SlideShare une entreprise Scribd logo
1  sur  5
Télécharger pour lire hors ligne
www.mathportal.org

Integration Formulas
1. Common Integrals
Indefinite Integral
Method of substitution

∫ f ( g ( x)) g ′( x)dx = ∫ f (u )du
Integration by parts

∫

f ( x) g ′( x)dx = f ( x) g ( x) − ∫ g ( x) f ′( x)dx

Integrals of Rational and Irrational Functions
n
∫ x dx =

x n +1
+C
n +1

1

∫ x dx = ln x + C
∫ c dx = cx + C
∫ xdx =

x2
+C
2

x3
+C
3
1
1
∫ x2 dx = − x + C
2
∫ x dx =

∫

xdx =
1

∫1+ x

∫

2

2x x
+C
3

dx = arctan x + C

1
1 − x2

dx = arcsin x + C

Integrals of Trigonometric Functions

∫ sin x dx = − cos x + C
∫ cos x dx = sin x + C
∫ tan x dx = ln sec x + C
∫ sec x dx = ln tan x + sec x + C
1
( x − sin x cos x ) + C
2
1
2
∫ cos x dx = 2 ( x + sin x cos x ) + C

∫ sin

2

∫ tan
∫ sec

x dx =

2

x dx = tan x − x + C

2

x dx = tan x + C

Integrals of Exponential and Logarithmic Functions

∫ ln x dx = x ln x − x + C
n
∫ x ln x dx =

∫e

x

x n +1
x n +1
ln x −
+C
2
n +1
( n + 1)

dx = e x + C

x
∫ b dx =

bx
+C
ln b

∫ sinh x dx = cosh x + C
∫ cosh x dx = sinh x + C
www.mathportal.org
2. Integrals of Rational Functions
Integrals involving ax + b

( ax + b )n + 1
∫ ( ax + b ) dx = a ( n + 1)
n

1

( for n ≠ −1)

1

∫ ax + b dx = a ln ax + b
∫ x ( ax + b )

n

a ( n + 1) x − b

dx =
a

x

x

2

( n + 1)( n + 2 )

( ax + b )n+1

( for n ≠ −1, n ≠ −2 )

b

∫ ax + b dx = a − a 2 ln ax + b
x

b

1

∫ ( ax + b )2 dx = a 2 ( ax + b ) + a 2 ln ax + b
a (1 − n ) x − b

x

∫ ( ax + b )n dx = a 2 ( n − 1)( n − 2)( ax + b )n−1

( for n ≠ −1, n ≠ −2 )

2

x2
1  ( ax + b )

dx = 3
− 2b ( ax + b ) + b 2 ln ax + b 
∫ ax + b

2
a 



x2

∫ ( ax + b )2
x2

∫ ( ax + b )3
x2

∫ ( ax + b ) n

1 
b2 
dx = 3  ax + b − 2b ln ax + b −

ax + b 
a 


dx =

1 
2b
b2
 ln ax + b +
−
ax + b 2 ( ax + b )2
a3 


dx =

3−n
2− n
1−n
2b ( a + b )
b2 ( ax + b )
1  ( ax + b )
−
+
−
n−3
n−2
n −1
a3 


1

1

∫ x ( ax + b ) dx = − b ln
1

ax + b
x

1

a

∫ x 2 ( ax + b ) dx = − bx + b2 ln
1

∫ x 2 ( ax + b )2

ax + b
x


1
1
2
ax + b
dx = − a  2
+ 2 − 3 ln
 b ( a + xb ) ab x b
x


Integrals involving ax2 + bx + c
1

1

x

∫ x 2 + a 2 dx = a arctg a

a−x
1
 2a ln a + x

∫ x2 − a 2 dx =  1 x − a
 ln
 2a x + a

1






for x < a
for x > a











( for n ≠ 1, 2,3)
www.mathportal.org

2
2ax + b

arctan

2
4ac − b 2
 4ac − b

1
2
2ax + b − b 2 − 4 ac

dx = 
ln
∫ ax 2 + bx + c
 b 2 − 4ac 2 ax + b + b 2 − 4ac

− 2
 2ax + b

x

1

∫ ax 2 + bx + c dx = 2a ln ax

2

+ bx + c −

for 4ac − b 2 > 0
for 4ac − b 2 < 0
for 4ac − b 2 = 0

b
dx
∫ ax 2 + bx + c
2a

m
2an − bm
2ax + b
2
arctan
for 4ac − b 2 > 0
 ln ax + bx + c +
2
2
2a
a 4ac − b
4ac − b

