SlideShare une entreprise Scribd logo
1  sur  43
Télécharger pour lire hors ligne
3D Trigonometry
3D Trigonometry
When doing 3D trigonometry it is often useful to redraw all of the
faces of the shape in 2D.
3D Trigonometry
When doing 3D trigonometry it is often useful to redraw all of the
faces of the shape in 2D.
2003 Extension 1 HSC Q7a)
David is in a life raft and Anna is in a cabin cruiser searching for him.
They are in contact by mobile phone. David tells Ana that he can see
Mt Hope. From David’s position the mountain has a bearing of 109 ,
and the angle of elevation to the top of the mountain is 16.
Anna can also see Mt Hope. From her position it has a bearing of 139,
and and the top of the mountain has an angle of elevation of 23 .
The top of Mt Hope is 1500 m above sea level.
Find the distance and bearing of the life raft from Anna’s position.
H

          1500 m

D   16   B
H                  H
          1500 m             1500 m
    16                23
D         B        A         B
H                      H
                     1500 m                 1500 m
    16                           23
D                    B        A             B


                 N


             D
          109
                                        B
H                                      H
                     1500 m       N’                        1500 m
    16                                           23
D                    B                 A                    B
                              A            139
                 N


             D
          109
                                                        B
H                                      H
                     1500 m       N’                        1500 m
    16                                           23
D                    B                 A                    B
                              A            139
                 N
                         b                 

             D
          109
                                                        B
BD
      tan 74
1500
BD
      tan 74
1500
 BD  1500 tan 74
BD
      tan 74
1500                 Similarly;
 BD  1500 tan 74       AB  1500 tan 67 
H                                              H
                     1500 m           N’                            1500 m
    16                                               23
D                    B                     A                        B
                                  A            139
                 N
                         b                     
                                                1500 tan 67 
             D
          109
                             1500 tan 74
                                                                B
H                                             H
                     1500 m           N’                           1500 m
    16                                               23
D                    B                     A                       B
                                  A            139
                 N
                         b                     
                                                1500 tan 67  N”
             D
          109
                             1500 tan 74
                                                            B
BD
      tan 74
1500                  Similarly;
 BD  1500 tan 74         AB  1500 tan 67 

NDB  DBN "  180   cointerior ' s  180, ND || N" B
BD
      tan 74
1500                     Similarly;
 BD  1500 tan 74            AB  1500 tan 67 

NDB  DBN "  180      cointerior ' s  180, ND || N" B
  109  DBN "  180
         DBN "  71
BD
      tan 74
1500                     Similarly;
 BD  1500 tan 74            AB  1500 tan 67 

NDB  DBN "  180      cointerior ' s  180, ND || N" B
  109  DBN "  180
         DBN "  71

    Similarly;
         ABN "  41
BD
      tan 74
1500                     Similarly;
 BD  1500 tan 74            AB  1500 tan 67 

NDB  DBN "  180      cointerior ' s  180, ND || N" B
  109  DBN "  180
         DBN "  71

    Similarly;
         ABN "  41
         ABD  DBN "ABN "         common ' s 
        ABD  30
H                                             H
                     1500 m           N’                           1500 m
    16                                               23
D                    B                     A                       B
                                  A            139
                 N
                         b                     
                                                1500 tan 67  N”
             D
          109                                        30
                             1500 tan 74
                                                            B
b 2  1500 2 tan 2 67   1500 2 tan 2 74  2 1500 tan 67  1500 tan 74 cos 30
b 2  1500 2 tan 2 67   1500 2 tan 2 74  2 1500 tan 67  1500 tan 74 cos 30
 b  2798.96
    2799 (to nearest metre)
  Anna and David are 2799 m apart.
H                                             H
                     1500 m           N’                           1500 m
    16                                               23
D                    B                     A                       B
                                  A            139
                 N
                         b                     
                                                1500 tan 67  N”
             D
          109                                        30
                             1500 tan 74
                                                            B
b 2  1500 2 tan 2 67   1500 2 tan 2 74  2 1500 tan 67  1500 tan 74 cos 30
 b  2798.96
    2799 (to nearest metre)
  Anna and David are 2799 m apart.

