SlideShare une entreprise Scribd logo
1  sur  107
Télécharger pour lire hors ligne
Section 3.5
       Inverse Trigonometric
             Functions
                      V63.0121.021, Calculus I

                           New York University


                         November 2, 2010

Announcements

   Midterm grades have been submitted
   Quiz 3 this week in recitation on Section 2.6, 2.8, 3.1, 3.2
   Thank you for the evaluations
                                                 .   .   .   .    .   .
Announcements




         Midterm grades have been
         submitted
         Quiz 3 this week in
         recitation on Section 2.6,
         2.8, 3.1, 3.2
         Thank you for the
         evaluations




                                                                          .     .   .         .      .     .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010       2 / 40
Evaluations: The good




      “Exceptional competence and effectively articulate. (Do not fire
      him)”




                                                                          .     .   .         .      .     .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010       3 / 40
Evaluations: The good




      “Exceptional competence and effectively articulate. (Do not fire
      him)”
      “Good guy”




                                                                          .     .   .         .      .     .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010       3 / 40
Evaluations: The good




      “Exceptional competence and effectively articulate. (Do not fire
      him)”
      “Good guy”
      “He’s the clear man”




                                                                          .     .   .         .      .     .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010       3 / 40
Evaluations: The good




      “Exceptional competence and effectively articulate. (Do not fire
      him)”
      “Good guy”
      “He’s the clear man”
      “Love the juices”




                                                                          .     .   .         .      .     .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010       3 / 40
Evaluations: The bad



      Too fast, not enough examples




                                                                          .     .   .         .      .     .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010       4 / 40
Evaluations: The bad



      Too fast, not enough examples
             Not enough time to do everything
             Lecture is not the only learning time (recitation and independent
             study)
             I try to balance concept and procedure




                                                                          .     .   .         .      .     .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010       4 / 40
Evaluations: The bad



      Too fast, not enough examples
             Not enough time to do everything
             Lecture is not the only learning time (recitation and independent
             study)
             I try to balance concept and procedure
      Too many proofs




                                                                          .     .   .         .      .     .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010       4 / 40
Evaluations: The bad



      Too fast, not enough examples
             Not enough time to do everything
             Lecture is not the only learning time (recitation and independent
             study)
             I try to balance concept and procedure
      Too many proofs
             In this course we care about concepts
             There will be conceptual problems on the exam
             Concepts are the keys to overcoming templated problems




                                                                          .     .   .         .      .     .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010       4 / 40
Evaluations: technological comments




      Smart board issues
      laser pointer visibility
      slides sometimes move fast




                                                                          .     .   .         .      .     .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010       5 / 40
Evaluations: The ugly




      “If class was even remotely interesting this class would be
      awesome.”




                                                                          .     .   .         .      .     .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010       6 / 40
Evaluations: The ugly




      “If class was even remotely interesting this class would be
      awesome.”
      “Sometimes condescending/rude.”




                                                                          .     .   .         .      .     .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010       6 / 40
Evaluations: The ugly




      “If class was even remotely interesting this class would be
      awesome.”
      “Sometimes condescending/rude.”
      “Can’t pick his nose without checking his notes, and he still gets it
      wrong the first time.”




                                                                          .     .   .         .      .     .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010       6 / 40
Evaluations: The ugly




      “If class was even remotely interesting this class would be
      awesome.”
      “Sometimes condescending/rude.”
      “Can’t pick his nose without checking his notes, and he still gets it
      wrong the first time.”
      “If I were chained to a desk and forced to see this guy teach, I
      would chew my arm off in order to get free.”




                                                                          .     .   .         .      .     .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010       6 / 40
A slide on slides

      Pro
             “Powerpoints explain topics carefully step-by-step”
             “Powerpoint and lesson flow smoothly”
             “Can visualize material well”
             “I like that you post slides beforehand”




                                                                          .     .   .         .      .     .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010       7 / 40
A slide on slides

      Pro
             “Powerpoints explain topics carefully step-by-step”
             “Powerpoint and lesson flow smoothly”
             “Can visualize material well”
             “I like that you post slides beforehand”
      Con
             “I would like to have him use the chalkboard more.”
             “It’s so unnatural to learn math via powerpoint.”
             “I hate powerpoint.”




                                                                          .     .   .         .      .     .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010       7 / 40
A slide on slides

      Pro
             “Powerpoints explain topics carefully step-by-step”
             “Powerpoint and lesson flow smoothly”
             “Can visualize material well”
             “I like that you post slides beforehand”
      Con
             “I would like to have him use the chalkboard more.”
             “It’s so unnatural to learn math via powerpoint.”
             “I hate powerpoint.”
      Why I like them
             Board handwriting not an issue
             Easy to put online; notetaking is more than transcription




                                                                          .     .   .         .      .     .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010       7 / 40
My handwriting




                                                                          .     .   .         .      .     .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010       8 / 40
A slide on slides

      Pro
             “Powerpoints explain topics carefully step-by-step”
             “Powerpoint and lesson flow smoothly”
             “Can visualize material well”
             “I like that you post slides beforehand”
      Con
             “I would like to have him use the chalkboard more.”
             “It’s so unnatural to learn math via powerpoint.”
             “I hate powerpoint.”
      Why I like them
             Board handwriting not an issue
             Easy to put online; notetaking is more than transcription
      What we can do
             if you have suggestions for details to put in, I’m listening
             Feel free to ask me to fill in something on the board
                                                                          .     .   .         .      .     .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010       9 / 40
Objectives



         Know the definitions,
         domains, ranges, and
         other properties of the
         inverse trignometric
         functions: arcsin, arccos,
         arctan, arcsec, arccsc,
         arccot.
         Know the derivatives of the
         inverse trignometric
         functions.



                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   10 / 40
Outline



Inverse Trigonometric Functions


Derivatives of Inverse Trigonometric Functions
   Arcsine
   Arccosine
   Arctangent
   Arcsecant


Applications




                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   11 / 40
What is an inverse function?



Definition
Let f be a function with domain D and range E. The inverse of f is the
function f−1 defined by:
                              f−1 (b) = a,
where a is chosen so that f(a) = b.




                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   12 / 40
What is an inverse function?



Definition
Let f be a function with domain D and range E. The inverse of f is the
function f−1 defined by:
                              f−1 (b) = a,
where a is chosen so that f(a) = b.

So
                                  f−1 (f(x)) = x,              f(f−1 (x)) = x




                                                                             .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)      Section 3.5 Inverse Trigonometric Functions       November 2, 2010   12 / 40
What functions are invertible?




In order for f−1 to be a function, there must be only one a in D
corresponding to each b in E.
      Such a function is called one-to-one
      The graph of such a function passes the horizontal line test: any
      horizontal line intersects the graph in exactly one point if at all.
      If f is continuous, then f−1 is continuous.




                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   13 / 40
Graphing the inverse function

                                                            y
                                                            .

       If b = f(a), then f−1 (b) = a.




                                                                .
                                                                                                           x
                                                                                                           .




                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   14 / 40
Graphing the inverse function

                                                            y
                                                            .

       If b = f(a), then f−1 (b) = a.
       So if (a, b) is on the graph
       of f, then (b, a) is on the
       graph of f−1 .
                                                                . b, a)
                                                                (
                                                                          .

                                                                                    . . a, b)
                                                                                      (

                                                                .
                                                                                                               x
                                                                                                               .




                                                                          .     .       .       .     .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010   14 / 40
Graphing the inverse function

                                                            y
                                                            .                                        y
                                                                                                     . =x

       If b = f(a), then f−1 (b) = a.
       So if (a, b) is on the graph
       of f, then (b, a) is on the
       graph of f−1 .
                                                                . b, a)
                                                                (
       On the xy-plane, the point                                         .
       (b, a) is the reflection of
       (a, b) in the line y = x.                                                    . . a, b)
                                                                                      (

                                                                .
                                                                                                               x
                                                                                                               .




                                                                          .     .       .       .     .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010   14 / 40
Graphing the inverse function

                                                            y
                                                            .                                        y
                                                                                                     . =x

       If b = f(a), then f−1 (b) = a.
       So if (a, b) is on the graph
       of f, then (b, a) is on the
       graph of f−1 .
                                                                . b, a)
                                                                (
       On the xy-plane, the point                                         .
       (b, a) is the reflection of
       (a, b) in the line y = x.                                                    . . a, b)
                                                                                      (

                                                                .
                                                                                                               x
                                                                                                               .




                                                                          .     .       .       .     .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010   14 / 40
Graphing the inverse function

                                                            y
                                                            .                                        y
                                                                                                     . =x

       If b = f(a), then f−1 (b) = a.
       So if (a, b) is on the graph
       of f, then (b, a) is on the
       graph of f−1 .
                                                                . b, a)
                                                                (
       On the xy-plane, the point                                         .
       (b, a) is the reflection of
       (a, b) in the line y = x.                                                    . . a, b)
                                                                                      (

                                                                .
                                                                                                               x
                                                                                                               .




