SlideShare une entreprise Scribd logo
1  sur  4
Télécharger pour lire hors ligne
Mean and Variance of the HyperGeometric Distribution Page 1
Al Lehnen Madison Area Technical College 11/30/2011
In a drawing of n distinguishable objects without replacement from a set of N (n < N)
distinguishable objects, a of which have characteristic A, (a < N) the probability that
exactly x objects in the draw of n have the characteristic A is given by then number of
different ways the x objects can be chosen from the a available times the number of
different ways the n-x objects in the draw which don’t have A can be chosen from the
N-a available divided by the number of different ways n distinguishable objects can be
chosen from a set of N. The resulting probability distribution for the random variable x is
called the hypergeometric distribution. In symbols,
( )
a N a
x n x
f x
N
n
−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
−⎝ ⎠⎝ ⎠=
⎛ ⎞
⎜ ⎟
⎝ ⎠
.
The binomial coefficient
( )
!
! !
k k
j j k j
⎛ ⎞
=⎜ ⎟
−⎝ ⎠
is defined to be zero if either j or k-j is
negative, so that the probability of the null event of drawing more objects than those
available is zero. To prove that ( )
0 0
1
n n
x x
a N a
x n x
f x
N
n
= =
−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
−⎝ ⎠⎝ ⎠= =
⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∑ , consider the factorization
( ) ( ) ( )N a N a
B C B C B C
−
+ = + + . From the binomial theorem,
( ) ( )
( )
0 0
0 0
a N a
a N a a j j N a l l
j l
a N a
N l j l j
j l
a N a
B C B C B C B C
j l
a N a
B C
j l
−
− − − −
= =
−
− + +
= =
−⎛ ⎞ ⎛ ⎞
+ + = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
−⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑
∑ ∑
Using the diagonal rearrangement suggested by the figure below with l n j= − , with the
intercept n running from 0 to N and j running from 0 to a. This generates more than the
( )( )1 1a N a+ − + terms in the above sum. However, all of the new terms generated vanish
since they have l N a> − .
( ) ( )
0 0
N a
a N a N n n
n j
a N a
B C B C B C
j n j
− −
= =
−⎛ ⎞⎛ ⎞
+ + = ⎜ ⎟⎜ ⎟
−⎝ ⎠⎝ ⎠
∑ ∑
Now, for n a> extending the sum over j to n because of the
a
j
⎛ ⎞
⎜ ⎟
⎝ ⎠
factor would only add
terms which are zero. Similarly, if n a< , the terms in the sum over j from j = n + 1 to j = a
are all zero due to the
N a
n j
−⎛ ⎞
⎜ ⎟
−⎝ ⎠
factor. Thus,
( ) ( )
0 0 0 0
N a N n
a N a N n n N n n
n j n j
a N a a N a
B C B C B C B C
j n j j n j
− − −
= = = =
− −⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
+ + = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
− −⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ .
Mean and Variance of the HyperGeometric Distribution Page 2
Al Lehnen Madison Area Technical College 11/30/2011
But from a second use of the binomial theorem,
( ) ( ) ( )
0 0 0
N n N
a N a NN n n N n n
n j n
a N a N
B C B C B C B C B C
j n j n
− − −
= = =
−⎛ ⎞⎛ ⎞ ⎛ ⎞
+ + = = + =⎜ ⎟⎜ ⎟ ⎜ ⎟
−⎝ ⎠⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ .
The only way the two sums can be equal for all values of B and C is for
0
n
j
a N a N
j n j n=
−⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟
−⎝ ⎠⎝ ⎠ ⎝ ⎠
∑ . (1)
This in turn implies that the hypergeometric probabilities do indeed construct a valid
probability distribution, i.e. ( )
0 0
1
n n
x x
a N a
x n x
f x
N
n
= =
−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
−⎝ ⎠⎝ ⎠= =
⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∑ .
The mean or expected value of the hypergeometric random variable is given by
( )
1
0 0
n n
x
x x
