ X tÀ1 X ZðnÞ, m ¼ 1 n ¼ tÀm xðmÞÀtðtÞxðtÀt2 ÞÀ tðtÞ X tÀmÀ1 X ZðnÞ, m ¼ 1 n ¼ tÀt2 m ¼ tÀtðtÞ 0 ¼ tðtÞxðtÀt1 ÞÀ 1 tðtÞ X j xðtÞ ¼ 0: EfDV 4 ðtÞ9xðtÞg ¼ Ef½xT ðtÞðQ 2 þQ 3 ÞxðtÞÀxT ðtÀt1 ÞQ 2 xðtÀt1 Þ 0¼ 1 tðtÞ xT ðtÞY j xðtÞÀ m ¼ 1 n ¼ tÀt2 m ¼ tÀtðtÞ ÀxT ðtÀt2 ÞQ 3 xðtÀt2 ÞŠ9xðtÞg: xT ðtÞ m ¼ 1 n ¼ tÀm ð19Þ tÀ1 X xT ðtÞ n ¼ tÀt2 À T tÀ1 X 1 tðtÞ ð24Þ tÀt1 À1 X w5 ¼ xT ðmÞQ 1 xðmÞ ! tÀ1 X xT ðtÞ ¼ 0, m ¼ tÀtðtÞ T 0 ¼ tðtÞxðtÞÀ tÀmÀ1 X m ¼ 1 n ¼ tÀt2 Using Lemma 2, we have tÀ1 X tðtÞ X À 1 þ t21 ðt2 þ t1 À1ÞxT ðtÞQ 1 xðtÞ 2 # ) t2 tÀ1 X X xT ðnÞQ 1 xðnÞ xðtÞ À m ¼ t1 þ 1 n ¼ tÀm þ 1 1 ¼ E t2 xT ðtÞQ 1 xðtÞ þ t21 ðt2 þ t1 À1ÞxT ðtÞQ 1 xðtÞ 2 ) # tÀ1 X xT ðmÞQ 1 xðmÞ xðtÞ : À m ¼ tÀtðtÞ tÀ1 X tðtÞ X ¼ t21 xT ðtÞY j xðtÞÀ m ¼ 1 n ¼ t þ 1Àm tÀ1 X m ¼ 1 n ¼ tÀm m¼1 tÀ1 X tðtÞ X m ¼ 1 n ¼ tÀt2 ¼ t2 xT ðtÞX j xðtÞÀ m ¼ 1 n ¼ t þ 1Àm À xT ðtÞX j xðtÞÀ n ¼ tÀt2 1 þ t21 ðt2 þ t1 À1ÞxT ðtÞQ 1 xðtÞ 2 ) # t2 tÀ1 X X T x ðnÞQ 1 xðnÞ xðtÞ À m ¼ t1 þ 1 n ¼ tÀm þ 1 ( t2 tÀ1 X X rE xT ðnÞQ 1 xðnÞ þ t2 xT ðtÞQ 1 xðtÞ tÀ1 X tÀ1 X w4 ¼ m¼1 m ¼ 1 n ¼ t þ 1Àm t1 X tðtÞ tÀ1 X X 1 1 X tÀt1 À1 xðmÞÀ ZðnÞ ¼ 0: tðtÞ m ¼ tÀtðtÞ tðtÞ m ¼ 1 n ¼ tÀm xT ðnÞQ 1 xðnÞ: þ m ¼ 1 n ¼ tÀm À # w3 ¼ 2xT ðtÞSj xðtÀt1 ÞÀ m ¼ 1 n ¼ t þ 1Àm À tðtÞ tÀ1 X X 1 1 X tÀmÀ1 xðmÞÀxðtÀt2 ÞÀ ZðnÞ ¼ 0, tðtÞ m ¼ tÀtðtÞ tðtÞ m ¼ 1 n ¼ tÀt 2 2 ( # tÀ1 X m ¼ tÀtðtÞ xðmÞÀ tðtÞ X tÀt1 À1 X ZðnÞ: m ¼ 1 n ¼ tÀm Then, the following equations hold for any matrices T j ,W j ,Sj with appropriate dimensions: where zðtÞ ¼ ½x ðtÞ,xT ðtÀt1 Þ,xT ðtÀt2 ÞŠT , and 2 0 D11 T 6 B 6 X þf zjklm f zjklm þg T g zjklm þ @ n zjklm Xijklm ¼ 6 6 n 4 n 2 0 6n 6 6 C¼6n 6 6 4n n with 3 W j ÀT j ÀSj 0 0 0 ÀQ 1 0 0 n 0 0 n n 0 n n n 07 7 7 0 7, 7 7 05 0 0 0 n 1 3 0 C A Àg2 I D2 7 0 D3 7 7, 7 5
  • 6. Z. Xia et al. / ISA Transactions 51 (2012) 702–712 T T with X ¼ f jklm P1 f jklm þ g T P1 g jklm ÀHe ff jklm P2 g: jklm Then ð28Þ By Lemma 3, (28) is equivalent to ð29Þ which can be rewritten as follows: # T X þf zjklm f zjklm þg T g zjklm þ D1 D2 zjklm D3 n Using Lemma 1, we have 2 P1 À2aj I 0 0 6 n P1 À2aj I 0 6 6 6 n n ð1À2aj ÞI 6 6 6 n n n 6 6 n n n 4 n o 0: ð30Þ 0 Àaj g jklm 0 ÀP2 þ aj f jklm 0 ð1À2aj ÞI Àaj f zjklm Àaj g zjklm n D1 n n n 0 3 7 0 7 7 7 0 7 7 o 0, 0 7 7 7 D2 5 D3 hjk hjl hjm 0 n P1 À2aj I n n 0 0 ð1À2aj ÞI n n n n n 0 0 0 ð1À2aj ÞI Àaj g jklm ÀP2 þ aj f jklm Àaj f zjklm Àaj g zjklm n n n D1 n n n n 0 0 0 0 7 7 7 7 7 7 o0: 7 7 D2 7 5 D3 hjk hjl hjm Pn ijklm k¼1l¼1m¼1 ¼ bðjÞ X 3 hjk Pn þ ijkkk k¼1 þ bX ðjÞÀ1 bðjÞ X 2 hjk hjl ðPn þ Pn þ Pn Þ ijkll ijlkl ijllk bX bX ðjÞÀ2 ðjÞÀ1 bðjÞ X hjk hjl hjm k ¼ 1 l ¼ kþ1 m ¼ lþ1 ðPn þ Pn þ Pn þ Pn þ Pn þ Pn Þ: ijklm ijkml ijlkm ijlmk ijmkl ijmlk C9wðtÞ ¼ 0 o0: 1 C9 ÞFðtÞÀUðxðtÞ, ZðnÞÞ, J9wðtÞ ¼ 0 ¼ F ðtÞðXijkl 9wðtÞ ¼ 0 þ tðtÞ wðtÞ ¼ 0 P where FðtÞ ¼ ½xT ðtÞ tÀ1 tÀtðtÞ xT ðnÞxT ðtÀt1 ÞxT ðtÀt2 ÞŠT and n¼ 2 3 Sj ÀW j 6 Lijkl 