SlideShare une entreprise Scribd logo
1  sur  45
Télécharger pour lire hors ligne
Polynomial Division
Polynomial Division
P x   A x   Q x   R x 

where;
Polynomial Division
P x   A x   Q x   R x 

where;
A(x) is the divisor
Polynomial Division
P x   A x   Q x   R x 

where;
A(x) is the divisor

Q(x) is the quotient
Polynomial Division
P x   A x   Q x   R x 

where;
A(x) is the divisor
R(x) is the remainder

Q(x) is the quotient
Polynomial Division
P x   A x   Q x   R x 

where;
A(x) is the divisor
R(x) is the remainder
Note:
degree R(x) < degree A(x)

Q(x) is the quotient
Polynomial Division
P x   A x   Q x   R x 

where;
A(x) is the divisor
R(x) is the remainder
Note:
degree R(x) < degree A(x)
Q(x) and R(x) are unique

Q(x) is the quotient
Polynomial Division
P x   A x   Q x   R x 

where;
A(x) is the divisor

Q(x) is the quotient

R(x) is the remainder
Note:
degree R(x) < degree A(x)
Q(x) and R(x) are unique

1998 Extension 1 HSC Q2a)
Find the quotient, Q(x), and the remainder, R(x), when the polynomial
P x   x 4  x 2  1 is divided by x 2  1
Polynomial Division
P x   A x   Q x   R x 

where;
A(x) is the divisor

Q(x) is the quotient

R(x) is the remainder
Note:
degree R(x) < degree A(x)
Q(x) and R(x) are unique
1998 Extension 1 HSC Q2a)
Find the quotient, Q(x), and the remainder, R(x), when the polynomial
P x   x 4  x 2  1 is divided by x 2  1
x 2  1 x 4  0 x3  x 2  0 x  1
Polynomial Division
P x   A x   Q x   R x 

where;
A(x) is the divisor

Q(x) is the quotient

R(x) is the remainder
Note:
degree R(x) < degree A(x)
Q(x) and R(x) are unique
1998 Extension 1 HSC Q2a)
Find the quotient, Q(x), and the remainder, R(x), when the polynomial
P x   x 4  x 2  1 is divided by x 2  1
x2
x 2  1 x 4  0 x3  x 2  0 x  1
Polynomial Division
P x   A x   Q x   R x 

where;
A(x) is the divisor

Q(x) is the quotient

R(x) is the remainder
Note:
degree R(x) < degree A(x)
Q(x) and R(x) are unique
1998 Extension 1 HSC Q2a)
Find the quotient, Q(x), and the remainder, R(x), when the polynomial
P x   x 4  x 2  1 is divided by x 2  1
x2
x 2  1 x 4  0 x3  x 2  0 x  1
x 4  0 x3  x 2
Polynomial Division
P x   A x   Q x   R x 

where;
A(x) is the divisor

Q(x) is the quotient

R(x) is the remainder
Note:
degree R(x) < degree A(x)
Q(x) and R(x) are unique
1998 Extension 1 HSC Q2a)
Find the quotient, Q(x), and the remainder, R(x), when the polynomial
P x   x 4  x 2  1 is divided by x 2  1
x2
x 2  1 x 4  0 x3  x 2  0 x  1
x 4  0 x3  x 2
 2x 2
Polynomial Division
P x   A x   Q x   R x 

where;
A(x) is the divisor

Q(x) is the quotient

R(x) is the remainder
Note:
degree R(x) < degree A(x)
Q(x) and R(x) are unique
1998 Extension 1 HSC Q2a)
Find the quotient, Q(x), and the remainder, R(x), when the polynomial
P x   x 4  x 2  1 is divided by x 2  1
x2
x 2  1 x 4  0 x3  x 2  0 x  1
x 4  0 x3  x 2
 2x 2  0 x  1
Polynomial Division
P x   A x   Q x   R x 

where;
A(x) is the divisor

Q(x) is the quotient

R(x) is the remainder
Note:
degree R(x) < degree A(x)
Q(x) and R(x) are unique
1998 Extension 1 HSC Q2a)
Find the quotient, Q(x), and the remainder, R(x), when the polynomial
P x   x 4  x 2  1 is divided by x 2  1
x2
2
x 2  1 x 4  0 x3  x 2  0 x  1
x 4  0 x3  x 2
 2x 2  0 x  1
Polynomial Division
P x   A x   Q x   R x 

