SlideShare une entreprise Scribd logo
1  sur  82
Télécharger pour lire hors ligne
Alexander BORIS
    Max Planck Institute for Solid State Research
    Stuttgart




                  Spectroscopic ellipsometry:
                  application to electrodynamics
                  of correlated electron materials
                  and oxide superlattices.



September 1, 2011, Vancouver

                 MAX-PLANCK-UBC CENTRE FOR QUANTUM MATERIALS
           International Summer School on Surfaces and Interfaces in Correlated Oxides
Outline                           Outline
               • the complex dielectic function spectra -
                       one of the first steps in research of the
                       physical properties of a new material

       • spectroscopic ellipsometry -
                       basic principles and experimental implementation

       • advantages of ellipsometry -             illustrative examples -

  i)    exact numerical inversion, no        i)    superconductivity-induced
        Kramers-Kronig transformation,             transfer of the spectral weight in
        allows for K-K consistency check           high temperature cuprate SCs

  ii) no reference measurements, very        ii) superconductivity-induced optical
      accurate and highly reproducible           anomalies and iron pnictide
                                                 superconductors

  iii) oblique and variable angle of         iii) dimensionality-controlled
       incidence, very sensitive to               collective charge and spin* order
       thin-film properties                       in nickel-oxide superlattices

              * combined with low-energy muons which serve as a sensitive
              local probe of the internal magnetic field distribution
Outline                      Outline
          • the complex dielectic function spectra -
                 one of the first steps in research of the
                 physical properties of a new material
Electromagnetic waves      Electrodynamics of Solids


      ‫ܧ = ܧ‬଴ ݁ [௜(ఠ௧ିk‫ ݔ‬ାఋ)]
Dielectric polarization, susceptibility, pemittivity
                            Electrodynamics of Solids


                      ࡱ                                                            ࡼ
                                                    +                                      +q
                                   -                       -
                              -          -




                                                                    Polarization
                                   +
     Electric field




                                                    -      +                                 ݈
                          -                  -
                                   -                +                                       -q
                                                           -
                                                                                          ߤ ൌ ‫݈∙ݍ‬
                              Electric           Ionic (phonon)                        Dipole moment



                                  Polarization ࡼ ൌ 	 ∑࢏ ࣆ࢏ ൌ ߝ଴ χ ࡱ
                                                                   ࡼ
                                         ࢿ ൌ 1 ൅	χ	ൌ 1 ൅
                                                                  ఌబ ࡱ
4π
                           Electrodynamics of ∂E
                               ∇× H =    j + ε 0ε Solids
Maxwell’s equations for wave                     c          ∂t
 propagation in a conductor:                         ∂H
                                       ∇ × E = −µ0
                                                     ∂t
                                                                    ∂E       ∂ 2E 
                                       ⇒ ∇ × (∇ × E) = −∇ E = − µ0 σ
                                                                 2
                                                                        + ε 0ε 2 
                                                                    ∂t       ∂t 

 plane wave :          ‫ܧ = ܧ‬଴ ݁ [௜(ఠ௧ିk‫ ݔ‬ାఋ)] ⇒ 	k ଶ = ߤ଴ ݅߱ߪ + ߤ଴ ߝ଴ ߝ߱ଶ
                                                4ߨ           1
                           SI → CGS:        ߤ଴ → ଶ ,			ߝ଴ →
                                                ܿ           4ߨ
                  ఠమ          ସగ                      ఠ                         ସగ
       	k ଶ   =         ߝ+݅      ߪ   , 									k	 ≡ 	 N, 								Nଶ 	= ߝ + ݅      ߪ
                  ௖మ          ఠ                       ௖                         ఠ

Complex                dielectric function           optical conductivity

        ߝ̃ ߱ = ߝଵ (߱) + ݅ ∙ ߝଶ (߱)                     ߪ ߱ = ߪଵ ߱ + ݅ ∙ ߪଶ (߱)
                                                       ෤
                                               4ߨ
                                      ߝଶ ߱ =      ߪଵ 	(߱)
                                               ߱
Dielectric response of Drude metal
                                               dv        mb
  equation of motion for electrons          mb    = eE −    v
                                               dt        τ
                                                              damping term
                                                      momentum transferred to phonons
                                                      and impurities per unit time
                                 eτ     1
                  solution    v=            E
                                 mb 1 − iωτ
                                            nb e 2 τ
          current density      j = nb e v =             E
                                             mb 1 − iωτ
                σ0           γ = 1/ τ                               ω pl
                                                                      2

      σ (ω) =                                          ε1 (ω) = 1 − 2 2
              1 − iωτ                                              ω +γ
                                    4π nbe2
           ne2τ              ω pl =
                               2
                                                                   ω pl γ 2
                                                                     2
      σ0 =                            mb               σ1 (ω) =
                                                                 1
            mb           collective oscillations of             4π γ ω 2 + γ 2
                          electron charge density
Complex dielectric functionElectrodynamics of Solids


            ߝଵ (߱)




        4ߨ
 ߝଶ ߱ =    ߪ 	(߱)
        ߱ ଵ
Optical sum rules:                                        ∞
                              Spectral Weight and Sum Rules             π ne e 2
                                 f-sum rule: SW (0, ∞) = ∫ σ 1 (ω )dω =          = const
                                                          0
                                                                         2me
                                ݊௘ - total number of electrons in the system, 		݉௘ - free electron mass


  D.Y. Smith and E. Shiles,
  PRB 17, (1978) 4689-4694

                         Ω
            = 2 Al ∫ σ (ω )dω
               2m
     neff
             πe N 0




                                                                           Ω



                                                                         ω pl
                                                                           2
                                                                                    π nb e 2
        intra-band spectral weight:              SW   intra
                                                              (0, ∞) =          =              = f (T ) ≠ const
                                                                          8          2mb
Kramers-Kronig relations
   1926-1927                 response
               follow causality: P = ε 0 χ E
                                          applied field
                             ∞
                 P(t ) = ε 0 ∫ χ (t − t ' )E(t ' )dt ',       χ (t − t ' ) = 0 for t < t '
                             −∞

                 P(ω) = ε 0 χ (ω)E(ω)

                                                                  ∞
                                                                    ω ' ε 2 (ω ')
                                      ε 1 (ω ) − 1 =
                                                          2
                    KKR:                                      ⋅ P∫                dω '
                                                       π          0
                                                                    ω ' −ω
                                                                        2     2


                                                     2ω
                                                                  ∞
                                                                    ε 1 (ω ') − 1
                                      ε 2 (ω ) = −            ⋅ P∫                dω '
                                                       π          0
                                                                    ω ' −ω
                                                                         2     2




                                                ∆σ 1 (ω ')
                                                              ∞

         consistency check: ∆ε 1 (ω ) = 8 ⋅ P ∫ 2          dω '
                                              0
                                                ω ' −ω  2
Normal incidenceReflectivity by normal incidence
                 reflectivity
                                                Incident light
                                                  ‫ܧ‬଴௜ sin ߱‫ݐ‬     ߶௥

         r
         Ei

                                     Reflected light
                                      ‫ܧ‬଴௥ sinሺ߱‫ ݐ‬൅ ߶௥ ሻ
                           2
                    E0 r        ~2
         r     R=              =r
         Er         E0 i
                           2




                ~ = ε − 1 = R (ω ) exp{iφ (ω )}
                r
                    ε +1
                                         r


                                     ∞
                            2ω ln R (ω ' )
        KKR:    φr (ω ) = −   ∫ ω 2 − ω ' 2 dω '
                            π 0
Outline                        Outline



    • spectroscopic ellipsometry -
                   basic principles and experimental implementation
Analogy with electric circuit electric circuit admittance
                Analogy with impedance


                        Lissajous figure


                                    a      b          resistance & reactance
                                                       (complex impedance)

          X        Y
                                                          Z = R+iωL

              R                                                  Vmaxsinωt
                                                      ϕ          Imaxsin(ωt-ϕ)
                       L                       Vmax
                                               Imax




         ϕ= arctan(ωL/R)=
         = arcSin(a/b)
                                                              Time
Polarization of light               Electrodynamics of Solids
                              ࡱ-field vector ࡱ = ࡱ࢞ + ࡱ࢟
                                                                Y

      Linear polarization
        phase delay ߮=0                                                   X



                                                                Y
    Curcular polarization
      phase delay ߮=ߨ/2
                                                                          X



                                                                Y
    Elliptical polarization                                     Ψ
                                                                     ‫ܧ‬௫
   phase delay ߮=0.35·2ߨ
                                                                          X
                                                                ‫ܧ‬௬
Spectroscopic ellipsometry



                Sample




                                               Analyzer




                             near Brewster angle
             Polaryzer        tan ߠ஻ = ݊௧ ⁄݊௜
Spectroscopic ellipsometry



                Sample




                                               Analyzer




                             near Brewster angle
             Polaryzer        tan ߠ஻ = ݊௧ ⁄݊௜             ϕ
Spectroscopic ellipsometry
                                                                                          Detector:
                                                                2,0
    Elliptically polarized light determined by:




                                                    Intensity
     1. Relative phase shift, ∆= ∆௣ − ∆௦ ;
                                         ௥೛
     2. Relative attenuation, tan Ψ =                           1,0
                                         ௥ೞ



            Sample
                                                                0,0
                                                                      0     90      180     270   360
                                                                           Analyzer angle (Ai )
                                        Analyzer
                                                            I(Ai)/I0 = 1 + α sin(2Ai) + β cos(2Ai)


                                                                                   1+ߙ
                                                                          tan Ψ =       tan ܲ ,
         Polaryzer                                                                 1−ߙ
                        ̃
                       ‫ݎ‬௣ (߱)                                                         ߚ
                 ෤
                 ߩ ߱ =        = tan Ψ(߱) ݁ ௜∙୼(ఠ)                           cos Δ =
                          ̃
                       ‫ݎ‬௦ (߱)                                                       1 − ߙଶ