7 0 0 Xijkl 9wðtÞ ¼ 0 ¼ 4 5, T D3 n ð34Þ Then, we can conclude that the closed-loop system (7) with wðtÞ ¼ 0 is mean-square asymptotically stable by following the same lines as in the proof of Theorem 1 in [38]. Now, to establish the H1 performance for the closed-loop system (7), consider the following index: ( ) 1 X T 2 T ½e ðtÞeðtÞÀg o ðtÞoðtÞŠ : ð36Þ J2 ¼ E t¼0 Under zero initial condition and (27), we have ( ) 1 X ½ÀDVðtÞŠ ¼ EfÀVð1Þ þ Vð0Þg ¼ EfÀVð1Þg o0, J2 r E t¼0 3 W j ÀT j ÀSj 0 0 ÀQ 1 0 n 0 07 7 7: 05 n n 0 4. Simulation In this section, two examples are used to verify the performance of the proposed SOF controller. Example 1. Nowadays, it is often to consider the cases of monitoring and control through networks. Due to the existence of transmission delay in networks for different environments. Consider system (1) with the following parameters: 2 3 2 3 0:12 À0:01 0:03 0:11 À0:15 0:03 6 0:05 0:14 À0:08 7 6 0 À0:1 À0:07 7 A1 ¼ 4 5, A2 ¼ 4 5, 0:11 À0:6 À0:01 0 0:01 0 0:01 0:13 0:09 À0:21 2 3 0:06 0 0:05 6 7 0:02 0 Ad2 ¼ 4 0 5, 0:001 0 À0:005 3 À0:03 7 5, ð32Þ If (10), (11) and (12) hold, P o0 which implies that (27) holds. Therefore, when assuming the zero disturbance input, from (16)-(25), we obtain n ! 0 : 0 ð35Þ B1 ¼ ½0:14 0:25 0:31Š, 0 6n C9wðtÞ ¼ 0 ¼ 6 6 4n D11 7 I 5þ n 0 J9wðtÞ ¼ 0 o 0: 0:07 2 0:02 6 Ad1 ¼ 4 0 0 k ¼ 1 l ¼ kþ1 2 3 3 Let F jl ¼ aÀ1 U jl , we obtain j bðjÞ bðjÞ bðjÞ XX X 1 tðtÞ The proof is completed. P1 À2aj I P¼ 0 EfJeðtÞJ2 g o gJoðtÞJ2 : k¼1l¼1m¼1 6 6 6 6 6 6 6 6 6 4 2 i I 6 40 0 which means that which is equivalent to 2 0 Xijkl 9wðtÞ ¼ 0 þ ð31Þ bðjÞ bðjÞ bðjÞ XX X I Xþf T T zjklm f zjklm þ g zjklm g zjklm From (13) and (34), we have C o 0, n ¼ 1; 2, n ! 0 h By Schur complement and Lemma 3, LMI (30) implies 1 Xijklm þ C o 0: tðtÞ tn 0 0 ð27Þ If (13) hold and Xijklm þ I Lijkl ¼ J þ EfzT ðtÞzðtÞgÀg2 oT ðtÞoðtÞ o0: 1 707 ð33Þ D1 ¼ ½0:1 À0:3 0:4Š, 2 0:61 0:33 B2 ¼ ½0:22 0:18 0:37Š, D2 ¼ ½0:3 À0:2 0:4Š, 3 2 0 0:37 tðtÞ ¼ 3þ ðÀ1Þt , 3 6 7 6 7 0 5, B11 ¼ 4 0:02 0:34 5, B12 ¼ 4 0:91 0:16 0:06 0 0:28 2 3 2 0:08 0 0:13 0 À0:31 6 7 6 0:51 0 5, M 2 ¼ 4 0 0:42 M1 ¼ 4 0 2 0 0 0:15 0 0:39 3 2 0:03 0 3 0 0:02 0:03 6 7 6 0:24 5, M d1 ¼ 4 0 D21 ¼ 4 0 0:32 0 0 2 3 0 0 0 6 7 0 5, Md2 ¼ 4 0 À0:02 0:02 7 0 5, 0:01 0 0 0:01 0 0 3 7 0 5, 0:11
  • 7. 708 Z. Xia et al. / ISA Transactions 51 (2012) 702–712 0:61 0:33 3 2 0 0:31 3 6 7 6 0 7 B21 ¼ 4 0:02 0:34 5, B22 ¼ 4 0:35 5, 0:16 0:06 0 0:28 2 3 2 3 0:02 0 0:1 0 0 0:03 6 0 7 6 0 0:05 0:3 0 5, C 2 ¼ 4 0 7, C1 ¼ 4 5 0 0 0:08 0 0 À0:02 2 3 0:01 0 0:003 6 0:01 0 7 C d1 ¼ 4 0 5, 0:02 2 0:03 6 C d2 ¼ 4 0 0 2 0 À0:03 0 0 À0:03 0 0:13 3 3 2 0:11 6 D11 ¼ 4 0 0:15 0:02 7, 5 0:04 2 0:05 0 3 0 À0:12 7, 5 0:01 6 Nd2 ¼ 4 G1 ¼ 0:002 0 0 0:013 0:021 0 0:16 0:31 0:19 0:31 3 0:018 0 7 5, 2 0:41 6 D22 ¼ 4 0:22 0:7 0:001 ! 