m
mx + n
2an − bm
2ax + b

2
2
∫ ax 2 + bx + c dx =  2a ln ax + bx + c + a b2 − 4ac arctanh b2 − 4ac for 4ac − b < 0

m
2an − bm
 ln ax 2 + bx + c −
for 4ac − b 2 = 0
a ( 2 ax + b )
 2a


∫

1

( ax

∫x

2

+ bx + c

)

n

1

( ax

2

+ bx + c

)

dx =

2ax + b

( n − 1) ( 4ac − b2 )( ax 2 + bx + c )

dx =

n−1

+

( 2 n − 3 ) 2a
1
dx
2 ∫
( n − 1) ( 4ac − b ) ( ax 2 + bx + c )n−1

1
x2
b
1
ln 2
− ∫ 2
dx
2c ax + bx + c 2c ax + bx + c

3. Integrals of Exponential Functions
cx
∫ xe dx =

ecx
c2

( cx − 1)

 x2 2x 2 
x 2 ecx dx = ecx 
∫
 c − c 2 + c3 




∫x

n cx

e dx =

1 n cx n n −1 cx
x e − ∫ x e dx
c
c
i

∞ cx
( )
ecx
dx = ln x + ∑
∫ x
i =1 i ⋅ i !

∫e

cx

ln xdx =

1 cx
e ln x + Ei ( cx )
c

cx
∫ e sin bxdx =
cx
∫ e cos bxdx =
cx
n
∫ e sin xdx =

ecx
c 2 + b2

( c sin bx − b cos bx )

ecx
c 2 + b2

( c cos bx + b sin bx )

ecx sin n −1 x
2

c +n

2

( c sin x − n cos bx ) +

n ( n − 1)
2

c +n

2

∫e

cx

sin n −2 dx
www.mathportal.org
4. Integrals of Logarithmic Functions

∫ ln cxdx = x ln cx − x
b

∫ ln(ax + b)dx = x ln(ax + b) − x + a ln(ax + b)
2

2

∫ ( ln x ) dx = x ( ln x ) − 2 x ln x + 2 x
n
n
n −1
∫ ( ln cx ) dx = x ( ln cx ) − n∫ ( ln cx ) dx
i

∞ ln x
( )
dx
= ln ln x + ln x + ∑
∫ ln x
n =2 i ⋅ i !

dx

∫ ( ln x )n

=−

x

( n − 1)( ln x )

n −1

+

1
dx
n − 1 ∫ ( ln x )n −1

 ln x
1
x m ln xdx = x m +1 
−
∫
 m + 1 ( m + 1) 2


∫ x ( ln x )
m

∫

( ln x )n
x

n

dx =

dx =

x m+1 ( ln x )

n

m +1

−

( ln x )n+1

)

( for m ≠ 1)

n
n −1
m
∫ x ( ln x ) dx
m +1

2

ln x n
ln x n
( for n ≠ 0 )
∫ x dx = 2n
ln x
ln x
1
∫ xm dx = − ( m − 1) xm−1 − ( m − 1)2 xm−1

∫

( ln x )n
xm

( for m ≠ 1)

( ln x )n
( ln x )n−1
n
dx = −
+
dx
( m − 1) x m−1 m − 1 ∫ x m

dx

∫ x ln x = ln ln x
∞

dx

∫ xn ln x = ln ln x + ∑ ( −1)
i =1
dx

∫ x ( ln x )n
∫ ln ( x

2

=−

i

( n − 1)i ( ln x )i
i ⋅ i!