where;
A(x) is the divisor

Q(x) is the quotient

R(x) is the remainder
Note:
degree R(x) < degree A(x)
Q(x) and R(x) are unique
1998 Extension 1 HSC Q2a)
Find the quotient, Q(x), and the remainder, R(x), when the polynomial
P x   x 4  x 2  1 is divided by x 2  1
x2
2
x 2  1 x 4  0 x3  x 2  0 x  1
x 4  0 x3  x 2
 2x 2  0 x  1
 2x2  0x  2
Polynomial Division
P x   A x   Q x   R x 

where;
A(x) is the divisor

Q(x) is the quotient

R(x) is the remainder
Note:
degree R(x) < degree A(x)
Q(x) and R(x) are unique
1998 Extension 1 HSC Q2a)
Find the quotient, Q(x), and the remainder, R(x), when the polynomial
P x   x 4  x 2  1 is divided by x 2  1
x2
2
x 2  1 x 4  0 x3  x 2  0 x  1
x 4  0 x3  x 2
 2x 2  0 x  1
 2x2  0x  2
3
Polynomial Division
P x   A x   Q x   R x 

where;
A(x) is the divisor

Q(x) is the quotient

R(x) is the remainder
Note:
degree R(x) < degree A(x)
Q(x) and R(x) are unique
1998 Extension 1 HSC Q2a)
Find the quotient, Q(x), and the remainder, R(x), when the polynomial
P x   x 4  x 2  1 is divided by x 2  1
x2
2
x 2  1 x 4  0 x3  x 2  0 x  1
x 4  0 x3  x 2
 2x 2  0 x  1
 2x2  0x  2
 Q x   x 2  2 and R x   3
3
(i) Divide the polynomial
1988 Extension 1 HSC Q4b)
f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
(i) Divide the polynomial
1988 Extension 1 HSC Q4b)
f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
(i) Divide the polynomial
1988 Extension 1 HSC Q4b)
f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
2x 2
x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
(i) Divide the polynomial
1988 Extension 1 HSC Q4b)
f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
2x 2
x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
2 x 4  6 x3  2 x 2
(i) Divide the polynomial
1988 Extension 1 HSC Q4b)
f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
2x 2
x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
2 x 4  6 x3  2 x 2
 4 x 3  10 x 2
(i) Divide the polynomial
1988 Extension 1 HSC Q4b)
f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
2x 2
x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
2 x 4  6 x3  2 x 2
 4 x 3  10 x 2  2 x  3
(i) Divide the polynomial
1988 Extension 1 HSC Q4b)
f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
2x 2  4 x
x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
2 x 4  6 x3  2 x 2
 4 x 3  10 x 2  2 x  3
(i) Divide the polynomial
1988 Extension 1 HSC Q4b)
f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
2x 2  4 x
x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
2 x 4  6 x3  2 x 2
 4 x 3  10 x 2  2 x  3
 4 x 3  12 x 2  4 x
(i) Divide the polynomial
1988 Extension 1 HSC Q4b)
f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
2x 2  4 x
x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
2 x 4  6 x3  2 x 2
 4 x 3  10 x 2  2 x  3
 4 x 3  12 x 2  4 x
 2x2  6x
(i) Divide the polynomial
1988 Extension 1 HSC Q4b)
f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
2x 2  4 x
x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
2 x 4  6 x3  2 x 2
 4 x 3  10 x 2  2 x  3
 4 x 3  12 x 2  4 x
 2x2  6x  3
(i) Divide the polynomial
1988 Extension 1 HSC Q4b)
f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
2x 2  4 x  2
x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
2 x 4  6 x3  2 x 2
 4 x 3  10 x 2  2 x  3
 4 x 3  12 x 2  4 x
 2x2  6x  3
(i) Divide the polynomial
1988 Extension 1 HSC Q4b)
f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
2x 2  4 x  2
x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
2 x 4  6 x3  2 x 2
 4 x 3  10 x 2  2 x  3
 4 x 3  12 x 2  4 x
 2x2  6x  3
 2x2  6x  2
(i) Divide the polynomial
1988 Extension 1 HSC Q4b)
f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
2x 2  4 x  2
x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
2 x 4  6 x3  2 x 2
 4 x 3  10 x 2  2 x  3
 4 x 3  12 x 2  4 x
 2x2  6x  3
 2x2  6x  2
1
(i) Divide the polynomial
1988 Extension 1 HSC Q4b)
f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
2x 2  4 x  2
x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
2 x 4  6 x3  2 x 2
 4 x 3  10 x 2  2 x  3
 4 x 3  12 x 2  4 x
 2x2  6x  3
 2x2  6x  2
1
(ii) Hence write f(x) = g(x)q(x) + r(x) where q(x) and r(x) are
polynomials and r(x) has degree less than 2.
(i) Divide the polynomial
1988 Extension 1 HSC Q4b)
f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
2x 2  4 x  2
x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
2 x 4  6 x3  2 x 2
 4 x 3  10 x 2  2 x  3
 4 x 3  12 x 2  4 x
 2x2  6x  3
 2x2  6x  2
1
(ii) Hence write f(x) = g(x)q(x) + r(x) where q(x) and r(x) are
polynomials and r(x) has degree less than 2.
2 x 4  10 x 3  12 x 2  2 x  3  x 2  3 x  12 x 2  4 x  2   1
Further graphing of polynomials