N a N a
x x f x x
n x n x
μ
−
= =
−⎛ ⎞ ⎛ ⎞⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟
−⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ .
Now, using Equation (1),
Mean and Variance of the HyperGeometric Distribution Page 3
Al Lehnen Madison Area Technical College 11/30/2011
( )
( )
( ) ( ) ( )
( ) ( )
( ) ( )
( )
( )
( ) ( )
( )
( ) ( )
( )
0 1 1
1 1
0 0
1 11 !!
1 1! ! 1 ! 1 1 !
1 1 1 11 ! 1
1 1! 1 !
1
1
n n n
x x x
n n
x x
N aa aa N a N axa
x
n xx n x n xx n x x n x
N a N aa a
a a
n x n xxx n x
N
a
n
= = =
− −
= =
⎛ ⎞− − −−− −⎛ ⎞⎛ ⎞ ⎛ ⎞
= = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −− −− ⎡ ⎤− − − −⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
⎛ ⎞ ⎛ ⎞− − − − − −− −⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− − − −⎡ ⎤− − ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
−⎛ ⎞
= ⎜ ⎟
−⎝ ⎠
∑ ∑ ∑
∑ ∑
This gives that ( )
( )
( ) ( )
( )1
0
1 ! ! !1
1 1 ! ! !
n
x
x
N n N nN N na
x x f x a a
n n n N n N N
μ
−
=
− −−⎛ ⎞ ⎛ ⎞
= = = = ⋅ =⎜ ⎟ ⎜ ⎟
− − −⎝ ⎠ ⎝ ⎠
∑ .
Using the notation of the binomial distribution that
a
p
N
= , we see that the expected value
of x is the same for both drawing without replacement (the hypergeometric distribution)
and with replacement (the binomial distribution).
x
na
x np
N
μ = = = (2)
The variance of the hypergeometric distribution can be computed from the generic
formula that
2 22 2
x x x x xσ ⎡ ⎤= − = −⎣ ⎦ . Again from Equation (1),
( )
( )
( )
( )( )
( ) ( ) ( )
( ) ( )
( ) ( )
( )
( )
( )
( ) ( )
( )
( )
( ) ( )
( )
0 2 2
2 2
0 0
2 21 ! 1 2 !
1
2 2! ! 2 ! 2 2 !
2 2 2 22 ! 2
1 1
2 2! 2 !
n n n
x x x
n n
x x
N ax x a a a aa N a N a
x x
n xx n x n xx n x x n x
N a N aa a
a a a a
n x n xxx n x
= = =
− −
= =
⎛ ⎞− − −− − −− −⎛ ⎞⎛ ⎞ ⎛ ⎞
− = = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −− −− ⎡ ⎤− − − −⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
⎛ ⎞ ⎛ ⎞− − − − − −− −⎛ ⎞
= − = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− − − −⎡ ⎤− − ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑ ∑
∑
( )
2
1
2
N
a a
n
−⎛ ⎞
= − ⎜ ⎟
−⎝ ⎠
∑
So,
( ) ( ) ( )
( )
( )
( ) ( )
( ) ( ) ( )
( )
1 1
0
2
1 1 1
2
2 ! ! ! 1 1
1
2 ! ! ! 1
n
x
N a N a N N
x x x x a a
n x n x n n
N N n n a a n n
a a
n N n N N N
− −
=
− −⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
− −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
− − − −
= − ⋅ =
− − −
∑
and
( )
( ) ( )
( )
( )( )
( )
2 1 1 1 1
1 1
1 1
a a n n a nan an
x x x x
N N N N N
⎡ ⎤− − − −
= − + = + = +⎢ ⎥
− −⎢ ⎥⎣ ⎦
.
Mean and Variance of the HyperGeometric Distribution Page 4
Al Lehnen Madison Area Technical College 11/30/2011
Thus,
( )( ) ( )( )
( )
( )
( )
( )
( )
( ) ( )
( ) ( )
( )
( )( )
( )
22 2
2 2
1 1 1 1 1 1
1
1 1 1 1
1 1
1 1
x
a n N a n N N an Nan an an
x x
N N N N N N N N N N
an Nan Na Nn N N N Nan an an N Na Nn an
N N N N N N
N N a n N a N n N aan an an N a
N N N N N N N N
σ
⎡ ⎤⎡ ⎤− − − − − −
= − = + − = + −⎢ ⎥⎢ ⎥
− − − −⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤− − + + − − + − − +
= =⎢ ⎥ ⎢ ⎥
− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤− − − − − −⎛
= = =⎢ ⎥ ⎢ ⎥ ⎜− − ⎝⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
( )
1
1 1
1 1
N n
N
an a N n N n
np p
N N N N
−⎞⎛ ⎞
⎟⎜ ⎟−⎠⎝ ⎠
− −⎛ ⎞⎛ ⎞ ⎛ ⎞
= − = −⎜ ⎟⎜ ⎟ ⎜ ⎟
− −⎝ ⎠⎝ ⎠ ⎝ ⎠
The last factor
1
N n
N
−⎛ ⎞
⎜ ⎟−⎝ ⎠
is called the “finite population correction” and is the reason that
the variance of the binomial distribution ( )1np p− differs from the hypergeometric
distribution. For N large compared to the sample size n, the two distributions are
essentially identical.

