SlideShare une entreprise Scribd logo
1  sur  35
Télécharger pour lire hors ligne
Permutations Not All Different
Case 3: Ordered Sets of n Objects,
Permutations Not All Different
Case 3: Ordered Sets of n Objects,
          (i.e. some of the objects are the same)
2 objects
               Permutations Not All Different
            Case 3: Ordered Sets of n Objects,
                      (i.e. some of the objects are the same)
2 objects
                   Permutations Not All Different
                Case 3: Ordered Sets of n Objects,
all different             (i.e. some of the objects are the same)
    A B
   B A
2 objects
                   Permutations Not All Different
                Case 3: Ordered Sets of n Objects,
all different             (i.e. some of the objects are the same)
    A B
   B A
   2! 2
2 objects
                   Permutations Not All Different
                Case 3: Ordered Sets of n Objects,
all different     2 same   (i.e. some of the objects are the same)
    A B            A A
   B A
   2! 2             1
2 objects
                   Permutations Not All Different
                Case 3: Ordered Sets of n Objects,
all different     2 same   (i.e. some of the objects are the same)
    A B            A A
   B A
   2! 2             1
 3 objects
2 objects
                   Permutations Not All Different
                Case 3: Ordered Sets of n Objects,
all different     2 same   (i.e. some of the objects are the same)
    A B            A A
   B A
    2! 2            1
 3 objects
all different
 A B C
  A C B
  B A C
  B C A
  C A B
  C B A
2 objects
                   Permutations Not All Different
                Case 3: Ordered Sets of n Objects,
all different     2 same   (i.e. some of the objects are the same)
    A B            A A
   B A
    2! 2            1
 3 objects
all different
 A B C
  A C B
  B A C
  B C A
  C A B
  C B A
   3! 6
2 objects
                   Permutations Not All Different
                Case 3: Ordered Sets of n Objects,
all different     2 same   (i.e. some of the objects are the same)
    A B            A A
   B A
    2! 2            1
 3 objects
all different    2 same
 A B C           A A B
  A C B          A B A
  B A C          B A A
  B C A
  C A B
  C B A
   3! 6            3
2 objects
                   Permutations Not All Different
                Case 3: Ordered Sets of n Objects,
all different     2 same   (i.e. some of the objects are the same)
    A B            A A
   B A
    2! 2            1
 3 objects
all different    2 same      3 same
 A B C           A A B       A A A
  A C B          A B A
  B A C          B A A
  B C A
  C A B
  C B A
   3! 6            3             1
4 objects
4 objects
            all different
A   B   C   D          C    B   A   D
A   B   D   C          C    B   D   A
A   C   B   D          C    A   B   D
A   C   D   B          C    A   D   B
A   D   B   C          C    D   B   A
A   D   C   B          C    D   A   B
B   A   C   D          D    A   C   B
B   A   D   C          D    A   B   C
B   C   A   D          D    C   A   B
B   C   D   A          D    C   B   A
B   D   A   C          D    B   A   C
B   D   A   B          D    B   A   B
4 objects
            all different
A   B   C   D          C    B   A   D
A   B   D   C          C    B   D   A
A   C   B   D          C    A   B   D
A   C   D   B          C    A   D   B
A   D   B   C          C    D   B   A
A   D   C   B          C    D   A   B
B   A   C   D          D    A   C   B
B   A   D   C          D    A   B   C
B   C   A   D          D    C   A   B
B   C   D   A          D    C   B   A
B   D   A   C          D    B   A   C
B   D   A   B          D    B   A   B
              4! 24
4 objects
            all different                   2 same
A   B   C   D          C    B   A   D   A   A B      C
A   B   D   C          C    B   D   A   A   A C      B
A   C   B   D          C    A   B   D   A   B A      C
A   C   D   B          C    A   D   B   A   B C      A
A   D   B   C          C    D   B   A   A   C A      B
A   D   C   B          C    D   A   B   A   C B      A
B   A   C   D          D    A   C   B   B   A A      C
B   A   D   C          D    A   B   C   B   A C      A
B   C   A   D          D    C   A   B   B   C A      A
B   C   D   A          D    C   B   A   C   A A      B
B   D   A   C          D    B   A   C   C   A B      A
B   D   A   B          D    B   A   B   C   B A      A
              4! 24                          12
4 objects
            all different                   2 same        3 same
A   B   C   D          C    B   A   D   A   A B      C   A A A B
A   B   D   C          C    B   D   A   A   A C      B
                                                         A A B A
A   C   B   D          C    A   B   D   A   B A      C
                                                         A B A A
A   C   D   B          C    A   D   B   A   B C      A
A   D   B   C          C    D   B   A   A   C A      B   B A A A
A   D   C   B          C    D   A   B   A   C B      A      4
B   A   C   D          D    A   C   B   B   A A      C
B   A   D   C          D    A   B   C   B   A C      A
B   C   A   D          D    C   A   B   B   C A      A
B   C   D   A          D    C   B   A   C   A A      B
B   D   A   C          D    B   A   C   C   A B      A
B   D   A   B          D    B   A   B   C   B A      A
              4! 24                          12
4 objects
            all different                   2 same        3 same
A   B   C   D          C    B   A   D   A   A B      C   A A A B
A   B   D   C          C    B   D   A   A   A C      B
                                                         A A B A
A   C   B   D          C    A   B   D   A   B A      C
                                                         A B A A
A   C   D   B          C    A   D   B   A   B C      A
A   D   B   C          C    D   B   A   A   C A      B   B A A A
A   D   C   B          C    D   A   B   A   C B      A      4
B   A   C   D          D    A   C   B   B   A A      C
B   A   D   C          D    A   B   C   B   A C      A
B   C   A   D          D    C   A   B   B   C A      A
B   C   D   A          D    C   B   A   C   A A      B
B   D   A   C          D    B   A   C   C   A B      A    4 same
B   D   A   B          D    B   A   B   C   B A      A   A A A A
              4! 24                          12              1
If we arrange n objects in a line, of which x are alike, the number of
ways we could arrange them are;
If we arrange n objects in a line, of which x are alike, the number of
ways we could arrange them are;