0:68 0:27 , G2 ¼ À0:35 0:63 h1 Membership functions 0.6 0.4 Ω2 Ω1 0 3 0 π/18 0 0:001 3 3 0 0:33 7 5, 2 0:09 0:31 0:17 0:42 0:41 ! : 1 0 −1 −2 −3 0 20 80 100 Suppose the unknown disturbance input v(t) to be random noise, as is shown in Fig. 3. Let g ¼ 3:18, if we use a common Lyapunov matrix P instead of piecewise Lyapunov matrix Pi ði ¼ 1; 2,3Þ in LMIs (10)-(12), no feasible solution can be found for switching fuzzy SOF controller design. However, based on Theorem 1, we can obtain feasible solution as follows: 2:0863 6 0:2038 P1 ¼ 4 0:3742 0.6 0.5 0:2038 3:9144 2:7773 6 P2 ¼ 4 0:1060 1:1422 0.3 0.2 1 π/3 1.5 π/2 2:3044 6 P3 ¼ 4 0:0486 0:4124 |x1| F 11 ¼ Fig. 1. The membership functions. 3 À0:2419 7 5, 4:0821 0:1060 1:1422 5:4118 3 À0:2770 7, 5 À0:2770 4:6235 0:0486 0:4124 2 0.1 0:3742 À0:2419 2 0.4 0.5 40 60 Time(Sec) Fig. 3. The unknown disturbance input v(t). 2 π/18 1.5 π/2 7 5, 0.7 0 1 π/3 0.5 Fig. 2. The partition of subspaces Oi , i ¼1,2,3. 3 0 0.8 0 Ω3 |x1| h2 0.9 ∂Ω1 3 ∂Ω1 2 0.2 The membership functions are shown in Fig. 1. As illustrated in [8,11], we divide the state space into three subregions. The membership functions hji and partition of subregions are stated in Fig. 2. The system matrices are A11 ¼ A21 ¼ A1 , A22 ¼ A31 ¼ A2 , Ad11 ¼ Ad21 ¼ Ad1 , Ad22 ¼ Ad31 ¼ Ad2 , B11 ¼ B21 ¼ B1 , B21 ¼ B31 ¼ B2 , B111 ¼ B121 ¼ B11 , B122 ¼ B131 ¼ B12 , M 11 ¼ M 21 ¼ M1 , M 22 ¼ M 31 ¼ M2 , M d11 ¼ M d21 ¼ Md1 , Md22 ¼ M d31 ¼ Md2 , B211 ¼ B221 ¼ B21 , B222 ¼ B231 ¼ B22 , C 11 ¼ C 21 ¼ C 1 , C 22 ¼ C 31 ¼ C 2 , C d11 ¼ C d21 ¼ C d1 , C d22 ¼ C d31 ¼ C d2 , D11 ¼ D21 ¼ D1 , D22 ¼ D31 ¼ D2 , D111 ¼ D121 ¼ D11 , D122 ¼ D131 ¼ D12 , N 11 ¼ N 21 ¼ N1 , N 22 ¼ N 31 ¼ N 2 , Nd11 ¼ N d21 ¼ Nd1 , Nd22 ¼ Nd31 ¼ N d2 , D211 ¼ D221 ¼ D21 , D222 ¼ D231 ¼ D22 , G11 ¼ G21 ¼ G1 , G22 ¼ G31 ¼ G2 . The membership functions are h11 [ h21 ¼ h1 , h22 [ h31 ¼ h2 . 1 h31 h22 ∂Ω1 ∂Ω2 1 1 0.8 0 6 0 7 N1 ¼ 6 0 0:14 0 7 D12 ¼ 4 0:2 5, 4 5, 0 0:17 0:02 0 À0:13 2 3 2 0:02 0 0:21 0:001 0:013 6 0 7, Nd1 ¼ 6 0:04 0:002 N2 ¼ 4 À0:13 0:04 5 4 0:15 0 0:11 0 0:015 2 Membership functions 0 h21 h11 1 v(t) 2 3:4077 À0:1979 0:0828 À0:9788 3 7 À0:1979 5, 3:0487 ! 1:0874 , 0:0050 F 21 ¼ À0:7167 À0:4143 ! À0:0785 , 1:3926
  • 8. Z. Xia et al. / ISA Transactions 51 (2012) 702–712 ! À0:5569 , 0:6786 0:6118 À0:9752 F 31 ¼ À1:6217 À1:3740 0.6 ! 0:4802 : 1:1860 0.4 0.2 y1(t) F 22 ¼ Based on the proposed fuzzy SOF controller (6), the state responses of the closed-loop system (7) are stated in Figs. 4–6 with the initial conditions xðtÞ ¼ ½p=8,Àp=5, p=3ŠT ðt ¼ À4, . . . ,0Þ and the disturbance oðtÞ ¼ 0:1 Á cos t Á eÀ0:05t . Figs. 7–11 show the corresponding output responses. 