SlideShare une entreprise Scribd logo
1  sur  111
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
A map of the Philippines  which shows the 20 major river  basins located in 12 water  resources regions.  Region 3 or Central Luzon includes the Agno River Basin  and the Pampanga River Basin.
Extreme Flood Events in Central Luzon (highest record: 1972 Flood)
Pantabangan Dam & Reservoir in Nueva Ecija–  the multi-purpose earth dam was finished in 1974.
Pantabangan Dam Spillway in June 1976.
Map Comparison of the 30-year Normal Rainfall for month of August and the Total Rainfall measured in August 2004. Peak monsoon months in Central Luzon, Philippines:  July, August, September – including rain intensification by typhoons.
Top left and right: Typhoon Aere (Marce, Phil. local name) moved along a track northeast of  the Philippines and Taiwan  during the period August 20-24, 2004. Bottom left:  Graph of the central pressure inside Typhoon Aere versus date in August 2004.
Satellite image of Typhoon Aere on August 25, 2004. Comparison of satellite images of  Central Luzon between July 31 and August 30, 2004, showing extent of flood inundation.
A map of the extent of inundation in Central Luzon on August 30, 2004  (MODIS inundation limit prepared by the Dartmouth Flood Observatory).
News photos of the Central Luzon flooding in August 2004.
 
Location map of the Flood Forecasting  and Warning System (FFWS) network for major river basin of Luzon, Philippines. Rainfall and  River Water Level Telemetry  Stations in the Flood Forecasting  and Warning System  (FFWS).
A drainage map (left) of the Agno River Basin  (drainage area = 5952 sq.km.), and adjacent  Sinocalan and Bued River Basins  (drainage area = 897 sq.km.) and an isohyetal map (right) of  total rainfall depth measured during the  peak storm period of August 24-30, 2004.
A drainage map (left) of the Pampanga  River Basin (drainage area = 9759 sq.km.)  and an isohyetal map (right) of total rainfall depth measured during the peak storm  period of August 24-30, 2004.  
Lower AGNO RIVER BASIN: A comparison between the measured August 2004 rainfall depth, and the three Pearson Type 3  distribution plots fitted to the monthly rainfall records of the synoptic station, Dagupan City,  for July, August and September, respectively, in the period of record, 1961-2004.  August 2004 rainfall = 1018 mm. Return period = around 10 years
PAMPANGA RIVER BASIN: A comparison between the measured August 2004 rainfall depth, and the three Pearson Type 3  distribution plots fitted to the monthly rainfall records of the synoptic station, Cabanatuan City,  for July, August and September, respectively, in the period of record, 1961-2004.  August 2004 rainfall  = 690 mm. Return period  = around 25 years
Upper AGNO RIVER BASIN: Storm hyetographs and f lood hydrographs derived from  reservoir operations data of  Ambuklao and  Binga Dams in the upper Agno River Basin during the period, August 1 -30, 2004.
 