P x 
R x 
y
 Q x  
A x 
A x 
Further graphing of polynomials

P x 
R x 
y
 Q x  
A x 
A x 

solve A(x) = 0 to find
vertical asymptotes
Further graphing of polynomials

P x 
R x 
y
 Q x  
A x 
A x 

y = Q(x) is the
horizontal/oblique
asymptote

solve A(x) = 0 to find
vertical asymptotes
Further graphing of polynomials

solve R(x) = 0 to find where
(if anywhere) the curve cuts
the horizontal/oblique
asymptote
P x 
R x 
y
 Q x  
A x 
A x 

y = Q(x) is the
horizontal/oblique
asymptote

solve A(x) = 0 to find
vertical asymptotes
8x
Example: Sketch the graph of y  x  2
, clearly indicating any
x 9
asymptotes and any points where the graph meets the axes.
8x
Example: Sketch the graph of y  x  2
, clearly indicating any
x 9
asymptotes and any points where the graph meets the axes.
• vertical asymptotes at x  3
x=-3

x=3
y



x









8x
Example: Sketch the graph of y  x  2
, clearly indicating any
x 9
asymptotes and any points where the graph meets the axes.
• vertical asymptotes at x  3
• oblique asymptote at y  x
x=-3

x=3
y

y=x


x









8x
Example: Sketch the graph of y  x  2
, clearly indicating any
x 9
asymptotes and any points where the graph meets the axes.
• vertical asymptotes at x  3
• oblique asymptote at y  x
• curve meets oblique asymptote at 8x = 0
x=0
x=-3

x=3
y

y=x


x









x=-3

x=3
y

y=x


x









Exercise 4C; 1c, 2bdfh, 3bd, 4ac, 6ace,
7b, 8, 11, 14*

Contenu connexe

En vedette

Polynomial division
Polynomial divisionPolynomial division
Polynomial divisiondrpahaworth
 
Rational Root Theorem
Rational Root TheoremRational Root Theorem
Rational Root Theoremcmorgancavo
 
Synthetic division example
Synthetic division exampleSynthetic division example
Synthetic division exampleAndrew Aibinder
 
Multiplying Polynomials
Multiplying PolynomialsMultiplying Polynomials
Multiplying Polynomialsmlynczyk
 
The remainder theorem powerpoint
The remainder theorem powerpointThe remainder theorem powerpoint
The remainder theorem powerpointJuwileene Soriano
 
Polynomial Function and Synthetic Division
Polynomial Function and Synthetic DivisionPolynomial Function and Synthetic Division
Polynomial Function and Synthetic DivisionElceed
 
Synthetic Division
Synthetic DivisionSynthetic Division
Synthetic Divisionscnbmitchell
 
Dividing polynomials
Dividing polynomialsDividing polynomials
Dividing polynomialssalvie alvaro
 
Long division, synthetic division, remainder theorem and factor theorem
Long division, synthetic division, remainder theorem and factor theoremLong division, synthetic division, remainder theorem and factor theorem
Long division, synthetic division, remainder theorem and factor theoremJohn Rome Aranas
 
Multiplying polynomials
Multiplying polynomialsMultiplying polynomials
Multiplying polynomialscvaughn911
 
Long Division Tutorial
Long Division TutorialLong Division Tutorial
Long Division TutorialHamons
 