   sin DAB sin 30
              
                
  1500 tan 74     b
b 2  1500 2 tan 2 67   1500 2 tan 2 74  2 1500 tan 67  1500 tan 74 cos 30
 b  2798.96
    2799 (to nearest metre)
  Anna and David are 2799 m apart.

   sin DAB sin 30
              
                
  1500 tan 74        b
                  1500 tan 74 sin 30
    sin DAB 
                           b
        DAB  699' or 11051'
b 2  1500 2 tan 2 67   1500 2 tan 2 74  2 1500 tan 67  1500 tan 74 cos 30
 b  2798.96
    2799 (to nearest metre)
  Anna and David are 2799 m apart.

   sin DAB sin 30
              
                
  1500 tan 74        b
                  1500 tan 74 sin 30
    sin DAB 
                           b
        DAB  699' or 11051'
     If DAB  699'
     then BDA  8051'
b 2  1500 2 tan 2 67   1500 2 tan 2 74  2 1500 tan 67  1500 tan 74 cos 30
 b  2798.96
    2799 (to nearest metre)
  Anna and David are 2799 m apart.

   sin DAB sin 30
              
                
  1500 tan 74        b
                  1500 tan 74 sin 30
    sin DAB 
                           b
        DAB  699' or 11051'
     If DAB  699'
     then BDA  8051'
     But DAB  BDA
        BDA  11051'
H                                             H
                     1500 m           N’                           1500 m
    16                                               23
D                    B                     A                       B
                                  A            139
                 N
                         b      11051'        
                                                1500 tan 67  N”
             D
          109                                        30
                             1500 tan 74
                                                            B
b 2  1500 2 tan 2 67   1500 2 tan 2 74  2 1500 tan 67  1500 tan 74 cos 30
 b  2798.96
    2799 (to nearest metre)
  Anna and David are 2799 m apart.

   sin DAB sin 30
              
                
  1500 tan 74        b
                  1500 tan 74 sin 30
    sin DAB 
                           b
        DAB  699' or 11051'
     If DAB  699'
     then BDA  8051'
     But DAB  BDA
        BDA  110 51' 
                                 The bearing of David from Anna is 24951'
2000 Extension 1 HSC Q3c)
A surveyor stands at point A, which is due south of a tower OT of
                                                                        
height h m. The angle of elevation of the top of the tower from A is 45




The surveyor then walks 100 m due east to point B, from where she
measures the angle of elevation of the top of the tower to be 30
(i) Express the length of OB in terms of h.
                    T

                  h
                                  30
                   0                          B
(i) Express the length of OB in terms of h.
                    T

                  h
                                  30
                  0                           B
     OB
         tan 60
      h
     OB  h tan 60
(i) Express the length of OB in terms of h.
                    T

                  h
                                  30
                  0                           B
     OB
         tan 60
      h
     OB  h tan 60
(ii) Show that h  50 2
(i) Express the length of OB in terms of h.
                    T

                  h
                                  30
                   0                          B
      OB
          tan 60
       h
      OB  h tan 60
(ii) Show that h  50 2
                  T

                  h
  A     45       0
(i) Express the length of OB in terms of h.
                    T

                  h
                                  30
                   0                          B
      OB
          tan 60
       h
      OB  h tan 60
(ii) Show that h  50 2
                  T

                  h
  A     45       0
 ATO is isosceles
       AO  h
(i) Express the length of OB in terms of h.
                    T

                  h
                                  30
                   0                          B
      OB
          tan 60
       h
      OB  h tan 60
(ii) Show that h  50 2
                  T     O

                          h         h tan 60
                  h
  A     45       0       A                   B
                                 100
 ATO is isosceles
       AO  h
(i) Express the length of OB in terms of h.
                    T

                  h
                                  30
                   0                          B
      OB
          tan 60
       h
      OB  h tan 60
(ii) Show that h  50 2
                  T     O                         h 2  100 2  h 2 tan 2 60

                          h         h tan 60
                  h
  A     45       0       A                   B
                                 100
 ATO is isosceles
       AO  h
(i) Express the length of OB in terms of h.
                    T

                  h
                                  30
                   0                          B
      OB
          tan 60
       h
      OB  h tan 60
(ii) Show that h  50 2
                  T     O                         h 2  100 2  h 2 tan 2 60

                          h         h tan 60     h 2  100 2  3h 2
                  h
        45                                             2h 2  100 2
  A               0       A                   B                100 2
                                 100                     h 
                                                           2

 ATO is isosceles                                               2
                                                               100
       AO  h                                            h
                                                                 2
                                                          h  50 2
(iii) Calculate the bearing of B from the base of the tower.
(iii) Calculate the bearing of B from the base of the tower.