Storm hyetographs and f lood hydrographs (hourly and daily) derived from  reservoir operations  data of  San Roque Dam in the upper Agno River Basin during the period, August 1 -30, 2004.
Lower AGNO RIVER BASIN: Storm hyetographs & stage hydrographs of  lower Agno River at Bañaga (DA = 5564 sq.km.) and  Sinocalan River at Sta. Barbara (DA = 180 sq.km.) during the period, August 1 – September 30, 2004.
Reservoir water balance for the Ambuklao, Binga, and San Roque Dams,  Upper Agno River Basin, during the peak storm period, August 24-30, 2004    Damsite at Upper Agno River Basin Drainage area, sq.km. Peak hourly inflow discharge, m 3 /s Peak hourly outflow discharge, m 3 /s Inflow volume,  MCM Outlflow volume, MCM Change in reservoir volume, MCM Ambuklao Dam 686 1273 1212 (spillway+turbine) 298.4 292.6 5.8 Binga Dam   936 1844 1891 (spillway+turbine) 468.7 469.2 - 0.50   San Roque Dam   1250   3029 SRPC: 2792, or PAGASA: 2811 (spillway) + 202 (turbine)   649.5 376.4 (spillway) + 81.8 (turbine) 191.3 (29% of inflow volume)
SAN ROQUE RESERVOIR   Sediment routing modeling nhc  northwest hydraulic consultants S Sediment inflow TE  = Trap Efficiency Vancouver,  November 20 th , 2006
Past sedimentation rates Ambuklao Binga  Effect of 1990 Luzon earthquake in the period 1990-97.  Effect of 1990 Luzon  Earthquake in 1990-97. 5.8 64 153 1997 1.4 8 217 1986 5.3 69 225 1980 3.0 33 294 1967 - - 327 1956 Sedimentation rate (10 6  m 3 /yr) Deposited volume (10 6  m 3 ) Storage Volume (10 6  m 3 ) Year 1.0 6.1 24.0 2003 2.4 26.0 30.1 1997 1.2 8.7 56.1 1986 1.4 17.1 64.8 1979 0.8 5.5 81.9 1967 - - 87.4 1960 Sedimentation rate (10 6  m 3 /yr) Deposited volume (10 6  m 3 ) Storage Volume (10 6  m 3 ) Year
PAMPANGA RIVER BASIN: Storm hyetographs & stage hydrographs of  Chico River at Zaragoza (DA = 1177 sq.km.) and  Pampanga River at Arayat (DA = 6487 sq.km.) during the period, August 1 – September 30, 2004.
PAMPANGA RIVER BASIN: Storm hyetographs & stage hydrographs of  Pampanga River at Candaba (DA = 7468 sq.km.) and  Pampanga River at Sulipan (DA = 7489 sq.km.) during the period, August 1 – September 30, 2004.
aa j Agno River at San Roque Dam:  August 2004 Peak inflow   discharge = 3029 m 3 /s, return period = around 20 years,  based on the Log Pearson Type 3 distribution fitted to pre-construction 1946-1980 annual flood records. Pampanga River at Arayat: August 2004 Peak  discharge = 2689 m 3 /s, return period = around 6 years,   based on the Extreme Value Type I  distribution fitted to 1953-1979  annual flood records. Chico River at Zaragoza: August 2004 Peak  discharge =  420 m 3 /s,  return period = around 9 years,   based on the Log Pearson  Type 3 distribution fitted to  1960-1999 annual flood records.   FLOOD FREQUENCY ANALYSIS
INUNDATED AREAS: Agno River Basin The MODIS inundation map shows that  extensive flooding occurred in the Poponto  Swamps area of the Tarlac sub-basin (in the towns of Moncada and Paniqui), near its  confluence with Agno River, but far from the immediate downstream vicinity of the  San Roque Dam.  The flooded area can be reckoned by the difference between the DAs of the Agno River  at the Urbiztondo and Bayambang stations, which is equal to 5134 - 4196 = 938 sq.km.  This number is remarkably close to the reported 960 sq.km (96,000 has.) of flooded rice  lands in Tarlac province. INUNDATED AREAS: Pampanga River Basin As shown by the MODIS inundation map,  the extensive flooding occurred in the  Candaba Swamps and the Pampanga River Delta (including the Pasac Delta  downstream of the Pinatubo sub-basins).  The areal extent of the Candaba Swamps is expected to be less than the difference  between the DAs at the Sulipan and Arayat stations, which is equal to 7849 – 6487  = 1362 sq.km.  The areal extent of the Pampanga and Pasac Delta areas is reckoned by the difference  between the total DA of the Pampanga River Basin, and the combined DAs of Pampanga  River at Sulipan station, and Angat River at Calumpit, which is equal to 9759 - 7849 - 1014  = 896 sq.km. (consistent with the inundation map).
Disaster Information Summary from the National Disaster Coordinating Council (NDCC): After- Effects of Southwest Monsoon Rains as of 8:00 AM, 01 September 2004 The southwest monsoon rains triggered massive flooding / flashfloods, landslides,  and drowning incidents in various parts of Regions I, III, IV, CAR and NCR,  the spillage of Ambuklao, Binga and San Roque Dams, the collapse of  Amburayan Dike  in Bangar, La Union and the breaching of Colibangbang Dike in Paniqui, Tarlac.  Affected Areas: 2,113 barangays affected in 156 municipalities and  23 cities of 17 provinces in 5 Regions. Affected Population: 383,205 families or 1,858,082 persons;  Casualties - 53 (43 dead, 9 injured and 1 still missing);  Thirty five (35) of the 43 death toll was due to drowning, 4 electrocution,  1 cardiac arrest, and 3 covered by mudslide; the 9 injured was due to landslide,  electrocution and covered by mudslides while the 1 missing was due to drowning.  Damaged Houses - 69 totally and 2,464 partially;  Properties Damaged - P1,315.039 M or P1.315 B  (Agriculture - P1,167.551 M and Infrastructure - P147.488 M). Based on the search, rescue and evacuation operations conducted by  the emergency responders: Cumulative total of families/persons displaced and evacuated  to 143 evacuation centers is 9,269 families or 50,101 persons;  Cumulative total of families /persons served - 114,022  families or 594,485 persons.  Extent of assistance provided by NDCC, DSWD, LGUs and NGOs  amounted to P17,202,693.15.
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Post Script:  A more destructive storm-induced natural disaster happened in November 19-29, 2004 – the Eastern Luzon Landslides and Flooding  caused by the three Typhoons Muifa, Merbok (Violeta) and Winnie. Provinces worst affected: Aurora, Quezon and eastern Nueva Ecija. Daily rainfall at Infanta, Quezon in Eastern Luzon: Nov. 19 -  45.8 mm.  (Typhoon Muifa, Nov. 19-25, 2004) Nov. 20 -  192.8 mm.  (antecedent 1-day peak, approx. 5-year return period) Nov. 21 -  184.5  Nov. 22 -  43.1 Nov. 23 -  22.4  Nov. 24 -  33.9 Nov. 25 -  7.3 Nov. 26 -  66.6  mm.  (Typhoon Merbok (Violeta), Nov. 23-27, 2004) Nov. 27 -  1.7 Nov. 28 -  40.3  Nov. 29 - 493.5  mm. (main 1-day peak rainfall, approx. 45-year return period) (Typhoon Winnie, Nov. 29- Dec. 2, 2004) Below - News photos: Landslides and debris flows in Infanta and Real towns, Quezon. NDCC report (as of Dec. 2, 2004): 199 affected barangays In 38 municipalities, 52872 affected families Or 242,952 persons; 407 dead, 33 injured, 142 missing; Damages: Agriculture – P185.43 M Others –  P  2.86 M
MODIS  (Moderate Resolution  Imaging Spectroradiometer)  images: Northern & Central Luzon on December 04, 2004
Effects of Mt. Pinatubo sediment deposition
Multipurpose dams, and flood-control & anti-lahar dikes in Central Luzon.
Above: The church (1899 photo) as it was, until the 1991 Pinatubo eruption. Below:  The church in 1996, its first floor completely buried in 1995. A church in Bacolor,  Pampanga, Central Luzon,  finally buried up to the  second floor by the  Pinatubo lahar of 1995.
Liongson, L. Q. and G. Q. Tabios III (2000).  Computation with a 2-D Lahar-Flood Model in a Mt. Pinatubo Basin, Philippines . Proceedings of the Second International Conference on Debris-Flow Hazards Mitigation, Taipei, Taiwan, August 16-18. 2-d  model grid  of lower Pasig-Potrero  River Basin,  Mt. Pinatubo area. dx, dy = 250 m. 50-Year 5-Day  Storm Liongson, L. Q., G. Q. Tabios III, and P. P. M. Castro (1997).  2-D Lahar-Flood Model  for Pasig-Potrero River in the Mt. Pinatubo Area.  First International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, American Society of Civil Engineers, San Francisco, California, USA, August 7-9.
Debris-flow rheoloy: Shear Stress Balance:     g (H - z) sin     =  a i    s  d  2  C l  2  sin     du/dz |du/dz|   Normal Stress Balance : (  s  -    f  ) g (H-z) C cos     =  a i    s  d  2  C l  2  cos     du/dz |du/dz| where H = depth of flow; z = vertical distance from the bed; du/dz = local velocity gradient; g = gravity acceleration; C  = suspended solid concentration by volume;    =   s  C +   f  (1-C)  =  mixture density;  s  =  solid-phase density;   f  =  fluid-phase  density (water + washload);    = friction slope angle; a i  = Bagnold’s coefficient; d = median particle diameter; C l  = linear concentration = 1 /[(C b  / C) 1/3  - 1   ]    = dynamic internal angle of friction;
Combined Hyperconcentrated Flow - Flood Flow Equations Shear Stress Balance:       g (H - z) sin     = (a i    s  d  2  C l  2  sin    +    K T   2  z 2  ) du/dz |du/dz| Normal Stress Balance : (  s  -    f  ) g (H-z) C cos     =  (a i    s  d  2  C l  2  cos     +    K N   2  z 2  ) du/dz |du/dz| K T  = von Karman coefficient for shear turbulent stress K N  = similar coefficient for normal turbulent stress Total Continuity Equation:    H/  t +   (HU)/  x +   (HV)/  y + E / C b  =  q  -  I Total Momentum Equations (x and y components):    (  HU)/  t +   (  HU 2 )/  x +   (  HUV)/  y +   gH (  H/  x +   Z b /  x + S fx ) +   b  E U/ C b  =   (H T xx )/  x  +   (H T xy )/  y  +   L  q U L  (  HV)/  t +   (  HVU)/  x +  (  HV 2 )/  y +   gH (  H/  y +   Z b /  y + S fy ) +   b  E V/ C b  =   (H T yx )/  x  +   (H T yy )/  y  +   L  q V L     Sediment Continuity Equation:    (HC)/  t +   (HUC)/  x +   (HVC)/  y +   Z b /  t  C b  = q C L 
where t  =  time; (x,y)  =  perpendicular horizontal coordinates; H  =  H(x,y,t)  =  depth of  flow; Z b  =  Z b (x,y,t)  =  bed elevation; (U,V)  =  (U(x,y,t), V(x,y,t))  =  mean velocity vector (depth-averaged); C  =  C(x,y,t)  =  suspended solid concentration by volume; C b  =  bed-deposited concentration by volume;    =   s  C +   f  (1-C)  =  mixture density; g = gravity acceleration;  s  =  solid-phase density;   f  =  fluid-phase  density (water + washload); E  =   Z b /  t  C b   = bed deposition (>0) or erosion (<0) rate;  (S fx  , S fy  )  =  (U,V) S f  /   (U 2 +V 2 )  =  vector of  friction slope components; S f  =  resultant bed friction slope =  f  (U 2 +V 2 ) /(8 g H); f  = integrated friction factor (defined under rheology); T xx  =   n      f / 8 H 2   U/  x   U/  x  =  lateral normal stress in x-direction; T yy   =   n      f / 8  H 2   V/  y   V/  y  =  lateral normal stress in y-direction; T xy   =  T yx   =   t     f / 8  H 2  (  V/  x  +   U/  y)   V/  x  +   U/  y   =  lateral shear stress in either x or y direction;  n  ,   t  =  lateral normal and shear stress coefficients, resp.    1.0; q = total lateral inflow (such as direct rainfall or tributary flow); q C L  =  lateral sediment inflow; I =bed infiltration rate = a maximum assumed value or else the available water depth per unit time step,  whichever is less at any given time;  b E (U,V)/ C b  =  momentum loss vector due to deposition (for E>0 only), including entrained water;  L  q (U L  ,V L )   =  lateral  momentum influx vector.
 