Factoring Polynomials
Factoring PolynomialsFactoring Polynomials
Factoring Polynomialsitutor
 
Dividing Polynomials Slide Share
Dividing Polynomials Slide ShareDividing Polynomials Slide Share
Dividing Polynomials Slide ShareKristen T
 
Long Division
Long DivisionLong Division
Long Divisiontbelote
 
Topic 4 dividing a polynomial by a monomial
Topic 4   dividing a polynomial by a monomialTopic 4   dividing a polynomial by a monomial
Topic 4 dividing a polynomial by a monomialAnnie cox
 
What Is Cancer
What  Is CancerWhat  Is Cancer
What Is CancerPhil Mayor
 

En vedette (19)

Polynomial division
Polynomial divisionPolynomial division
Polynomial division
 
0302 ch 3 day 2
0302 ch 3 day 20302 ch 3 day 2
0302 ch 3 day 2
 
Rational Root Theorem
Rational Root TheoremRational Root Theorem
Rational Root Theorem
 
Synthetic division example
Synthetic division exampleSynthetic division example
Synthetic division example
 
Multiplying Polynomials
Multiplying PolynomialsMultiplying Polynomials
Multiplying Polynomials
 
The remainder theorem powerpoint
The remainder theorem powerpointThe remainder theorem powerpoint
The remainder theorem powerpoint
 
Polynomial Function and Synthetic Division
Polynomial Function and Synthetic DivisionPolynomial Function and Synthetic Division
Polynomial Function and Synthetic Division
 
Synthetic Division
Synthetic DivisionSynthetic Division
Synthetic Division
 
Division Of Polynomials
Division Of PolynomialsDivision Of Polynomials
Division Of Polynomials
 
Dividing polynomials
Dividing polynomialsDividing polynomials
Dividing polynomials
 
Polynomial equations
Polynomial equationsPolynomial equations
Polynomial equations
 
Long division, synthetic division, remainder theorem and factor theorem
Long division, synthetic division, remainder theorem and factor theoremLong division, synthetic division, remainder theorem and factor theorem
Long division, synthetic division, remainder theorem and factor theorem
 
Multiplying polynomials
Multiplying polynomialsMultiplying polynomials
Multiplying polynomials
 
Long Division Tutorial
Long Division TutorialLong Division Tutorial
Long Division Tutorial
 
Factoring Polynomials
Factoring PolynomialsFactoring Polynomials
Factoring Polynomials
 
Dividing Polynomials Slide Share
Dividing Polynomials Slide ShareDividing Polynomials Slide Share
Dividing Polynomials Slide Share
 
Long Division
Long DivisionLong Division
Long Division
 
Topic 4 dividing a polynomial by a monomial
Topic 4   dividing a polynomial by a monomialTopic 4   dividing a polynomial by a monomial
Topic 4 dividing a polynomial by a monomial
 
What Is Cancer
What  Is CancerWhat  Is Cancer
What Is Cancer
 

Similaire à 11 x1 t15 03 polynomial division (2013)

11X1 T15 03 polynomial division (2011)
11X1 T15 03 polynomial division (2011)11X1 T15 03 polynomial division (2011)
11X1 T15 03 polynomial division (2011)Nigel Simmons
 
11X1 T13 03 polynomial division
11X1 T13 03 polynomial division11X1 T13 03 polynomial division
11X1 T13 03 polynomial divisionNigel Simmons
 
11 x1 t15 03 polynomial division (2012)
11 x1 t15 03 polynomial division (2012)11 x1 t15 03 polynomial division (2012)
11 x1 t15 03 polynomial division (2012)Nigel Simmons
 
Pc12 sol c08_8-6
Pc12 sol c08_8-6Pc12 sol c08_8-6
Pc12 sol c08_8-6Garden City
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t11 05 tangents & normals i (2013)
11 x1 t11 05 tangents & normals i (2013)11 x1 t11 05 tangents & normals i (2013)
11 x1 t11 05 tangents & normals i (2013)Nigel Simmons
 
16 partial fraction decompositions x
16 partial fraction decompositions x16 partial fraction decompositions x
16 partial fraction decompositions xmath266
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.pptRvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.pptshivamvadgama50
 
Maths-double integrals
Maths-double integralsMaths-double integrals
Maths-double integralsmihir jain
 