                                    n!
       Number of Arrangements 
                                    x!
If we arrange n objects in a line, of which x are alike, the number of
ways we could arrange them are;
                                                   ways of arranging
                                n!                    n objects
       Number of Arrangements 
                                x!
If we arrange n objects in a line, of which x are alike, the number of
ways we could arrange them are;
                                                   ways of arranging
                                n!                    n objects
       Number of Arrangements 
                                x!                ways of arranging
                                                    the like objects
If we arrange n objects in a line, of which x are alike, the number of
 ways we could arrange them are;
                                                    ways of arranging
                                 n!                    n objects
        Number of Arrangements 
                                 x!                ways of arranging
                                                 the like objects
e.g. How many different words can be formed using all of the
     letters in the word
                      CONNAUGHTON ?
If we arrange n objects in a line, of which x are alike, the number of
 ways we could arrange them are;
                                                    ways of arranging
                                 n!                    n objects
        Number of Arrangements 
                                 x!                ways of arranging
                                                 the like objects
e.g. How many different words can be formed using all of the
     letters in the word
                      CONNAUGHTON ?
                                  11!
                        Words 
                                  2!3!
If we arrange n objects in a line, of which x are alike, the number of
 ways we could arrange them are;
                                                    ways of arranging
                                 n!                    n objects
        Number of Arrangements 
                                 x!                ways of arranging
                                                 the like objects
e.g. How many different words can be formed using all of the
     letters in the word
                       CONNAUGHTON ?
                                     11!
                           Words 
                                     2!3!


     2! for the two O' s
If we arrange n objects in a line, of which x are alike, the number of
 ways we could arrange them are;
                                                    ways of arranging
                                 n!                    n objects
        Number of Arrangements 
                                 x!                ways of arranging
                                                 the like objects
e.g. How many different words can be formed using all of the
     letters in the word
                       CONNAUGHTON ?
                                     11!
                           Words 
                                     2!3!