 
 
 
 
Based on a  SIR-C/X-SAR Space Shuttle  false-color Image of  the Pinatubo-affected  Pasac Delta,  or Guagua RB, adjacent to the Pampanga  River Basin (1994). Much of Pasac Delta has been  converted to fishponds through the centuries,  and at present, its narrow channels receive the fine lahar sediment brought down from the pyroclastic deposits of the 1991 eruption of the volcano .
aa
 
Coastal flooding due to groundwater extraction (Siringan et al, UP NIGS, 2000.)
The demolition of illegally built additional fishponds in the estuary of the Pinatubo-affected Pasac Delta, adjacent to the  Pampanga River Basin. Coastal flooding due to channel constrictions.
Opposition to major flood-control projects Major flood-control and river engineering projects have encountered opposition from local populations in the floodplain or riverbank areas  due to the conflicting land-use management policies and priorities.  These oppositions have caused the national government to either revise or realign, defer or abandon the project control plans. An example below:
The hydrologic cycle. (source: www.lexingtonwaterfacts.com)
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Competition and conflict among & between: Consumptive and non-consumptive users; In-stream and onsite users.
DENR Water Quality Criteria / Water Usage & Classification for Fresh Water  Class A -  Public water supply II (require complete treatment to meet national standards for drinking water)  Class B - Recreational water class I (for contact recreation as bathing and swimming)  Class C - Fishery water for the propagation and growth of fish (also non-contact recreation & industrial use class I)  Class D - For agriculture, irrigation, livestock watering and industrial water supply class II
Integrated Water Resources Management or IWRM , having been promoted in the last twelve years (1997-2009),  is an international movement which advocates  the multi-stakeholder and participatory manner of  managing the water resources among the  competing users.  The Global Water Partnership (GWP)  &quot;was founded in 1996 by the World Bank,  the United Nations Development Programme (UNDP),  and the Swedish International Development Agency (SIDA)  to foster integrated water resource management (IWRM),  and to ensure the coordinated development and  management of water, land, and related resources  by maximizing economic and social welfare  without compromising the sustainability of vital environmental systems.&quot;  (http://www.gwpforum.org).  Philippine Water Partnership (PWP) - established in 2002; the local network partner  of GWP and GWPSEA; recognized (by NEDA InfraCom) as the principal NGO  for the promotion of IWRM.
Towards a new paradigm -  from sub-sectoral to cross-sectoral water management IWRM is the  ‘integrating handle’  leading us from sub-sectoral to  cross-sectoral water management. CROSS-SECTORAL DIALOGUE THROUGH IWRM  IWRM People Food Industry  & others WATER  USE  SECTORS   Eco- system IWRM  is a process which promotes the coordinated development and management of water, land and related resources in order to maximize the resultant economic and social welfare in an equitable manner without compromising the sustainability  of vital ecosystems  (GWP/TAC).
How do the Dublin principles translate into action? The  ENABLING ENVIRONMENT  sets the rules,  the  INSTITUTIONAL ROLES  and functions define the players  who make use of the  MANAGEMENT INSTRUMENTS .   ECOSYSTEM SUSTAINABILITY   Enabling Environment   Policies   Legislation   Management  Institutional  Instruments  Roles Assessment Central-local Information Public-private Allocation tools River basin ECONOMIC EFFICIENCY SOCIAL EQUITY All this depends on the existence of popular awareness  and political will to act!
Left: Angat Reservoir monthly inflows,  releases for irrigation and water supply, and  water surface elevation, relative to the lower  rule curve; right: policy summary for the  years 1997-2003: in scatter plots and  regression curves [ Liongson (2003)] . WATER SUPPLY  versus  IRRIGATION : 1997-1998 El Ni ñ o period (NWRB data).
http://llda.gov.ph/SD_Mondriaan/WM_Main.htm The Water Mondriaan is a schematic map of the Laguna de Bay water system, showing the monitoring results in the lake and its tributaries compared with the DENR water quality criteria / water usage & classification for freshwater systems or when absent the LLDA expert opinion.  The parameters included, focus on factors of significant ecological, human health and resource use importance or on the processes that are crucial to them: oxygen and oxygen demand (%DO, BOD5 and COD), bacterial pollution (Total Coliforms, Fecal Coliforms, eutrophic level (phosphate, dissolved nitrogen, chlorophyll-a and phytoplankton abundance), and hazardous substances (oil & grease and on a quarterly basis lead, hexavalent chromium & cadmium).
Fish pens (top) & Fish cages (bottom) used for aquaculture in Laguna de Bay. Small fisherman engaged in open lake fishing. Impact of El Niño on  aquaculture and fisheries [ Liongson (2003)]
Rainfall (in drought conditions),  lake stage (severe drawdown),  & salinity (maximized conditions) during the El Niño  months of  1997-1998. Impact of El Niño on  aquaculture and fisheries This situation was most advantageous for the  brackish-water aquaculture  and fisheries , but disadvantageous  for potential water-supply and irrigation uses. [ Liongson (2003)]
Monthly measurements of salinity, transparency  and turbidity at Laguna de Bay West-Bay-I station during the years 1997-1999.  (a).  Time series plots and  (b).  Scatter plots and fitted regression lines  of salinity versus transparency and turbidity. Impact of El Niño on  aquaculture and fisheries [ Liongson (2003)]
 
 
 
 
 
 
The Study of the Effects of  Payatas Dumpsite  to the La Mesa Reservoir (NHRC, UP Diliman, 2001) The principal objective of the study is to identify the effects of the Payatas open dumpsite  on the Novaliches (La Mesa) Reservoir with emphasis on the potential risk of leachate  contamination. The secondary objectives are: to characterize the hydrogeology and  hydraulics of the aquifer below the Payatas dumpsite, to identify the toxic and hazardous  contaminants which have leached to the subsurface beneath the Payatas dumpsite area,  to establish the potential risk of contamination to the La Mesa Reservoir, and to recommend  possible remedial or mitigating measures to reduce the risk of contamination of  the La Mesa Reservoir.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
Sabo Dam at Ormoc, Leyte.
 
 
 
 
 
 
 
 
 
 
 
 
Hydraulics –   engineering mechanics of water flows. Systems of flow equations -   Navier-Stokes Equations,  (general incompressible Newtonian fuid); St. Venant’s Equations and  Kinematic Wave Equation. (open channel flows).
A simple physically-based model -  admits effects of urbanization &  climate change on flash floods.
Thank You.