Contenu connexe

Tendances

TABLA DE DERIVADAS
TABLA DE DERIVADASTABLA DE DERIVADAS
TABLA DE DERIVADAS
Educación
 
Linear conformal mapping
Linear conformal mappingLinear conformal mapping
Linear conformal mapping
Tarun Gehlot
 
X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)
Nigel Simmons
 
X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)
Nigel Simmons
 
Statistik 1 5 distribusi probabilitas diskrit
Statistik 1 5 distribusi probabilitas diskritStatistik 1 5 distribusi probabilitas diskrit
Statistik 1 5 distribusi probabilitas diskrit
Selvin Hadi
 
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
Sanyam Singh
 
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
Nigel Simmons
 
Bai giang ham so kha vi va vi phan cua ham nhieu bien
Bai giang ham so kha vi va vi phan cua ham nhieu bienBai giang ham so kha vi va vi phan cua ham nhieu bien
Bai giang ham so kha vi va vi phan cua ham nhieu bien
Nhan Nguyen
 

Tendances (18)

TABLA DE DERIVADAS
TABLA DE DERIVADASTABLA DE DERIVADAS
TABLA DE DERIVADAS
 
Lección 1 - Propiedades de las operaciones en reales
Lección 1 - Propiedades de las operaciones en reales Lección 1 - Propiedades de las operaciones en reales
Lección 1 - Propiedades de las operaciones en reales
 
Newton’s forward interpolation
Newton’s forward interpolationNewton’s forward interpolation
Newton’s forward interpolation
 
Newton’s Divided Difference Formula
Newton’s Divided Difference FormulaNewton’s Divided Difference Formula
Newton’s Divided Difference Formula
 
Linear conformal mapping
Linear conformal mappingLinear conformal mapping
Linear conformal mapping
 
Rpra1
Rpra1Rpra1
Rpra1
 
X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)
 
X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)
 
NUMERICAL METHODS
NUMERICAL METHODSNUMERICAL METHODS
NUMERICAL METHODS
 
Newton's forward difference
Newton's forward differenceNewton's forward difference
Newton's forward difference
 
Statistik 1 5 distribusi probabilitas diskrit
Statistik 1 5 distribusi probabilitas diskritStatistik 1 5 distribusi probabilitas diskrit
Statistik 1 5 distribusi probabilitas diskrit
 
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
 
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
 
Lesson 24: The Definite Integral (Section 4 version)
Lesson 24: The Definite Integral (Section 4 version)Lesson 24: The Definite Integral (Section 4 version)
Lesson 24: The Definite Integral (Section 4 version)
 
Bai giang ham so kha vi va vi phan cua ham nhieu bien
Bai giang ham so kha vi va vi phan cua ham nhieu bienBai giang ham so kha vi va vi phan cua ham nhieu bien
Bai giang ham so kha vi va vi phan cua ham nhieu bien
 
Lesson 24: The Definite Integral (Section 10 version)
Lesson 24: The Definite Integral (Section 10 version)Lesson 24: The Definite Integral (Section 10 version)
Lesson 24: The Definite Integral (Section 10 version)
 