                                                                          .     .       .       .     .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010   14 / 40
Graphing the inverse function

                                                            y
                                                            .                                        y
                                                                                                     . =x

       If b = f(a), then f−1 (b) = a.
       So if (a, b) is on the graph
       of f, then (b, a) is on the
       graph of f−1 .
                                                                . b, a)
                                                                (
       On the xy-plane, the point                                         .
       (b, a) is the reflection of
       (a, b) in the line y = x.                                                    . . a, b)
                                                                                      (
       Therefore:
                                                                .
                                                                                                               x
                                                                                                               .
Fact
The graph of f−1 is the reflection of the graph of f in the line y = x.

                                                                          .     .       .       .     .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010   14 / 40
Graphing the inverse function

                                                            y
                                                            .                                        y
                                                                                                     . =x

       If b = f(a), then f−1 (b) = a.
       So if (a, b) is on the graph
       of f, then (b, a) is on the
       graph of f−1 .
                                                                . b, a)
                                                                (
       On the xy-plane, the point                                         .
       (b, a) is the reflection of
       (a, b) in the line y = x.                                                    . . a, b)
                                                                                      (
       Therefore:
                                                                .
                                                                                                               x
                                                                                                               .
Fact
The graph of f−1 is the reflection of the graph of f in the line y = x.

                                                                          .     .       .       .     .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010   14 / 40
arcsin

Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].

                                                    y
                                                    .



                                       .             .           .                                     x
                                                                                                       .
                                       π                       π                                s
                                                                                                . in
                                     −
                                     .                         .
                                       2                       2




                                                                          .     .   .      .      .        .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010       15 / 40
arcsin

Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].

                                                    y
                                                    .

                                                                 .
                                       .             .           .                                     x
                                                                                                       .
                                       π                       π                                s
                                                                                                . in
                                     −
                                     . .                       .
                                       2                       2




                                                                          .     .   .      .      .        .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010       15 / 40
arcsin

Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].

                                                    y
                                                    .
                                                                      y
                                                                      . =x
                                                                 .
                                       .             .           .                                     x
                                                                                                       .
                                       π                       π                                s
                                                                                                . in
                                     −
                                     . .                       .
                                       2                       2




                                                                          .     .   .      .      .        .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010       15 / 40
arcsin

Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].

                                                    y
                                                    .
                                                            . . rcsin
                                                              a
                                                                 .
                                       .             .           .                                     x
                                                                                                       .
                                       π                       π                                s
                                                                                                . in
                                     −
                                     . .                       .
                                       2                       2
                                             .


      The domain of arcsin is [−1, 1]
                            [ π π]
      The range of arcsin is − ,
                               2 2

                                                                          .     .   .      .      .        .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010       15 / 40
arccos

Arccos is the inverse of the cosine function after restriction to [0, π]


                                                    y
                                                    .


                                                                                                    c
                                                                                                    . os
                                                      .                         .                       x
                                                                                                        .
                                                    0
                                                    .                         .
                                                                              π




                                                                          .         .   .      .      .     .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010    16 / 40
arccos

Arccos is the inverse of the cosine function after restriction to [0, π]


                                                    y
                                                    .

                                                     .
                                                                                                    c
                                                                                                    . os
                                                      .                         .                       x
                                                                                                        .
                                                    0
                                                    .                         .
                                                                              π
                                                                                .




                                                                          .         .   .      .      .     .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010    16 / 40
arccos

Arccos is the inverse of the cosine function after restriction to [0, π]


                                                    y
                                                    .
                                                                      y
                                                                      . =x
                                                     .
                                                                                                    c
                                                                                                    . os
                                                      .                         .                       x
                                                                                                        .
                                                    0
                                                    .                         .
                                                                              π
                                                                                .




                                                                          .         .   .      .      .     .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010    16 / 40
arccos

Arccos is the inverse of the cosine function after restriction to [0, π]
                                             . . rccos
                                               a
                                                    y
                                                    .

                                                     .
                                                                                                    c
                                                                                                    . os
                                                      .     .                   .                       x
                                                                                                        .
                                                    0
                                                    .                         .
                                                                              π
                                                                                .



      The domain of arccos is [−1, 1]
      The range of arccos is [0, π]

                                                                          .         .   .      .      .     .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010    16 / 40
arctan
Arctan is the inverse of the tangent function after restriction to
[−π/2, π/2].                      y
                                  .




                                                     .                                                  x
                                                                                                        .
                   3π                   π                       π                   3π
                 −
                 .                    −
                                      .                         .                   .
                    2                   2                       2                     2




                                                                                          t
                                                                                          .an


                                                                          .     .    .      .      .        .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions        November 2, 2010       17 / 40
arctan
Arctan is the inverse of the tangent function after restriction to
[−π/2, π/2].                      y
                                  .




                                                     .                                                  x
                                                                                                        .
                   3π                   π                       π                   3π
                 −
                 .                    −
                                      .                         .                   .
                    2                   2                       2                     2




                                                                                          t
                                                                                          .an


                                                                          .     .    .      .      .        .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions        November 2, 2010       17 / 40
arctan
                                                       y
                                                       . =x
Arctan is the inverse of the tangent function after restriction to
[−π/2, π/2].                      y
                                  .




                                                     .                                                  x
                                                                                                        .
                   3π                   π                       π                   3π
                 −
                 .                    −
                                      .                         .                   .
                    2                   2                       2                     2




                                                                                          t
                                                                                          .an


                                                                          .     .    .      .      .        .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions        November 2, 2010       17 / 40
arctan
Arctan is the inverse of the tangent function after restriction to
[−π/2, π/2].                      y
                                  .

                                                π
                                                .                                                      a
                                                                                                       . rctan
                                                2

                                                     .                                                 x
                                                                                                       .

                                                 π
                                             −
                                             .
                                                 2

      The domain of arctan is (−∞, ∞)
                            ( π π)
      The range of arctan is − ,
                                2 2
                     π                   π
       lim arctan x = , lim arctan x = −
      x→∞            2 x→−∞              2
                                                                          .     .   .      .      .        .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010       17 / 40
arcsec
Arcsecant is the inverse of secant after restriction to
[0, π/2) ∪ (π, 3π/2].             y
                                  .




                                                     .                                                  x
                                                                                                        .
                   3π                   π                       π                   3π
                 −
                 .                    −
                                      .                         .                   .
                    2                   2                       2                     2




                                                                    s
                                                                    . ec


                                                                          .     .    .      .      .        .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions        November 2, 2010       18 / 40
arcsec
Arcsecant is the inverse of secant after restriction to
[0, π/2) ∪ (π, 3π/2].             y
                                  .



                                                     .
                                                     .                                                      x
                                                                                                            .
                   3π                   π                       π                       3π
                 −
                 .                    −
                                      .                         .               .       .
                    2                   2                       2                         2




                                                                    s
                                                                    . ec


                                                                          .         .    .      .      .        .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions            November 2, 2010       18 / 40
arcsec
Arcsecant is the inverse of secant after restriction to . = x
                                                        y
[0, π/2) ∪ (π, 3π/2].             y
                                  .



                                                     .
                                                     .                                                      x
                                                                                                            .
                   3π                   π                       π                       3π
                 −
                 .                    −
                                      .                         .               .       .
                    2                   2                       2                         2




                                                                    s
                                                                    . ec


                                                                          .         .    .      .      .        .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions            November 2, 2010       18 / 40
arcsec                         3π
                               .
                                 2
Arcsecant is the inverse of secant after restriction to
[0, π/2) ∪ (π, 3π/2].         . .  y

                                                π
                                                .
                                                2 .

                                                     .       .                                             x
                                                                                                           .
                                                                                .



      The domain of arcsec is (−∞, −1] ∪ [1, ∞)
                            [ π ) (π ]
      The range of arcsec is 0,   ∪    ,π
                                2    2
                      π                  3π
       lim arcsec x = , lim arcsec x =
      x→∞             2 x→−∞              2
                                                                          .         .   .      .      .        .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010       18 / 40
Values of Trigonometric Functions

                                  π                      π                        π                π
       x 0
                                  6                      4                        3                2
                                                         √                        √
                                  1                        2                        3
  sin x 0                                                                                          1
                                  2                       2                        2
                                  √                      √
                                    3                      2                      1
 cos x 1                                                                                           0
                                   2                      2                       2
                                   1                                              √
 tan x 0                          √                      1                          3              undef
                                    3
                                  √                                                1
  cot x undef                       3                    1                        √                0
                                                                                    3
                                  2                      2
 sec x 1                          √                      √                        2                undef
                                   3                      2
                                                         2                         2
 csc x undef                      2                      √                        √                1
                                                          2                         3
                                                                              .         .   .      .      .    .