         N



       O

   50 2
        A      100       B
(iii) Calculate the bearing of B from the base of the tower.

         N
                                                        100
                                          tan AOB 
                                                       50 2

       O

   50 2
        A      100       B
(iii) Calculate the bearing of B from the base of the tower.

         N
                                                        100
                                          tan AOB 
                                                       50 2
                                             AOB  54 44'
       O

   50 2
        A      100       B
(iii) Calculate the bearing of B from the base of the tower.

         N
                                                        100
                                          tan AOB 
                                                       50 2
                                             AOB  54 44'
       O
                                           bearing  180  54 44'
   50 2                                               12516'

        A      100       B
(iii) Calculate the bearing of B from the base of the tower.

         N
                                                        100
                                          tan AOB 
                                                       50 2
                                             AOB  54 44'
       O
                                           bearing  180  54 44'
   50 2                                               12516'

        A      100       B


                      Book 2: Exercise 2G odds

                          Exercise 2H evens

Contenu connexe

En vedette

11 x1 t04 01 trigonometric ratios (2013)
11 x1 t04 01 trigonometric ratios (2013)11 x1 t04 01 trigonometric ratios (2013)
11 x1 t04 01 trigonometric ratios (2013)
Nigel Simmons
 
11 x1 t04 02 angles of any magnitude
11 x1 t04 02 angles of any magnitude11 x1 t04 02 angles of any magnitude
11 x1 t04 02 angles of any magnitude
Nigel Simmons
 
11X1 T04 05 sine rule (2011)
11X1 T04 05 sine rule (2011)11X1 T04 05 sine rule (2011)
11X1 T04 05 sine rule (2011)
Nigel Simmons
 
11 X1 T04 04 trigonometric equations (2010)
11 X1 T04 04 trigonometric equations (2010)11 X1 T04 04 trigonometric equations (2010)
11 X1 T04 04 trigonometric equations (2010)
Nigel Simmons
 
11 x1 t04 06 cosine rule (2012)
11 x1 t04 06 cosine rule (2012)11 x1 t04 06 cosine rule (2012)
11 x1 t04 06 cosine rule (2012)
Nigel Simmons
 
11 x1 t09 08 implicit differentiation (2013)
11 x1 t09 08 implicit differentiation (2013)11 x1 t09 08 implicit differentiation (2013)
11 x1 t09 08 implicit differentiation (2013)
Nigel Simmons
 

En vedette (7)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
11 x1 t04 01 trigonometric ratios (2013)
11 x1 t04 01 trigonometric ratios (2013)11 x1 t04 01 trigonometric ratios (2013)
11 x1 t04 01 trigonometric ratios (2013)
 
11 x1 t04 02 angles of any magnitude
11 x1 t04 02 angles of any magnitude11 x1 t04 02 angles of any magnitude
11 x1 t04 02 angles of any magnitude
 
11X1 T04 05 sine rule (2011)
11X1 T04 05 sine rule (2011)11X1 T04 05 sine rule (2011)
11X1 T04 05 sine rule (2011)
 
11 X1 T04 04 trigonometric equations (2010)
11 X1 T04 04 trigonometric equations (2010)11 X1 T04 04 trigonometric equations (2010)
11 X1 T04 04 trigonometric equations (2010)
 
11 x1 t04 06 cosine rule (2012)
11 x1 t04 06 cosine rule (2012)11 x1 t04 06 cosine rule (2012)
11 x1 t04 06 cosine rule (2012)
 
11 x1 t09 08 implicit differentiation (2013)
11 x1 t09 08 implicit differentiation (2013)11 x1 t09 08 implicit differentiation (2013)
11 x1 t09 08 implicit differentiation (2013)
 