                                                       1 + tan Ψ(߱) ∙ ݁ ௜∆(ఠ)
                                                                                                      ଶ
      Ψ(߱)
           	ൠ 	 ⇒ 	 ߝ̃ ߱ = (sin ߮)ଶ +(sin ߮)ଶ (tan ߮)ଶ
      Δ(߱)                                             1 − tan Ψ(߱) ∙ ݁ ௜∆(ఠ)
Spectroscopic ellipsometry




            Paul Drude
            ellipsometer

             ~ 1890
                             2007
ANKA Synchrotron, Karlsruhebeamline at ANKA
                         IR IT

                          IR-1 beamline
                Y.-L. Mathis, B. Gasharova, D. Moss




                                            Current: 80 -180 mA

                                            lifetime: 12-23 hours
ANKA Synchrotron, Karlsruhebeamline at ANKA
                         IR IT

                                                                                                      IR-1 beamline
                                                         Y.-L. Mathis, B. Gasharova, D. Moss

                                                         1.5

                                    Magnetic Field [T]
                                                                                                           Magnetic profile
                                                         1.0
                                                                                                           of a dipole

                                                         0.5                                                                    Edge and dipole
Spatial distribution                                                                                                          radiation in the visible
from the edge at
                                                         0.0
3 m from the source
(calculated for 100µm)                                    1.0m      0.5      0.0        -0.5      -1.0
                                                              Position on particle trajectory [m]
                                                                           Photons/s/.1%bw/mm^2 x10




               40                                                     150

               20
                                                                                                                                    at λ=10 µm
      y [mm]




                                                                      100
                0

               -20                                                    50

        -40mm
                                                                                             9




                                                                      0
                     -40mm -20      0   20                     40
                                 x [mm]
wide-band spectroscopic ellipsometry THz to UV
                  Ellipsometry: from


                        ANKA Synchrotron
                        edge radiation


    1m                     10m               100m                   1   eV       6.2

  0.2    THz 1         2
                                 far-IR        mid-IR near-IR                UV
        10                  100               1000                  10000 cm-1
                                                                 near-IR to deep-UV
             far-IR homebuilt ellipsometer                          spectroscopic
                at ANKA IR1- beam line,                         ellipsometer (VASE)
                     @ Karlsruhe IT                            Woollam Co., @ MPI-FKF

                                        IR homebuilt ellipsometer
                                       based on Bruker 66v/S FTIR
                                        spectrometer, @ MPI-FKF
wide-band spectroscopic ellipsometry THz to UV
                  Ellipsometry: from


                        ANKA Synchrotron
                        edge radiation


    1m                     10m               100m                   1   eV       6.2

  0.2    THz 1         2
                                 far-IR        mid-IR near-IR                UV
        10                  100               1000                  10000 cm-1
                                                                 near-IR to deep-UV
             far-IR homebuilt ellipsometer                          spectroscopic
                at ANKA IR1- beam line,                         ellipsometer (VASE)
                     @ Karlsruhe IT                            Woollam Co., @ MPI-FKF

                                        IR homebuilt ellipsometer
                                       based on Bruker 66v/S FTIR
                                        spectrometer, @ MPI-FKF
Outline                             Outline




       • advantages of ellipsometry -

  i)    exact numerical inversion, no
        Kramers-Kronig transformation,
        allows for K-K consistency check

  ii) no reference measurements, very
      accurate and highly reproducible


  iii) oblique and variable angle of
       incidence, very sensitive to
       thin-film properties
Outline                             Outline




       • advantages of ellipsometry -           illustrative examples -

  i)    exact numerical inversion, no      i)    superconductivity-induced
        Kramers-Kronig transformation,           transfer of the spectral weight in
        allows for K-K consistency check         high temperature cuprate SCs
Kramers-Kronig consistency check



                                                                  ∆σ 1Exp (ω ')
                                                             ∞

            ∆ε 1Exp (ω0 )              ∆ε    KK
                                                  (ω0 ) = 8 ⋅ P ∫ 2 2 dω '
                                                                0 ω ' −ω0
                                            1




      This additional constraint unique to ellipsometry allows one to determine
      with high accuracy changes in the spectral weight in the extrapolation
      region beyond the experimentally accessible spectral range:



             hω < 10 meV              .........          hω > 6.6 eV
T-dependent Drude                           ω pl         π e 2 nb
                                              2

                             SW Drude =             =
                                             8            2 mb



 σDC
                                  γ (T1 ) > γ (T2 )                          γ2
                                                           σ1 (ω) = σ DC
                                      T1 > T2
                                                                           ω2 + γ 2


            0



                                                                          ω pl
                                                                            2

                                                           ε1 (ω) = ε ∞ − 2 2
          -20
       ε1




                                                                         ω +γ
          -40


                0.0   0.5   1.0       1.5          2.0
                            hν (eV)
T-dependent Drude SW                         ω pl         π e 2 nb
                                               2

                             SW Drude =              =
                                               8           2 mb

                                            electron correlation effects

 σDC
                                                                       UHB



                                                            Daniel Khomslii’s lecture
            0
                                                              nb
                                                                 = f (T ) ≠ const
         -20                                                  mb
       ε1




         -40


                0.0   0.5   1.0       1.5           2.0
                            hν (eV)
Kramers-Kronig consistency check
                                                                                                        1.2

                                                                                                        1.0                                     σ1,A- σ1,B
                                                                                                        0.8
                              A                               ωp= 1.5 eV




                                                                                       ∆σ1 (10 Ω cm )
                  6                                                                                                                       SWA-SWB




                                                                                       -1
                                                                                                        0.6




                                                                                       -1
                                                                                                                                                +0.1 %
                                                                 γΑ = 0.05 eV




                                                                                       3
  σ1 (10 Ω cm )
  -1




                                                                                                        0.4                                     -0.25 %
                  4
                                                                 γB = 0.06 eV
  -1




                          B                                                                             0.2
  3




                                                                                                        0.0
                  2
                                                                                                        -0.2
                                                                                                            0.00   0.02            0.04            0.06            0.08

                                                                                                                           photon energy (eV)
                  0
                   0.00           0.05           0.10          0.15             0.20                    0.0

                                         photon energy (eV)

                                                                                                        -0.5




                                                   ∆σ (ω ')
                                                        ∞
                                                                                                                                                      ε1,A- ε1,B
                              ∆ε 1 (ω0 ) = 8 ⋅ P ∫ 2 1 2 dω '
                                                                                                        -1.0
                                                                                       ∆ε1




                                                 0 ω ' −ω0
                                                                                                        -1.5                                SWA-SWB
                                                                                                                                                      +0.1 %
                                                                                                        -2.0
                                                                                                                                                      -0.25 %
                                                                                                            0.18          0.21              0.24                   0.27

                                                                                                                           photon energy (eV)
in-plane Ba2Sr2CaCu2Oin-plane Ba2Sr2CaCu2O8
                     8                                                  Tc=91 K

                                            Tc = 91 K


             6000

                                        10 K
                                        100K
                                        200 K
σ1 (Ω cm )




             4000
-1




                                                       0
-1




             2000
                                                  -1000



                                                 ε1b
                                                                                   10 K
                0                                                                  100 K
                0.01           0.1                -2000                            200 K
                       Photon energy (eV)


                                                  -3000
                                                       0.01           0.1
                                                              Photon energy (eV)
in-plane Ba2Sr2CaCu2O8 (T>Tc)



                                                                          8
                                                                                                           exp
                                                                                     N
                                                                                                     ∆ε1
               0                                                                  ∆SW > 0
                                                                          6                            exp
                                                                                              from ∆σ1 (0 < ω < 1.0 eV)
                             as measured
∆σ1 (mΩ cm )




               -2                                                                                                   100K      200K
-1




                        extrapolated with                                                     with               SW = SW
                                                                          4                                          100K
                                                                                                                 SW > SW
                                                                                                                              200K
               -4
-1




                                                                                                                  (by ≈ 1.5%)




                                                                    ∆ε1
                               SW head = − SW tail                        2
               -6
                               SW   head
                                           > − SW   tail

               -8
                    ∆T = 200 K - by ≈ 1.5%
                                 100 K        (0.007eV 2 )                0
         -10
           0.00      0.02   0.04     0.06     0.08         0.10
                                                                          0.1        0.2        0.3                 0.4          0.5
                         Photon energy (eV)
                                                                                         Photon energy (eV)

                                                                  ∆SW total > 0

                                                SW 100 K = SW 200 K + 0.007 eV 2
Perfect conductor
                                  ω plτ → ∞
                                 σ0       σ0    ne2
     purely reactive    σ(ω) =         =     =
                               1 − iωτ   iωτ   iωm*

       Cooper pairs         ms = 2m, es = 2e, ns = n / 2


                                1 ns es2 r       1 1 r
                       j (ω) =           E(ω) =         E(ω)
                       r
                               iω ms            iω µ0λ2

                                ms       r r i ( kr⋅rr −ωt )
     penetration depth      λ=         , E = E0e
                               µ0ns es
                                     2

                                              r
                                             dj
         The first London equation: E = µ0λ2
                                    r
                                             dt
R.A. Ferrell, R.E. Glover, M. Tinkham
1958-1959
FGT-sum fule                                    KKR
                                        1                         1
                       ε1 (ω) = −               ⇒     σ1 (ω) =             δ (ω)
                                    λL ω2   2
                                                                 8λL
                                                                       2


          >6 ∆SC
  1
λL   2
         =8   ∫ ∆σ (ω)dω
              0+
                   1
Optical response of NbN SC film
                                                       J.Demsar et al., 2011




 Mach-Zander
 interferometer
 with movable
 mirror:




                                     ω              1                      1
                       σ 2 (ω) = −      ε1 (ω) =               σ1 (ω) =             δ (ω)
                                     4π          4π λL ω
                                                      2
                                                                          8λL
                                                                                2
D-wave gap in cuprates
in-plane Ba2Sr2CaCu2Oin-plane Ba2Sr2CaCu2O8
                     8                                                  Tc=91 K

                                            Tc = 91 K


             6000

                                        10 K
                                        100K
                                        200 K
σ1 (Ω cm )




             4000
-1




                                                       0
-1




             2000
                                                  -1000



                                                 ε1b
                                                                                   10 K
                0                                                                  100 K
                0.01           0.1                -2000                            200 K
                       Photon energy (eV)


                                                  -3000
                                                       0.01           0.1
                                                              Photon energy (eV)
in-plane Ba2Sr2CaCu2O8 (T<Tc)

                                         ∆σ 1Exp (ω ')
                                           ∞                                    ∞
               ∆ε 1 (ω ) = 2 2 + 8 ⋅ P ∫ 2                                   = 8 ∫ ∆σ 1Exp (ω ')dω ' ( FGT − sum rule)
                             1                                           1
                                                       dω ' with
                          λLω         0+
                                         ω ' −ω    2
                                                                       λ2
                                                                        L       0+


                                                                   8
                                                                                                            exp
                                                                                                      ∆ε1
                                  as measured                      6                                     exp
                                                                                               from ∆σ1 (0 < ω < 1.0 eV)
                             extrapolated with
∆σ1 (mΩ cm )




                                                                                                                    2
                                                                                                                  1/λ L=∆SW
-1




                                                  °
                                                                                               with
                                    λL = 2300 Α                    4
-1




                                                  °
                                    λL = 2000 Α



                                                             ∆ε1
                                                                   2
                                      ∆T = 100 K - 10 K
                                                                   0
                                                                                         SC
               0                                                                ∆SW           ≈0
               0.00   0.02   0.04   0.06       0.08   0.10
                         Photon energy (eV)                        0.1             0.2             0.3              0.4       0.5
                                                                                     Photon energy (eV)


                                                                                          ∞
                                                                                     ≈ 8 ∫ ∆σ 1Intra (ω ')dω '
                                                                               1
                                                                              λ2
                                                                               L          0+
in-plane Ba2Sr2CaCu2O8 (T<Tc)

                                         ∆σ 1Exp (ω ')
                                           ∞                                          ∞
               ∆ε 1 (ω ) = 2 2 + 8 ⋅ P ∫ 2                                      = 8 ∫ ∆σ 1Exp (ω ')dω ' ( FGT − sum rule)
                             1                                             1
                                                       dω ' with
                          λLω         0+
                                         ω ' −ω    2
                                                                           λ2
                                                                            L         0+


                                                                   8
                                                                                                                exp
                                                                                                          ∆ε1
                                  as measured                      6                                         exp
                                                                                                   from ∆σ1 (0 < ω < 1.0 eV)
                             extrapolated with
∆σ1 (mΩ cm )




                                                                                                                        2
                                                                                                                      1/λ L=∆SW+1%
-1




                                                  °
                                                                                                   with
                                    λL = 2300 Α                    4                                                    2
                                                                                                                      1/λ L=∆SW-1%
-1




                                                  °
                                    λL = 2000 Α


                                                             ∆ε1
                                                                   2
                                      ∆T = 100 K - 10 K
                                                                   0
                                                                                             SC
               0                                                                      ∆SW         ≈0
               0.00   0.02   0.04   0.06       0.08   0.10
                         Photon energy (eV)                        0.1                 0.2             0.3              0.4          0.5
                                                                                           Photon energy (eV)

                                                                                 ∞
                                                                            = 8 ∫ ∆σ 1Intra (ω ')dω ' ± 0.5% (0.0008 eV 2 )
                                                                       1
                                                                   λ2
                                                                    L            0+
SW transfer in Ba2Sr2CaCu2O8 Ba2Sr2CaCu2O8
                       in-plane                                                     Tc=91 K

                                                   SW 100 K = SW 200 K + 0.007 eV 2
                                             8
                                                                                    exp
                                                                              ∆ε1         (∆T=200K-100K)
                                             6                                      exp
                                                                              ∆ε1         (∆T=100K-10K)

                                             4
                                                                          N
                                                                 ∆SW > 0




                                       ∆ε1
                                             2

                                             0
                                                                SC
                                                         ∆SW         ν0
                                             0.1          0.2             0.3                0.4          0.5
                                                           Photon energy (eV)

                                                          ∞
                                                        = ∫ ∆σ 1Intra (ω ')dω ' ± 0.0008 eV 2
                                                   1
                                                   λ2
                                                    L     0+
H.J.A. Molegraaf & D. van der Marel,
Science, 295, 2239 (2002)
SW transfer in Ba2Sr2CaCu2O8 Ba2Sr2CaCu2O8
                       in-plane                 Tc=91 K



                                       Bi2212




H.J.A. Molegraaf & D. van der Marel,
Science, 295, 2239 (2002)
SW transfer in Ba2Sr2CaCu2O8 Ba2Sr2CaCu2O8
                       in-plane                   Tc=91 K



                                         Bi2212




                                       Y123




H.J.A. Molegraaf & D. van der Marel,
Science, 295, 2239 (2002)
Conclusions




         Science, 304, 708 (2004)
Outline                         Outline




    • advantages of ellipsometry -         illustrative examples -




  ii) no reference measurements, very    ii) superconductivity-induced optical
      accurate and highly reproducible       anomalies and iron pnictide
                                             superconductors
Iron arsenide superconductors
                                                     Ba
                                 lattice structure

multiband electronic structure


                                            Fe As




superconductivity



   Ba0.68K0.32Fe2As2
      Tc=38.5 K
SC-reduced absorption in visible
                                      ω      ∆
                                   ! ħω > 200∆SCmax
Thermal modulation ellipsometry
inter-band excitations: LDAexcitations: LDA assignment
               inter-band assignment



                                                 A.N. Yaresko




                    Γ           M
SC-induced anomalies in visible (single-band BCS)

                ! Ν ouSC ≡ Ν ouNS




                   2∆




A.L. Dobryakov et al.,
Optics Communications 105, 309 (1994)
SC-reduced absorption in visible (Ba1-xKxFeAs)

           ! Ν ouSC < Ν ouNS




            ∆Εg
           0.5 eV
SC-induced lowering of the chemical potential

 Single band BCS: e.g. D.J. Scalapino, “SC-ty” (1969)

                                 1 ∆ SC
                                          2
                   µ SC   ≈ µN −
                                 4 µN

              ∆ SC / ε F ~ ∆F SC (0) ~ 0.1 meV
                   2
SC-induced lowering of the chemical potential

 Single band BCS: e.g. D.J. Scalapino, “SC-ty” (1969)

                               1 ∆ SC
                                        2
                 µ SC   ≈ µN −
                               4 µN

            ∆ SC / ε F ~ ∆F SC (0) ~ 0.1 meV
                2




 Multi band BCS:    ∆iSC ≠ ∆ jSC 
                                                  j→
                                  ⇒ nSC = nN + ∆nSC i
                                      i     i

                    µ = µ = µ SC 
                     i   j
                                 

        • self-consistent treatment of a variable chemical potential at
        the SC transition is required
SC-induced inter-band charge transfer

Single band BCS: e.g. D.J. Scalapino, “SC-ty” (1969)

                               1 ∆ SC
                                            2
                 µ SC   ≈ µN −
                               4 µN

             ∆ SC / ε F ~ ∆F SC (0) ~ 0.1 meV
                 2




Multi band BCS:      ∆iSC ≠ ∆ jSC 
                                                   j→
                                   ⇒ nSC = nN + ∆nSC i
                                       i     i

                     µ = µ = µ SC 
                      i   j
                                  

      Two el’s subsystems in cuprates:
      D. I. Khomskii and F.V. Kusmartsev, PRB 46 (1992)

                               N CuO2        ∆2
         µ SC = µ N −
                         N CuO2 + N chain   4µ N
                                  N CuO2       ∆2 
         nSC
                 =n   N      1 +                    ~ 1%
          CuO2        CuO2
                              N CuO + N chain 4µ N
                                                  2 
                                   2               
SC-induced inter-band charge transfer



                                                 Fe3dxz,zy+Fe3dxy

 ∆SC < ∆SC 
  h      e        nh < nh
                    SC     N

           ⇒
 mh < me h  ∆F SC (0) > ∆ SC / ε F
   *    *                    2
           




                                        Fe3dxy
Conclusions




Ba0.68K0.32Fe2As2 - SC-reduced absorption in visible:

  • assigned to excitations from As-px,y/Fe-dz2 to Fe-dyz,zx and Fe-dxy states
  • charge transfer between the Fe-dyz,zx and Fe-dxy bands
            below Tc could explain the optical anomaly
  • self-consistent treatment of a variable chemical potential
            at the SC transition is required
  • in the presence of large Fe-As bond polarizability it can potentially
             enhance superconductivity in iron pnictides.
Outline                           Outline




    • advantages of ellipsometry -          illustrative examples -




  iii) oblique and variable angle of    iii) dimensionality-controlled
       incidence, very sensitive to          collective charge and spin* order
       thin-film properties                  in nickel-oxide superlattices

            * combined with low-energy muons which serve as a sensitive
            local probe of the internal magnetic field distribution
2D e-gas in semiconductors

                      Band Bending picture




        QHE v Klitzing 1980
        FQHE H. Störmer 1984


                          Jochen Mannhart’s lecture
Dimentionality control in oxides
                                          LaAlO3
 “solid-state chemistry approach”      wide-band-gap
                                      (~ 5eV) insulator