Formulas statistics
Formulas statisticsFormulas statistics
Formulas statistics
 
Lesson 6: Limits Involving Infinity (slides)
Lesson 6: Limits Involving Infinity (slides)Lesson 6: Limits Involving Infinity (slides)
Lesson 6: Limits Involving Infinity (slides)
 

En vedette (10)

Hypergeometric Distribution
Hypergeometric DistributionHypergeometric Distribution
Hypergeometric Distribution
 
Hypergeometric distribution
Hypergeometric distributionHypergeometric distribution
Hypergeometric distribution
 
Probability Distributions for Discrete Variables
Probability Distributions for Discrete VariablesProbability Distributions for Discrete Variables
Probability Distributions for Discrete Variables
 
The Poisson Distribution
The  Poisson DistributionThe  Poisson Distribution
The Poisson Distribution
 
Poisson lecture
Poisson lecturePoisson lecture
Poisson lecture
 
Poission distribution
Poission distributionPoission distribution
Poission distribution
 
Poisson distribution
Poisson distributionPoisson distribution
Poisson distribution
 
Poisson distribution
Poisson distributionPoisson distribution
Poisson distribution
 
Discrete and continuous probability distributions ppt @ bec doms
Discrete and continuous probability distributions ppt @ bec domsDiscrete and continuous probability distributions ppt @ bec doms
Discrete and continuous probability distributions ppt @ bec doms
 
Poisson Distribution
Poisson DistributionPoisson Distribution
Poisson Distribution
 

Similaire à Hypergdistribution

Calculo
CalculoCalculo
Calculo
Ju Lio
 
Formulario derivadas e integrales
Formulario derivadas e integralesFormulario derivadas e integrales
Formulario derivadas e integrales
Geovanny Jiménez
 
X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)
Nigel Simmons
 

Similaire à Hypergdistribution (20)

Formulario calculo
Formulario calculoFormulario calculo
Formulario calculo
 
Formulario cálculo
Formulario cálculoFormulario cálculo
Formulario cálculo
 
Formulario oficial-calculo
Formulario oficial-calculoFormulario oficial-calculo
Formulario oficial-calculo
 
Formulario
FormularioFormulario
Formulario
 
Formulario calculo
Formulario calculoFormulario calculo
Formulario calculo
 
Formulas de calculo
Formulas de calculoFormulas de calculo
Formulas de calculo
 
Calculo
CalculoCalculo
Calculo
 
Calculo
CalculoCalculo
Calculo
 
Tablas calculo
Tablas calculoTablas calculo
Tablas calculo
 
Formulario
FormularioFormulario
Formulario
 
Formulario derivadas e integrales
Formulario derivadas e integralesFormulario derivadas e integrales
Formulario derivadas e integrales
 
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
 
X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)
 
07-Convolution.pptx signal spectra and signal processing
07-Convolution.pptx signal spectra and signal processing07-Convolution.pptx signal spectra and signal processing
07-Convolution.pptx signal spectra and signal processing
 
Nonparametric approach to multiple regression
Nonparametric approach to multiple regressionNonparametric approach to multiple regression
Nonparametric approach to multiple regression
 
Simple Linear Regression
Simple Linear RegressionSimple Linear Regression
Simple Linear Regression
 
Solution manual for introduction to nonlinear finite element analysis nam-h...
Solution manual for introduction to nonlinear finite element analysis   nam-h...Solution manual for introduction to nonlinear finite element analysis   nam-h...
Solution manual for introduction to nonlinear finite element analysis nam-h...
 
微積分定理與公式
微積分定理與公式微積分定理與公式
微積分定理與公式
 
Introduction to Gaussian Processes
Introduction to Gaussian ProcessesIntroduction to Gaussian Processes
Introduction to Gaussian Processes
 
Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...
Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...
Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...
 