Contenu connexe

Tendances

Tendances (20)

Brahamaputra the River
Brahamaputra the River Brahamaputra the River
Brahamaputra the River
 
Flood hazards in india
Flood hazards in indiaFlood hazards in india
Flood hazards in india
 
DESERT ECOSYSTEM (2113).pptx
DESERT   ECOSYSTEM (2113).pptxDESERT   ECOSYSTEM (2113).pptx
DESERT ECOSYSTEM (2113).pptx
 
Ecological impacts of dams
Ecological impacts of damsEcological impacts of dams
Ecological impacts of dams
 
Estuaries
EstuariesEstuaries
Estuaries
 
Flood and Flash Flood
Flood and Flash FloodFlood and Flash Flood
Flood and Flash Flood
 
water storage ppt
water storage pptwater storage ppt
water storage ppt
 
Water, Water Everywhere, Nor Any Drop To Drink
Water, Water Everywhere, Nor Any Drop To DrinkWater, Water Everywhere, Nor Any Drop To Drink
Water, Water Everywhere, Nor Any Drop To Drink
 
Flash Floods
Flash FloodsFlash Floods
Flash Floods
 
ppt on Landslides
ppt on Landslidesppt on Landslides
ppt on Landslides
 
Drainage Basins VLE
Drainage Basins VLEDrainage Basins VLE
Drainage Basins VLE
 
Coastal agriculture infisheries
Coastal agriculture infisheriesCoastal agriculture infisheries
Coastal agriculture infisheries
 
Tropical rain forest extent and characteristics
Tropical rain forest extent and characteristicsTropical rain forest extent and characteristics
Tropical rain forest extent and characteristics
 
Irrigation system of Pakistan
Irrigation system of PakistanIrrigation system of Pakistan
Irrigation system of Pakistan
 
River basins in India
River basins in IndiaRiver basins in India
River basins in India
 
DaMS
DaMSDaMS
DaMS
 
Glaciers
GlaciersGlaciers
Glaciers
 
Lakes
LakesLakes
Lakes
 
Mangroves of india
Mangroves of indiaMangroves of india
Mangroves of india
 
Volcanic Hazards Slides
Volcanic  Hazards  SlidesVolcanic  Hazards  Slides
Volcanic Hazards Slides
 

Similaire à UPLB SEARCA 2009 Sept07

Ts Ketsana Ondoy 2009 Oct02
Ts Ketsana Ondoy 2009 Oct02Ts Ketsana Ondoy 2009 Oct02
Ts Ketsana Ondoy 2009 Oct02leony1948
 
Liongson Chair2000
Liongson Chair2000Liongson Chair2000
Liongson Chair2000leony1948
 
A new methodology for monitoring peatland degradation: Case study of the Okav...
A new methodology for monitoring peatland degradation: Case study of the Okav...A new methodology for monitoring peatland degradation: Case study of the Okav...
A new methodology for monitoring peatland degradation: Case study of the Okav...CIFOR-ICRAF
 
Calapan2 O M Floods
Calapan2  O M FloodsCalapan2  O M Floods
Calapan2 O M Floodsleony1948
 
Ecology of the east african lakes for unfccc adaptation
Ecology of the east african lakes for unfccc adaptationEcology of the east african lakes for unfccc adaptation
Ecology of the east african lakes for unfccc adaptationNAP Events
 
EFFECTS OF INCREASED LAND USE CHANGES ON RUNOFF AND SEDIMENT YIELD IN THE UPP...
EFFECTS OF INCREASED LAND USE CHANGES ON RUNOFF AND SEDIMENT YIELD IN THE UPP...EFFECTS OF INCREASED LAND USE CHANGES ON RUNOFF AND SEDIMENT YIELD IN THE UPP...
EFFECTS OF INCREASED LAND USE CHANGES ON RUNOFF AND SEDIMENT YIELD IN THE UPP...IAEME Publication
 
2010 liongson-flood mitigation in metro manila-phil engg journal article
2010 liongson-flood mitigation in metro manila-phil engg journal article2010 liongson-flood mitigation in metro manila-phil engg journal article
2010 liongson-flood mitigation in metro manila-phil engg journal articleleony1948
 
Discovery of Perched Aquifer When Assessing Aquifer Potential along the flood...
Discovery of Perched Aquifer When Assessing Aquifer Potential along the flood...Discovery of Perched Aquifer When Assessing Aquifer Potential along the flood...
Discovery of Perched Aquifer When Assessing Aquifer Potential along the flood...theijes
 
Discovery of Perched Aquifer When Assessing Aquifer Potential along the flood...
Discovery of Perched Aquifer When Assessing Aquifer Potential along the flood...Discovery of Perched Aquifer When Assessing Aquifer Potential along the flood...
Discovery of Perched Aquifer When Assessing Aquifer Potential along the flood...theijes
 
Retrospective analysis of hydrologic impacts in the Chesapeake Bay watershed
Retrospective analysis of hydrologic impacts in the Chesapeake Bay watershedRetrospective analysis of hydrologic impacts in the Chesapeake Bay watershed
Retrospective analysis of hydrologic impacts in the Chesapeake Bay watershedHarsh Beria
 
A rank reduced analysis of runoff components and their response patterns to ...
A rank  reduced analysis of runoff components and their response patterns to ...A rank  reduced analysis of runoff components and their response patterns to ...
A rank reduced analysis of runoff components and their response patterns to ...Alexander Decker
 
Wwf3 Liongson
Wwf3 LiongsonWwf3 Liongson
Wwf3 Liongsonleony1948
 
AE hydroperiods of Napo floodplains JC.pdf
AE hydroperiods of Napo floodplains JC.pdfAE hydroperiods of Napo floodplains JC.pdf
AE hydroperiods of Napo floodplains JC.pdfjeffersonGuapulema1
 
Potential hydrogeological, environment and vulnerability to pollution of the ...
Potential hydrogeological, environment and vulnerability to pollution of the ...Potential hydrogeological, environment and vulnerability to pollution of the ...
Potential hydrogeological, environment and vulnerability to pollution of the ...Alexander Decker
 
Potential hydrogeological, environment and vulnerability to pollution of the ...
Potential hydrogeological, environment and vulnerability to pollution of the ...Potential hydrogeological, environment and vulnerability to pollution of the ...
Potential hydrogeological, environment and vulnerability to pollution of the ...Alexander Decker
 
EvanMorganSample
EvanMorganSampleEvanMorganSample
EvanMorganSampleEvan Morgan
 

Similaire à UPLB SEARCA 2009 Sept07 (20)

Ts Ketsana Ondoy 2009 Oct02
Ts Ketsana Ondoy 2009 Oct02Ts Ketsana Ondoy 2009 Oct02
Ts Ketsana Ondoy 2009 Oct02
 
Liongson Chair2000
Liongson Chair2000Liongson Chair2000
Liongson Chair2000
 
Lily
LilyLily
Lily
 
A new methodology for monitoring peatland degradation: Case study of the Okav...
A new methodology for monitoring peatland degradation: Case study of the Okav...A new methodology for monitoring peatland degradation: Case study of the Okav...
A new methodology for monitoring peatland degradation: Case study of the Okav...
 