0 −0.2 −0.4 Example 2. In this example, the proposed fuzzy SOF control technique is applied to backing up control of a truck–trailer. We use the following modified truck–trailer model formulated in [48] and assume that the states are perturbed by distributed timevarying delay and stochastic disturbances. X tÀ1 vt vt x1 ðtÞ þ ð1Àl1 Þ 1À x1 ðnÞ x1 ðt þ 1Þ ¼ l1 1À L L n ¼ tÀtðtÞ ! ! vt vt uðtÞ þ sinðWðtÞÞ þ uðtÞ vðtÞ, þ 0:01oðtÞ þ l l 50 Time(Sec) 100 0.4 y2(t) 0.2 0 −0.2 0.6 x1(t) 0 Fig. 7. Response curve of measured output y1 ðtÞ. 0.8 −0.4 0.4 −0.6 0.2 0 −0.2 709 0 20 40 60 Time(Sec) 80 100 Fig. 8. Response curve of measured output y2 ðtÞ. 0 50 Time(Sec) 100 0.25 0.2 Fig. 4. Response curve of state x1 ðtÞ. 0.15 Z1(t) 0.2 x2(t) 0 0.05 0 −0.2 −0.05 −0.4 −0.1 −0.6 −0.8 0.1 0 50 Time(Sec) 20 40 60 Time(Sec) x2 ðt þ 1Þ ¼ l2 x2 ðtÞ þ ð1Àl2 Þ tÀ1 X x2 ðnÞ þ n ¼ tÀtðtÞ 1.5 1 80 100 Fig. 9. Response curve of controlled output z1 ðtÞ. 100 Fig. 5. Response curve of state x2 ðtÞ. 0 x3 ðt þ 1Þ ¼ l3 x3 ðtÞ þ ð1Àl3 Þ tÀ1 X vt x1 ðtÞ, L x3 ðnÞ þ vt sinðWðtÞÞ, x3(t) n ¼ tÀtðtÞ 0.5 zðtÞ ¼ À 0 vt vt x1 ðtÞ þsinðWðtÞÞ þ uðtÞ, L l yðtÞ ¼ GxðtÞ, −0.5 −1 0 50 Time(Sec) Fig. 6. Response curve of state x3 ðtÞ. 100 ð37Þ where x1 ðtÞ is the angle difference of truck and trailer, x2 ðtÞ is the angle of trailer, x3 ðtÞ is the vertical position of rear end of trailer, oðtÞ ¼ 0:1eÀt þsinðtÞ is the external disturbance, and v(t) is stochastic disturbance. l is the length of truck, L is the length of trailer, t is sampling time, v is the constant speed of backing
  • 9. 710 Z. Xia et al. / ISA Transactions 51 (2012) 702–712 2 0.05 6 6 A11 ¼ A22 ¼ 6 6 4 Z2(t) 0 −0.05 l1 1À vt L −0.15 50 Time(Sec) l3 0 vt L 2 2 6 Ad11 ¼ Ad12 ¼ Ad21 ¼ Ad22 ¼ 6 4 2 0.1 l3 p 2 3 7 7 0 7, 7 5 vt 10À2 100 Fig. 10. Response curve of controlled output z2 ðtÞ. 0 l2 v t 10À2 2Lp 3 7 7 0 7, 7 5 vt −0.2 0 0 l2 2 2 v t 2L l 1À vt L 6 1 6 A12 ¼ A21 ¼ 6 6 4 0 vt L 2 −0.1 l1 1À vt L 0:01 0 0 3 0 1Àl2 0 0 0 1Àl3 Z3(t) 2 −0.1 2 vt 2L 1 6 M11 ¼ M 22 ¼ 4 0 50 Time(Sec) 100 2 6 M12 ¼ M 21 ¼ 4 0 3 0 3 0 7 0 5, 0 0 0 Fig. 11. Response curve of controlled output z3 ðtÞ. 0 vt 10À2 2Lp 10À2 0 0 p 0 3 7 0 5, 0 0 0 # ! vt vt10À2 vt 10À2 1 0 , C 12 ¼ C 21 ¼ À 0 , C 11 ¼ C 22 ¼ À 2L L 2Lp p up, and WðtÞ ¼ x2 ðtÞ þ vt x1 ðtÞ: 2L D111 ¼ D112 ¼ D121 ¼ D122 ¼ The model parameters are given as l ¼ 2:8 m, L ¼ 5:5 m, v ¼ À1:0 m=s, t ¼ 2:0 s, l1 ¼ l2 ¼ l3 ¼ 0:8, tðtÞ ¼ 2:5 þ 0:5nðÀ1Þt , and G ¼ diagfÀ1,À1,À1g. Under the condition À179:42701 o WðtÞ o 179:42701, the nonlinear system (37) can be exactly represented by the following switching fuzzy system: bðjÞ X xðt þ 1Þ ¼ ( hjk Ajk xðtÞ þ Adjk tÀ1 X xðnÞ 3 217:9 À295:5 7 5, 1016:3 F 12 ¼ ½0:4926 0:2187 À0:2072Š, F 22 ¼ ½1:0882 À0:2040 0:0789Š: Under the initial conditions fðÀ3Þ ¼ ½11; 4,À9ŠT , fðÀ2Þ ¼ ½12; 3, 6Š , fðÀ1Þ ¼ ½À13,À4,À3ŠT and fð0Þ ¼ ½2,0:1,À10ŠT , the simulation results for the system (38) with stochastic disturbances are shown in Fig. 12. hjk ½C jk xðtÞ þ D1jk uðtÞŠ, hjk Gjk xðtÞ, Letting g ¼ 1:6 