 V63.0121.021, Calculus I (NYU)       Section 3.5 Inverse Trigonometric Functions           November 2, 2010   19 / 40
Check: Values of inverse trigonometric functions
Example
Find
       arcsin(1/2)
       arctan(−1)
              ( √ )
                   2
       arccos −
                  2




                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   20 / 40
Check: Values of inverse trigonometric functions
Example
Find
       arcsin(1/2)
       arctan(−1)
              ( √ )
                   2
       arccos −
                  2


Solution
    π
    6




                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   20 / 40
What is arctan(−1)?

                                  .


    3
    . π/4
              .




                                  .                                     .




                                                         .
                                                             −
                                                             . π/4

                                                                              .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)       Section 3.5 Inverse Trigonometric Functions       November 2, 2010   21 / 40
What is arctan(−1)?

                                  .

                                                                                        (        )
    3
    . π/4                                                                                   3π
              .                                                         Yes, tan                     = −1
                                                                                             4
                               √
                                2
                  s
                  . in(3π/4) =
                               2
                        .
                        √                                               .
                           2
         . os(3π/4) = −
         c
                          2

                                                         .
                                                             −
                                                             . π/4

                                                                              .     .        .       .      .   .

 V63.0121.021, Calculus I (NYU)       Section 3.5 Inverse Trigonometric Functions            November 2, 2010   21 / 40
What is arctan(−1)?

                                  .

                                                                                     )  (
    3
    . π/4                                                                         3π
              .                                                         Yes, tan       = −1
                                                                                   4
                               √                                        But, the)
                                                                        ( π π range of arctan is
                                2
                  s
                  . in(3π/4) =                                           − ,
                               2                                           2 2
                        .
                        √                                               .
                           2
         . os(3π/4) = −
         c
                          2

                                                         .
                                                             −
                                                             . π/4

                                                                              .     .       .      .      .    .

 V63.0121.021, Calculus I (NYU)       Section 3.5 Inverse Trigonometric Functions           November 2, 2010   21 / 40
What is arctan(−1)?

                                   .

                                                                                         (
                                                                                         )
    3
    . π/4                                                                             3π
              .                                                          Yes, tan          = −1
                                                                                       4
                                                                         But, the)
                                                                         ( π π range of arctan is
                                              √                            − ,
                                                2                            2 2
                                  c
                                  . os(π/4) =
                                    .          2                         Another angle whose
                                                                         .                     π
                                                                         tangent is −1 is − , and
                                                   √                                           4
                                                     2                   this is in the right range.
                          . in(π/4) = −
                          s
                                                    2
                                                          .
                                                              −
                                                              . π/4

                                                                               .     .       .      .      .    .

 V63.0121.021, Calculus I (NYU)        Section 3.5 Inverse Trigonometric Functions           November 2, 2010   21 / 40
What is arctan(−1)?

                                   .

                                                                                         (
                                                                                         )
    3
    . π/4                                                                             3π
              .                                                          Yes, tan          = −1
                                                                                       4
                                                                         But, the)
                                                                         ( π π range of arctan is
                                              √                            − ,
                                                2                            2 2
                                  c
                                  . os(π/4) =
                                    .          2                         Another angle whose
                                                                         .                     π
                                                                         tangent is −1 is − , and
                                                   √                                           4
                                                     2                   this is in the right range.
                          . in(π/4) = −
                          s                                                                     π
                                                    2                    So arctan(−1) = −
                                                                                                4
                                                          .
                                                              −
                                                              . π/4

                                                                               .     .       .      .      .    .

 V63.0121.021, Calculus I (NYU)        Section 3.5 Inverse Trigonometric Functions           November 2, 2010   21 / 40
Check: Values of inverse trigonometric functions
Example
Find
       arcsin(1/2)
       arctan(−1)
              ( √ )
                   2
       arccos −
                  2


Solution
    π
    6
      π
    −
      4


                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   22 / 40
Check: Values of inverse trigonometric functions
Example
Find
       arcsin(1/2)
       arctan(−1)
              ( √ )
                   2
       arccos −
                  2


Solution
    π
    6
      π
    −
      4
    3π
     4
                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   22 / 40
Caution: Notational ambiguity




                    . in2 x =.(sin x)2
                    s                                            . in−1 x = (sin x)−1
                                                                 s




      sinn x means the nth power of sin x, except when n = −1!
      The book uses sin−1 x for the inverse of sin x, and never for
      (sin x)−1 .
                        1
      I use csc x for       and arcsin x for the inverse of sin x.
                      sin x
                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   23 / 40
Outline



Inverse Trigonometric Functions


Derivatives of Inverse Trigonometric Functions
   Arcsine
   Arccosine
   Arctangent
   Arcsecant


Applications




                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   24 / 40
The Inverse Function Theorem

Theorem (The Inverse Function Theorem)
Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an
open interval containing b = f(a), and

                                                                1
                                     (f−1 )′ (b) =        ′ −1
                                                         f (f     (b))

In Leibniz notation we have
                                             dx     1
                                                =
                                             dy   dy/dx




                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   25 / 40
The Inverse Function Theorem

Theorem (The Inverse Function Theorem)
Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an
open interval containing b = f(a), and

                                                                1
                                     (f−1 )′ (b) =        ′ −1
                                                         f (f     (b))

In Leibniz notation we have
                                             dx     1
                                                =
                                             dy   dy/dx


Upshot: Many times the derivative of f−1 (x) can be found by implicit
differentiation and the derivative of f:
                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   25 / 40
Illustrating the Inverse Function Theorem
.
Example
Use the inverse function theorem to find the derivative of the square root
function.




.                                                                            .     .   .      .      .    .

    V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   26 / 40
Illustrating the Inverse Function Theorem
.
Example
Use the inverse function theorem to find the derivative of the square root
function.

Solution (Newtonian notation)
                               √
Let f(x) = x2 so that f−1 (y) = y. Then f′ (u) = 2u so for any b > 0 we have

                                                         1
                                           (f−1 )′ (b) = √
                                                        2 b




.                                                                            .     .   .      .      .    .

    V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   26 / 40
Illustrating the Inverse Function Theorem
.
Example
Use the inverse function theorem to find the derivative of the square root
function.

Solution (Newtonian notation)
                               √
Let f(x) = x2 so that f−1 (y) = y. Then f′ (u) = 2u so for any b > 0 we have

                                                         1
                                           (f−1 )′ (b) = √
                                                        2 b


Solution (Leibniz notation)
If the original function is y = x2 , then the inverse function is defined by x = y2 .
Differentiate implicitly:

                                              dy    dy   1
                                     1 = 2y      =⇒    = √
                                              dx    dx  2 x
.                                                                            .     .   .      .      .    .

    V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   26 / 40
Derivation: The derivative of arcsin
Let y = arcsin x, so x = sin y. Then
                            dy        dy     1          1
                   cos y       = 1 =⇒    =       =
                            dx        dx   cos y   cos(arcsin x)




                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   27 / 40
Derivation: The derivative of arcsin
Let y = arcsin x, so x = sin y. Then
                            dy        dy     1          1
                   cos y       = 1 =⇒    =       =
                            dx        dx   cos y   cos(arcsin x)

To simplify, look at a right
triangle:




                                                                                .


                                                                          .         .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010   27 / 40
Derivation: The derivative of arcsin
Let y = arcsin x, so x = sin y. Then
                            dy        dy     1          1
                   cos y       = 1 =⇒    =       =
                            dx        dx   cos y   cos(arcsin x)

To simplify, look at a right
triangle:



                                                                                         .          .


                                                                                    y
                                                                                    . = arcsin x
                                                                                .


                                                                          .          .       .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions                November 2, 2010   27 / 40
Derivation: The derivative of arcsin
Let y = arcsin x, so x = sin y. Then
                            dy        dy     1          1
                   cos y       = 1 =⇒    =       =
                            dx        dx   cos y   cos(arcsin x)

To simplify, look at a right
triangle:



                                                                                         1
                                                                                         ..          ..
                                                                                                      x


                                                                                    y
                                                                                    . = arcsin x
                                                                                .