Calapan2 O M Floods
Calapan2  O M FloodsCalapan2  O M Floods
Calapan2 O M Floods
 
Ecology of the east african lakes for unfccc adaptation
Ecology of the east african lakes for unfccc adaptationEcology of the east african lakes for unfccc adaptation
Ecology of the east african lakes for unfccc adaptation
 
EFFECTS OF INCREASED LAND USE CHANGES ON RUNOFF AND SEDIMENT YIELD IN THE UPP...
EFFECTS OF INCREASED LAND USE CHANGES ON RUNOFF AND SEDIMENT YIELD IN THE UPP...EFFECTS OF INCREASED LAND USE CHANGES ON RUNOFF AND SEDIMENT YIELD IN THE UPP...
EFFECTS OF INCREASED LAND USE CHANGES ON RUNOFF AND SEDIMENT YIELD IN THE UPP...
 
2010 liongson-flood mitigation in metro manila-phil engg journal article
2010 liongson-flood mitigation in metro manila-phil engg journal article2010 liongson-flood mitigation in metro manila-phil engg journal article
2010 liongson-flood mitigation in metro manila-phil engg journal article
 
Discovery of Perched Aquifer When Assessing Aquifer Potential along the flood...
Discovery of Perched Aquifer When Assessing Aquifer Potential along the flood...Discovery of Perched Aquifer When Assessing Aquifer Potential along the flood...
Discovery of Perched Aquifer When Assessing Aquifer Potential along the flood...
 
Discovery of Perched Aquifer When Assessing Aquifer Potential along the flood...
Discovery of Perched Aquifer When Assessing Aquifer Potential along the flood...Discovery of Perched Aquifer When Assessing Aquifer Potential along the flood...
Discovery of Perched Aquifer When Assessing Aquifer Potential along the flood...
 
Gl2511741181
Gl2511741181Gl2511741181
Gl2511741181
 
Gl2511741181
Gl2511741181Gl2511741181
Gl2511741181
 
Retrospective analysis of hydrologic impacts in the Chesapeake Bay watershed
Retrospective analysis of hydrologic impacts in the Chesapeake Bay watershedRetrospective analysis of hydrologic impacts in the Chesapeake Bay watershed
Retrospective analysis of hydrologic impacts in the Chesapeake Bay watershed
 
PhD Synopsis
PhD SynopsisPhD Synopsis
PhD Synopsis
 
A rank reduced analysis of runoff components and their response patterns to ...
A rank  reduced analysis of runoff components and their response patterns to ...A rank  reduced analysis of runoff components and their response patterns to ...
A rank reduced analysis of runoff components and their response patterns to ...
 
Wwf3 Liongson
Wwf3 LiongsonWwf3 Liongson
Wwf3 Liongson
 
AE hydroperiods of Napo floodplains JC.pdf
AE hydroperiods of Napo floodplains JC.pdfAE hydroperiods of Napo floodplains JC.pdf
AE hydroperiods of Napo floodplains JC.pdf
 
Potential hydrogeological, environment and vulnerability to pollution of the ...
Potential hydrogeological, environment and vulnerability to pollution of the ...Potential hydrogeological, environment and vulnerability to pollution of the ...
Potential hydrogeological, environment and vulnerability to pollution of the ...
 
Potential hydrogeological, environment and vulnerability to pollution of the ...
Potential hydrogeological, environment and vulnerability to pollution of the ...Potential hydrogeological, environment and vulnerability to pollution of the ...
Potential hydrogeological, environment and vulnerability to pollution of the ...
 
EvanMorganSample
EvanMorganSampleEvanMorganSample
EvanMorganSample
 

Plus de leony1948

2011 liongson-modeling studies flood control dams-professorial chair lecture
2011 liongson-modeling studies flood control dams-professorial chair lecture2011 liongson-modeling studies flood control dams-professorial chair lecture
2011 liongson-modeling studies flood control dams-professorial chair lectureleony1948
 
Daang Bakal Tren Vargas M 2003
Daang Bakal Tren Vargas M 2003Daang Bakal Tren Vargas M 2003
Daang Bakal Tren Vargas M 2003leony1948
 
Daang Bakal Tranvia Vargas M 2003
Daang Bakal Tranvia Vargas M 2003Daang Bakal Tranvia Vargas M 2003
Daang Bakal Tranvia Vargas M 2003leony1948
 
Daang Bakal Trains Vargas M 2003
Daang Bakal Trains Vargas M 2003Daang Bakal Trains Vargas M 2003
Daang Bakal Trains Vargas M 2003leony1948
 
Liongson Vargasm 2006
Liongson Vargasm 2006Liongson Vargasm 2006
Liongson Vargasm 2006leony1948
 
Tranvia Train 2006
Tranvia Train 2006Tranvia Train 2006
Tranvia Train 2006leony1948
 
Train Vs Car
Train Vs CarTrain Vs Car
Train Vs Carleony1948
 
Tale Of Genji
Tale Of GenjiTale Of Genji
Tale Of Genjileony1948
 
Paase Koh Lecture Liongson
Paase Koh Lecture LiongsonPaase Koh Lecture Liongson
Paase Koh Lecture Liongsonleony1948
 
Chair 2009 Liongson
Chair 2009 LiongsonChair 2009 Liongson
Chair 2009 Liongsonleony1948
 
Dals Up 09 Cruz
Dals Up 09 CruzDals Up 09 Cruz
Dals Up 09 Cruzleony1948
 

Plus de leony1948 (13)

2011 liongson-modeling studies flood control dams-professorial chair lecture
2011 liongson-modeling studies flood control dams-professorial chair lecture2011 liongson-modeling studies flood control dams-professorial chair lecture
2011 liongson-modeling studies flood control dams-professorial chair lecture
 
Pampanga Rb
Pampanga RbPampanga Rb
Pampanga Rb
 
Daang Bakal Tren Vargas M 2003
Daang Bakal Tren Vargas M 2003Daang Bakal Tren Vargas M 2003
Daang Bakal Tren Vargas M 2003
 
Daang Bakal Tranvia Vargas M 2003
Daang Bakal Tranvia Vargas M 2003Daang Bakal Tranvia Vargas M 2003
Daang Bakal Tranvia Vargas M 2003
 
Daang Bakal Trains Vargas M 2003
Daang Bakal Trains Vargas M 2003Daang Bakal Trains Vargas M 2003
Daang Bakal Trains Vargas M 2003
 
Liongson Vargasm 2006
Liongson Vargasm 2006Liongson Vargasm 2006
Liongson Vargasm 2006
 
Tranvia Train 2006
Tranvia Train 2006Tranvia Train 2006
Tranvia Train 2006
 
Train Vs Car
Train Vs CarTrain Vs Car
Train Vs Car
 
Phil Ads
Phil AdsPhil Ads
Phil Ads
 
Tale Of Genji
Tale Of GenjiTale Of Genji
Tale Of Genji
 
Paase Koh Lecture Liongson
Paase Koh Lecture LiongsonPaase Koh Lecture Liongson
Paase Koh Lecture Liongson
 
Chair 2009 Liongson
Chair 2009 LiongsonChair 2009 Liongson
Chair 2009 Liongson
 
Dals Up 09 Cruz
Dals Up 09 CruzDals Up 09 Cruz
Dals Up 09 Cruz
 

Dernier

ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfChris Hunter
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfSanaAli374401
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...KokoStevan
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 

Dernier (20)

INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 

UPLB SEARCA 2009 Sept07

  • 1.
  • 2.
  • 3. A map of the Philippines which shows the 20 major river basins located in 12 water resources regions. Region 3 or Central Luzon includes the Agno River Basin and the Pampanga River Basin.
  • 4. Extreme Flood Events in Central Luzon (highest record: 1972 Flood)
  • 5. Pantabangan Dam & Reservoir in Nueva Ecija– the multi-purpose earth dam was finished in 1974.
  • 6. Pantabangan Dam Spillway in June 1976.
  • 7. Map Comparison of the 30-year Normal Rainfall for month of August and the Total Rainfall measured in August 2004. Peak monsoon months in Central Luzon, Philippines: July, August, September – including rain intensification by typhoons.
  • 8. Top left and right: Typhoon Aere (Marce, Phil. local name) moved along a track northeast of the Philippines and Taiwan during the period August 20-24, 2004. Bottom left: Graph of the central pressure inside Typhoon Aere versus date in August 2004.
  • 9. Satellite image of Typhoon Aere on August 25, 2004. Comparison of satellite images of Central Luzon between July 31 and August 30, 2004, showing extent of flood inundation.
  • 10. A map of the extent of inundation in Central Luzon on August 30, 2004 (MODIS inundation limit prepared by the Dartmouth Flood Observatory).
  • 11. News photos of the Central Luzon flooding in August 2004.
  • 12.  
  • 13. Location map of the Flood Forecasting and Warning System (FFWS) network for major river basin of Luzon, Philippines. Rainfall and River Water Level Telemetry Stations in the Flood Forecasting and Warning System (FFWS).
  • 14. A drainage map (left) of the Agno River Basin (drainage area = 5952 sq.km.), and adjacent Sinocalan and Bued River Basins (drainage area = 897 sq.km.) and an isohyetal map (right) of total rainfall depth measured during the peak storm period of August 24-30, 2004.
  • 15. A drainage map (left) of the Pampanga River Basin (drainage area = 9759 sq.km.) and an isohyetal map (right) of total rainfall depth measured during the peak storm period of August 24-30, 2004.  
  • 16. Lower AGNO RIVER BASIN: A comparison between the measured August 2004 rainfall depth, and the three Pearson Type 3 distribution plots fitted to the monthly rainfall records of the synoptic station, Dagupan City, for July, August and September, respectively, in the period of record, 1961-2004.  August 2004 rainfall = 1018 mm. Return period = around 10 years
  • 17. PAMPANGA RIVER BASIN: A comparison between the measured August 2004 rainfall depth, and the three Pearson Type 3 distribution plots fitted to the monthly rainfall records of the synoptic station, Cabanatuan City, for July, August and September, respectively, in the period of record, 1961-2004.  August 2004 rainfall = 690 mm. Return period = around 25 years
  • 18. Upper AGNO RIVER BASIN: Storm hyetographs and f lood hydrographs derived from reservoir operations data of Ambuklao and Binga Dams in the upper Agno River Basin during the period, August 1 -30, 2004.
  • 19.  
  • 20. Storm hyetographs and f lood hydrographs (hourly and daily) derived from reservoir operations data of San Roque Dam in the upper Agno River Basin during the period, August 1 -30, 2004.
  • 21. Lower AGNO RIVER BASIN: Storm hyetographs & stage hydrographs of lower Agno River at Bañaga (DA = 5564 sq.km.) and Sinocalan River at Sta. Barbara (DA = 180 sq.km.) during the period, August 1 – September 30, 2004.
  • 22. Reservoir water balance for the Ambuklao, Binga, and San Roque Dams, Upper Agno River Basin, during the peak storm period, August 24-30, 2004   Damsite at Upper Agno River Basin Drainage area, sq.km. Peak hourly inflow discharge, m 3 /s Peak hourly outflow discharge, m 3 /s Inflow volume, MCM Outlflow volume, MCM Change in reservoir volume, MCM Ambuklao Dam 686 1273 1212 (spillway+turbine) 298.4 292.6 5.8 Binga Dam   936 1844 1891 (spillway+turbine) 468.7 469.2 - 0.50   San Roque Dam   1250   3029 SRPC: 2792, or PAGASA: 2811 (spillway) + 202 (turbine)   649.5 376.4 (spillway) + 81.8 (turbine) 191.3 (29% of inflow volume)
  • 23. SAN ROQUE RESERVOIR Sediment routing modeling nhc northwest hydraulic consultants S Sediment inflow TE = Trap Efficiency Vancouver, November 20 th , 2006
  • 24. Past sedimentation rates Ambuklao Binga  Effect of 1990 Luzon earthquake in the period 1990-97.  Effect of 1990 Luzon Earthquake in 1990-97. 5.8 64 153 1997 1.4 8 217 1986 5.3 69 225 1980 3.0 33 294 1967 - - 327 1956 Sedimentation rate (10 6 m 3 /yr) Deposited volume (10 6 m 3 ) Storage Volume (10 6 m 3 ) Year 1.0 6.1 24.0 2003 2.4 26.0 30.1 1997 1.2 8.7 56.1 1986 1.4 17.1 64.8 1979 0.8 5.5 81.9 1967 - - 87.4 1960 Sedimentation rate (10 6 m 3 /yr) Deposited volume (10 6 m 3 ) Storage Volume (10 6 m 3 ) Year
  • 25. PAMPANGA RIVER BASIN: Storm hyetographs & stage hydrographs of Chico River at Zaragoza (DA = 1177 sq.km.) and Pampanga River at Arayat (DA = 6487 sq.km.) during the period, August 1 – September 30, 2004.
  • 26. PAMPANGA RIVER BASIN: Storm hyetographs & stage hydrographs of Pampanga River at Candaba (DA = 7468 sq.km.) and Pampanga River at Sulipan (DA = 7489 sq.km.) during the period, August 1 – September 30, 2004.
  • 27. aa j Agno River at San Roque Dam: August 2004 Peak inflow discharge = 3029 m 3 /s, return period = around 20 years, based on the Log Pearson Type 3 distribution fitted to pre-construction 1946-1980 annual flood records. Pampanga River at Arayat: August 2004 Peak discharge = 2689 m 3 /s, return period = around 6 years, based on the Extreme Value Type I distribution fitted to 1953-1979 annual flood records. Chico River at Zaragoza: August 2004 Peak discharge = 420 m 3 /s, return period = around 9 years, based on the Log Pearson Type 3 distribution fitted to 1960-1999 annual flood records. FLOOD FREQUENCY ANALYSIS
  • 28. INUNDATED AREAS: Agno River Basin The MODIS inundation map shows that extensive flooding occurred in the Poponto Swamps area of the Tarlac sub-basin (in the towns of Moncada and Paniqui), near its confluence with Agno River, but far from the immediate downstream vicinity of the San Roque Dam. The flooded area can be reckoned by the difference between the DAs of the Agno River at the Urbiztondo and Bayambang stations, which is equal to 5134 - 4196 = 938 sq.km. This number is remarkably close to the reported 960 sq.km (96,000 has.) of flooded rice lands in Tarlac province. INUNDATED AREAS: Pampanga River Basin As shown by the MODIS inundation map, the extensive flooding occurred in the Candaba Swamps and the Pampanga River Delta (including the Pasac Delta downstream of the Pinatubo sub-basins). The areal extent of the Candaba Swamps is expected to be less than the difference between the DAs at the Sulipan and Arayat stations, which is equal to 7849 – 6487 = 1362 sq.km. The areal extent of the Pampanga and Pasac Delta areas is reckoned by the difference between the total DA of the Pampanga River Basin, and the combined DAs of Pampanga River at Sulipan station, and Angat River at Calumpit, which is equal to 9759 - 7849 - 1014 = 896 sq.km. (consistent with the inundation map).