and using Theorem 1, we obtain 2 3 2 384:7 À35:8 151 566:5 85:3 6 7 6 193:2 P 1 ¼ 4 À35:8 202:7 À332 5, P 2 ¼ 4 85:3 151 À332 1066:7 217:9 À295:5 T k¼1 bðjÞ X G11 ¼ G12 ¼ G21 ¼ G22 ¼ diagfÀ1,À1,À1g: F 21 ¼ ½1:1493 0:0937 À0:0230Š, ! ' þ Bjk oðtÞ þ B1jk uðtÞ þ ½M jk xðtÞ þ B2jk uðtÞŠvðtÞ , bðjÞ X vt , l F 11 ¼ ½0:2721 À0:8158 0:0526Š, n ¼ tÀtðtÞ k¼1 yðtÞ ¼ vt 6 l 7 B111 ¼ B112 ¼ B121 ¼ B122 ¼ B211 ¼ B212 ¼ B221 ¼ B222 ¼ 4 0 5, −0.2 zðtÞ ¼ 7 7, 5 6 7 B11 ¼ B12 ¼ B21 ¼ B22 ¼ 4 0 5, 0 0 −0.3 3 ð38Þ 5. Conclusion k¼1 where xðtÞ ¼ ½x1 ðtÞ x2 ðtÞ x3 ðtÞŠT and hjk ðj ¼ 1; 2, bð1Þ ¼ bð2Þ ¼ 2Þ are the membership functions with 8 À2 sinðWðtÞÞÀWðtÞÁ10 =p , WðtÞ a 0, WðtÞÁð1À10À2 =pÞ h11 ¼ h22 ¼ : 1, WðtÞ ¼ 0, h12 ¼ h21 ¼ 8 WðtÞÀsinðWðtÞÞ , WðtÞÁð1À10À2 =pÞ : 0, WðtÞ a 0, WðtÞ ¼ 0, Based on the switching fuzzy stochastic system, piecewise Lyapunov–Krasovskii function, and state transitions between all possible subregions, a new delay-dependent H1 fuzzy SOF controller design approach is proposed for discrete-time fuzzy stochastic systems with distributed time-varying delays. In contrast to the existing results, two new techniques, improved free-weighting technique and new matrix decoupling technique, are developed. If the conditions are feasible, the controller parameters can be easily constructed by solving a set of LMIs. The theoretic results obtained in the paper have
  • 10. 4 2 5 0 −2 0 −5 −4 −10 0 20 40 Time(Sec) 60 80 0 20 40 Time(Sec) 60 80 0 20 40 Time(Sec) 60 80 0 20 40 Time(Sec) 60 80 2 x2(t) 4 10 x1(t) 20 0 −10 −20 0 −2 0 20 40 Time(Sec) 60 −4 80 10 5 5 z(t) 10 x3(t) 711 10 u(t) Stochastic disturbances v(t) Z. Xia et al. / ISA Transactions 51 (2012) 702–712 0 −5 −10 0 −5 0 20 40 Time(Sec) 60 80 −10 Fig. 12. Control results of trucker–trailer. some potential applications, such as image processing via a large-scale system networks, which gives rise to possible distributed time-varying delays for discrete-time systems. Two examples are presented to demonstrate the validity of the proposed approach. Appendix A. Proof of Lemma 1 where 2 6 6 6 6 S0 ¼ 6 6 6 6 6 4 S0 S2 ST 0 2 S3 o 0, S1 P1 0 0 P1 0 0 0 0 0 ÀP 2 0 0 0 0 I 0 0 I 0 0 0 ÀP T 2 0 0 D1 0 DT 2 0 0 0 ÀaI 0 0 0 ÀaI 0 6 6 6 6 S2 ¼ 6 6 6 6 4 0 0 ÀaI 0 0 0 0 0 0 0 0 0 0 3 0 7 7 7 0 7 7, ÀaI 7 7 7 0 5 S3 ¼ diagfI,I,I,I,I,Ig: 0 Then we choose the orthogonal complement of S1 as # ÀBT AT ÀAT ÀBT I 0 1 2 1 2 ST ¼ , 1? 0 0 0 0 0 I Motivated by [11,15], we can rewrite the inequality (b) as #T # # S3 S1 2 ðA:1Þ 3 0 0 7 7 7 0 7 7 , 0 7 7 7 D2 7 5 D3 which satisfies S1 S1? ¼ 0. Moreover, ½ST , S1? Š is of column full 1 rank. Then it follows that (A.1) is equivalent to the following matrix inequality: 2 I 6 60 40 S1 ¼ 6 6 0 0 0 0 B1 I 0 0 I 0 0 ÀA1 A2 0 0 I B2 0 3 7 07 7, 07 5 0 ST 1? S3 S1 #T S0 S2 ST 0 2 # # S3 S o 0, S1 1? which can be further reduced to ST S0 S1? o 0: 1? ðA:2Þ