                                          LaNiO3
 Ruddlesden–Popper (R–P) homologous    paramagnetic
 series of Srn+1RunO3n+1                   metal
Why RNiO3?
        J.-S. Zhou, J.B. Goodenough et al.,               LaAlO3
                                 PRL 84, 526 (2000)
                                                       wide-band-gap
                                                      (~ 5eV) insulator




   Ni3+ 3d7 t62ge1g
                                        ∆CF >> JH
  eg                                                      LaNiO3
                         S=1/2
                                     W ~ EG~ JH ~ U    paramagnetic
  t2g                                                      metal
RNiO3-based Heterosctructures
                                                                     LaAlO3
                                                                  wide-band-gap
    Possible 3D-to-2D- and interface-                            (~ 5eV) insulator
    induced “engineered” properties
         of correlated electrons:


•     metal- insulator transition with unusual
      magnetic and charge ordering
•     orbital reconstruction
•     multiferroicity
       G. Giovannetti et al., PRL 103, 156401 (2009)
•     superconductivity
       J. Chaloupka and G. Khaliullin, PRL 100, 016404 (2008)

       P. Hansmann et al., PRL 103, 016401 (2009)

    “… possible orbital occupancy analogous to the cuprates …”
                                                                     LaNiO3
                                                                  paramagnetic
                                                                      metal
Theory                                       Experiment


     Perfect sample                                     Real sample

                              Technology


                                                    Extrinsic properties
      Intrinsic properties                     (stacking faults, inter-diffusion
(collective quantum phases)                        substrate contribution)




                                           high oxygen pressure PLD, MPI-FKF
                                           G. Cristiani and H.-U. Habermeier
LaNiO3|LaAlO3 superlattices

                                                                   compressive
                               tensile
                                                                  (001) LaSrAlO4
                            (001) SrTiO3




     N = 4 u.c. x 10, d = 290 ± 10 Å           N = 3 u.c. x 13, d = 312 ± 10 Å




MF-MPI beam line @ANKA, A. Frano, E. Benckiser, P. Wochner
Reciprocal-space maps




              N = 4 u.c.   N = 2 u.c.   N = 2 u.c.

Alex Frano’s poster
Reciprocal-space maps




               N = 4 u.c.          N = 2 u.c.         N = 2 u.c.

TEM: MF-MPI StEM E. Detemple, W. Sigle, P. van Aken
Theory       Experiment


                     Perfect sample      Real sample

                            Technology


                                      Extrinsic properties
                     Intrinsic properties faults, inter-diffusion
                                 (stacking
               (collective quantum phases) contribution)
                                     substrate
                         inevitable defects

                 + local probes!      vs.     macro probes

          optical spectroscopy                    dc conductivity
charge:
              (ellipsometry)                      and permittivity
               muon-SR                               magnetic
 spin:
             (slow muons)                           susceptibility

          AFM, charge order                  FM, ferroelectric, SC
Charge dynamics via spectroscopic ellipsometry

                                                                      Y
                                                                            Ai
                                         sample                                              detector



                                            E   Es                                analyzer
                                                                           IrsI
                                 P         Ep            ϕ          IrpI


                                                                ~
                                                     ~          r p (ω )
                                       polarizer     ρ (ω ) =   ~
                                                                             = tan Ψ (ω )ei∆ (ω )
                        light source
                                                                r s (ω )

                         oblique incidence
                             - sensitive to thin-film properties

                         intrinsic SL’s electrodynamics
                         is not flawed by a substrate, contacts and
                         extended defects
Isotropic film on isotropic substrate in vacuum
                                                                                                  ૚⁄૛
                                                  ଶ               ଶ                           ૛
         ߮௜                                      ܰ cos ߮ − ܰ − sin ࣐
                                       ‫ݎ‬଴ଵ೛೛ =                                                    ૚⁄૛
    01                                           ܰ ଶ cos ߮ + ܰ ଶ − sin ࣐                      ૛
                                d
         ܰ               SL                           ଶ                   ଶ           ૛                   ૛
                                                                                                              ૚⁄૛
    12                                           −݊ cos ߚ + ܰ ݊ − ࡺࡿ sin ࢼ
                                       ‫ݎ‬ଵଶ೛೛ =                                                                ૚⁄૛
                                                                                      ૛
                 ߚ௜                               ݊ଶ cos ߚ   +ܰ   ݊ଶ      − ࡺࡿ sin ࢼ                    ૛
         ࡺ࢙      substrate
                                                                                      ૚⁄૛
                                                 cos ߮ − ܰ ଶ − sin ࣐              ૛
                                       ‫ݎ‬଴ଵೞೞ =
        ‫ݎ‬௣ (߱)
         ̃                                       cos ߮ + ܰ ଶ − sin ࣐              ૛
                                                                                      ૚⁄૛
  ߩ ߱ =
  ෤            = tan Ψ(߱) ݁ ௜∙୼(ఠ)
        ‫ݎ‬௦ (߱)
           ̃                                                                                                ૚⁄૛
                                                                      ଶ           ૛                   ૛
                                                 −ࡺࡿ cos ߚ + ܰ − ࡺࡿ sin ࢼ
              ‫ݎ‬଴ଵ೛೛ + ‫ݎ‬ଵଶ೛೛ ݁ ି௜ଶఈ     ‫ݎ‬ଵଶೞೞ =                                                        ૚⁄૛
   ‫ݎ‬௣ (߱) =
    ̃                                              cos ߚ + ܰ ଶ − ࡺࡿ ૛ sin ࢼ                       ૛
              1 + ‫ݎ‬଴ଵ೛೛ ‫ݎ‬ଵଶ೛೛ ݁ ି௜ଶఈ
             ‫ݎ‬଴ଵೞೞ + ‫ݎ‬ଵଶೞೞ ݁ ି௜ଶఈ         Snell‘s law: sin ߮ = ܰ௦ sin ߚ
   ‫ݎ‬௦ (߱) =
    ̃
            1 + ‫ݎ‬଴ଵೞೞ ‫ݎ‬ଵଶೞೞ ݁ ି௜ଶఈ                                                                                  ૚⁄૛
                                                                              ௗ           ଶ                    ૛
                                       Phase thickness: ߙ = 2ߨ                    ܰ − sin ࣐
                                                                              ఒ


                     Known: ߩ ߱ , ߮, ࡺࡿ
                            ෤                    ߱
                     Unkown: ࡺ ߱ , ݀
complex dielectric function of bare SLs
 numerical inversion




                                          Drude parameters:
                                          N = 4:   ω p ≈ 1.10 eV , γ ≈ 87 meV        m*
                                                                                        = 10
                                          N = 2:   ω p ≈ 1.05 eV , γ ≈ 196 meV       m

                                                                              V
                                         EF = 0.5eV , VF = 1.33 ⋅107 cm , l = F
                                                                       s     2π cγ
                                                           o                     o
                       mean free path:    N = 4:   l = 9.7 A,   N = 2:    l = 4.4 A
from itinerant to localized electrons
LaNiO3
from itinerant to localized electrons
LaNiO3
from itinerant to localized electrons
LaNiO3




                                                   ΔNeff=0.03




                              Effective number of electrons localized:
                                                      ω
                                   ∆N eff (ω ) = 2 0 ∫ ∆σ (ω ′)dω ′
                                                  2m
                                                π e N Ni 0
from itinerant to localized electrons
LaNiO3




                                                              ΔNeff=0.03




                                         Effective number of electrons localized:
   bulk NdNiO3 - ΔNeff=0.058                                     ω
                                              ∆N eff (ω ) = 2 0 ∫ ∆σ (ω ′)dω ′
                                                             2m
 T.Katsufuji, Y.Tokura et al., (1995):                     π e N Ni 0
from itinerant to localized electrons
LaNiO3




                                                              ΔNeff=0.03




                                         Effective number of electrons localized:
   bulk NdNiO3 - ΔNeff=0.058                                     ω
                                              ∆N eff (ω ) = 2 0 ∫ ∆σ (ω ′)dω ′
                                                             2m
 T.Katsufuji, Y.Tokura et al., (1995):                     π e N Ni 0
Metal – Insulator Transition (MIT) in LaNiO3




      Continuing the analogy with bulk RNiO3 series, one would then expect another
      second-order transition due to the onset of antiferromagnetic ordering at TN < TMI
      in the N = 2 SLs, as in RNiO3 with small R (Lu through Sm).
Low-Energy µSR measurements
                                         Rob Kiefl’s lecture




                          Thomas Prokscha, Zaher Salman,
                          Andreas Suter, Elvezio Morenzoni
LaNiO3|LaAlO3 SLs : µ+ Spin Relaxation
                      F (t ) − B (t )                 BTF = 0
           AZF (t ) =                 = aoG (t )
                      F (t ) + B(t )
         G(t) is the Fourier transform of the field
         distribution averaged over all muon sites.




      Fast depolarization rate:
                                                           Ni spins are AFM ordered
LaNiO3|LaAlO3 SLs : µ+ Spin Rotation
                                                               BTF=100 G
     The time evolution of the muon
     polarisation in a transverse field BTF is
                                                          µ+
                 F (t ) − B(t )
    ATF (t ) =                   = aoG (t ) cos(ω L t )
                 F (t ) + B (t )
      where Larmor frequency ωL= γµBTF ,
                    γµ= 2π×13.55 MHz/kG
LaNiO3|LaAlO3 SLs : µ+ Spin Rotation
                                                          BTF > 0
     The time evolution of the muon
     polarisation in a transverse field BTF is
                                                          µ+
                 F (t ) − B(t )
    ATF (t ) =                   = aoG (t ) cos(ω L t )
                 F (t ) + B (t )
      where Larmor frequency ωL= γµBTF ,
                    γµ= 2π×13.55 MHz/kG




          BTF =100 Gauss                         BTF =1000 Gauss    BTF =3000 Gauss
LaNiO3|LaAlO3 SLs : charge and spin order
LaNiO3|LaAlO3 SLs : charge and spin order
LaNiO3|LaAlO3 SLs : charge and spin order
Science, 332, 937 (2011)
SUMMARY


   i)   superconductivity-induced
        transfer of the spectral weight in
        high temperature cuprate SCs



   ii) superconductivity-induced
       optical anomalies and iron-based
       pnictide superconductors




   iii) dimensionality-controlled
        collective charge and spin* order
        in nickel-oxide superlattices
Thank you !