  • 29. Disaster Information Summary from the National Disaster Coordinating Council (NDCC): After- Effects of Southwest Monsoon Rains as of 8:00 AM, 01 September 2004 The southwest monsoon rains triggered massive flooding / flashfloods, landslides, and drowning incidents in various parts of Regions I, III, IV, CAR and NCR, the spillage of Ambuklao, Binga and San Roque Dams, the collapse of Amburayan Dike in Bangar, La Union and the breaching of Colibangbang Dike in Paniqui, Tarlac. Affected Areas: 2,113 barangays affected in 156 municipalities and 23 cities of 17 provinces in 5 Regions. Affected Population: 383,205 families or 1,858,082 persons; Casualties - 53 (43 dead, 9 injured and 1 still missing); Thirty five (35) of the 43 death toll was due to drowning, 4 electrocution, 1 cardiac arrest, and 3 covered by mudslide; the 9 injured was due to landslide, electrocution and covered by mudslides while the 1 missing was due to drowning. Damaged Houses - 69 totally and 2,464 partially; Properties Damaged - P1,315.039 M or P1.315 B (Agriculture - P1,167.551 M and Infrastructure - P147.488 M). Based on the search, rescue and evacuation operations conducted by the emergency responders: Cumulative total of families/persons displaced and evacuated to 143 evacuation centers is 9,269 families or 50,101 persons; Cumulative total of families /persons served - 114,022 families or 594,485 persons. Extent of assistance provided by NDCC, DSWD, LGUs and NGOs amounted to P17,202,693.15.
  • 30.
  • 31. Post Script: A more destructive storm-induced natural disaster happened in November 19-29, 2004 – the Eastern Luzon Landslides and Flooding caused by the three Typhoons Muifa, Merbok (Violeta) and Winnie. Provinces worst affected: Aurora, Quezon and eastern Nueva Ecija. Daily rainfall at Infanta, Quezon in Eastern Luzon: Nov. 19 - 45.8 mm. (Typhoon Muifa, Nov. 19-25, 2004) Nov. 20 - 192.8 mm. (antecedent 1-day peak, approx. 5-year return period) Nov. 21 - 184.5 Nov. 22 - 43.1 Nov. 23 - 22.4 Nov. 24 - 33.9 Nov. 25 - 7.3 Nov. 26 - 66.6 mm. (Typhoon Merbok (Violeta), Nov. 23-27, 2004) Nov. 27 - 1.7 Nov. 28 - 40.3 Nov. 29 - 493.5 mm. (main 1-day peak rainfall, approx. 45-year return period) (Typhoon Winnie, Nov. 29- Dec. 2, 2004) Below - News photos: Landslides and debris flows in Infanta and Real towns, Quezon. NDCC report (as of Dec. 2, 2004): 199 affected barangays In 38 municipalities, 52872 affected families Or 242,952 persons; 407 dead, 33 injured, 142 missing; Damages: Agriculture – P185.43 M Others – P 2.86 M
  • 32. MODIS (Moderate Resolution Imaging Spectroradiometer) images: Northern & Central Luzon on December 04, 2004
  • 33. Effects of Mt. Pinatubo sediment deposition
  • 34. Multipurpose dams, and flood-control & anti-lahar dikes in Central Luzon.
  • 35. Above: The church (1899 photo) as it was, until the 1991 Pinatubo eruption. Below: The church in 1996, its first floor completely buried in 1995. A church in Bacolor, Pampanga, Central Luzon, finally buried up to the second floor by the Pinatubo lahar of 1995.
  • 36. Liongson, L. Q. and G. Q. Tabios III (2000). Computation with a 2-D Lahar-Flood Model in a Mt. Pinatubo Basin, Philippines . Proceedings of the Second International Conference on Debris-Flow Hazards Mitigation, Taipei, Taiwan, August 16-18. 2-d model grid of lower Pasig-Potrero River Basin, Mt. Pinatubo area. dx, dy = 250 m. 50-Year 5-Day Storm Liongson, L. Q., G. Q. Tabios III, and P. P. M. Castro (1997). 2-D Lahar-Flood Model for Pasig-Potrero River in the Mt. Pinatubo Area. First International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, American Society of Civil Engineers, San Francisco, California, USA, August 7-9.
  • 37. Debris-flow rheoloy: Shear Stress Balance:  g (H - z) sin  = a i  s d 2 C l 2 sin  du/dz |du/dz|   Normal Stress Balance : (  s -  f ) g (H-z) C cos  = a i  s d 2 C l 2 cos  du/dz |du/dz| where H = depth of flow; z = vertical distance from the bed; du/dz = local velocity gradient; g = gravity acceleration; C = suspended solid concentration by volume;  =  s C +  f (1-C) = mixture density;  s = solid-phase density;  f = fluid-phase density (water + washload);  = friction slope angle; a i = Bagnold’s coefficient; d = median particle diameter; C l = linear concentration = 1 /[(C b / C) 1/3 - 1 ]  = dynamic internal angle of friction;
  • 38. Combined Hyperconcentrated Flow - Flood Flow Equations Shear Stress Balance:    g (H - z) sin  = (a i  s d 2 C l 2 sin  +  K T 2 z 2 ) du/dz |du/dz| Normal Stress Balance : (  s -  f ) g (H-z) C cos  = (a i  s d 2 C l 2 cos  +  K N 2 z 2 ) du/dz |du/dz| K T = von Karman coefficient for shear turbulent stress K N = similar coefficient for normal turbulent stress Total Continuity Equation:    H/  t +  (HU)/  x +  (HV)/  y + E / C b = q - I Total Momentum Equations (x and y components):    (  HU)/  t +  (  HU 2 )/  x +  (  HUV)/  y +  gH (  H/  x +  Z b /  x + S fx ) +  b E U/ C b =  (H T xx )/  x +  (H T xy )/  y +  L q U L  (  HV)/  t +  (  HVU)/  x +  (  HV 2 )/  y +  gH (  H/  y +  Z b /  y + S fy ) +  b E V/ C b =  (H T yx )/  x +  (H T yy )/  y +  L q V L     Sediment Continuity Equation:    (HC)/  t +  (HUC)/  x +  (HVC)/  y +  Z b /  t C b = q C L 
  • 39. where t = time; (x,y) = perpendicular horizontal coordinates; H = H(x,y,t) = depth of flow; Z b = Z b (x,y,t) = bed elevation; (U,V) = (U(x,y,t), V(x,y,t)) = mean velocity vector (depth-averaged); C = C(x,y,t) = suspended solid concentration by volume; C b = bed-deposited concentration by volume;  =  s C +  f (1-C) = mixture density; g = gravity acceleration;  s = solid-phase density;  f = fluid-phase density (water + washload); E =  Z b /  t C b = bed deposition (>0) or erosion (<0) rate; (S fx , S fy ) = (U,V) S f /  (U 2 +V 2 ) = vector of friction slope components; S f = resultant bed friction slope = f (U 2 +V 2 ) /(8 g H); f = integrated friction factor (defined under rheology); T xx =  n  f / 8 H 2  U/  x  U/  x  = lateral normal stress in x-direction; T yy =  n  f / 8 H 2  V/  y  V/  y  = lateral normal stress in y-direction; T xy = T yx =  t  f / 8 H 2 (  V/  x +  U/  y)  V/  x +  U/  y  = lateral shear stress in either x or y direction;  n ,  t = lateral normal and shear stress coefficients, resp.  1.0; q = total lateral inflow (such as direct rainfall or tributary flow); q C L = lateral sediment inflow; I =bed infiltration rate = a maximum assumed value or else the available water depth per unit time step, whichever is less at any given time;  b E (U,V)/ C b = momentum loss vector due to deposition (for E>0 only), including entrained water;  L q (U L ,V L ) = lateral momentum influx vector.
  • 40.  
  • 41.  
  • 42.  
  • 43.  
  • 44.  