                                                                          .          .        .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions                 November 2, 2010   27 / 40
Derivation: The derivative of arcsin
Let y = arcsin x, so x = sin y. Then
                            dy        dy     1          1
                   cos y       = 1 =⇒    =       =
                            dx        dx   cos y   cos(arcsin x)

To simplify, look at a right
triangle:



                                                                                       1
                                                                                       ..          ..
                                                                                                    x


                                                                                  y
                                                                                  . = arcsin x
                                                                                . √
                                                                                  . 1 − x2
                                                                          .        .        .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions               November 2, 2010   27 / 40
Derivation: The derivative of arcsin
Let y = arcsin x, so x = sin y. Then
                            dy        dy     1          1
                   cos y       = 1 =⇒    =       =
                            dx        dx   cos y   cos(arcsin x)

To simplify, look at a right
triangle:
                      √
     cos(arcsin x) = 1 − x2

                                                                                       1
                                                                                       ..          ..
                                                                                                    x


                                                                                  y
                                                                                  . = arcsin x
                                                                                . √
                                                                                  . 1 − x2
                                                                          .        .        .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions               November 2, 2010   27 / 40
Derivation: The derivative of arcsin
Let y = arcsin x, so x = sin y. Then
                            dy        dy     1          1
                   cos y       = 1 =⇒    =       =
                            dx        dx   cos y   cos(arcsin x)

To simplify, look at a right
triangle:
                      √
     cos(arcsin x) = 1 − x2

 So                                                                                    1
                                                                                       ..          ..
                                                                                                    x
Fact

                                                                                  y
                                                                                  . = arcsin x
      d                 1                                                       . √
         arcsin(x) = √                                                            . 1 − x2
      dx              1 − x2
                                                                          .        .        .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions               November 2, 2010   27 / 40
Graphing arcsin and its derivative


                                                                                                 1
                                                                                             .√
                                                                                               1 − x2
       The domain of f is [−1, 1],
       but the domain of f′ is                                                               . . rcsin
                                                                                               a
       (−1, 1)
         lim f′ (x) = +∞
       x→1−
          lim f′ (x) = +∞                                                 .
                                                                          |         .        .
                                                                                             |
       x→−1+                                                            −
                                                                        . 1                 1
                                                                                            .


                                                                          .



                                                                          .     .       .        .    .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010   28 / 40
Composing with arcsin


Example
Let f(x) = arcsin(x3 + 1). Find f′ (x).




                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   29 / 40
Composing with arcsin


Example
Let f(x) = arcsin(x3 + 1). Find f′ (x).

Solution
We have
                   d                          1        d 3
                      arcsin(x3 + 1) = √                  (x + 1)
                   dx                    1 − (x3 + 1)2 dx
                                                 3x2
                                             =√
                                               −x6 − 2x3



                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   29 / 40
Derivation: The derivative of arccos
Let y = arccos x, so x = cos y. Then
                          dy        dy     1              1
              − sin y        = 1 =⇒    =         =
                          dx        dx   − sin y   − sin(arccos x)




                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   30 / 40
Derivation: The derivative of arccos
Let y = arccos x, so x = cos y. Then
                          dy        dy     1              1
              − sin y        = 1 =⇒    =         =
                          dx        dx   − sin y   − sin(arccos x)

To simplify, look at a right
triangle:
                      √
     sin(arccos x) = 1 − x2

So                                                                              1
                                                                                .           √
                                                                                            . 1 − x2
Fact

                                                                          y
                                                                          . = arccos x
     d                    1                                           .
        arccos(x) = − √                                                         x
                                                                                .
     dx                 1 − x2
                                                                          .         .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010   30 / 40
Graphing arcsin and arccos



         . . rccos
           a


                             . . rcsin
                               a


         .
         |         .         |.
                             .
       −
       . 1                  1
                            .


         .


                                                                           .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)    Section 3.5 Inverse Trigonometric Functions       November 2, 2010   31 / 40
Graphing arcsin and arccos



         . . rccos
           a
                                                 Note
                                                                             (π    )
                                                                 cos θ = sin    −θ
                             . . rcsin
                               a                                              2
                                                                         π
                                                           =⇒ arccos x = − arcsin x
                                                                         2
         .
         |         .         |.
                             .                   So it’s not a surprise that their
       −
       . 1                  1
                            .                    derivatives are opposites.

         .


                                                                           .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)    Section 3.5 Inverse Trigonometric Functions       November 2, 2010   31 / 40
Derivation: The derivative of arctan
Let y = arctan x, so x = tan y. Then

                           dy        dy     1
                sec2 y        = 1 =⇒    =        = cos2 (arctan x)
                           dx        dx   sec2 y




                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   32 / 40
Derivation: The derivative of arctan
Let y = arctan x, so x = tan y. Then

                           dy        dy     1
                sec2 y        = 1 =⇒    =        = cos2 (arctan x)
                           dx        dx   sec2 y

To simplify, look at a right
triangle:




                                                                                .


                                                                          .         .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010   32 / 40
Derivation: The derivative of arctan
Let y = arctan x, so x = tan y. Then

                           dy        dy     1
                sec2 y        = 1 =⇒    =        = cos2 (arctan x)
                           dx        dx   sec2 y

To simplify, look at a right
triangle:



                                                                                                   .


                                                                                    y
                                                                                    . = arctan x
                                                                                .       .


                                                                          .         .   .      .       .   .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010   32 / 40
Derivation: The derivative of arctan
Let y = arctan x, so x = tan y. Then

                           dy        dy     1
                sec2 y        = 1 =⇒    =        = cos2 (arctan x)
                           dx        dx   sec2 y

To simplify, look at a right
triangle:



                                                                                                   ..
                                                                                                    x


                                                                                    y
                                                                                    . = arctan x
                                                                                .        .
                                                                                       1
                                                                                       .

                                                                          .         .   .      .        .   .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010    32 / 40
Derivation: The derivative of arctan
Let y = arctan x, so x = tan y. Then

                           dy        dy     1
                sec2 y        = 1 =⇒    =        = cos2 (arctan x)
                           dx        dx   sec2 y

To simplify, look at a right
triangle:



                                                                          √
                                                                          . 1 + x2                 ..
                                                                                                    x


                                                                                    y
                                                                                    . = arctan x
                                                                                .        .
                                                                                       1
                                                                                       .

                                                                          .         .   .      .        .   .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010    32 / 40
Derivation: The derivative of arctan
Let y = arctan x, so x = tan y. Then

                           dy        dy     1
                sec2 y        = 1 =⇒    =        = cos2 (arctan x)
                           dx        dx   sec2 y

To simplify, look at a right
triangle:

                        1
     cos(arctan x) = √
                      1 + x2
                                                                          √
                                                                          . 1 + x2                 ..
                                                                                                    x


                                                                                    y
                                                                                    . = arctan x
                                                                                .        .
                                                                                       1
                                                                                       .

                                                                          .         .   .      .        .   .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010    32 / 40
Derivation: The derivative of arctan
Let y = arctan x, so x = tan y. Then

                           dy        dy     1
                sec2 y        = 1 =⇒    =        = cos2 (arctan x)
                           dx        dx   sec2 y

To simplify, look at a right
triangle:

                        1
     cos(arctan x) = √
                      1 + x2
                                                                          √
                                                                          . 1 + x2                 ..
                                                                                                    x
 So
Fact
                                                                                    y
                                                                                    . = arctan x
       d                1                                                       .        .
          arctan(x) =                                                                  1
                                                                                       .
       dx             1 + x2
                                                                          .         .   .      .        .   .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010    32 / 40
Graphing arctan and its derivative

                                               y
                                               .
                                                    . /2
                                                    π
                                                                                               a
                                                                                               . rctan
                                                                                                   1
                                                                                               .
                                                                                               1 + x2
                                                .                                              x
                                                                                               .



                                                    −
                                                    . π/2


      The domain of f and f′ are both (−∞, ∞)
      Because of the horizontal asymptotes, lim f′ (x) = 0
                                                                     x→±∞

                                                                          .     .   .      .      .      .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010     33 / 40
Composing with arctan


Example
                           √
Let f(x) = arctan           x. Find f′ (x).




                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   34 / 40
Composing with arctan


Example
                           √
Let f(x) = arctan           x. Find f′ (x).

Solution


                  d        √       1     d√    1   1
                     arctan x =    (√ )2   x=    · √
                  dx            1+    x dx    1+x 2 x
                                    1
                              = √       √
                                2 x + 2x x



                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   34 / 40
Derivation: The derivative of arcsec
Try this first.




                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   35 / 40
Derivation: The derivative of arcsec
Try this first. Let y = arcsec x, so x = sec y. Then
                         dy        dy       1                 1
        sec y tan y         = 1 =⇒    =             =
                         dx        dx   sec y tan y   x tan(arcsec(x))




                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   35 / 40
Derivation: The derivative of arcsec
Try this first. Let y = arcsec x, so x = sec y. Then
                         dy        dy       1                 1
        sec y tan y         = 1 =⇒    =             =
                         dx        dx   sec y tan y   x tan(arcsec(x))
To simplify, look at a right
triangle:




                                                                      .