Plus de Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 

Plus de Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Dernier

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 

Dernier (20)

Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 

11 x1 t04 07 3d trigonometry (2013)

  • 2. 3D Trigonometry When doing 3D trigonometry it is often useful to redraw all of the faces of the shape in 2D.
  • 3. 3D Trigonometry When doing 3D trigonometry it is often useful to redraw all of the faces of the shape in 2D. 2003 Extension 1 HSC Q7a) David is in a life raft and Anna is in a cabin cruiser searching for him. They are in contact by mobile phone. David tells Ana that he can see Mt Hope. From David’s position the mountain has a bearing of 109 , and the angle of elevation to the top of the mountain is 16. Anna can also see Mt Hope. From her position it has a bearing of 139, and and the top of the mountain has an angle of elevation of 23 . The top of Mt Hope is 1500 m above sea level. Find the distance and bearing of the life raft from Anna’s position.
  • 4.
  • 5. H 1500 m D 16 B
  • 6. H H 1500 m 1500 m 16 23 D B A B
  • 7. H H 1500 m 1500 m 16 23 D B A B N D 109 B
  • 8. H H 1500 m N’ 1500 m 16 23 D B A B A 139 N D 109 B
  • 9. H H 1500 m N’ 1500 m 16 23 D B A B A 139 N b  D 109 B
  • 10. BD  tan 74 1500
  • 11. BD  tan 74 1500 BD  1500 tan 74
  • 12. BD  tan 74 1500 Similarly; BD  1500 tan 74 AB  1500 tan 67 
  • 13. H H 1500 m N’ 1500 m 16 23 D B A B A 139 N b  1500 tan 67  D 109 1500 tan 74 B
  • 14. H H 1500 m N’ 1500 m 16 23 D B A B A 139 N b  1500 tan 67  N” D 109 1500 tan 74 B
  • 15. BD  tan 74 1500 Similarly; BD  1500 tan 74 AB  1500 tan 67  NDB  DBN "  180 cointerior ' s  180, ND || N" B
  • 16. BD  tan 74 1500 Similarly; BD  1500 tan 74 AB  1500 tan 67  NDB  DBN "  180 cointerior ' s  180, ND || N" B 109  DBN "  180 DBN "  71
  • 17. BD  tan 74 1500 Similarly; BD  1500 tan 74 AB  1500 tan 67  NDB  DBN "  180 cointerior ' s  180, ND || N" B 109  DBN "  180 DBN "  71 Similarly; ABN "  41
  • 18. BD  tan 74 1500 Similarly; BD  1500 tan 74 AB  1500 tan 67  NDB  DBN "  180 cointerior ' s  180, ND || N" B 109  DBN "  180 DBN "  71 Similarly; ABN "  41 ABD  DBN "ABN " common ' s   ABD  30
  • 19. H H 1500 m N’ 1500 m 16 23 D B A B A 139 N b  1500 tan 67  N” D 109 30 1500 tan 74 B
  • 20. b 2  1500 2 tan 2 67   1500 2 tan 2 74  2 1500 tan 67  1500 tan 74 cos 30
  • 21. b 2  1500 2 tan 2 67   1500 2 tan 2 74  2 1500 tan 67  1500 tan 74 cos 30 b  2798.96  2799 (to nearest metre) Anna and David are 2799 m apart.
  • 22. H H 1500 m N’ 1500 m 16 23 D B A B A 139 N b  1500 tan 67  N” D 109 30 1500 tan 74 B
  • 23. b 2  1500 2 tan 2 67   1500 2 tan 2 74  2 1500 tan 67  1500 tan 74 cos 30 b  2798.96  2799 (to nearest metre) Anna and David are 2799 m apart. sin DAB sin 30   1500 tan 74 b
  • 24. b 2  1500 2 tan 2 67   1500 2 tan 2 74  2 1500 tan 67  1500 tan 74 cos 30 b  2798.96  2799 (to nearest metre) Anna and David are 2799 m apart. sin DAB sin 30   1500 tan 74 b 1500 tan 74 sin 30 sin DAB  b DAB  699' or 11051'