Dernier

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 

Dernier (20)

Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Third Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptxThird Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptx
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 

Hypergdistribution

  • 1. Mean and Variance of the HyperGeometric Distribution Page 1 Al Lehnen Madison Area Technical College 11/30/2011 In a drawing of n distinguishable objects without replacement from a set of N (n < N) distinguishable objects, a of which have characteristic A, (a < N) the probability that exactly x objects in the draw of n have the characteristic A is given by then number of different ways the x objects can be chosen from the a available times the number of different ways the n-x objects in the draw which don’t have A can be chosen from the N-a available divided by the number of different ways n distinguishable objects can be chosen from a set of N. The resulting probability distribution for the random variable x is called the hypergeometric distribution. In symbols, ( ) a N a x n x f x N n −⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠= ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ . The binomial coefficient ( ) ! ! ! k k j j k j ⎛ ⎞ =⎜ ⎟ −⎝ ⎠ is defined to be zero if either j or k-j is negative, so that the probability of the null event of drawing more objects than those available is zero. To prove that ( ) 0 0 1 n n x x a N a x n x f x N n = = −⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠= = ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ ∑ ∑ , consider the factorization ( ) ( ) ( )N a N a B C B C B C − + = + + . From the binomial theorem, ( ) ( ) ( ) 0 0 0 0 a N a a N a a j j N a l l j l a N a N l j l j j l a N a B C B C B C B C j l a N a B C j l − − − − − = = − − + + = = −⎛ ⎞ ⎛ ⎞ + + = ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ −⎛ ⎞⎛ ⎞ = ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ∑ ∑ ∑ ∑ Using the diagonal rearrangement suggested by the figure below with l n j= − , with the intercept n running from 0 to N and j running from 0 to a. This generates more than the ( )( )1 1a N a+ − + terms in the above sum. However, all of the new terms generated vanish since they have l N a> − . ( ) ( ) 0 0 N a a N a N n n n j a N a B C B C B C j n j − − = = −⎛ ⎞⎛ ⎞ + + = ⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠ ∑ ∑ Now, for n a> extending the sum over j to n because of the a j ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ factor would only add terms which are zero. Similarly, if n a< , the terms in the sum over j from j = n + 1 to j = a are all zero due to the N a n j −⎛ ⎞ ⎜ ⎟ −⎝ ⎠ factor. Thus, ( ) ( ) 0 0 0 0 N a N n a N a N n n N n n n j n j a N a a N a B C B C B C B C j n j j n j − − − = = = = − −⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ + + = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ − −⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ∑ ∑ ∑ ∑ .
  • 2. Mean and Variance of the HyperGeometric Distribution Page 2 Al Lehnen Madison Area Technical College 11/30/2011 But from a second use of the binomial theorem, ( ) ( ) ( ) 0 0 0 N n N a N a NN n n N n n n j n a N a N B C B C B C B C B C j n j n − − − = = = −⎛ ⎞⎛ ⎞ ⎛ ⎞ + + = = + =⎜ ⎟⎜ ⎟ ⎜ ⎟ −⎝ ⎠⎝ ⎠ ⎝ ⎠ ∑ ∑ ∑ . The only way the two sums can be equal for all values of B and C is for 0 n j a N a N j n j n= −⎛ ⎞⎛ ⎞ ⎛ ⎞ =⎜ ⎟⎜ ⎟ ⎜ ⎟ −⎝ ⎠⎝ ⎠ ⎝ ⎠ ∑ . (1) This in turn implies that the hypergeometric probabilities do indeed construct a valid probability distribution, i.e. ( ) 0 0 1 n n x x a N a x n x f x N n = = −⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠= = ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ ∑ ∑ . The mean or expected value of the hypergeometric random variable is given by ( ) 1 0 0 n n x x x N a N a x x f x x n x n x μ − = = −⎛ ⎞ ⎛ ⎞⎛ ⎞ = = =⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠⎝ ⎠ ∑ ∑ . Now, using Equation (1),