                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   35 / 40
Derivation: The derivative of arcsec
Try this first. Let y = arcsec x, so x = sec y. Then
                         dy        dy       1                 1
        sec y tan y         = 1 =⇒    =             =
                         dx        dx   sec y tan y   x tan(arcsec(x))
To simplify, look at a right
triangle:




                                                                      .


                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   35 / 40
Derivation: The derivative of arcsec
Try this first. Let y = arcsec x, so x = sec y. Then
                         dy        dy       1                 1
        sec y tan y         = 1 =⇒    =             =
                         dx        dx   sec y tan y   x tan(arcsec(x))
To simplify, look at a right
triangle:




                                                                          y
                                                                          . = arcsec x
                                                                      .


                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   35 / 40
Derivation: The derivative of arcsec
Try this first. Let y = arcsec x, so x = sec y. Then
                         dy        dy       1                 1
        sec y tan y         = 1 =⇒    =             =
                         dx        dx   sec y tan y   x tan(arcsec(x))
To simplify, look at a right
triangle:




                                                                                x
                                                                                .


                                                                          y
                                                                          . = arcsec x
                                                                      .
                                                                                    1
                                                                                    .

                                                                          .             .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions               November 2, 2010   35 / 40
Derivation: The derivative of arcsec
Try this first. Let y = arcsec x, so x = sec y. Then
                         dy        dy       1                 1
        sec y tan y         = 1 =⇒    =             =
                         dx        dx   sec y tan y   x tan(arcsec(x))
To simplify, look at a right
triangle:
                      √
                        x2 − 1
    tan(arcsec x) =
                          1
                                                                                                √
                                                                                x
                                                                                .               . x2 − 1


                                                                          y
                                                                          . = arcsec x
                                                                      .
                                                                                    1
                                                                                    .

                                                                          .             .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions               November 2, 2010   35 / 40
Derivation: The derivative of arcsec
Try this first. Let y = arcsec x, so x = sec y. Then
                         dy        dy       1                 1
        sec y tan y         = 1 =⇒    =             =
                         dx        dx   sec y tan y   x tan(arcsec(x))
To simplify, look at a right
triangle:
                      √
                        x2 − 1
    tan(arcsec x) =
                          1
 So                                                                                             √
                                                                                x
                                                                                .               . x2 − 1
Fact

                                                                          y
                                                                          . = arcsec x
                                                                      .
    d                1
       arcsec(x) = √                                                                1
                                                                                    .
    dx            x x2 − 1
                                                                          .             .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions               November 2, 2010   35 / 40
Another Example


Example
Let f(x) = earcsec 3x . Find f′ (x).




                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   36 / 40
Another Example


Example
Let f(x) = earcsec 3x . Find f′ (x).

Solution


                                                             1
                             f′ (x) = earcsec 3x ·        √          ·3
                                                        3x (3x)2 − 1
                                        3earcsec 3x
                                   =     √
                                       3x 9x2 − 1



                                                                           .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)    Section 3.5 Inverse Trigonometric Functions       November 2, 2010   36 / 40
Outline



Inverse Trigonometric Functions


Derivatives of Inverse Trigonometric Functions
   Arcsine
   Arccosine
   Arctangent
   Arcsecant


Applications




                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   37 / 40
Application
Example
One of the guiding principles of
most sports is to “keep your
eye on the ball.” In baseball, a
batter stands 2 ft away from
home plate as a pitch is thrown
with a velocity of 130 ft/sec
(about 90 mph). At what rate
does the batter’s angle of gaze
need to change to follow the
ball as it crosses home plate?




                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   38 / 40
Application
Example
One of the guiding principles of
most sports is to “keep your
eye on the ball.” In baseball, a
batter stands 2 ft away from
home plate as a pitch is thrown
with a velocity of 130 ft/sec
(about 90 mph). At what rate
does the batter’s angle of gaze
need to change to follow the
ball as it crosses home plate?

Solution
Let y(t) be the distance from the ball to home plate, and θ the angle the
batter’s eyes make with home plate while following the ball. We know
y′ = −130 and we want θ′ at the moment that y = 0.
                                                                          .     .   .      .      .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions       November 2, 2010   38 / 40
Solution
Let y(t) be the distance from the ball to home plate, and θ the angle the
batter’s eyes make with home plate while following the ball. We know
y′ = −130 and we want θ′ at the moment that y = 0.




                                                                                            y
                                                                                            .


                                                                                            1
                                                                                            . 30 ft/sec

                                                                                .
                                                                                θ
                                                                        .
                                                                   .            2
                                                                                . ft
                                                                            .       .   .       .     .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010   39 / 40
Solution
Let y(t) be the distance from the ball to home plate, and θ the angle the
batter’s eyes make with home plate while following the ball. We know
y′ = −130 and we want θ′ at the moment that y = 0.
 We have θ = arctan(y/2). Thus

       dθ        1      1 dy
          =           ·
       dt   1 + (y/2)2 2 dt


                                                                                            y
                                                                                            .


                                                                                            1
                                                                                            . 30 ft/sec

                                                                                .
                                                                                θ
                                                                        .
                                                                   .            2
                                                                                . ft
                                                                            .       .   .       .     .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010   39 / 40
Solution
Let y(t) be the distance from the ball to home plate, and θ the angle the
batter’s eyes make with home plate while following the ball. We know
y′ = −130 and we want θ′ at the moment that y = 0.
 We have θ = arctan(y/2). Thus

       dθ        1      1 dy
          =           ·
       dt   1 + (y/2)2 2 dt

 When y = 0 and y′ = −130,
then                                                                                        y
                                                                                            .

 dθ               1 1
            =       · (−130) = −65 rad/sec                                                  1
                                                                                            . 30 ft/sec
 dt   y=0        1+0 2
                                                                                .
                                                                                θ
                                                                        .
                                                                   .            2
                                                                                . ft
                                                                            .       .   .       .     .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010   39 / 40
Solution
Let y(t) be the distance from the ball to home plate, and θ the angle the
batter’s eyes make with home plate while following the ball. We know
y′ = −130 and we want θ′ at the moment that y = 0.
 We have θ = arctan(y/2). Thus

       dθ        1      1 dy
          =           ·
       dt   1 + (y/2)2 2 dt

 When y = 0 and y′ = −130,
then                                                                                        y
                                                                                            .

 dθ               1 1
            =       · (−130) = −65 rad/sec                                                  1
                                                                                            . 30 ft/sec
 dt   y=0        1+0 2

The human eye can only track                                                    .
                                                                                θ
                                                                        .
at 3 rad/sec!                                                      .            2
                                                                                . ft
                                                                            .       .   .       .     .    .

 V63.0121.021, Calculus I (NYU)   Section 3.5 Inverse Trigonometric Functions           November 2, 2010   39 / 40
Summary

             y                   y′

                      1
        arcsin x  √
                    1 − x2
                       1
       arccos x − √                                                     Remarkable that the
                     1 − x2
                                                                        derivatives of these
                      1
       arctan x                                                         transcendental functions
                   1 + x2                                               are algebraic (or even
                       1                                                rational!)
       arccot x  −
                    1 + x2
                      1
       arcsec x   √
                 x x2 − 1
                       1
       arccsc x − √
                  x x2 − 1
                                                                              .     .   .      .      .    .

V63.0121.021, Calculus I (NYU)        Section 3.5 Inverse Trigonometric Functions       November 2, 2010   40 / 40

Contenu connexe

Similaire à Lesson 16: Inverse Trigonometric Functions (Section 021 slides)

Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)Matthew Leingang
 
Lesson 12: Linear Approximation and Differentials (Section 21 slides)
Lesson 12: Linear Approximation and Differentials (Section 21 slides)Lesson 12: Linear Approximation and Differentials (Section 21 slides)
Lesson 12: Linear Approximation and Differentials (Section 21 slides)Mel Anthony Pepito
 
Lesson 12: Linear Approximation and Differentials (Section 21 slides)
Lesson 12: Linear Approximation and Differentials (Section 21 slides)Lesson 12: Linear Approximation and Differentials (Section 21 slides)
Lesson 12: Linear Approximation and Differentials (Section 21 slides)Matthew Leingang
 
Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)Matthew Leingang
 
Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)Mel Anthony Pepito
 

Similaire à Lesson 16: Inverse Trigonometric Functions (Section 021 slides) (7)

Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
 
Lesson 12: Linear Approximation and Differentials (Section 21 slides)
Lesson 12: Linear Approximation and Differentials (Section 21 slides)Lesson 12: Linear Approximation and Differentials (Section 21 slides)
Lesson 12: Linear Approximation and Differentials (Section 21 slides)
 