1

( for n ≠ 1)

( n − 1)( ln x )n−1

)

(

)

+ a 2 dx = x ln x 2 + a 2 − 2 x + 2a tan −1
x

∫ sin ( ln x ) dx = 2 ( sin ( ln x ) − cos ( ln x ) )
x

( for m ≠ 1)

( for n ≠ 1)

n +1

(






( for n ≠ 1)

∫ cos ( ln x ) dx = 2 ( sin ( ln x ) + cos ( ln x ) )

x
a

( for m ≠ 1)
www.mathportal.org
5. Integrals of Trig. Functions

∫ sin xdx = − cos x
∫ cos xdx = − sin x

cos x

x 1
− sin 2 x
2 4
x 1
2
∫ cos xdx = 2 + 4 sin 2 x
1
3
3
∫ sin xdx = 3 cos x − cos x
1 3
3
∫ cos xdx = sin x − 3 sin x

∫ sin

2

xdx =

dx

cos 2 x
x
∫ sin x dx = ln tan 2 + cos x

∫ cot

2

xdx = − cot x − x

dx

∫ sin x cos x = ln tan x
dx

x

1

π

∫ sin 2 x cos x = − sin x + ln tan  2 + 4 


dx

1

x

x

∫ sin x cos2 x = cos x + ln tan 2

x

∫ sin 2 x cos2 x = tan x − cot x

∫ sin x xdx = ln tan 2
dx

1

∫ sin 2 x dx = − sin x

dx

π

∫ cos x xdx = ln tan  2 + 4 


dx
∫ sin 2 x xdx = − cot x
dx
∫ cos2 x xdx = tan x

sin( m + n) x sin( m − n) x
+
2( m − n)

∫sin mxsin nxdx = − 2( m+ n)

cos ( m + n) x cos ( m − n) x
−
2( m − n)

∫sin mxcos nxdx = − 2( m + n)

sin ( m + n) x sin ( m − n) x
+
2( m − n)

dx
cos x
1
x
∫ sin 3 x = − 2sin 2 x + 2 ln tan 2

∫ cos mxcos nxdx = 2( m + n)

dx
sin x
1
x π
∫ cos3 x = 2 cos2 x + 2 ln tan  2 + 4 



n
∫ sin x cos xdx = −

1
∫ sin x cos xdx = − 4 cos 2 x
1 3
2
∫ sin x cos xdx = 3 sin x
1
2
3
∫ sin x cos xdx = − 3 cos x
x 1
2
2
∫ sin x cos xdx = 8 − 32 sin 4 x

n
∫ sin x cos xdx =

∫ tan xdx = − ln cos x
sin x
1
dx =
2
cos x
x

∫ cos

sin 2 x
x π 
∫ cos x dx = ln tan  2 + 4  − sin x



∫ tan xdx = tan x − x
∫ cot xdx = ln sin x
2

cos n +1 x
n +1

sin n +1 x
n +1

∫ arcsin xdx = x arcsin x +

1 − x2

∫ arccos xdx = x arccos x −

1 − x2
1

∫ arctan xdx = x arctan x − 2 ln ( x
1

2

∫ arc cot xdx = x arc cot x + 2 ln ( x

2

)

+1

)

+1

m2 ≠ n2
m2 ≠ n2
m2 ≠ n2

Contenu connexe

Tendances

Higher order ODE with applications
Higher order ODE with applicationsHigher order ODE with applications
Higher order ODE with applicationsPratik Gadhiya
 
Differential equations
Differential equationsDifferential equations
Differential equationsSeyid Kadher
 
4.3 Determinants and Cramer's Rule
4.3 Determinants and Cramer's Rule4.3 Determinants and Cramer's Rule
4.3 Determinants and Cramer's Rulehisema01
 
Gaussian Elimination Method
Gaussian Elimination MethodGaussian Elimination Method
Gaussian Elimination MethodAndi Firdaus
 