  • 11. 712 Z. Xia et al. / ISA Transactions 51 (2012) 702–712 Thus, we have shown that the inequality (b) is equivalent to (A.2). It is also easily seen that matrix inequality (a) can also be rewritten as (A.2). References [1] Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics 1985;15(1):116–32. [2] Guerra TM, Kruszewski A, Lauber J. Discrete Takagi–Sugeno models for control: where are we? Annual Reviews in Control 2009;33(1):37–47. [3] Feng G. A survey on analysis and design of model-based fuzzy control systems. IEEE Transactions on Fuzzy Systems 2006;14(1):676–97. [4] Chang WJ, Ku CC, Huang PH, Chang W. Fuzzy controller design for passive continuous-time affine T–S fuzzy models with relaxed stability conditions. ISA Transactions 2009;48(3):295–303. [5] Chang WJ, Wu WY, Ku CC. H1 constrained fuzzy control via state observer feedback for discrete-time Takagi–Sugeno fuzzy systems with multiplicative noises. ISA Transactions 2011;50(1):37–43. ´ [6] Nachidi M, Rodrıguez F, Tadeo F, Guzman JL. Takagi–Sugeno control of nocturnal temperature in greenhouses using air heating. ISA Transactions 2011;50(2):315–20. [7] Cao YY, Frank PM. Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach. IEEE Transactions on Fuzzy Systems 2000;8(2): 200–11. [8] Guan XP, Chen CL. Delay-dependent guaranteed cost control for T–S fuzzy systems with time delays. IEEE Transactions on Fuzzy Systems 2004;12(2): 236–49. [9] Chen B, Liu XP, Tong SC, Lin C. Observer-based stabilization of T–S fuzzy systems with input delay. IEEE Transactions on Fuzzy Systems 2008;16(3): 652–63. [10] Chen CL, Feng G. Delay-dependent piecewise control for time-delay T–S fuzzy systems with application to chaos control. In: Proceedings of the 14th international conference on fuzzy systems. Reno, USA: IEEE; 2005. p. 1056–61. [11] Chen CL, Feng G, Guan XP. Delay-dependent stability analysis and controller synthesis for discrete-time T–S fuzzy systems with time delays. IEEE Transactions on Fuzzy Systems 2005;13(5):630–43. [12] Wu HN. Delay-dependent stability analysis and stabilization for discretetime fuzzy systems with state delay: a fuzzy Lyapunov–Krasovskii functional approach. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 2006;36(4):954–62. [13] Wu HN, Li HX. New approach to delay-dependent stability analysis and stabilization for continuous-time fuzzy systems with time-varying delay. IEEE Transactions on Fuzzy Systems 2007;15(3):482–93. [14] Wang WJ, Chen YJ, Sun CH. Relaxed stabilization criteria for discrete-time T–S fuzzy control systems based on a switching fuzzy model and piecewise Lyapunov function. IEEE Transactions on Systems, Man, and Cybernetics— Part B: Cybernetics 2007;37(3):551–9. [15] Wu L, Shi P, Wang C, Gao H. Delay-dependent robust H1 and L2 ÀL1 filtering for LPV systems