  • 45. Based on a SIR-C/X-SAR Space Shuttle false-color Image of the Pinatubo-affected Pasac Delta, or Guagua RB, adjacent to the Pampanga River Basin (1994). Much of Pasac Delta has been converted to fishponds through the centuries, and at present, its narrow channels receive the fine lahar sediment brought down from the pyroclastic deposits of the 1991 eruption of the volcano .
  • 46. aa
  • 47.  
  • 48. Coastal flooding due to groundwater extraction (Siringan et al, UP NIGS, 2000.)
  • 49. The demolition of illegally built additional fishponds in the estuary of the Pinatubo-affected Pasac Delta, adjacent to the Pampanga River Basin. Coastal flooding due to channel constrictions.
  • 50. Opposition to major flood-control projects Major flood-control and river engineering projects have encountered opposition from local populations in the floodplain or riverbank areas due to the conflicting land-use management policies and priorities. These oppositions have caused the national government to either revise or realign, defer or abandon the project control plans. An example below:
  • 51. The hydrologic cycle. (source: www.lexingtonwaterfacts.com)
  • 52.
  • 53. DENR Water Quality Criteria / Water Usage & Classification for Fresh Water Class A - Public water supply II (require complete treatment to meet national standards for drinking water) Class B - Recreational water class I (for contact recreation as bathing and swimming) Class C - Fishery water for the propagation and growth of fish (also non-contact recreation & industrial use class I) Class D - For agriculture, irrigation, livestock watering and industrial water supply class II
  • 54. Integrated Water Resources Management or IWRM , having been promoted in the last twelve years (1997-2009), is an international movement which advocates the multi-stakeholder and participatory manner of managing the water resources among the competing users. The Global Water Partnership (GWP) &quot;was founded in 1996 by the World Bank, the United Nations Development Programme (UNDP), and the Swedish International Development Agency (SIDA) to foster integrated water resource management (IWRM), and to ensure the coordinated development and management of water, land, and related resources by maximizing economic and social welfare without compromising the sustainability of vital environmental systems.&quot; (http://www.gwpforum.org). Philippine Water Partnership (PWP) - established in 2002; the local network partner of GWP and GWPSEA; recognized (by NEDA InfraCom) as the principal NGO for the promotion of IWRM.
  • 55. Towards a new paradigm - from sub-sectoral to cross-sectoral water management IWRM is the ‘integrating handle’ leading us from sub-sectoral to cross-sectoral water management. CROSS-SECTORAL DIALOGUE THROUGH IWRM IWRM People Food Industry & others WATER USE SECTORS Eco- system IWRM is a process which promotes the coordinated development and management of water, land and related resources in order to maximize the resultant economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems (GWP/TAC).
  • 56. How do the Dublin principles translate into action? The ENABLING ENVIRONMENT sets the rules, the INSTITUTIONAL ROLES and functions define the players who make use of the MANAGEMENT INSTRUMENTS . ECOSYSTEM SUSTAINABILITY Enabling Environment Policies Legislation Management Institutional Instruments Roles Assessment Central-local Information Public-private Allocation tools River basin ECONOMIC EFFICIENCY SOCIAL EQUITY All this depends on the existence of popular awareness and political will to act!
  • 57. Left: Angat Reservoir monthly inflows, releases for irrigation and water supply, and water surface elevation, relative to the lower rule curve; right: policy summary for the years 1997-2003: in scatter plots and regression curves [ Liongson (2003)] . WATER SUPPLY versus IRRIGATION : 1997-1998 El Ni ñ o period (NWRB data).
  • 58. http://llda.gov.ph/SD_Mondriaan/WM_Main.htm The Water Mondriaan is a schematic map of the Laguna de Bay water system, showing the monitoring results in the lake and its tributaries compared with the DENR water quality criteria / water usage & classification for freshwater systems or when absent the LLDA expert opinion. The parameters included, focus on factors of significant ecological, human health and resource use importance or on the processes that are crucial to them: oxygen and oxygen demand (%DO, BOD5 and COD), bacterial pollution (Total Coliforms, Fecal Coliforms, eutrophic level (phosphate, dissolved nitrogen, chlorophyll-a and phytoplankton abundance), and hazardous substances (oil & grease and on a quarterly basis lead, hexavalent chromium & cadmium).
  • 59. Fish pens (top) & Fish cages (bottom) used for aquaculture in Laguna de Bay. Small fisherman engaged in open lake fishing. Impact of El Niño on aquaculture and fisheries [ Liongson (2003)]
  • 60. Rainfall (in drought conditions), lake stage (severe drawdown), & salinity (maximized conditions) during the El Niño months of 1997-1998. Impact of El Niño on aquaculture and fisheries This situation was most advantageous for the brackish-water aquaculture and fisheries , but disadvantageous for potential water-supply and irrigation uses. [ Liongson (2003)]
  • 61. Monthly measurements of salinity, transparency and turbidity at Laguna de Bay West-Bay-I station during the years 1997-1999. (a). Time series plots and (b). Scatter plots and fitted regression lines of salinity versus transparency and turbidity. Impact of El Niño on aquaculture and fisheries [ Liongson (2003)]
  • 62.  
  • 63.  
  • 64.  
  • 65.  
  • 66.  
  • 67.  
  • 68. The Study of the Effects of Payatas Dumpsite to the La Mesa Reservoir (NHRC, UP Diliman, 2001) The principal objective of the study is to identify the effects of the Payatas open dumpsite on the Novaliches (La Mesa) Reservoir with emphasis on the potential risk of leachate contamination. The secondary objectives are: to characterize the hydrogeology and hydraulics of the aquifer below the Payatas dumpsite, to identify the toxic and hazardous contaminants which have leached to the subsurface beneath the Payatas dumpsite area, to establish the potential risk of contamination to the La Mesa Reservoir, and to recommend possible remedial or mitigating measures to reduce the risk of contamination of the La Mesa Reservoir.
  • 69.  
  • 70.  
  • 71.  
  • 72.  
  • 73.  
  • 74.  
  • 75.  
  • 76.  
  • 77.  
  • 78.  
  • 79.  
  • 80.  
  • 81.  
  • 82.  
  • 83.  
  • 84.  
  • 85.  
  • 86.  
  • 87.  
  • 88.  
  • 89.  
  • 90.  
  • 91.  
  • 92.  
  • 93.  
  • 94.
  • 95.  
  • 96. Sabo Dam at Ormoc, Leyte.
  • 97.  
  • 98.  
  • 99.  
  • 100.  
  • 101.  
  • 102.  
  • 103.  
  • 104.  
  • 105.  
  • 106.  
  • 107.  
  • 108.  
  • 109. Hydraulics – engineering mechanics of water flows. Systems of flow equations - Navier-Stokes Equations, (general incompressible Newtonian fuid); St. Venant’s Equations and Kinematic Wave Equation. (open channel flows).
  • 110. A simple physically-based model - admits effects of urbanization & climate change on flash floods.