Differential calculus maxima minima
Differential calculus  maxima minimaDifferential calculus  maxima minima
Differential calculus maxima minimaSanthanam Krishnan
 
Differential equation and its order and degree
Differential equation and its order and degreeDifferential equation and its order and degree
Differential equation and its order and degreeMdRiyad5
 
Higher Differential Equation
Higher Differential Equation Higher Differential Equation
Higher Differential Equation Abdul Hannan
 
4.1 implicit differentiation
4.1 implicit differentiation4.1 implicit differentiation
4.1 implicit differentiationdicosmo178
 
Ppt on matrices and Determinants
Ppt on matrices and DeterminantsPpt on matrices and Determinants
Ppt on matrices and DeterminantsNirmalaSolapur
 
Application of derivatives 2 maxima and minima
Application of derivatives 2  maxima and minimaApplication of derivatives 2  maxima and minima
Application of derivatives 2 maxima and minimasudersana viswanathan
 
Cramers rule
Cramers ruleCramers rule
Cramers rulemstf mstf
 
INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT 03062679929
 
Gamma beta functions-1
Gamma   beta functions-1Gamma   beta functions-1
Gamma beta functions-1Selvaraj John
 
Diagonalization of Matrices
Diagonalization of MatricesDiagonalization of Matrices
Diagonalization of MatricesAmenahGondal1
 
Newton's forward & backward interpolation
Newton's forward & backward interpolationNewton's forward & backward interpolation
Newton's forward & backward interpolationHarshad Koshti
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equationsNisarg Amin
 

Tendances (20)

Higher order ODE with applications
Higher order ODE with applicationsHigher order ODE with applications
Higher order ODE with applications
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
4.3 Determinants and Cramer's Rule
4.3 Determinants and Cramer's Rule4.3 Determinants and Cramer's Rule
4.3 Determinants and Cramer's Rule
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Beta gamma functions
Beta gamma functionsBeta gamma functions
Beta gamma functions
 
Gaussian Elimination Method
Gaussian Elimination MethodGaussian Elimination Method
Gaussian Elimination Method
 
Differential calculus maxima minima
Differential calculus  maxima minimaDifferential calculus  maxima minima
Differential calculus maxima minima
 
Differential equation and its order and degree
Differential equation and its order and degreeDifferential equation and its order and degree
Differential equation and its order and degree
 
Higher Differential Equation
Higher Differential Equation Higher Differential Equation
Higher Differential Equation
 
4.1 implicit differentiation
4.1 implicit differentiation4.1 implicit differentiation
4.1 implicit differentiation
 
Ppt on matrices and Determinants
Ppt on matrices and DeterminantsPpt on matrices and Determinants
Ppt on matrices and Determinants
 
Application of derivatives 2 maxima and minima
Application of derivatives 2  maxima and minimaApplication of derivatives 2  maxima and minima
Application of derivatives 2 maxima and minima
 
Cramers rule
Cramers ruleCramers rule
Cramers rule
 
INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT
 
Determinants
DeterminantsDeterminants
Determinants
 
Gauss jordan
Gauss jordanGauss jordan
Gauss jordan
 
Gamma beta functions-1
Gamma   beta functions-1Gamma   beta functions-1
Gamma beta functions-1
 
Diagonalization of Matrices
Diagonalization of MatricesDiagonalization of Matrices
Diagonalization of Matrices
 
Newton's forward & backward interpolation
Newton's forward & backward interpolationNewton's forward & backward interpolation
Newton's forward & backward interpolation
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equations
 

En vedette

Integral table for electomagnetic
Integral table for electomagneticIntegral table for electomagnetic
Integral table for electomagneticFathur Rozaq
 
Integration
IntegrationIntegration
Integrationlecturer
 
Integration Formulas
Integration FormulasIntegration Formulas
Integration Formulashannagrauser1
 
Lesson 30: Integration by Parts
Lesson 30: Integration by PartsLesson 30: Integration by Parts
Lesson 30: Integration by PartsMatthew Leingang
 