with both discrete and distributed delays. IEEE Proceedings—Control Theory and Applications 2006;153(4):483–92. [16] Lee HJ, Kim DW. Fuzzy static output feedback may be possible in LMI framework. IEEE Transactions on Fuzzy Systems 2009;17(5):1229–30. [17] Fang CH, Liu YS, Kau SW, Hong L, Lee CH. A new LMI-based approach to relaxed quadratic stabilization of T–S fuzzy control systems. IEEE Transactions on Fuzzy Systems 2006;14(3):386–97. [18] Chang YC, Chen SS, Suc SF, Lee TT. Static output feedback stabilization for nonlinear interval time-delay systems via fuzzy control approach. Fuzzy Sets and Systems 2004;148(3):395–410. [19] Huang D, Nguang SK. Static output feedback controller design for fuzzy systems: an ILMI approach. Information Sciences 2007;177(14):3005–15. [20] Syrmos VL, Abdallah CT, Dorato P, Grigoriadis K. Static output feedback: a survey. Automatica 1997;33(2):125–37. [21] Wu HN. An ILMI approach to robust H2 static output feedback fuzzy control for uncertain discrete-time nonlinear systems. Automatica 2008;44(9): 2333–9. [22] Dong JX, Yang GH. Robust static output feedback control for linear discretetime systems with time-varying uncertainties. Systems Control Letters 2008;57(2):123–31. [23] Kau SW, Lee HJ, Yang CM, Lee CH, Hong L, Fang CH. Robust H1 fuzzy static output feedback control of T–S fuzzy systems with parametric uncertainties. Fuzzy Sets and Systems 2007;158(2):135–46. [24] Dong JX, Yang GH. Static outputfeedback H1 control of a class of nonlinear discrete-time systems. Fuzzy Sets and Systems 2009;160(19):2844–59. [25] Chung HY, Wu SM. Hybrid approaches for regional Takagi–Sugeno static output feedback fuzzy controller design. Expert Systems with Applications 2009;36(2):1720–30. [26] Lo JC, Lin ML. Robust H1 nonlinear control via fuzzy static output feedback. IEEE Transactions on Circuits and Systems—I: Fundamental Theory and Applications 2003;50(11):1494–502. [27] Huang D, Nguang SK. Robust H1 static output feedback control of fuzzy systems: an ILMI approach. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics 2006;36(1):216–22. [28] Wu HN, Zhang HY. Reliable mixed L2 =H1 fuzzy static output feedback control for nonlinear systems with sensor faults. Automatica 2005;41(11): 1925–32. [29] Dong JX, Yang GH. Dynamic output feedback H1 control synthesis for discrete-time T–S fuzzy systems via switching fuzzy controllers. Fuzzy Sets and Systems 2009;160(4):482–99. ˆ [30] Wu LG, Ho Daniel WC. Fuzzy filter design for Ito stochastic systems with application to sensor fault detection. IEEE Transactions on Fuzzy Systems 2009;17(1):233–42. [31] Huang H, Ho DWC. Delay-dependent robust control of uncertain stochastic fuzzy systems with time-varying delay. IET Control Theory Application 2007;1(4):1075–85. [32] Wang Z, Ho DWC, Liu X. A note on the robust stability of uncertain stochastic fuzzy systems with time-delays. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans 2004;34(4):570–6. [33] Liang JL, Wang ZD, Liu XH. On passivity and passification of stochastic fuzzy systems with delays: the discrete-time case. IEEE Transactions on Systems, Man, and Cybernetics-part B: Cybernetics 2010;40(3):964–9. [34] Tseng CS. Robust fuzzy filter design for a class of nonlinear stochastic systems. IEEE Transactions on Fuzzy Systems 2007;15(2):261–74. [35] Ho Daniel WC, Niu YG. Robust fuzzy design for nonlinear uncertain stochastic systems via sliding-mode control. IEEE Transactions on Fuzzy Systems 2007;15(3):350–8. [36] Hu LJ, Yang A. Fuzzy model-based control of nonlinear stochastic systems with time-delay. Nonlinear Analysis: Theory, Methods Applications 2009;71(12): 2855–65. [37] Wu LG, Wang ZD. Fuzzy filtering of nonlinear fuzzy stochastic systems with time-varying delay. Signal Processing 2009;89(9):1739–53. [38] Gao HJ, Lam J, Wang CH. Robust H1 filtering for discrete stochastic timedelay systems with nonlinear disturbances. Nonlinear Dynamics and Systems Theory 2004;4(3):285–301. [39] Zhang B, et al. Delay-dependent stabilization for stochastic fuzzy systems with time delays. Fuzzy Sets and Systems 2007;158(20):2238–50. [40] Wei GL, Feng G, Wang ZD. Robust H1 control for discrete-time fuzzy systems with infinite distributed delays. IEEE Transactions on Fuzzy Systems 2009;17(1):224–32. [41] Wang ZD, Wei GL, Feng G. Reliable H1 control discrete-time piecewise linear systems with infinite distributed delays. Automatica 2009;45(12):2991–4. [42] Tang Y, Fang JA, Xia M, Yu DM. Delay-distributed-dependent stability of stochastic discrete-time neural networks with randomly mixed time-varying delays. Neurocomputing 2009;72(16–18):3830–8. [43] Tang Y, Fang JA, Xia M, Gu XJ. Synchronization of Takagi–Sugeno fuzzy stochastic discrete-time complex networks with mixed time-varying delays. Applied Mathematical Modelling 2010;34(4):843–55. [44] Mahboobi Esfanjani R, Nikravesh SKY. Stabilizing model predictive control for constrained nonlinear distributed delay systems. ISA Transactions 2011;50(2):201–6. [45] Liu Y, Wang Z, Liang J, Liu X. Synchronization and state estimation for discrete-time complex networks with distributed delays. IEEE Transactions on System, Man and Cybernetics—Part B: Cybernetics 2008;38(5):1314–25. [46] Tian EG, Yue D, Zhang YJ. Delay-dependent robust H1 control for T–S fuzzy system with interval time-varying delay. Fuzzy Sets and Systems 2009;160(12):1708–19. [47] Lin C, Wang ZD, Yang FW. Observer-based networked control for continuoustime systems with random sensor delays. Automatica 2009;45(2):578–84. [48] Tanaka K, Sano M. A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck–trailer. IEEE Transactions on Fuzzy Systems 1994;2(2):119–34.