Contenu connexe

Tendances

Recent progress on reduced graphene oxide....
Recent progress on reduced graphene oxide....Recent progress on reduced graphene oxide....
Recent progress on reduced graphene oxide....
suresh kannan
 
Physics nanophotonics
Physics nanophotonicsPhysics nanophotonics
Physics nanophotonics
Vishal Singh
 
PhD work on Graphene Transistor
PhD work on Graphene TransistorPhD work on Graphene Transistor
PhD work on Graphene Transistor
Southern University and A&M College - Baton Rouge
 

Tendances (20)

Plasmons
PlasmonsPlasmons
Plasmons
 
Giant magnetoresistance
Giant magnetoresistanceGiant magnetoresistance
Giant magnetoresistance
 
Nonlinear Optical Materials
Nonlinear Optical MaterialsNonlinear Optical Materials
Nonlinear Optical Materials
 
Recent progress on reduced graphene oxide....
Recent progress on reduced graphene oxide....Recent progress on reduced graphene oxide....
Recent progress on reduced graphene oxide....
 
Photonic crystals
Photonic crystalsPhotonic crystals
Photonic crystals
 
MoS2
MoS2MoS2
MoS2
 
Physics nanophotonics
Physics nanophotonicsPhysics nanophotonics
Physics nanophotonics
 
Near field scanning optical microscopy
Near field scanning optical microscopyNear field scanning optical microscopy
Near field scanning optical microscopy
 
Basic of semiconductors and optical properties
Basic of semiconductors and optical propertiesBasic of semiconductors and optical properties
Basic of semiconductors and optical properties
 
Transmission electron microscope, high resolution tem and selected area elect...
Transmission electron microscope, high resolution tem and selected area elect...Transmission electron microscope, high resolution tem and selected area elect...
Transmission electron microscope, high resolution tem and selected area elect...
 
Light-emitting diodes
Light-emitting diodes Light-emitting diodes
Light-emitting diodes
 
Resonant Tunneling Diodes
Resonant Tunneling DiodesResonant Tunneling Diodes
Resonant Tunneling Diodes
 
Direct and in direct band gap-Modern Physics
Direct and in direct band gap-Modern PhysicsDirect and in direct band gap-Modern Physics
Direct and in direct band gap-Modern Physics
 
2d materials introductions
2d materials introductions2d materials introductions
2d materials introductions
 
PHOTONIC CRYSTALS
PHOTONIC CRYSTALSPHOTONIC CRYSTALS
PHOTONIC CRYSTALS
 
Graphene and graphene oxide
Graphene and graphene oxideGraphene and graphene oxide
Graphene and graphene oxide
 
Graphene Field Effect Transistor
Graphene Field Effect TransistorGraphene Field Effect Transistor
Graphene Field Effect Transistor
 
Pulsed Laser Ablation
Pulsed Laser AblationPulsed Laser Ablation
Pulsed Laser Ablation
 
PhD work on Graphene Transistor
PhD work on Graphene TransistorPhD work on Graphene Transistor
PhD work on Graphene Transistor
 
MS Junction
MS JunctionMS Junction
MS Junction
 

Similaire à Spectroscopic ellipsometry

Electromagnetic Wave
Electromagnetic WaveElectromagnetic Wave
Electromagnetic Wave
Yong Heui Cho
 
Mit6 007 s11_lec20
Mit6 007 s11_lec20Mit6 007 s11_lec20
Mit6 007 s11_lec20
Bipin Kujur
 
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Lewis Larsen
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)
oriolespinal
 

Similaire à Spectroscopic ellipsometry (20)

Science Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative EnergyScience Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative Energy
 
Simulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch ApplicationsSimulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch Applications
 
Part i
Part iPart i
Part i
 
Electromagnetic Wave
Electromagnetic WaveElectromagnetic Wave
Electromagnetic Wave
 
Chem140alecture3.ppt
Chem140alecture3.pptChem140alecture3.ppt
Chem140alecture3.ppt
 
17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko
 
quantum dots
quantum dotsquantum dots
quantum dots
 
4 b5lecture62008
4 b5lecture620084 b5lecture62008
4 b5lecture62008
 
Band structure
Band structureBand structure
Band structure
 
Mit6 007 s11_lec20
Mit6 007 s11_lec20Mit6 007 s11_lec20
Mit6 007 s11_lec20
 
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
 
Hydrogen atom
Hydrogen atomHydrogen atom
Hydrogen atom
 
Gravity tests with neutrons
Gravity tests with neutronsGravity tests with neutrons
Gravity tests with neutrons
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)
 
Lecture 5: Junctions
Lecture 5: JunctionsLecture 5: Junctions
Lecture 5: Junctions
 
Electromagnetics
ElectromagneticsElectromagnetics
Electromagnetics
 
Pot.ppt.pdf
Pot.ppt.pdfPot.ppt.pdf
Pot.ppt.pdf
 
Nuclear Basics Summer 2010
Nuclear Basics Summer 2010Nuclear Basics Summer 2010
Nuclear Basics Summer 2010
 
EM_Theory.pdf
EM_Theory.pdfEM_Theory.pdf
EM_Theory.pdf
 
Introduction to density functional theory
Introduction to density functional theory Introduction to density functional theory
Introduction to density functional theory
 

Plus de nirupam12 (11)

D Schlom - Oxide Molecular-Beam Epitaxy
D Schlom - Oxide Molecular-Beam EpitaxyD Schlom - Oxide Molecular-Beam Epitaxy
D Schlom - Oxide Molecular-Beam Epitaxy
 
Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopy
 
Charge, spin and orbitals in oxides
Charge, spin and orbitals in oxidesCharge, spin and orbitals in oxides
Charge, spin and orbitals in oxides
 
Neutron Refractometry - B Kreimer
Neutron Refractometry - B KreimerNeutron Refractometry - B Kreimer
Neutron Refractometry - B Kreimer
 
X-Ray Absorption Spectroscopy
X-Ray Absorption SpectroscopyX-Ray Absorption Spectroscopy
X-Ray Absorption Spectroscopy
 
X-Ray Absorption Spectroscopy
X-Ray Absorption SpectroscopyX-Ray Absorption Spectroscopy
X-Ray Absorption Spectroscopy
 
Polarons in bulk and near surfaces
Polarons in bulk and near surfacesPolarons in bulk and near surfaces
Polarons in bulk and near surfaces
 
Resonant X Ray Diffraction
Resonant X Ray DiffractionResonant X Ray Diffraction
Resonant X Ray Diffraction
 
Photoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional OxidesPhotoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional Oxides
 
Piezo Responce Force Microscopy
Piezo Responce Force MicroscopyPiezo Responce Force Microscopy
Piezo Responce Force Microscopy
 
Piezoelectric mems
Piezoelectric memsPiezoelectric mems
Piezoelectric mems
 

Dernier

Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
MateoGardella
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
SanaAli374401
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Dernier (20)

Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 

Spectroscopic ellipsometry

  • 1. Alexander BORIS Max Planck Institute for Solid State Research Stuttgart Spectroscopic ellipsometry: application to electrodynamics of correlated electron materials and oxide superlattices. September 1, 2011, Vancouver MAX-PLANCK-UBC CENTRE FOR QUANTUM MATERIALS International Summer School on Surfaces and Interfaces in Correlated Oxides
  • 2. Outline Outline • the complex dielectic function spectra - one of the first steps in research of the physical properties of a new material • spectroscopic ellipsometry - basic principles and experimental implementation • advantages of ellipsometry - illustrative examples - i) exact numerical inversion, no i) superconductivity-induced Kramers-Kronig transformation, transfer of the spectral weight in allows for K-K consistency check high temperature cuprate SCs ii) no reference measurements, very ii) superconductivity-induced optical accurate and highly reproducible anomalies and iron pnictide superconductors iii) oblique and variable angle of iii) dimensionality-controlled incidence, very sensitive to collective charge and spin* order thin-film properties in nickel-oxide superlattices * combined with low-energy muons which serve as a sensitive local probe of the internal magnetic field distribution
  • 3. Outline Outline • the complex dielectic function spectra - one of the first steps in research of the physical properties of a new material
  • 4. Electromagnetic waves Electrodynamics of Solids ‫ܧ = ܧ‬଴ ݁ [௜(ఠ௧ିk‫ ݔ‬ାఋ)]
  • 5. Dielectric polarization, susceptibility, pemittivity Electrodynamics of Solids ࡱ ࡼ + +q - - - - Polarization + Electric field - + ݈ - - - + -q - ߤ ൌ ‫݈∙ݍ‬ Electric Ionic (phonon) Dipole moment Polarization ࡼ ൌ ∑࢏ ࣆ࢏ ൌ ߝ଴ χ ࡱ ࡼ ࢿ ൌ 1 ൅ χ ൌ 1 ൅ ఌబ ࡱ
  • 6. Electrodynamics of ∂E ∇× H = j + ε 0ε Solids Maxwell’s equations for wave c ∂t propagation in a conductor: ∂H ∇ × E = −µ0 ∂t  ∂E ∂ 2E  ⇒ ∇ × (∇ × E) = −∇ E = − µ0 σ 2 + ε 0ε 2   ∂t ∂t  plane wave : ‫ܧ = ܧ‬଴ ݁ [௜(ఠ௧ିk‫ ݔ‬ାఋ)] ⇒ k ଶ = ߤ଴ ݅߱ߪ + ߤ଴ ߝ଴ ߝ߱ଶ 4ߨ 1 SI → CGS: ߤ଴ → ଶ , ߝ଴ → ܿ 4ߨ ఠమ ସగ ఠ ସగ k ଶ = ߝ+݅ ߪ , k ≡ N, Nଶ = ߝ + ݅ ߪ ௖మ ఠ ௖ ఠ Complex dielectric function optical conductivity ߝ̃ ߱ = ߝଵ (߱) + ݅ ∙ ߝଶ (߱) ߪ ߱ = ߪଵ ߱ + ݅ ∙ ߪଶ (߱) ෤ 4ߨ ߝଶ ߱ = ߪଵ (߱) ߱
  • 7. Dielectric response of Drude metal dv mb equation of motion for electrons mb = eE − v dt τ damping term momentum transferred to phonons and impurities per unit time eτ 1 solution v= E mb 1 − iωτ nb e 2 τ current density j = nb e v = E mb 1 − iωτ σ0 γ = 1/ τ ω pl 2 σ (ω) = ε1 (ω) = 1 − 2 2 1 − iωτ ω +γ 4π nbe2 ne2τ ω pl = 2 ω pl γ 2 2 σ0 = mb σ1 (ω) = 1 mb collective oscillations of 4π γ ω 2 + γ 2 electron charge density
  • 8. Complex dielectric functionElectrodynamics of Solids ߝଵ (߱) 4ߨ ߝଶ ߱ = ߪ (߱) ߱ ଵ
  • 9. Optical sum rules: ∞ Spectral Weight and Sum Rules π ne e 2 f-sum rule: SW (0, ∞) = ∫ σ 1 (ω )dω = = const 0 2me ݊௘ - total number of electrons in the system, ݉௘ - free electron mass D.Y. Smith and E. Shiles, PRB 17, (1978) 4689-4694 Ω = 2 Al ∫ σ (ω )dω 2m neff πe N 0 Ω ω pl 2 π nb e 2 intra-band spectral weight: SW intra (0, ∞) = = = f (T ) ≠ const 8 2mb
  • 10. Kramers-Kronig relations 1926-1927 response follow causality: P = ε 0 χ E applied field ∞ P(t ) = ε 0 ∫ χ (t − t ' )E(t ' )dt ', χ (t − t ' ) = 0 for t < t ' −∞ P(ω) = ε 0 χ (ω)E(ω) ∞ ω ' ε 2 (ω ') ε 1 (ω ) − 1 = 2 KKR: ⋅ P∫ dω ' π 0 ω ' −ω 2 2 2ω ∞ ε 1 (ω ') − 1 ε 2 (ω ) = − ⋅ P∫ dω ' π 0 ω ' −ω 2 2 ∆σ 1 (ω ') ∞ consistency check: ∆ε 1 (ω ) = 8 ⋅ P ∫ 2 dω ' 0 ω ' −ω 2
  • 11. Normal incidenceReflectivity by normal incidence reflectivity Incident light ‫ܧ‬଴௜ sin ߱‫ݐ‬ ߶௥ r Ei Reflected light ‫ܧ‬଴௥ sinሺ߱‫ ݐ‬൅ ߶௥ ሻ 2 E0 r ~2 r R= =r Er E0 i 2 ~ = ε − 1 = R (ω ) exp{iφ (ω )} r ε +1 r ∞ 2ω ln R (ω ' ) KKR: φr (ω ) = − ∫ ω 2 − ω ' 2 dω ' π 0
  • 12. Outline Outline • spectroscopic ellipsometry - basic principles and experimental implementation
  • 13. Analogy with electric circuit electric circuit admittance Analogy with impedance Lissajous figure a b resistance & reactance (complex impedance) X Y Z = R+iωL R Vmaxsinωt ϕ Imaxsin(ωt-ϕ) L Vmax Imax ϕ= arctan(ωL/R)= = arcSin(a/b) Time
  • 14. Polarization of light Electrodynamics of Solids ࡱ-field vector ࡱ = ࡱ࢞ + ࡱ࢟ Y Linear polarization phase delay ߮=0 X Y Curcular polarization phase delay ߮=ߨ/2 X Y Elliptical polarization Ψ ‫ܧ‬௫ phase delay ߮=0.35·2ߨ X ‫ܧ‬௬
  • 15. Spectroscopic ellipsometry Sample Analyzer near Brewster angle Polaryzer tan ߠ஻ = ݊௧ ⁄݊௜
  • 16. Spectroscopic ellipsometry Sample Analyzer near Brewster angle Polaryzer tan ߠ஻ = ݊௧ ⁄݊௜ ϕ
  • 17. Spectroscopic ellipsometry Detector: 2,0 Elliptically polarized light determined by: Intensity 1. Relative phase shift, ∆= ∆௣ − ∆௦ ; ௥೛ 2. Relative attenuation, tan Ψ = 1,0 ௥ೞ Sample 0,0 0 90 180 270 360 Analyzer angle (Ai ) Analyzer I(Ai)/I0 = 1 + α sin(2Ai) + β cos(2Ai) 1+ߙ tan Ψ = tan ܲ , Polaryzer 1−ߙ ̃ ‫ݎ‬௣ (߱) ߚ ෤ ߩ ߱ = = tan Ψ(߱) ݁ ௜∙୼(ఠ) cos Δ = ̃ ‫ݎ‬௦ (߱) 1 − ߙଶ 1 + tan Ψ(߱) ∙ ݁ ௜∆(ఠ) ଶ Ψ(߱) ൠ ⇒ ߝ̃ ߱ = (sin ߮)ଶ +(sin ߮)ଶ (tan ߮)ଶ Δ(߱) 1 − tan Ψ(߱) ∙ ݁ ௜∆(ఠ)
  • 18. Spectroscopic ellipsometry Paul Drude ellipsometer ~ 1890 2007
  • 19. ANKA Synchrotron, Karlsruhebeamline at ANKA IR IT IR-1 beamline Y.-L. Mathis, B. Gasharova, D. Moss Current: 80 -180 mA lifetime: 12-23 hours
  • 20. ANKA Synchrotron, Karlsruhebeamline at ANKA IR IT IR-1 beamline Y.-L. Mathis, B. Gasharova, D. Moss 1.5 Magnetic Field [T] Magnetic profile 1.0 of a dipole 0.5 Edge and dipole Spatial distribution radiation in the visible from the edge at 0.0 3 m from the source (calculated for 100µm) 1.0m 0.5 0.0 -0.5 -1.0 Position on particle trajectory [m] Photons/s/.1%bw/mm^2 x10 40 150 20 at λ=10 µm y [mm] 100 0 -20 50 -40mm 9 0 -40mm -20 0 20 40 x [mm]
  • 21. wide-band spectroscopic ellipsometry THz to UV Ellipsometry: from ANKA Synchrotron edge radiation 1m 10m 100m 1 eV 6.2 0.2 THz 1 2 far-IR mid-IR near-IR UV 10 100 1000 10000 cm-1 near-IR to deep-UV far-IR homebuilt ellipsometer spectroscopic at ANKA IR1- beam line, ellipsometer (VASE) @ Karlsruhe IT Woollam Co., @ MPI-FKF IR homebuilt ellipsometer based on Bruker 66v/S FTIR spectrometer, @ MPI-FKF
  • 22. wide-band spectroscopic ellipsometry THz to UV Ellipsometry: from ANKA Synchrotron edge radiation 1m 10m 100m 1 eV 6.2 0.2 THz 1 2 far-IR mid-IR near-IR UV 10 100 1000 10000 cm-1 near-IR to deep-UV far-IR homebuilt ellipsometer spectroscopic at ANKA IR1- beam line, ellipsometer (VASE) @ Karlsruhe IT Woollam Co., @ MPI-FKF IR homebuilt ellipsometer based on Bruker 66v/S FTIR spectrometer, @ MPI-FKF