Lesson 12: Linear Approximation and Differentials (Section 21 slides)
Lesson 12: Linear Approximation and Differentials (Section 21 slides)Lesson 12: Linear Approximation and Differentials (Section 21 slides)
Lesson 12: Linear Approximation and Differentials (Section 21 slides)
 
Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)
 
Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)
 
Lesson 3: Limits
Lesson 3: LimitsLesson 3: Limits
Lesson 3: Limits
 
Lesson 3: Limits
Lesson 3: LimitsLesson 3: Limits
Lesson 3: Limits
 

Plus de Mel Anthony Pepito

Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsMel Anthony Pepito
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationMel Anthony Pepito
 
Lesson 12: Linear Approximation
Lesson 12: Linear ApproximationLesson 12: Linear Approximation
Lesson 12: Linear ApproximationMel Anthony Pepito
 
Lesson 13: Related Rates Problems
Lesson 13: Related Rates ProblemsLesson 13: Related Rates Problems
Lesson 13: Related Rates ProblemsMel Anthony Pepito
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential FunctionsLesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential FunctionsMel Anthony Pepito
 
Lesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayLesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayMel Anthony Pepito
 
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's RuleLesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's RuleMel Anthony Pepito
 
Lesson18 -maximum_and_minimum_values_slides
Lesson18 -maximum_and_minimum_values_slidesLesson18 -maximum_and_minimum_values_slides
Lesson18 -maximum_and_minimum_values_slidesMel Anthony Pepito
 
Lesson 19: The Mean Value Theorem
Lesson 19: The Mean Value TheoremLesson 19: The Mean Value Theorem
Lesson 19: The Mean Value TheoremMel Anthony Pepito
 
Lesson 25: The Definite Integral
Lesson 25: The Definite IntegralLesson 25: The Definite Integral
Lesson 25: The Definite IntegralMel Anthony Pepito
 
Lesson22 -optimization_problems_slides
Lesson22 -optimization_problems_slidesLesson22 -optimization_problems_slides
Lesson22 -optimization_problems_slidesMel Anthony Pepito
 
Lesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite IntegralsLesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite IntegralsMel Anthony Pepito
 
Lesson 27: The Fundamental Theorem of Calculus
Lesson 27: The Fundamental Theorem of Calculus Lesson 27: The Fundamental Theorem of Calculus
Lesson 27: The Fundamental Theorem of Calculus Mel Anthony Pepito
 
Lesson 28: Integration by Subsitution
Lesson 28: Integration by SubsitutionLesson 28: Integration by Subsitution
Lesson 28: Integration by SubsitutionMel Anthony Pepito
 

Plus de Mel Anthony Pepito (20)

Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric Functions
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 
Lesson 12: Linear Approximation
Lesson 12: Linear ApproximationLesson 12: Linear Approximation
Lesson 12: Linear Approximation
 
Lesson 13: Related Rates Problems
Lesson 13: Related Rates ProblemsLesson 13: Related Rates Problems
Lesson 13: Related Rates Problems
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential FunctionsLesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential Functions
 
Lesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayLesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and Decay
 
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's RuleLesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
 
Lesson 21: Curve Sketching
Lesson 21: Curve SketchingLesson 21: Curve Sketching
Lesson 21: Curve Sketching
 
Lesson18 -maximum_and_minimum_values_slides
Lesson18 -maximum_and_minimum_values_slidesLesson18 -maximum_and_minimum_values_slides
Lesson18 -maximum_and_minimum_values_slides
 
Lesson 19: The Mean Value Theorem
Lesson 19: The Mean Value TheoremLesson 19: The Mean Value Theorem
Lesson 19: The Mean Value Theorem
 
Lesson 25: The Definite Integral
Lesson 25: The Definite IntegralLesson 25: The Definite Integral
Lesson 25: The Definite Integral
 
Lesson22 -optimization_problems_slides
Lesson22 -optimization_problems_slidesLesson22 -optimization_problems_slides
Lesson22 -optimization_problems_slides
 
Lesson 24: Area and Distances
Lesson 24: Area and DistancesLesson 24: Area and Distances
Lesson 24: Area and Distances
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: Antiderivatives
 
Lesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite IntegralsLesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite Integrals
 
Lesson 27: The Fundamental Theorem of Calculus
Lesson 27: The Fundamental Theorem of Calculus Lesson 27: The Fundamental Theorem of Calculus
Lesson 27: The Fundamental Theorem of Calculus
 
Introduction
IntroductionIntroduction
Introduction
 
Lesson 28: Integration by Subsitution
Lesson 28: Integration by SubsitutionLesson 28: Integration by Subsitution
Lesson 28: Integration by Subsitution
 
Introduction
IntroductionIntroduction
Introduction
 
Lesson 1: Functions
Lesson 1: FunctionsLesson 1: Functions
Lesson 1: Functions
 

Lesson 16: Inverse Trigonometric Functions (Section 021 slides)