Hssc i objective ch 5 no 1
Hssc i objective ch 5 no 1Hssc i objective ch 5 no 1
Hssc i objective ch 5 no 1Engin Basturk
 
Quadratic Equation and discriminant
Quadratic Equation and discriminantQuadratic Equation and discriminant
Quadratic Equation and discriminantswartzje
 
Lesson 4B - Intro to Quadratics.ppt
Lesson 4B - Intro to Quadratics.pptLesson 4B - Intro to Quadratics.ppt
Lesson 4B - Intro to Quadratics.pptMarjoCeloso1
 
Factoring GCF and Grouping
Factoring GCF and GroupingFactoring GCF and Grouping
Factoring GCF and Groupingswartzje
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
Algebra 2 Section 5-1
Algebra 2 Section 5-1Algebra 2 Section 5-1
Algebra 2 Section 5-1Jimbo Lamb
 

Similaire à 11 x1 t15 03 polynomial division (2013) (20)

11X1 T15 03 polynomial division (2011)
11X1 T15 03 polynomial division (2011)11X1 T15 03 polynomial division (2011)
11X1 T15 03 polynomial division (2011)
 
11X1 T13 03 polynomial division
11X1 T13 03 polynomial division11X1 T13 03 polynomial division
11X1 T13 03 polynomial division
 
11 x1 t15 03 polynomial division (2012)
11 x1 t15 03 polynomial division (2012)11 x1 t15 03 polynomial division (2012)
11 x1 t15 03 polynomial division (2012)
 
Pc12 sol c08_8-6
Pc12 sol c08_8-6Pc12 sol c08_8-6
Pc12 sol c08_8-6
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t11 05 tangents & normals i (2013)
11 x1 t11 05 tangents & normals i (2013)11 x1 t11 05 tangents & normals i (2013)
11 x1 t11 05 tangents & normals i (2013)
 
16 partial fraction decompositions x
16 partial fraction decompositions x16 partial fraction decompositions x
16 partial fraction decompositions x
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
Factoring
FactoringFactoring
Factoring
 
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.pptRvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
 
Maths-double integrals
Maths-double integralsMaths-double integrals
Maths-double integrals
 
Ch11.2&3(1)
Ch11.2&3(1)Ch11.2&3(1)
Ch11.2&3(1)
 
Hssc i objective ch 5 no 1
Hssc i objective ch 5 no 1Hssc i objective ch 5 no 1
Hssc i objective ch 5 no 1
 
Quadratic Equation and discriminant
Quadratic Equation and discriminantQuadratic Equation and discriminant
Quadratic Equation and discriminant
 
Lesson 4B - Intro to Quadratics.ppt
Lesson 4B - Intro to Quadratics.pptLesson 4B - Intro to Quadratics.ppt
Lesson 4B - Intro to Quadratics.ppt
 
Factoring GCF and Grouping
Factoring GCF and GroupingFactoring GCF and Grouping
Factoring GCF and Grouping
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
Alg2 lesson 8-3
Alg2 lesson 8-3Alg2 lesson 8-3
Alg2 lesson 8-3
 
Unit2.polynomials.algebraicfractions
Unit2.polynomials.algebraicfractionsUnit2.polynomials.algebraicfractions
Unit2.polynomials.algebraicfractions
 
Algebra 2 Section 5-1
Algebra 2 Section 5-1Algebra 2 Section 5-1
Algebra 2 Section 5-1
 

Plus de Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 

Plus de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 

Dernier

Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxUmeshTimilsina1
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...Amil baba
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxCeline George
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxDr. Sarita Anand
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...Nguyen Thanh Tu Collection
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17Celine George
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxannathomasp01
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxmarlenawright1
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 

Dernier (20)

Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 

11 x1 t15 03 polynomial division (2013)