     2! for the two O' s                            3! for the three N' s
If we arrange n objects in a line, of which x are alike, the number of
 ways we could arrange them are;
                                                    ways of arranging
                                 n!                    n objects
        Number of Arrangements 
                                 x!                ways of arranging
                                                 the like objects
e.g. How many different words can be formed using all of the
     letters in the word
                       CONNAUGHTON ?
                                     11!
                           Words 
                                     2!3!
                               3326400
     2! for the two O' s                            3! for the three N' s
2001 Extension 1 HSC Q2c)
The letters A, E, I, O and U are vowels
(i) How many arrangements of the letters in the word ALGEBRAIC
    are possible?
2001 Extension 1 HSC Q2c)
The letters A, E, I, O and U are vowels
(i) How many arrangements of the letters in the word ALGEBRAIC
    are possible?
                                   9!
                           Words 
                                   2!
2001 Extension 1 HSC Q2c)
The letters A, E, I, O and U are vowels
(i) How many arrangements of the letters in the word ALGEBRAIC
    are possible?
                                   9!
                           Words 
                                   2!
                              181440
2001 Extension 1 HSC Q2c)
The letters A, E, I, O and U are vowels
(i) How many arrangements of the letters in the word ALGEBRAIC
    are possible?
                                   9!
                           Words 
                                   2!
                                 181440
(ii) How many arrangements of the letters in the word ALGEBRAIC
    are possible if the vowels must occupy the 2nd, 3rd, 5th, and 8th
    positions?
2001 Extension 1 HSC Q2c)
The letters A, E, I, O and U are vowels
(i) How many arrangements of the letters in the word ALGEBRAIC
    are possible?
                                   9!
                           Words 
                                   2!
                                 181440
(ii) How many arrangements of the letters in the word ALGEBRAIC
    are possible if the vowels must occupy the 2nd, 3rd, 5th, and 8th
    positions?                  4!
                         Words   5!
                                2!
2001 Extension 1 HSC Q2c)
The letters A, E, I, O and U are vowels
(i) How many arrangements of the letters in the word ALGEBRAIC
    are possible?
                                   9!
                           Words 
                                   2!
                                 181440
(ii) How many arrangements of the letters in the word ALGEBRAIC
    are possible if the vowels must occupy the 2nd, 3rd, 5th, and 8th
    positions?                  4!
                         Words   5!
                                2!

    Number of ways of
    placing the vowels
2001 Extension 1 HSC Q2c)
The letters A, E, I, O and U are vowels
(i) How many arrangements of the letters in the word ALGEBRAIC
    are possible?
                                   9!
                           Words 
                                   2!
                                 181440
(ii) How many arrangements of the letters in the word ALGEBRAIC
    are possible if the vowels must occupy the 2nd, 3rd, 5th, and 8th
    positions?                  4!
                         Words   5!
                                2!

    Number of ways of                            Number of ways of
    placing the vowels                          placing the consonants
2001 Extension 1 HSC Q2c)
The letters A, E, I, O and U are vowels
(i) How many arrangements of the letters in the word ALGEBRAIC
    are possible?
                                   9!
                           Words 
                                   2!
                                 181440
(ii) How many arrangements of the letters in the word ALGEBRAIC
    are possible if the vowels must occupy the 2nd, 3rd, 5th, and 8th
    positions?                  4!
                         Words   5!
                                2!

    Number of ways of         1440
                                                 Number of ways of
    placing the vowels                          placing the consonants
2001 Extension 1 HSC Q2c)
The letters A, E, I, O and U are vowels
(i) How many arrangements of the letters in the word ALGEBRAIC
    are possible?
                                   9!
                           Words 
                                   2!
                                 181440
(ii) How many arrangements of the letters in the word ALGEBRAIC
    are possible if the vowels must occupy the 2nd, 3rd, 5th, and 8th
    positions?                  4!
                         Words   5!
                                2!