Integration by parts
Integration by partsIntegration by parts
Integration by partsjaflint718
 
Integration By Parts Tutorial & Example- Calculus 2
Integration By Parts Tutorial & Example- Calculus 2Integration By Parts Tutorial & Example- Calculus 2
Integration By Parts Tutorial & Example- Calculus 2empoweringminds
 
Numerical integration
Numerical integrationNumerical integration
Numerical integrationMohammed_AQ
 
Integration
IntegrationIntegration
Integrationsuefee
 

En vedette (12)

11365.integral 2
11365.integral 211365.integral 2
11365.integral 2
 
Integration formulas
Integration formulasIntegration formulas
Integration formulas
 
Integral table for electomagnetic
Integral table for electomagneticIntegral table for electomagnetic
Integral table for electomagnetic
 
Integration
IntegrationIntegration
Integration
 
Integration Formulas
Integration FormulasIntegration Formulas
Integration Formulas
 
Power Rule
Power RulePower Rule
Power Rule
 
Lesson 30: Integration by Parts
Lesson 30: Integration by PartsLesson 30: Integration by Parts
Lesson 30: Integration by Parts
 
Integration by parts
Integration by partsIntegration by parts
Integration by parts
 
Integration By Parts Tutorial & Example- Calculus 2
Integration By Parts Tutorial & Example- Calculus 2Integration By Parts Tutorial & Example- Calculus 2
Integration By Parts Tutorial & Example- Calculus 2
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Integration
IntegrationIntegration
Integration
 
Integration
IntegrationIntegration
Integration
 

Plus de Krishna Gali

Chemistry polycet study material
Chemistry polycet study materialChemistry polycet study material
Chemistry polycet study materialKrishna Gali
 
12.applications of trigonometry
12.applications of trigonometry12.applications of trigonometry
12.applications of trigonometryKrishna Gali
 
9.tangents and secants to a circle
9.tangents and secants to a circle9.tangents and secants to a circle
9.tangents and secants to a circleKrishna Gali
 
8.similar triangles
8.similar triangles8.similar triangles
8.similar trianglesKrishna Gali
 
7.co ordinate geometry
7.co ordinate geometry7.co ordinate geometry
7.co ordinate geometryKrishna Gali
 
5.quadratic equations
5.quadratic equations5.quadratic equations
5.quadratic equationsKrishna Gali
 
4.pair of linear equations in two variables
4.pair of linear equations in two variables4.pair of linear equations in two variables
4.pair of linear equations in two variablesKrishna Gali
 
Chapter 12 physics
Chapter 12 physicsChapter 12 physics
Chapter 12 physicsKrishna Gali
 
Chapter 11 physics
Chapter 11 physicsChapter 11 physics
Chapter 11 physicsKrishna Gali
 
refraction of light at curved surfaces
refraction of light at curved surfacesrefraction of light at curved surfaces
refraction of light at curved surfacesKrishna Gali
 

Plus de Krishna Gali (20)

Chemistry polycet study material
Chemistry polycet study materialChemistry polycet study material
Chemistry polycet study material
 
14. Statistics
14. Statistics14. Statistics
14. Statistics
 
13. Probability
13. Probability13. Probability
13. Probability
 
12.applications of trigonometry
12.applications of trigonometry12.applications of trigonometry
12.applications of trigonometry
 
11.trigonometry
11.trigonometry11.trigonometry
11.trigonometry
 
10.mensuration
10.mensuration10.mensuration
10.mensuration
 
9.tangents and secants to a circle
9.tangents and secants to a circle9.tangents and secants to a circle
9.tangents and secants to a circle
 
8.similar triangles
8.similar triangles8.similar triangles
8.similar triangles
 
7.co ordinate geometry
7.co ordinate geometry7.co ordinate geometry
7.co ordinate geometry
 
6.progressions
6.progressions6.progressions
6.progressions
 
5.quadratic equations
5.quadratic equations5.quadratic equations
5.quadratic equations
 