  • 25. b 2  1500 2 tan 2 67   1500 2 tan 2 74  2 1500 tan 67  1500 tan 74 cos 30 b  2798.96  2799 (to nearest metre) Anna and David are 2799 m apart. sin DAB sin 30   1500 tan 74 b 1500 tan 74 sin 30 sin DAB  b DAB  699' or 11051' If DAB  699' then BDA  8051'
  • 26. b 2  1500 2 tan 2 67   1500 2 tan 2 74  2 1500 tan 67  1500 tan 74 cos 30 b  2798.96  2799 (to nearest metre) Anna and David are 2799 m apart. sin DAB sin 30   1500 tan 74 b 1500 tan 74 sin 30 sin DAB  b DAB  699' or 11051' If DAB  699' then BDA  8051' But DAB  BDA  BDA  11051'
  • 27. H H 1500 m N’ 1500 m 16 23 D B A B A 139 N b 11051'  1500 tan 67  N” D 109 30 1500 tan 74 B
  • 28. b 2  1500 2 tan 2 67   1500 2 tan 2 74  2 1500 tan 67  1500 tan 74 cos 30 b  2798.96  2799 (to nearest metre) Anna and David are 2799 m apart. sin DAB sin 30   1500 tan 74 b 1500 tan 74 sin 30 sin DAB  b DAB  699' or 11051' If DAB  699' then BDA  8051' But DAB  BDA  BDA  110 51'   The bearing of David from Anna is 24951'
  • 29. 2000 Extension 1 HSC Q3c) A surveyor stands at point A, which is due south of a tower OT of  height h m. The angle of elevation of the top of the tower from A is 45 The surveyor then walks 100 m due east to point B, from where she measures the angle of elevation of the top of the tower to be 30
  • 30. (i) Express the length of OB in terms of h. T h 30 0 B
  • 31. (i) Express the length of OB in terms of h. T h 30 0 B OB  tan 60 h OB  h tan 60
  • 32. (i) Express the length of OB in terms of h. T h 30 0 B OB  tan 60 h OB  h tan 60 (ii) Show that h  50 2
  • 33. (i) Express the length of OB in terms of h. T h 30 0 B OB  tan 60 h OB  h tan 60 (ii) Show that h  50 2 T h A 45 0
  • 34. (i) Express the length of OB in terms of h. T h 30 0 B OB  tan 60 h OB  h tan 60 (ii) Show that h  50 2 T h A 45 0 ATO is isosceles  AO  h
  • 35. (i) Express the length of OB in terms of h. T h 30 0 B OB  tan 60 h OB  h tan 60 (ii) Show that h  50 2 T O h h tan 60 h A 45 0 A B 100 ATO is isosceles  AO  h
  • 36. (i) Express the length of OB in terms of h. T h 30 0 B OB  tan 60 h OB  h tan 60 (ii) Show that h  50 2 T O h 2  100 2  h 2 tan 2 60 h h tan 60 h A 45 0 A B 100 ATO is isosceles  AO  h
  • 37. (i) Express the length of OB in terms of h. T h 30 0 B OB  tan 60 h OB  h tan 60 (ii) Show that h  50 2 T O h 2  100 2  h 2 tan 2 60 h h tan 60 h 2  100 2  3h 2 h 45  2h 2  100 2 A 0 A B 100 2 100 h  2 ATO is isosceles 2 100  AO  h h 2 h  50 2
  • 38. (iii) Calculate the bearing of B from the base of the tower.
  • 39. (iii) Calculate the bearing of B from the base of the tower. N O 50 2 A 100 B
  • 40. (iii) Calculate the bearing of B from the base of the tower. N 100 tan AOB  50 2 O 50 2 A 100 B
  • 41. (iii) Calculate the bearing of B from the base of the tower. N 100 tan AOB  50 2 AOB  54 44' O 50 2 A 100 B
  • 42. (iii) Calculate the bearing of B from the base of the tower. N 100 tan AOB  50 2 AOB  54 44' O  bearing  180  54 44' 50 2  12516' A 100 B
  • 43. (iii) Calculate the bearing of B from the base of the tower. N 100 tan AOB  50 2 AOB  54 44' O  bearing  180  54 44' 50 2  12516' A 100 B Book 2: Exercise 2G odds Exercise 2H evens