    Number of ways of         1440
                                                 Number of ways of
    placing the vowels                          placing the consonants
                           Exercise 10F; odd

Contenu connexe

Similaire à 11 x1 t05 02 permutations ii (2013)

11X1 t05 03 combinations
11X1 t05 03 combinations11X1 t05 03 combinations
11X1 t05 03 combinations
Nigel Simmons
 
12X1 T09 05 combinations
12X1 T09 05 combinations12X1 T09 05 combinations
12X1 T09 05 combinations
Nigel Simmons
 
11 x1 t05 03 combinations (2013)
11 x1 t05 03 combinations (2013)11 x1 t05 03 combinations (2013)
11 x1 t05 03 combinations (2013)
Nigel Simmons
 
11X1 T06 03 combinations (2010)
11X1 T06 03 combinations (2010)11X1 T06 03 combinations (2010)
11X1 T06 03 combinations (2010)
Nigel Simmons
 
11 x1 t05 03 combinations (2012)
11 x1 t05 03 combinations (2012)11 x1 t05 03 combinations (2012)
11 x1 t05 03 combinations (2012)
Nigel Simmons
 
12X1 T09 05 combinations (2010)
12X1 T09 05 combinations (2010)12X1 T09 05 combinations (2010)
12X1 T09 05 combinations (2010)
Nigel Simmons
 

Similaire à 11 x1 t05 02 permutations ii (2013) (6)

11X1 t05 03 combinations
11X1 t05 03 combinations11X1 t05 03 combinations
11X1 t05 03 combinations
 
12X1 T09 05 combinations
12X1 T09 05 combinations12X1 T09 05 combinations
12X1 T09 05 combinations
 
11 x1 t05 03 combinations (2013)
11 x1 t05 03 combinations (2013)11 x1 t05 03 combinations (2013)
11 x1 t05 03 combinations (2013)
 
11X1 T06 03 combinations (2010)
11X1 T06 03 combinations (2010)11X1 T06 03 combinations (2010)
11X1 T06 03 combinations (2010)
 
11 x1 t05 03 combinations (2012)
11 x1 t05 03 combinations (2012)11 x1 t05 03 combinations (2012)
11 x1 t05 03 combinations (2012)
 
12X1 T09 05 combinations (2010)
12X1 T09 05 combinations (2010)12X1 T09 05 combinations (2010)
12X1 T09 05 combinations (2010)
 

Plus de Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

Plus de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Dernier

SPLICE Working Group: Reusable Code Examples
SPLICE Working Group:Reusable Code ExamplesSPLICE Working Group:Reusable Code Examples
SPLICE Working Group: Reusable Code Examples
Peter Brusilovsky
 
MSc Ag Genetics & Plant Breeding: Insights from Previous Year JNKVV Entrance ...
MSc Ag Genetics & Plant Breeding: Insights from Previous Year JNKVV Entrance ...MSc Ag Genetics & Plant Breeding: Insights from Previous Year JNKVV Entrance ...
MSc Ag Genetics & Plant Breeding: Insights from Previous Year JNKVV Entrance ...
Krashi Coaching
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
中 央社
 

Dernier (20)

Analyzing and resolving a communication crisis in Dhaka textiles LTD.pptx
Analyzing and resolving a communication crisis in Dhaka textiles LTD.pptxAnalyzing and resolving a communication crisis in Dhaka textiles LTD.pptx
Analyzing and resolving a communication crisis in Dhaka textiles LTD.pptx
 
The Liver & Gallbladder (Anatomy & Physiology).pptx
The Liver &  Gallbladder (Anatomy & Physiology).pptxThe Liver &  Gallbladder (Anatomy & Physiology).pptx
The Liver & Gallbladder (Anatomy & Physiology).pptx
 
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
 
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading RoomSternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
 
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...
 
Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).
 