  • 3. Mean and Variance of the HyperGeometric Distribution Page 3 Al Lehnen Madison Area Technical College 11/30/2011 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 1 1 1 1 0 0 1 11 !! 1 1! ! 1 ! 1 1 ! 1 1 1 11 ! 1 1 1! 1 ! 1 1 n n n x x x n n x x N aa aa N a N axa x n xx n x n xx n x x n x N a N aa a a a n x n xxx n x N a n = = = − − = = ⎛ ⎞− − −−− −⎛ ⎞⎛ ⎞ ⎛ ⎞ = = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −− −− ⎡ ⎤− − − −⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎛ ⎞ ⎛ ⎞− − − − − −− −⎛ ⎞ = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− − − −⎡ ⎤− − ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ −⎛ ⎞ = ⎜ ⎟ −⎝ ⎠ ∑ ∑ ∑ ∑ ∑ This gives that ( ) ( ) ( ) ( ) ( )1 0 1 ! ! !1 1 1 ! ! ! n x x N n N nN N na x x f x a a n n n N n N N μ − = − −−⎛ ⎞ ⎛ ⎞ = = = = ⋅ =⎜ ⎟ ⎜ ⎟ − − −⎝ ⎠ ⎝ ⎠ ∑ . Using the notation of the binomial distribution that a p N = , we see that the expected value of x is the same for both drawing without replacement (the hypergeometric distribution) and with replacement (the binomial distribution). x na x np N μ = = = (2) The variance of the hypergeometric distribution can be computed from the generic formula that 2 22 2 x x x x xσ ⎡ ⎤= − = −⎣ ⎦ . Again from Equation (1), ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 2 2 2 2 0 0 2 21 ! 1 2 ! 1 2 2! ! 2 ! 2 2 ! 2 2 2 22 ! 2 1 1 2 2! 2 ! n n n x x x n n x x N ax x a a a aa N a N a x x n xx n x n xx n x x n x N a N aa a a a a a n x n xxx n x = = = − − = = ⎛ ⎞− − −− − −− −⎛ ⎞⎛ ⎞ ⎛ ⎞ − = = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −− −− ⎡ ⎤− − − −⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎛ ⎞ ⎛ ⎞− − − − − −− −⎛ ⎞ = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− − − −⎡ ⎤− − ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ∑ ∑ ∑ ∑ ( ) 2 1 2 N a a n −⎛ ⎞ = − ⎜ ⎟ −⎝ ⎠ ∑ So, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 0 2 1 1 1 2 2 ! ! ! 1 1 1 2 ! ! ! 1 n x N a N a N N x x x x a a n x n x n n N N n n a a n n a a n N n N N N − − = − −⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ − = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ − −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ − − − − = − ⋅ = − − − ∑ and ( ) ( ) ( ) ( ) ( )( ) ( ) 2 1 1 1 1 1 1 1 1 a a n n a nan an x x x x N N N N N ⎡ ⎤− − − − = − + = + = +⎢ ⎥ − −⎢ ⎥⎣ ⎦ .
  • 4. Mean and Variance of the HyperGeometric Distribution Page 4 Al Lehnen Madison Area Technical College 11/30/2011 Thus, ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) 22 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 x a n N a n N N an Nan an an x x N N N N N N N N N N an Nan Na Nn N N N Nan an an N Na Nn an N N N N N N N N a n N a N n N aan an an N a N N N N N N N N σ ⎡ ⎤⎡ ⎤− − − − − − = − = + − = + −⎢ ⎥⎢ ⎥ − − − −⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎡ ⎤ ⎡ ⎤− − + + − − + − − + = =⎢ ⎥ ⎢ ⎥ − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎡ ⎤ ⎡ ⎤− − − − − −⎛ = = =⎢ ⎥ ⎢ ⎥ ⎜− − ⎝⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ( ) 1 1 1 1 1 N n N an a N n N n np p N N N N −⎞⎛ ⎞ ⎟⎜ ⎟−⎠⎝ ⎠ − −⎛ ⎞⎛ ⎞ ⎛ ⎞ = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟ − −⎝ ⎠⎝ ⎠ ⎝ ⎠ The last factor 1 N n N −⎛ ⎞ ⎜ ⎟−⎝ ⎠ is called the “finite population correction” and is the reason that the variance of the binomial distribution ( )1np p− differs from the hypergeometric distribution. For N large compared to the sample size n, the two distributions are essentially identical.