  • 23. Outline Outline • advantages of ellipsometry - i) exact numerical inversion, no Kramers-Kronig transformation, allows for K-K consistency check ii) no reference measurements, very accurate and highly reproducible iii) oblique and variable angle of incidence, very sensitive to thin-film properties
  • 24. Outline Outline • advantages of ellipsometry - illustrative examples - i) exact numerical inversion, no i) superconductivity-induced Kramers-Kronig transformation, transfer of the spectral weight in allows for K-K consistency check high temperature cuprate SCs
  • 25. Kramers-Kronig consistency check ∆σ 1Exp (ω ') ∞ ∆ε 1Exp (ω0 ) ∆ε KK (ω0 ) = 8 ⋅ P ∫ 2 2 dω ' 0 ω ' −ω0 1 This additional constraint unique to ellipsometry allows one to determine with high accuracy changes in the spectral weight in the extrapolation region beyond the experimentally accessible spectral range: hω < 10 meV ......... hω > 6.6 eV
  • 26. T-dependent Drude ω pl π e 2 nb 2 SW Drude = = 8 2 mb σDC γ (T1 ) > γ (T2 ) γ2 σ1 (ω) = σ DC T1 > T2 ω2 + γ 2 0 ω pl 2 ε1 (ω) = ε ∞ − 2 2 -20 ε1 ω +γ -40 0.0 0.5 1.0 1.5 2.0 hν (eV)
  • 27. T-dependent Drude SW ω pl π e 2 nb 2 SW Drude = = 8 2 mb electron correlation effects σDC UHB Daniel Khomslii’s lecture 0 nb = f (T ) ≠ const -20 mb ε1 -40 0.0 0.5 1.0 1.5 2.0 hν (eV)
  • 28. Kramers-Kronig consistency check 1.2 1.0 σ1,A- σ1,B 0.8 A ωp= 1.5 eV ∆σ1 (10 Ω cm ) 6 SWA-SWB -1 0.6 -1 +0.1 % γΑ = 0.05 eV 3 σ1 (10 Ω cm ) -1 0.4 -0.25 % 4 γB = 0.06 eV -1 B 0.2 3 0.0 2 -0.2 0.00 0.02 0.04 0.06 0.08 photon energy (eV) 0 0.00 0.05 0.10 0.15 0.20 0.0 photon energy (eV) -0.5 ∆σ (ω ') ∞ ε1,A- ε1,B ∆ε 1 (ω0 ) = 8 ⋅ P ∫ 2 1 2 dω ' -1.0 ∆ε1 0 ω ' −ω0 -1.5 SWA-SWB +0.1 % -2.0 -0.25 % 0.18 0.21 0.24 0.27 photon energy (eV)
  • 29. in-plane Ba2Sr2CaCu2Oin-plane Ba2Sr2CaCu2O8 8 Tc=91 K Tc = 91 K 6000 10 K 100K 200 K σ1 (Ω cm ) 4000 -1 0 -1 2000 -1000 ε1b 10 K 0 100 K 0.01 0.1 -2000 200 K Photon energy (eV) -3000 0.01 0.1 Photon energy (eV)
  • 30. in-plane Ba2Sr2CaCu2O8 (T>Tc) 8 exp N ∆ε1 0 ∆SW > 0 6 exp from ∆σ1 (0 < ω < 1.0 eV) as measured ∆σ1 (mΩ cm ) -2 100K 200K -1 extrapolated with with SW = SW 4 100K SW > SW 200K -4 -1 (by ≈ 1.5%) ∆ε1 SW head = − SW tail 2 -6 SW head > − SW tail -8 ∆T = 200 K - by ≈ 1.5% 100 K (0.007eV 2 ) 0 -10 0.00 0.02 0.04 0.06 0.08 0.10 0.1 0.2 0.3 0.4 0.5 Photon energy (eV) Photon energy (eV) ∆SW total > 0 SW 100 K = SW 200 K + 0.007 eV 2
  • 31. Perfect conductor ω plτ → ∞ σ0 σ0 ne2 purely reactive σ(ω) = = = 1 − iωτ iωτ iωm* Cooper pairs ms = 2m, es = 2e, ns = n / 2 1 ns es2 r 1 1 r j (ω) = E(ω) = E(ω) r iω ms iω µ0λ2 ms r r i ( kr⋅rr −ωt ) penetration depth λ= , E = E0e µ0ns es 2 r dj The first London equation: E = µ0λ2 r dt
  • 32. R.A. Ferrell, R.E. Glover, M. Tinkham 1958-1959 FGT-sum fule KKR 1 1 ε1 (ω) = − ⇒ σ1 (ω) = δ (ω) λL ω2 2 8λL 2 >6 ∆SC 1 λL 2 =8 ∫ ∆σ (ω)dω 0+ 1
  • 33. Optical response of NbN SC film J.Demsar et al., 2011 Mach-Zander interferometer with movable mirror: ω 1 1 σ 2 (ω) = − ε1 (ω) = σ1 (ω) = δ (ω) 4π 4π λL ω 2 8λL 2
  • 34. D-wave gap in cuprates
  • 35. in-plane Ba2Sr2CaCu2Oin-plane Ba2Sr2CaCu2O8 8 Tc=91 K Tc = 91 K 6000 10 K 100K 200 K σ1 (Ω cm ) 4000 -1 0 -1 2000 -1000 ε1b 10 K 0 100 K 0.01 0.1 -2000 200 K Photon energy (eV) -3000 0.01 0.1 Photon energy (eV)
  • 36. in-plane Ba2Sr2CaCu2O8 (T<Tc) ∆σ 1Exp (ω ') ∞ ∞ ∆ε 1 (ω ) = 2 2 + 8 ⋅ P ∫ 2 = 8 ∫ ∆σ 1Exp (ω ')dω ' ( FGT − sum rule) 1 1 dω ' with λLω 0+ ω ' −ω 2 λ2 L 0+ 8 exp ∆ε1 as measured 6 exp from ∆σ1 (0 < ω < 1.0 eV) extrapolated with ∆σ1 (mΩ cm ) 2 1/λ L=∆SW -1 ° with λL = 2300 Α 4 -1 ° λL = 2000 Α ∆ε1 2 ∆T = 100 K - 10 K 0 SC 0 ∆SW ≈0 0.00 0.02 0.04 0.06 0.08 0.10 Photon energy (eV) 0.1 0.2 0.3 0.4 0.5 Photon energy (eV) ∞ ≈ 8 ∫ ∆σ 1Intra (ω ')dω ' 1 λ2 L 0+
  • 37. in-plane Ba2Sr2CaCu2O8 (T<Tc) ∆σ 1Exp (ω ') ∞ ∞ ∆ε 1 (ω ) = 2 2 + 8 ⋅ P ∫ 2 = 8 ∫ ∆σ 1Exp (ω ')dω ' ( FGT − sum rule) 1 1 dω ' with λLω 0+ ω ' −ω 2 λ2 L 0+ 8 exp ∆ε1 as measured 6 exp from ∆σ1 (0 < ω < 1.0 eV) extrapolated with ∆σ1 (mΩ cm ) 2 1/λ L=∆SW+1% -1 ° with λL = 2300 Α 4 2 1/λ L=∆SW-1% -1 ° λL = 2000 Α ∆ε1 2 ∆T = 100 K - 10 K 0 SC 0 ∆SW ≈0 0.00 0.02 0.04 0.06 0.08 0.10 Photon energy (eV) 0.1 0.2 0.3 0.4 0.5 Photon energy (eV) ∞ = 8 ∫ ∆σ 1Intra (ω ')dω ' ± 0.5% (0.0008 eV 2 ) 1 λ2 L 0+
  • 38. SW transfer in Ba2Sr2CaCu2O8 Ba2Sr2CaCu2O8 in-plane Tc=91 K SW 100 K = SW 200 K + 0.007 eV 2 8 exp ∆ε1 (∆T=200K-100K) 6 exp ∆ε1 (∆T=100K-10K) 4 N ∆SW > 0 ∆ε1 2 0 SC ∆SW ν0 0.1 0.2 0.3 0.4 0.5 Photon energy (eV) ∞ = ∫ ∆σ 1Intra (ω ')dω ' ± 0.0008 eV 2 1 λ2 L 0+ H.J.A. Molegraaf & D. van der Marel, Science, 295, 2239 (2002)
  • 39. SW transfer in Ba2Sr2CaCu2O8 Ba2Sr2CaCu2O8 in-plane Tc=91 K Bi2212 H.J.A. Molegraaf & D. van der Marel, Science, 295, 2239 (2002)
  • 40. SW transfer in Ba2Sr2CaCu2O8 Ba2Sr2CaCu2O8 in-plane Tc=91 K Bi2212 Y123 H.J.A. Molegraaf & D. van der Marel, Science, 295, 2239 (2002)
  • 41. Conclusions Science, 304, 708 (2004)
  • 42. Outline Outline • advantages of ellipsometry - illustrative examples - ii) no reference measurements, very ii) superconductivity-induced optical accurate and highly reproducible anomalies and iron pnictide superconductors
  • 43. Iron arsenide superconductors Ba lattice structure multiband electronic structure Fe As superconductivity Ba0.68K0.32Fe2As2 Tc=38.5 K
  • 44. SC-reduced absorption in visible ω ∆ ! ħω > 200∆SCmax
  • 46. inter-band excitations: LDAexcitations: LDA assignment inter-band assignment A.N. Yaresko Γ M
  • 47. SC-induced anomalies in visible (single-band BCS) ! Ν ouSC ≡ Ν ouNS 2∆ A.L. Dobryakov et al., Optics Communications 105, 309 (1994)
  • 48. SC-reduced absorption in visible (Ba1-xKxFeAs) ! Ν ouSC < Ν ouNS ∆Εg 0.5 eV
  • 49. SC-induced lowering of the chemical potential Single band BCS: e.g. D.J. Scalapino, “SC-ty” (1969) 1 ∆ SC 2 µ SC ≈ µN − 4 µN ∆ SC / ε F ~ ∆F SC (0) ~ 0.1 meV 2
  • 50. SC-induced lowering of the chemical potential Single band BCS: e.g. D.J. Scalapino, “SC-ty” (1969) 1 ∆ SC 2 µ SC ≈ µN − 4 µN ∆ SC / ε F ~ ∆F SC (0) ~ 0.1 meV 2 Multi band BCS: ∆iSC ≠ ∆ jSC   j→  ⇒ nSC = nN + ∆nSC i i i µ = µ = µ SC  i j  • self-consistent treatment of a variable chemical potential at the SC transition is required
  • 51. SC-induced inter-band charge transfer Single band BCS: e.g. D.J. Scalapino, “SC-ty” (1969) 1 ∆ SC 2 µ SC ≈ µN − 4 µN ∆ SC / ε F ~ ∆F SC (0) ~ 0.1 meV 2 Multi band BCS: ∆iSC ≠ ∆ jSC   j→  ⇒ nSC = nN + ∆nSC i i i µ = µ = µ SC  i j  Two el’s subsystems in cuprates: D. I. Khomskii and F.V. Kusmartsev, PRB 46 (1992) N CuO2 ∆2 µ SC = µ N − N CuO2 + N chain 4µ N  N CuO2 ∆2  nSC =n N 1 +  ~ 1% CuO2 CuO2  N CuO + N chain 4µ N 2   2 