Mattingly "AI and Prompt Design: LLMs with NER"
Mattingly "AI and Prompt Design: LLMs with NER"Mattingly "AI and Prompt Design: LLMs with NER"
Mattingly "AI and Prompt Design: LLMs with NER"
 
An Overview of the Odoo 17 Knowledge App
An Overview of the Odoo 17 Knowledge AppAn Overview of the Odoo 17 Knowledge App
An Overview of the Odoo 17 Knowledge App
 
The Story of Village Palampur Class 9 Free Study Material PDF
The Story of Village Palampur Class 9 Free Study Material PDFThe Story of Village Palampur Class 9 Free Study Material PDF
The Story of Village Palampur Class 9 Free Study Material PDF
 
How To Create Editable Tree View in Odoo 17
How To Create Editable Tree View in Odoo 17How To Create Editable Tree View in Odoo 17
How To Create Editable Tree View in Odoo 17
 
diagnosting testing bsc 2nd sem.pptx....
diagnosting testing bsc 2nd sem.pptx....diagnosting testing bsc 2nd sem.pptx....
diagnosting testing bsc 2nd sem.pptx....
 
ANTI PARKISON DRUGS.pptx
ANTI         PARKISON          DRUGS.pptxANTI         PARKISON          DRUGS.pptx
ANTI PARKISON DRUGS.pptx
 
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
 
SPLICE Working Group: Reusable Code Examples
SPLICE Working Group:Reusable Code ExamplesSPLICE Working Group:Reusable Code Examples
SPLICE Working Group: Reusable Code Examples
 
demyelinated disorder: multiple sclerosis.pptx
demyelinated disorder: multiple sclerosis.pptxdemyelinated disorder: multiple sclerosis.pptx
demyelinated disorder: multiple sclerosis.pptx
 
Major project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategiesMajor project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategies
 
MSc Ag Genetics & Plant Breeding: Insights from Previous Year JNKVV Entrance ...
MSc Ag Genetics & Plant Breeding: Insights from Previous Year JNKVV Entrance ...MSc Ag Genetics & Plant Breeding: Insights from Previous Year JNKVV Entrance ...
MSc Ag Genetics & Plant Breeding: Insights from Previous Year JNKVV Entrance ...
 
philosophy and it's principles based on the life
philosophy and it's principles based on the lifephilosophy and it's principles based on the life
philosophy and it's principles based on the life
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
 
Đề tieng anh thpt 2024 danh cho cac ban hoc sinh
Đề tieng anh thpt 2024 danh cho cac ban hoc sinhĐề tieng anh thpt 2024 danh cho cac ban hoc sinh
Đề tieng anh thpt 2024 danh cho cac ban hoc sinh
 

11 x1 t05 02 permutations ii (2013)