4.pair of linear equations in two variables
4.pair of linear equations in two variables4.pair of linear equations in two variables
4.pair of linear equations in two variables
 
3.polynomials
3.polynomials3.polynomials
3.polynomials
 
2.sets
2.sets2.sets
2.sets
 
1.real numbers
1.real numbers1.real numbers
1.real numbers
 
Chapter 12 physics
Chapter 12 physicsChapter 12 physics
Chapter 12 physics
 
Chapter 11 physics
Chapter 11 physicsChapter 11 physics
Chapter 11 physics
 
Chapter 7 physics
Chapter 7 physicsChapter 7 physics
Chapter 7 physics
 
refraction of light at curved surfaces
refraction of light at curved surfacesrefraction of light at curved surfaces
refraction of light at curved surfaces
 
Chapter 5 physics
Chapter 5 physicsChapter 5 physics
Chapter 5 physics
 

Integration formulas

  • 1. www.mathportal.org Integration Formulas 1. Common Integrals Indefinite Integral Method of substitution ∫ f ( g ( x)) g ′( x)dx = ∫ f (u )du Integration by parts ∫ f ( x) g ′( x)dx = f ( x) g ( x) − ∫ g ( x) f ′( x)dx Integrals of Rational and Irrational Functions n ∫ x dx = x n +1 +C n +1 1 ∫ x dx = ln x + C ∫ c dx = cx + C ∫ xdx = x2 +C 2 x3 +C 3 1 1 ∫ x2 dx = − x + C 2 ∫ x dx = ∫ xdx = 1 ∫1+ x ∫ 2 2x x +C 3 dx = arctan x + C 1 1 − x2 dx = arcsin x + C Integrals of Trigonometric Functions ∫ sin x dx = − cos x + C ∫ cos x dx = sin x + C ∫ tan x dx = ln sec x + C ∫ sec x dx = ln tan x + sec x + C 1 ( x − sin x cos x ) + C 2 1 2 ∫ cos x dx = 2 ( x + sin x cos x ) + C ∫ sin 2 ∫ tan ∫ sec x dx = 2 x dx = tan x − x + C 2 x dx = tan x + C Integrals of Exponential and Logarithmic Functions ∫ ln x dx = x ln x − x + C n ∫ x ln x dx = ∫e x x n +1 x n +1 ln x − +C 2 n +1 ( n + 1) dx = e x + C x ∫ b dx = bx +C ln b ∫ sinh x dx = cosh x + C ∫ cosh x dx = sinh x + C
  • 2. www.mathportal.org 2. Integrals of Rational Functions Integrals involving ax + b ( ax + b )n + 1 ∫ ( ax + b ) dx = a ( n + 1) n 1 ( for n ≠ −1) 1 ∫ ax + b dx = a ln ax + b ∫ x ( ax + b ) n a ( n + 1) x − b dx = a x x 2 ( n + 1)( n + 2 ) ( ax + b )n+1 ( for n ≠ −1, n ≠ −2 ) b ∫ ax + b dx = a − a 2 ln ax + b x b 1 ∫ ( ax + b )2 dx = a 2 ( ax + b ) + a 2 ln ax + b a (1 − n ) x − b x ∫ ( ax + b )n dx = a 2 ( n − 1)( n − 2)( ax + b )n−1 ( for n ≠ −1, n ≠ −2 ) 2  x2 1  ( ax + b )  dx = 3 − 2b ( ax + b ) + b 2 ln ax + b  ∫ ax + b  2 a    x2 ∫ ( ax + b )2 x2 ∫ ( ax + b )3 x2 ∫ ( ax + b ) n 1  b2  dx = 3  ax + b − 2b ln ax + b −  ax + b  a    dx = 1  2b b2  ln ax + b + − ax + b 2 ( ax + b )2 a3   dx = 3−n 2− n 1−n 2b ( a + b ) b2 ( ax + b ) 1  ( ax + b ) − + − n−3 n−2 n −1 a3   1 1 ∫ x ( ax + b ) dx = − b ln 1 ax + b x 1 a ∫ x 2 ( ax + b ) dx = − bx + b2 ln 1 ∫ x 2 ( ax + b )2 ax + b x  1 1 2 ax + b dx = − a  2 + 2 − 3 ln  b ( a + xb ) ab x b x  Integrals involving ax2 + bx + c 1 1 x ∫ x 2 + a 2 dx = a arctg a a−x 1  2a ln a + x  ∫ x2 − a 2 dx =  1 x − a  ln  2a x + a  1     for x < a for x > a         ( for n ≠ 1, 2,3)
  • 3. www.mathportal.org 2 2ax + b  arctan  2 4ac − b 2  4ac − b  1 2 2ax + b − b 2 − 4 ac  dx =  ln ∫ ax 2 + bx + c  b 2 − 4ac 2 ax + b + b 2 − 4ac  − 2  2ax + b  x 1 ∫ ax 2 + bx + c dx = 2a ln ax 2 + bx + c − for 4ac − b 2 > 0 for 4ac − b 2 < 0 for 4ac − b 2 = 0 b dx ∫ ax 2 + bx + c 2a m 2an − bm 2ax + b 2 arctan for 4ac − b 2 > 0  ln ax + bx + c + 2 2 2a a 4ac − b 4ac − b  m mx + n 2an − bm 2ax + b  2 2 ∫ ax 2 + bx + c dx =  2a ln ax + bx + c + a b2 − 4ac arctanh b2 − 4ac for 4ac − b < 0  m 2an − bm  ln ax 2 + bx + c − for 4ac − b 2 = 0 a ( 2 ax + b )  2a  ∫ 1 ( ax ∫x 2 + bx + c ) n 1 ( ax 2 + bx + c ) dx = 2ax + b ( n − 1) ( 4ac − b2 )( ax 2 + bx + c ) dx = n−1 + ( 2 n − 3 ) 2a 1 dx 2 ∫ ( n − 1) ( 4ac − b ) ( ax 2 + bx + c )n−1 1 x2 b 1 ln 2 − ∫ 2 dx 2c ax + bx + c 2c ax + bx + c 3. Integrals of Exponential Functions cx ∫ xe dx = ecx c2 ( cx − 1)  x2 2x 2  x 2 ecx dx = ecx  ∫  c − c 2 + c3     ∫x n cx e dx = 1 n cx n n −1 cx x e − ∫ x e dx c c i ∞ cx ( ) ecx dx = ln x + ∑ ∫ x i =1 i ⋅ i ! ∫e cx ln xdx = 1 cx e ln x + Ei ( cx ) c cx ∫ e sin bxdx = cx ∫ e cos bxdx = cx n ∫ e sin xdx = ecx c 2 + b2 ( c sin bx − b cos bx ) ecx c 2 + b2 ( c cos bx + b sin bx ) ecx sin n −1 x 2 c +n 2 ( c sin x − n cos bx ) + n ( n − 1) 2 c +n 2 ∫e cx sin n −2 dx