  • 52. SC-induced inter-band charge transfer Fe3dxz,zy+Fe3dxy ∆SC < ∆SC  h e  nh < nh SC N ⇒ mh < me h  ∆F SC (0) > ∆ SC / ε F * * 2  Fe3dxy
  • 53. Conclusions Ba0.68K0.32Fe2As2 - SC-reduced absorption in visible: • assigned to excitations from As-px,y/Fe-dz2 to Fe-dyz,zx and Fe-dxy states • charge transfer between the Fe-dyz,zx and Fe-dxy bands below Tc could explain the optical anomaly • self-consistent treatment of a variable chemical potential at the SC transition is required • in the presence of large Fe-As bond polarizability it can potentially enhance superconductivity in iron pnictides.
  • 54. Outline Outline • advantages of ellipsometry - illustrative examples - iii) oblique and variable angle of iii) dimensionality-controlled incidence, very sensitive to collective charge and spin* order thin-film properties in nickel-oxide superlattices * combined with low-energy muons which serve as a sensitive local probe of the internal magnetic field distribution
  • 55. 2D e-gas in semiconductors Band Bending picture QHE v Klitzing 1980 FQHE H. Störmer 1984 Jochen Mannhart’s lecture
  • 56. Dimentionality control in oxides LaAlO3 “solid-state chemistry approach” wide-band-gap (~ 5eV) insulator LaNiO3 Ruddlesden–Popper (R–P) homologous paramagnetic series of Srn+1RunO3n+1 metal
  • 57. Why RNiO3? J.-S. Zhou, J.B. Goodenough et al., LaAlO3 PRL 84, 526 (2000) wide-band-gap (~ 5eV) insulator Ni3+ 3d7 t62ge1g ∆CF >> JH eg LaNiO3 S=1/2 W ~ EG~ JH ~ U paramagnetic t2g metal
  • 58. RNiO3-based Heterosctructures LaAlO3 wide-band-gap Possible 3D-to-2D- and interface- (~ 5eV) insulator induced “engineered” properties of correlated electrons: • metal- insulator transition with unusual magnetic and charge ordering • orbital reconstruction • multiferroicity G. Giovannetti et al., PRL 103, 156401 (2009) • superconductivity J. Chaloupka and G. Khaliullin, PRL 100, 016404 (2008) P. Hansmann et al., PRL 103, 016401 (2009) “… possible orbital occupancy analogous to the cuprates …” LaNiO3 paramagnetic metal
  • 59. Theory Experiment Perfect sample Real sample Technology Extrinsic properties Intrinsic properties (stacking faults, inter-diffusion (collective quantum phases) substrate contribution) high oxygen pressure PLD, MPI-FKF G. Cristiani and H.-U. Habermeier
  • 60. LaNiO3|LaAlO3 superlattices compressive tensile (001) LaSrAlO4 (001) SrTiO3 N = 4 u.c. x 10, d = 290 ± 10 Å N = 3 u.c. x 13, d = 312 ± 10 Å MF-MPI beam line @ANKA, A. Frano, E. Benckiser, P. Wochner
  • 61. Reciprocal-space maps N = 4 u.c. N = 2 u.c. N = 2 u.c. Alex Frano’s poster
  • 62. Reciprocal-space maps N = 4 u.c. N = 2 u.c. N = 2 u.c. TEM: MF-MPI StEM E. Detemple, W. Sigle, P. van Aken
  • 63. Theory Experiment Perfect sample Real sample Technology Extrinsic properties Intrinsic properties faults, inter-diffusion (stacking (collective quantum phases) contribution) substrate inevitable defects + local probes! vs. macro probes optical spectroscopy dc conductivity charge: (ellipsometry) and permittivity muon-SR magnetic spin: (slow muons) susceptibility AFM, charge order FM, ferroelectric, SC
  • 64. Charge dynamics via spectroscopic ellipsometry Y Ai sample detector E Es analyzer IrsI P Ep ϕ IrpI ~ ~ r p (ω ) polarizer ρ (ω ) = ~ = tan Ψ (ω )ei∆ (ω ) light source r s (ω ) oblique incidence - sensitive to thin-film properties intrinsic SL’s electrodynamics is not flawed by a substrate, contacts and extended defects
  • 65. Isotropic film on isotropic substrate in vacuum ૚⁄૛ ଶ ଶ ૛ ߮௜ ܰ cos ߮ − ܰ − sin ࣐ ‫ݎ‬଴ଵ೛೛ = ૚⁄૛ 01 ܰ ଶ cos ߮ + ܰ ଶ − sin ࣐ ૛ d ܰ SL ଶ ଶ ૛ ૛ ૚⁄૛ 12 −݊ cos ߚ + ܰ ݊ − ࡺࡿ sin ࢼ ‫ݎ‬ଵଶ೛೛ = ૚⁄૛ ૛ ߚ௜ ݊ଶ cos ߚ +ܰ ݊ଶ − ࡺࡿ sin ࢼ ૛ ࡺ࢙ substrate ૚⁄૛ cos ߮ − ܰ ଶ − sin ࣐ ૛ ‫ݎ‬଴ଵೞೞ = ‫ݎ‬௣ (߱) ̃ cos ߮ + ܰ ଶ − sin ࣐ ૛ ૚⁄૛ ߩ ߱ = ෤ = tan Ψ(߱) ݁ ௜∙୼(ఠ) ‫ݎ‬௦ (߱) ̃ ૚⁄૛ ଶ ૛ ૛ −ࡺࡿ cos ߚ + ܰ − ࡺࡿ sin ࢼ ‫ݎ‬଴ଵ೛೛ + ‫ݎ‬ଵଶ೛೛ ݁ ି௜ଶఈ ‫ݎ‬ଵଶೞೞ = ૚⁄૛ ‫ݎ‬௣ (߱) = ̃ cos ߚ + ܰ ଶ − ࡺࡿ ૛ sin ࢼ ૛ 1 + ‫ݎ‬଴ଵ೛೛ ‫ݎ‬ଵଶ೛೛ ݁ ି௜ଶఈ ‫ݎ‬଴ଵೞೞ + ‫ݎ‬ଵଶೞೞ ݁ ି௜ଶఈ Snell‘s law: sin ߮ = ܰ௦ sin ߚ ‫ݎ‬௦ (߱) = ̃ 1 + ‫ݎ‬଴ଵೞೞ ‫ݎ‬ଵଶೞೞ ݁ ି௜ଶఈ ૚⁄૛ ௗ ଶ ૛ Phase thickness: ߙ = 2ߨ ܰ − sin ࣐ ఒ Known: ߩ ߱ , ߮, ࡺࡿ ෤ ߱ Unkown: ࡺ ߱ , ݀
  • 66. complex dielectric function of bare SLs numerical inversion Drude parameters: N = 4: ω p ≈ 1.10 eV , γ ≈ 87 meV m* = 10 N = 2: ω p ≈ 1.05 eV , γ ≈ 196 meV m V EF = 0.5eV , VF = 1.33 ⋅107 cm , l = F s 2π cγ o o mean free path: N = 4: l = 9.7 A, N = 2: l = 4.4 A
  • 67. from itinerant to localized electrons LaNiO3
  • 68. from itinerant to localized electrons LaNiO3
  • 69. from itinerant to localized electrons LaNiO3 ΔNeff=0.03 Effective number of electrons localized: ω ∆N eff (ω ) = 2 0 ∫ ∆σ (ω ′)dω ′ 2m π e N Ni 0
  • 70. from itinerant to localized electrons LaNiO3 ΔNeff=0.03 Effective number of electrons localized: bulk NdNiO3 - ΔNeff=0.058 ω ∆N eff (ω ) = 2 0 ∫ ∆σ (ω ′)dω ′ 2m T.Katsufuji, Y.Tokura et al., (1995): π e N Ni 0
  • 71. from itinerant to localized electrons LaNiO3 ΔNeff=0.03 Effective number of electrons localized: bulk NdNiO3 - ΔNeff=0.058 ω ∆N eff (ω ) = 2 0 ∫ ∆σ (ω ′)dω ′ 2m T.Katsufuji, Y.Tokura et al., (1995): π e N Ni 0
  • 72. Metal – Insulator Transition (MIT) in LaNiO3 Continuing the analogy with bulk RNiO3 series, one would then expect another second-order transition due to the onset of antiferromagnetic ordering at TN < TMI in the N = 2 SLs, as in RNiO3 with small R (Lu through Sm).
  • 73. Low-Energy µSR measurements Rob Kiefl’s lecture Thomas Prokscha, Zaher Salman, Andreas Suter, Elvezio Morenzoni
  • 74. LaNiO3|LaAlO3 SLs : µ+ Spin Relaxation F (t ) − B (t ) BTF = 0 AZF (t ) = = aoG (t ) F (t ) + B(t ) G(t) is the Fourier transform of the field distribution averaged over all muon sites. Fast depolarization rate: Ni spins are AFM ordered
  • 75. LaNiO3|LaAlO3 SLs : µ+ Spin Rotation BTF=100 G The time evolution of the muon polarisation in a transverse field BTF is µ+ F (t ) − B(t ) ATF (t ) = = aoG (t ) cos(ω L t ) F (t ) + B (t ) where Larmor frequency ωL= γµBTF , γµ= 2π×13.55 MHz/kG
  • 76. LaNiO3|LaAlO3 SLs : µ+ Spin Rotation BTF > 0 The time evolution of the muon polarisation in a transverse field BTF is µ+ F (t ) − B(t ) ATF (t ) = = aoG (t ) cos(ω L t ) F (t ) + B (t ) where Larmor frequency ωL= γµBTF , γµ= 2π×13.55 MHz/kG BTF =100 Gauss BTF =1000 Gauss BTF =3000 Gauss
  • 77. LaNiO3|LaAlO3 SLs : charge and spin order
  • 78. LaNiO3|LaAlO3 SLs : charge and spin order
  • 79. LaNiO3|LaAlO3 SLs : charge and spin order
  • 81. SUMMARY i) superconductivity-induced transfer of the spectral weight in high temperature cuprate SCs ii) superconductivity-induced optical anomalies and iron-based pnictide superconductors iii) dimensionality-controlled collective charge and spin* order in nickel-oxide superlattices