  • 1. Permutations Not All Different Case 3: Ordered Sets of n Objects,
  • 2. Permutations Not All Different Case 3: Ordered Sets of n Objects, (i.e. some of the objects are the same)
  • 3. 2 objects Permutations Not All Different Case 3: Ordered Sets of n Objects, (i.e. some of the objects are the same)
  • 4. 2 objects Permutations Not All Different Case 3: Ordered Sets of n Objects, all different (i.e. some of the objects are the same) A B B A
  • 5. 2 objects Permutations Not All Different Case 3: Ordered Sets of n Objects, all different (i.e. some of the objects are the same) A B B A 2! 2
  • 6. 2 objects Permutations Not All Different Case 3: Ordered Sets of n Objects, all different 2 same (i.e. some of the objects are the same) A B A A B A 2! 2 1
  • 7. 2 objects Permutations Not All Different Case 3: Ordered Sets of n Objects, all different 2 same (i.e. some of the objects are the same) A B A A B A 2! 2 1 3 objects
  • 8. 2 objects Permutations Not All Different Case 3: Ordered Sets of n Objects, all different 2 same (i.e. some of the objects are the same) A B A A B A 2! 2 1 3 objects all different A B C A C B B A C B C A C A B C B A
  • 9. 2 objects Permutations Not All Different Case 3: Ordered Sets of n Objects, all different 2 same (i.e. some of the objects are the same) A B A A B A 2! 2 1 3 objects all different A B C A C B B A C B C A C A B C B A 3! 6
  • 10. 2 objects Permutations Not All Different Case 3: Ordered Sets of n Objects, all different 2 same (i.e. some of the objects are the same) A B A A B A 2! 2 1 3 objects all different 2 same A B C A A B A C B A B A B A C B A A B C A C A B C B A 3! 6 3
  • 11. 2 objects Permutations Not All Different Case 3: Ordered Sets of n Objects, all different 2 same (i.e. some of the objects are the same) A B A A B A 2! 2 1 3 objects all different 2 same 3 same A B C A A B A A A A C B A B A B A C B A A B C A C A B C B A 3! 6 3 1
  • 13. 4 objects all different A B C D C B A D A B D C C B D A A C B D C A B D A C D B C A D B A D B C C D B A A D C B C D A B B A C D D A C B B A D C D A B C B C A D D C A B B C D A D C B A B D A C D B A C B D A B D B A B
  • 14. 4 objects all different A B C D C B A D A B D C C B D A A C B D C A B D A C D B C A D B A D B C C D B A A D C B C D A B B A C D D A C B B A D C D A B C B C A D D C A B B C D A D C B A B D A C D B A C B D A B D B A B 4! 24
  • 15. 4 objects all different 2 same A B C D C B A D A A B C A B D C C B D A A A C B A C B D C A B D A B A C A C D B C A D B A B C A A D B C C D B A A C A B A D C B C D A B A C B A B A C D D A C B B A A C B A D C D A B C B A C A B C A D D C A B B C A A B C D A D C B A C A A B B D A C D B A C C A B A B D A B D B A B C B A A 4! 24 12
  • 16. 4 objects all different 2 same 3 same A B C D C B A D A A B C A A A B A B D C C B D A A A C B A A B A A C B D C A B D A B A C A B A A A C D B C A D B A B C A A D B C C D B A A C A B B A A A A D C B C D A B A C B A 4 B A C D D A C B B A A C B A D C D A B C B A C A B C A D D C A B B C A A B C D A D C B A C A A B B D A C D B A C C A B A B D A B D B A B C B A A 4! 24 12
  • 17. 4 objects all different 2 same 3 same A B C D C B A D A A B C A A A B A B D C C B D A A A C B A A B A A C B D C A B D A B A C A B A A A C D B C A D B A B C A A D B C C D B A A C A B B A A A A D C B C D A B A C B A 4 B A C D D A C B B A A C B A D C D A B C B A C A B C A D D C A B B C A A B C D A D C B A C A A B B D A C D B A C C A B A 4 same B D A B D B A B C B A A A A A A 4! 24 12 1
  • 18. If we arrange n objects in a line, of which x are alike, the number of ways we could arrange them are;
  • 19. If we arrange n objects in a line, of which x are alike, the number of ways we could arrange them are; n! Number of Arrangements  x!
  • 20. If we arrange n objects in a line, of which x are alike, the number of ways we could arrange them are; ways of arranging n! n objects Number of Arrangements  x!
  • 21. If we arrange n objects in a line, of which x are alike, the number of ways we could arrange them are; ways of arranging n! n objects Number of Arrangements  x! ways of arranging the like objects
  • 22. If we arrange n objects in a line, of which x are alike, the number of ways we could arrange them are; ways of arranging n! n objects Number of Arrangements  x! ways of arranging the like objects e.g. How many different words can be formed using all of the letters in the word CONNAUGHTON ?