  • 4. www.mathportal.org 4. Integrals of Logarithmic Functions ∫ ln cxdx = x ln cx − x b ∫ ln(ax + b)dx = x ln(ax + b) − x + a ln(ax + b) 2 2 ∫ ( ln x ) dx = x ( ln x ) − 2 x ln x + 2 x n n n −1 ∫ ( ln cx ) dx = x ( ln cx ) − n∫ ( ln cx ) dx i ∞ ln x ( ) dx = ln ln x + ln x + ∑ ∫ ln x n =2 i ⋅ i ! dx ∫ ( ln x )n =− x ( n − 1)( ln x ) n −1 + 1 dx n − 1 ∫ ( ln x )n −1  ln x 1 x m ln xdx = x m +1  − ∫  m + 1 ( m + 1) 2  ∫ x ( ln x ) m ∫ ( ln x )n x n dx = dx = x m+1 ( ln x ) n m +1 − ( ln x )n+1 ) ( for m ≠ 1) n n −1 m ∫ x ( ln x ) dx m +1 2 ln x n ln x n ( for n ≠ 0 ) ∫ x dx = 2n ln x ln x 1 ∫ xm dx = − ( m − 1) xm−1 − ( m − 1)2 xm−1 ∫ ( ln x )n xm ( for m ≠ 1) ( ln x )n ( ln x )n−1 n dx = − + dx ( m − 1) x m−1 m − 1 ∫ x m dx ∫ x ln x = ln ln x ∞ dx ∫ xn ln x = ln ln x + ∑ ( −1) i =1 dx ∫ x ( ln x )n ∫ ln ( x 2 =− i ( n − 1)i ( ln x )i i ⋅ i! 1 ( for n ≠ 1) ( n − 1)( ln x )n−1 ) ( ) + a 2 dx = x ln x 2 + a 2 − 2 x + 2a tan −1 x ∫ sin ( ln x ) dx = 2 ( sin ( ln x ) − cos ( ln x ) ) x ( for m ≠ 1) ( for n ≠ 1) n +1 (     ( for n ≠ 1) ∫ cos ( ln x ) dx = 2 ( sin ( ln x ) + cos ( ln x ) ) x a ( for m ≠ 1)
  • 5. www.mathportal.org 5. Integrals of Trig. Functions ∫ sin xdx = − cos x ∫ cos xdx = − sin x cos x x 1 − sin 2 x 2 4 x 1 2 ∫ cos xdx = 2 + 4 sin 2 x 1 3 3 ∫ sin xdx = 3 cos x − cos x 1 3 3 ∫ cos xdx = sin x − 3 sin x ∫ sin 2 xdx = dx cos 2 x x ∫ sin x dx = ln tan 2 + cos x ∫ cot 2 xdx = − cot x − x dx ∫ sin x cos x = ln tan x dx x 1 π ∫ sin 2 x cos x = − sin x + ln tan  2 + 4    dx 1 x x ∫ sin x cos2 x = cos x + ln tan 2 x ∫ sin 2 x cos2 x = tan x − cot x ∫ sin x xdx = ln tan 2 dx 1 ∫ sin 2 x dx = − sin x dx π ∫ cos x xdx = ln tan  2 + 4    dx ∫ sin 2 x xdx = − cot x dx ∫ cos2 x xdx = tan x sin( m + n) x sin( m − n) x + 2( m − n) ∫sin mxsin nxdx = − 2( m+ n) cos ( m + n) x cos ( m − n) x − 2( m − n) ∫sin mxcos nxdx = − 2( m + n) sin ( m + n) x sin ( m − n) x + 2( m − n) dx cos x 1 x ∫ sin 3 x = − 2sin 2 x + 2 ln tan 2 ∫ cos mxcos nxdx = 2( m + n) dx sin x 1 x π ∫ cos3 x = 2 cos2 x + 2 ln tan  2 + 4    n ∫ sin x cos xdx = − 1 ∫ sin x cos xdx = − 4 cos 2 x 1 3 2 ∫ sin x cos xdx = 3 sin x 1 2 3 ∫ sin x cos xdx = − 3 cos x x 1 2 2 ∫ sin x cos xdx = 8 − 32 sin 4 x n ∫ sin x cos xdx = ∫ tan xdx = − ln cos x sin x 1 dx = 2 cos x x ∫ cos sin 2 x x π  ∫ cos x dx = ln tan  2 + 4  − sin x   ∫ tan xdx = tan x − x ∫ cot xdx = ln sin x 2 cos n +1 x n +1 sin n +1 x n +1 ∫ arcsin xdx = x arcsin x + 1 − x2 ∫ arccos xdx = x arccos x − 1 − x2 1 ∫ arctan xdx = x arctan x − 2 ln ( x 1 2 ∫ arc cot xdx = x arc cot x + 2 ln ( x 2 ) +1 ) +1 m2 ≠ n2 m2 ≠ n2 m2 ≠ n2