  • 1. Section 3.5 Inverse Trigonometric Functions V63.0121.021, Calculus I New York University November 2, 2010 Announcements Midterm grades have been submitted Quiz 3 this week in recitation on Section 2.6, 2.8, 3.1, 3.2 Thank you for the evaluations . . . . . .
  • 2. Announcements Midterm grades have been submitted Quiz 3 this week in recitation on Section 2.6, 2.8, 3.1, 3.2 Thank you for the evaluations . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 2 / 40
  • 3. Evaluations: The good “Exceptional competence and effectively articulate. (Do not fire him)” . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 3 / 40
  • 4. Evaluations: The good “Exceptional competence and effectively articulate. (Do not fire him)” “Good guy” . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 3 / 40
  • 5. Evaluations: The good “Exceptional competence and effectively articulate. (Do not fire him)” “Good guy” “He’s the clear man” . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 3 / 40
  • 6. Evaluations: The good “Exceptional competence and effectively articulate. (Do not fire him)” “Good guy” “He’s the clear man” “Love the juices” . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 3 / 40
  • 7. Evaluations: The bad Too fast, not enough examples . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 4 / 40
  • 8. Evaluations: The bad Too fast, not enough examples Not enough time to do everything Lecture is not the only learning time (recitation and independent study) I try to balance concept and procedure . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 4 / 40
  • 9. Evaluations: The bad Too fast, not enough examples Not enough time to do everything Lecture is not the only learning time (recitation and independent study) I try to balance concept and procedure Too many proofs . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 4 / 40
  • 10. Evaluations: The bad Too fast, not enough examples Not enough time to do everything Lecture is not the only learning time (recitation and independent study) I try to balance concept and procedure Too many proofs In this course we care about concepts There will be conceptual problems on the exam Concepts are the keys to overcoming templated problems . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 4 / 40
  • 11. Evaluations: technological comments Smart board issues laser pointer visibility slides sometimes move fast . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 5 / 40
  • 12. Evaluations: The ugly “If class was even remotely interesting this class would be awesome.” . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 6 / 40
  • 13. Evaluations: The ugly “If class was even remotely interesting this class would be awesome.” “Sometimes condescending/rude.” . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 6 / 40
  • 14. Evaluations: The ugly “If class was even remotely interesting this class would be awesome.” “Sometimes condescending/rude.” “Can’t pick his nose without checking his notes, and he still gets it wrong the first time.” . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 6 / 40
  • 15. Evaluations: The ugly “If class was even remotely interesting this class would be awesome.” “Sometimes condescending/rude.” “Can’t pick his nose without checking his notes, and he still gets it wrong the first time.” “If I were chained to a desk and forced to see this guy teach, I would chew my arm off in order to get free.” . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 6 / 40
  • 16. A slide on slides Pro “Powerpoints explain topics carefully step-by-step” “Powerpoint and lesson flow smoothly” “Can visualize material well” “I like that you post slides beforehand” . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 7 / 40
  • 17. A slide on slides Pro “Powerpoints explain topics carefully step-by-step” “Powerpoint and lesson flow smoothly” “Can visualize material well” “I like that you post slides beforehand” Con “I would like to have him use the chalkboard more.” “It’s so unnatural to learn math via powerpoint.” “I hate powerpoint.” . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 7 / 40
  • 18. A slide on slides Pro “Powerpoints explain topics carefully step-by-step” “Powerpoint and lesson flow smoothly” “Can visualize material well” “I like that you post slides beforehand” Con “I would like to have him use the chalkboard more.” “It’s so unnatural to learn math via powerpoint.” “I hate powerpoint.” Why I like them Board handwriting not an issue Easy to put online; notetaking is more than transcription . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 7 / 40
  • 19. My handwriting . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 8 / 40
  • 20. A slide on slides Pro “Powerpoints explain topics carefully step-by-step” “Powerpoint and lesson flow smoothly” “Can visualize material well” “I like that you post slides beforehand” Con “I would like to have him use the chalkboard more.” “It’s so unnatural to learn math via powerpoint.” “I hate powerpoint.” Why I like them Board handwriting not an issue Easy to put online; notetaking is more than transcription What we can do if you have suggestions for details to put in, I’m listening Feel free to ask me to fill in something on the board . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 9 / 40
  • 21. Objectives Know the definitions, domains, ranges, and other properties of the inverse trignometric functions: arcsin, arccos, arctan, arcsec, arccsc, arccot. Know the derivatives of the inverse trignometric functions. . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 10 / 40
  • 22. Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant Applications . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 11 / 40
  • 23. What is an inverse function? Definition Let f be a function with domain D and range E. The inverse of f is the function f−1 defined by: f−1 (b) = a, where a is chosen so that f(a) = b. . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 12 / 40
  • 24. What is an inverse function? Definition Let f be a function with domain D and range E. The inverse of f is the function f−1 defined by: f−1 (b) = a, where a is chosen so that f(a) = b. So f−1 (f(x)) = x, f(f−1 (x)) = x . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 12 / 40
  • 25. What functions are invertible? In order for f−1 to be a function, there must be only one a in D corresponding to each b in E. Such a function is called one-to-one The graph of such a function passes the horizontal line test: any horizontal line intersects the graph in exactly one point if at all. If f is continuous, then f−1 is continuous. . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 13 / 40
  • 26. Graphing the inverse function y . If b = f(a), then f−1 (b) = a. . x . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 14 / 40
  • 27. Graphing the inverse function y . If b = f(a), then f−1 (b) = a. So if (a, b) is on the graph of f, then (b, a) is on the graph of f−1 . . b, a) ( . . . a, b) ( . x . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 14 / 40
  • 28. Graphing the inverse function y . y . =x If b = f(a), then f−1 (b) = a. So if (a, b) is on the graph of f, then (b, a) is on the graph of f−1 . . b, a) ( On the xy-plane, the point . (b, a) is the reflection of (a, b) in the line y = x. . . a, b) ( . x . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 14 / 40
  • 29. Graphing the inverse function y . y . =x If b = f(a), then f−1 (b) = a. So if (a, b) is on the graph of f, then (b, a) is on the graph of f−1 . . b, a) ( On the xy-plane, the point . (b, a) is the reflection of (a, b) in the line y = x. . . a, b) ( . x . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 14 / 40
  • 30. Graphing the inverse function y . y . =x If b = f(a), then f−1 (b) = a. So if (a, b) is on the graph of f, then (b, a) is on the graph of f−1 . . b, a) ( On the xy-plane, the point . (b, a) is the reflection of (a, b) in the line y = x. . . a, b) ( . x . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 14 / 40
  • 31. Graphing the inverse function y . y . =x If b = f(a), then f−1 (b) = a. So if (a, b) is on the graph of f, then (b, a) is on the graph of f−1 . . b, a) ( On the xy-plane, the point . (b, a) is the reflection of (a, b) in the line y = x. . . a, b) ( Therefore: . x . Fact The graph of f−1 is the reflection of the graph of f in the line y = x. . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 14 / 40
  • 32. Graphing the inverse function y . y . =x If b = f(a), then f−1 (b) = a. So if (a, b) is on the graph of f, then (b, a) is on the graph of f−1 . . b, a) ( On the xy-plane, the point . (b, a) is the reflection of (a, b) in the line y = x. . . a, b) ( Therefore: . x . Fact The graph of f−1 is the reflection of the graph of f in the line y = x. . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 14 / 40
  • 33. arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . . . . x . π π s . in − . . 2 2 . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 15 / 40
  • 34. arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . . . . . x . π π s . in − . . . 2 2 . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 15 / 40
  • 35. arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . y . =x . . . . x . π π s . in − . . . 2 2 . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 15 / 40
  • 36. arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . . . rcsin a . . . . x . π π s . in − . . . 2 2 . The domain of arcsin is [−1, 1] [ π π] The range of arcsin is − , 2 2 . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 15 / 40
  • 37. arccos Arccos is the inverse of the cosine function after restriction to [0, π] y . c . os . . x . 0 . . π . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 16 / 40
  • 38. arccos Arccos is the inverse of the cosine function after restriction to [0, π] y . . c . os . . x . 0 . . π . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 16 / 40
  • 39. arccos Arccos is the inverse of the cosine function after restriction to [0, π] y . y . =x . c . os . . x . 0 . . π . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 16 / 40
  • 40. arccos Arccos is the inverse of the cosine function after restriction to [0, π] . . rccos a y . . c . os . . . x . 0 . . π . The domain of arccos is [−1, 1] The range of arccos is [0, π] . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 16 / 40
  • 41. arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . . x . 3π π π 3π − . − . . . 2 2 2 2 t .an . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 17 / 40
  • 42. arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . . x . 3π π π 3π − . − . . . 2 2 2 2 t .an . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 17 / 40
  • 43. arctan y . =x Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . . x . 3π π π 3π − . − . . . 2 2 2 2 t .an . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 17 / 40
  • 44. arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . π . a . rctan 2 . x . π − . 2 The domain of arctan is (−∞, ∞) ( π π) The range of arctan is − , 2 2 π π lim arctan x = , lim arctan x = − x→∞ 2 x→−∞ 2 . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 17 / 40
  • 45. arcsec Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2]. y . . x . 3π π π 3π − . − . . . 2 2 2 2 s . ec . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 18 / 40
  • 46. arcsec Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2]. y . . . x . 3π π π 3π − . − . . . . 2 2 2 2 s . ec . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 18 / 40
  • 47. arcsec Arcsecant is the inverse of secant after restriction to . = x y [0, π/2) ∪ (π, 3π/2]. y . . . x . 3π π π 3π − . − . . . . 2 2 2 2 s . ec . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 18 / 40
  • 48. arcsec 3π . 2 Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2]. . . y π . 2 . . . x . . The domain of arcsec is (−∞, −1] ∪ [1, ∞) [ π ) (π ] The range of arcsec is 0, ∪ ,π 2 2 π 3π lim arcsec x = , lim arcsec x = x→∞ 2 x→−∞ 2 . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 18 / 40