  • 23. If we arrange n objects in a line, of which x are alike, the number of ways we could arrange them are; ways of arranging n! n objects Number of Arrangements  x! ways of arranging the like objects e.g. How many different words can be formed using all of the letters in the word CONNAUGHTON ? 11! Words  2!3!
  • 24. If we arrange n objects in a line, of which x are alike, the number of ways we could arrange them are; ways of arranging n! n objects Number of Arrangements  x! ways of arranging the like objects e.g. How many different words can be formed using all of the letters in the word CONNAUGHTON ? 11! Words  2!3! 2! for the two O' s
  • 25. If we arrange n objects in a line, of which x are alike, the number of ways we could arrange them are; ways of arranging n! n objects Number of Arrangements  x! ways of arranging the like objects e.g. How many different words can be formed using all of the letters in the word CONNAUGHTON ? 11! Words  2!3! 2! for the two O' s 3! for the three N' s
  • 26. If we arrange n objects in a line, of which x are alike, the number of ways we could arrange them are; ways of arranging n! n objects Number of Arrangements  x! ways of arranging the like objects e.g. How many different words can be formed using all of the letters in the word CONNAUGHTON ? 11! Words  2!3!  3326400 2! for the two O' s 3! for the three N' s
  • 27. 2001 Extension 1 HSC Q2c) The letters A, E, I, O and U are vowels (i) How many arrangements of the letters in the word ALGEBRAIC are possible?
  • 28. 2001 Extension 1 HSC Q2c) The letters A, E, I, O and U are vowels (i) How many arrangements of the letters in the word ALGEBRAIC are possible? 9! Words  2!
  • 29. 2001 Extension 1 HSC Q2c) The letters A, E, I, O and U are vowels (i) How many arrangements of the letters in the word ALGEBRAIC are possible? 9! Words  2!  181440
  • 30. 2001 Extension 1 HSC Q2c) The letters A, E, I, O and U are vowels (i) How many arrangements of the letters in the word ALGEBRAIC are possible? 9! Words  2!  181440 (ii) How many arrangements of the letters in the word ALGEBRAIC are possible if the vowels must occupy the 2nd, 3rd, 5th, and 8th positions?
  • 31. 2001 Extension 1 HSC Q2c) The letters A, E, I, O and U are vowels (i) How many arrangements of the letters in the word ALGEBRAIC are possible? 9! Words  2!  181440 (ii) How many arrangements of the letters in the word ALGEBRAIC are possible if the vowels must occupy the 2nd, 3rd, 5th, and 8th positions? 4! Words   5! 2!
  • 32. 2001 Extension 1 HSC Q2c) The letters A, E, I, O and U are vowels (i) How many arrangements of the letters in the word ALGEBRAIC are possible? 9! Words  2!  181440 (ii) How many arrangements of the letters in the word ALGEBRAIC are possible if the vowels must occupy the 2nd, 3rd, 5th, and 8th positions? 4! Words   5! 2! Number of ways of placing the vowels
  • 33. 2001 Extension 1 HSC Q2c) The letters A, E, I, O and U are vowels (i) How many arrangements of the letters in the word ALGEBRAIC are possible? 9! Words  2!  181440 (ii) How many arrangements of the letters in the word ALGEBRAIC are possible if the vowels must occupy the 2nd, 3rd, 5th, and 8th positions? 4! Words   5! 2! Number of ways of Number of ways of placing the vowels placing the consonants
  • 34. 2001 Extension 1 HSC Q2c) The letters A, E, I, O and U are vowels (i) How many arrangements of the letters in the word ALGEBRAIC are possible? 9! Words  2!  181440 (ii) How many arrangements of the letters in the word ALGEBRAIC are possible if the vowels must occupy the 2nd, 3rd, 5th, and 8th positions? 4! Words   5! 2! Number of ways of  1440 Number of ways of placing the vowels placing the consonants
  • 35. 2001 Extension 1 HSC Q2c) The letters A, E, I, O and U are vowels (i) How many arrangements of the letters in the word ALGEBRAIC are possible? 9! Words  2!  181440 (ii) How many arrangements of the letters in the word ALGEBRAIC are possible if the vowels must occupy the 2nd, 3rd, 5th, and 8th positions? 4! Words   5! 2! Number of ways of  1440 Number of ways of placing the vowels placing the consonants Exercise 10F; odd