  • 49. Values of Trigonometric Functions π π π π x 0 6 4 3 2 √ √ 1 2 3 sin x 0 1 2 2 2 √ √ 3 2 1 cos x 1 0 2 2 2 1 √ tan x 0 √ 1 3 undef 3 √ 1 cot x undef 3 1 √ 0 3 2 2 sec x 1 √ √ 2 undef 3 2 2 2 csc x undef 2 √ √ 1 2 3 . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 19 / 40
  • 50. Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) ( √ ) 2 arccos − 2 . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 20 / 40
  • 51. Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) ( √ ) 2 arccos − 2 Solution π 6 . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 20 / 40
  • 52. What is arctan(−1)? . 3 . π/4 . . . . − . π/4 . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 21 / 40
  • 53. What is arctan(−1)? . ( ) 3 . π/4 3π . Yes, tan = −1 4 √ 2 s . in(3π/4) = 2 . √ . 2 . os(3π/4) = − c 2 . − . π/4 . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 21 / 40
  • 54. What is arctan(−1)? . ) ( 3 . π/4 3π . Yes, tan = −1 4 √ But, the) ( π π range of arctan is 2 s . in(3π/4) = − , 2 2 2 . √ . 2 . os(3π/4) = − c 2 . − . π/4 . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 21 / 40
  • 55. What is arctan(−1)? . ( ) 3 . π/4 3π . Yes, tan = −1 4 But, the) ( π π range of arctan is √ − , 2 2 2 c . os(π/4) = . 2 Another angle whose . π tangent is −1 is − , and √ 4 2 this is in the right range. . in(π/4) = − s 2 . − . π/4 . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 21 / 40
  • 56. What is arctan(−1)? . ( ) 3 . π/4 3π . Yes, tan = −1 4 But, the) ( π π range of arctan is √ − , 2 2 2 c . os(π/4) = . 2 Another angle whose . π tangent is −1 is − , and √ 4 2 this is in the right range. . in(π/4) = − s π 2 So arctan(−1) = − 4 . − . π/4 . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 21 / 40
  • 57. Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) ( √ ) 2 arccos − 2 Solution π 6 π − 4 . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 22 / 40
  • 58. Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) ( √ ) 2 arccos − 2 Solution π 6 π − 4 3π 4 . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 22 / 40
  • 59. Caution: Notational ambiguity . in2 x =.(sin x)2 s . in−1 x = (sin x)−1 s sinn x means the nth power of sin x, except when n = −1! The book uses sin−1 x for the inverse of sin x, and never for (sin x)−1 . 1 I use csc x for and arcsin x for the inverse of sin x. sin x . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 23 / 40
  • 60. Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant Applications . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 24 / 40
  • 61. The Inverse Function Theorem Theorem (The Inverse Function Theorem) Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an open interval containing b = f(a), and 1 (f−1 )′ (b) = ′ −1 f (f (b)) In Leibniz notation we have dx 1 = dy dy/dx . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 25 / 40
  • 62. The Inverse Function Theorem Theorem (The Inverse Function Theorem) Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an open interval containing b = f(a), and 1 (f−1 )′ (b) = ′ −1 f (f (b)) In Leibniz notation we have dx 1 = dy dy/dx Upshot: Many times the derivative of f−1 (x) can be found by implicit differentiation and the derivative of f: . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 25 / 40
  • 63. Illustrating the Inverse Function Theorem . Example Use the inverse function theorem to find the derivative of the square root function. . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 26 / 40
  • 64. Illustrating the Inverse Function Theorem . Example Use the inverse function theorem to find the derivative of the square root function. Solution (Newtonian notation) √ Let f(x) = x2 so that f−1 (y) = y. Then f′ (u) = 2u so for any b > 0 we have 1 (f−1 )′ (b) = √ 2 b . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 26 / 40
  • 65. Illustrating the Inverse Function Theorem . Example Use the inverse function theorem to find the derivative of the square root function. Solution (Newtonian notation) √ Let f(x) = x2 so that f−1 (y) = y. Then f′ (u) = 2u so for any b > 0 we have 1 (f−1 )′ (b) = √ 2 b Solution (Leibniz notation) If the original function is y = x2 , then the inverse function is defined by x = y2 . Differentiate implicitly: dy dy 1 1 = 2y =⇒ = √ dx dx 2 x . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 26 / 40
  • 66. Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 27 / 40
  • 67. Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 27 / 40
  • 68. Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: . . y . = arcsin x . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 27 / 40
  • 69. Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 .. .. x y . = arcsin x . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 27 / 40
  • 70. Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 .. .. x y . = arcsin x . √ . 1 − x2 . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 27 / 40
  • 71. Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: √ cos(arcsin x) = 1 − x2 1 .. .. x y . = arcsin x . √ . 1 − x2 . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 27 / 40
  • 72. Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: √ cos(arcsin x) = 1 − x2 So 1 .. .. x Fact y . = arcsin x d 1 . √ arcsin(x) = √ . 1 − x2 dx 1 − x2 . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 27 / 40
  • 73. Graphing arcsin and its derivative 1 .√ 1 − x2 The domain of f is [−1, 1], but the domain of f′ is . . rcsin a (−1, 1) lim f′ (x) = +∞ x→1− lim f′ (x) = +∞ . | . . | x→−1+ − . 1 1 . . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 28 / 40
  • 74. Composing with arcsin Example Let f(x) = arcsin(x3 + 1). Find f′ (x). . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 29 / 40
  • 75. Composing with arcsin Example Let f(x) = arcsin(x3 + 1). Find f′ (x). Solution We have d 1 d 3 arcsin(x3 + 1) = √ (x + 1) dx 1 − (x3 + 1)2 dx 3x2 =√ −x6 − 2x3 . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 29 / 40
  • 76. Derivation: The derivative of arccos Let y = arccos x, so x = cos y. Then dy dy 1 1 − sin y = 1 =⇒ = = dx dx − sin y − sin(arccos x) . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 30 / 40
  • 77. Derivation: The derivative of arccos Let y = arccos x, so x = cos y. Then dy dy 1 1 − sin y = 1 =⇒ = = dx dx − sin y − sin(arccos x) To simplify, look at a right triangle: √ sin(arccos x) = 1 − x2 So 1 . √ . 1 − x2 Fact y . = arccos x d 1 . arccos(x) = − √ x . dx 1 − x2 . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 30 / 40
  • 78. Graphing arcsin and arccos . . rccos a . . rcsin a . | . |. . − . 1 1 . . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 31 / 40
  • 79. Graphing arcsin and arccos . . rccos a Note (π ) cos θ = sin −θ . . rcsin a 2 π =⇒ arccos x = − arcsin x 2 . | . |. . So it’s not a surprise that their − . 1 1 . derivatives are opposites. . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 31 / 40
  • 80. Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 32 / 40
  • 81. Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 32 / 40
  • 82. Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: . y . = arctan x . . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 32 / 40
  • 83. Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: .. x y . = arctan x . . 1 . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 32 / 40
  • 84. Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: √ . 1 + x2 .. x y . = arctan x . . 1 . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 32 / 40
  • 85. Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: 1 cos(arctan x) = √ 1 + x2 √ . 1 + x2 .. x y . = arctan x . . 1 . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 32 / 40
  • 86. Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: 1 cos(arctan x) = √ 1 + x2 √ . 1 + x2 .. x So Fact y . = arctan x d 1 . . arctan(x) = 1 . dx 1 + x2 . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 32 / 40
  • 87. Graphing arctan and its derivative y . . /2 π a . rctan 1 . 1 + x2 . x . − . π/2 The domain of f and f′ are both (−∞, ∞) Because of the horizontal asymptotes, lim f′ (x) = 0 x→±∞ . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 33 / 40
  • 88. Composing with arctan Example √ Let f(x) = arctan x. Find f′ (x). . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 34 / 40
  • 89. Composing with arctan Example √ Let f(x) = arctan x. Find f′ (x). Solution d √ 1 d√ 1 1 arctan x = (√ )2 x= · √ dx 1+ x dx 1+x 2 x 1 = √ √ 2 x + 2x x . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 34 / 40
  • 90. Derivation: The derivative of arcsec Try this first. . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 35 / 40
  • 91. Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 35 / 40
  • 92. Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 35 / 40
  • 93. Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 35 / 40
  • 94. Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: y . = arcsec x . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 35 / 40
  • 95. Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: x . y . = arcsec x . 1 . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 35 / 40
  • 96. Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: √ x2 − 1 tan(arcsec x) = 1 √ x . . x2 − 1 y . = arcsec x . 1 . . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 35 / 40
  • 97. Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: √ x2 − 1 tan(arcsec x) = 1 So √ x . . x2 − 1 Fact y . = arcsec x . d 1 arcsec(x) = √ 1 . dx x x2 − 1 . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 35 / 40
  • 98. Another Example Example Let f(x) = earcsec 3x . Find f′ (x). . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 36 / 40
  • 99. Another Example Example Let f(x) = earcsec 3x . Find f′ (x). Solution 1 f′ (x) = earcsec 3x · √ ·3 3x (3x)2 − 1 3earcsec 3x = √ 3x 9x2 − 1 . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 36 / 40
  • 100. Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant Applications . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 37 / 40
  • 101. Application Example One of the guiding principles of most sports is to “keep your eye on the ball.” In baseball, a batter stands 2 ft away from home plate as a pitch is thrown with a velocity of 130 ft/sec (about 90 mph). At what rate does the batter’s angle of gaze need to change to follow the ball as it crosses home plate? . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 38 / 40
  • 102. Application Example One of the guiding principles of most sports is to “keep your eye on the ball.” In baseball, a batter stands 2 ft away from home plate as a pitch is thrown with a velocity of 130 ft/sec (about 90 mph). At what rate does the batter’s angle of gaze need to change to follow the ball as it crosses home plate? Solution Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 38 / 40
  • 103. Solution Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. y . 1 . 30 ft/sec . θ . . 2 . ft . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 39 / 40
  • 104. Solution Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. We have θ = arctan(y/2). Thus dθ 1 1 dy = · dt 1 + (y/2)2 2 dt y . 1 . 30 ft/sec . θ . . 2 . ft . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 39 / 40
  • 105. Solution Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. We have θ = arctan(y/2). Thus dθ 1 1 dy = · dt 1 + (y/2)2 2 dt When y = 0 and y′ = −130, then y . dθ 1 1 = · (−130) = −65 rad/sec 1 . 30 ft/sec dt y=0 1+0 2 . θ . . 2 . ft . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 39 / 40
  • 106. Solution Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. We have θ = arctan(y/2). Thus dθ 1 1 dy = · dt 1 + (y/2)2 2 dt When y = 0 and y′ = −130, then y . dθ 1 1 = · (−130) = −65 rad/sec 1 . 30 ft/sec dt y=0 1+0 2 The human eye can only track . θ . at 3 rad/sec! . 2 . ft . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 39 / 40
  • 107. Summary y y′ 1 arcsin x √ 1 − x2 1 arccos x − √ Remarkable that the 1 − x2 derivatives of these 1 arctan x transcendental functions 1 + x2 are algebraic (or even 1 rational!) arccot x − 1 + x2 1 arcsec x √ x x2 − 1 1 arccsc x − √ x x2 − 1 . . . . . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 40 / 40