  • 2. Polynomial Division P x   A x   Q x   R x  where;
  • 3. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor
  • 4. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor Q(x) is the quotient
  • 5. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor R(x) is the remainder Q(x) is the quotient
  • 6. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor R(x) is the remainder Note: degree R(x) < degree A(x) Q(x) is the quotient
  • 7. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor R(x) is the remainder Note: degree R(x) < degree A(x) Q(x) and R(x) are unique Q(x) is the quotient
  • 8. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor Q(x) is the quotient R(x) is the remainder Note: degree R(x) < degree A(x) Q(x) and R(x) are unique 1998 Extension 1 HSC Q2a) Find the quotient, Q(x), and the remainder, R(x), when the polynomial P x   x 4  x 2  1 is divided by x 2  1
  • 9. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor Q(x) is the quotient R(x) is the remainder Note: degree R(x) < degree A(x) Q(x) and R(x) are unique 1998 Extension 1 HSC Q2a) Find the quotient, Q(x), and the remainder, R(x), when the polynomial P x   x 4  x 2  1 is divided by x 2  1 x 2  1 x 4  0 x3  x 2  0 x  1
  • 10. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor Q(x) is the quotient R(x) is the remainder Note: degree R(x) < degree A(x) Q(x) and R(x) are unique 1998 Extension 1 HSC Q2a) Find the quotient, Q(x), and the remainder, R(x), when the polynomial P x   x 4  x 2  1 is divided by x 2  1 x2 x 2  1 x 4  0 x3  x 2  0 x  1
  • 11. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor Q(x) is the quotient R(x) is the remainder Note: degree R(x) < degree A(x) Q(x) and R(x) are unique 1998 Extension 1 HSC Q2a) Find the quotient, Q(x), and the remainder, R(x), when the polynomial P x   x 4  x 2  1 is divided by x 2  1 x2 x 2  1 x 4  0 x3  x 2  0 x  1 x 4  0 x3  x 2
  • 12. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor Q(x) is the quotient R(x) is the remainder Note: degree R(x) < degree A(x) Q(x) and R(x) are unique 1998 Extension 1 HSC Q2a) Find the quotient, Q(x), and the remainder, R(x), when the polynomial P x   x 4  x 2  1 is divided by x 2  1 x2 x 2  1 x 4  0 x3  x 2  0 x  1 x 4  0 x3  x 2  2x 2
  • 13. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor Q(x) is the quotient R(x) is the remainder Note: degree R(x) < degree A(x) Q(x) and R(x) are unique 1998 Extension 1 HSC Q2a) Find the quotient, Q(x), and the remainder, R(x), when the polynomial P x   x 4  x 2  1 is divided by x 2  1 x2 x 2  1 x 4  0 x3  x 2  0 x  1 x 4  0 x3  x 2  2x 2  0 x  1
  • 14. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor Q(x) is the quotient R(x) is the remainder Note: degree R(x) < degree A(x) Q(x) and R(x) are unique 1998 Extension 1 HSC Q2a) Find the quotient, Q(x), and the remainder, R(x), when the polynomial P x   x 4  x 2  1 is divided by x 2  1 x2 2 x 2  1 x 4  0 x3  x 2  0 x  1 x 4  0 x3  x 2  2x 2  0 x  1
  • 15. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor Q(x) is the quotient R(x) is the remainder Note: degree R(x) < degree A(x) Q(x) and R(x) are unique 1998 Extension 1 HSC Q2a) Find the quotient, Q(x), and the remainder, R(x), when the polynomial P x   x 4  x 2  1 is divided by x 2  1 x2 2 x 2  1 x 4  0 x3  x 2  0 x  1 x 4  0 x3  x 2  2x 2  0 x  1  2x2  0x  2
  • 16. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor Q(x) is the quotient R(x) is the remainder Note: degree R(x) < degree A(x) Q(x) and R(x) are unique 1998 Extension 1 HSC Q2a) Find the quotient, Q(x), and the remainder, R(x), when the polynomial P x   x 4  x 2  1 is divided by x 2  1 x2 2 x 2  1 x 4  0 x3  x 2  0 x  1 x 4  0 x3  x 2  2x 2  0 x  1  2x2  0x  2 3
  • 17. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor Q(x) is the quotient R(x) is the remainder Note: degree R(x) < degree A(x) Q(x) and R(x) are unique 1998 Extension 1 HSC Q2a) Find the quotient, Q(x), and the remainder, R(x), when the polynomial P x   x 4  x 2  1 is divided by x 2  1 x2 2 x 2  1 x 4  0 x3  x 2  0 x  1 x 4  0 x3  x 2  2x 2  0 x  1  2x2  0x  2  Q x   x 2  2 and R x   3 3
  • 18. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
  • 19. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
  • 20. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2 x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
  • 21. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2 x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3 2 x 4  6 x3  2 x 2
  • 22. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2 x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3 2 x 4  6 x3  2 x 2  4 x 3  10 x 2
  • 23. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2 x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3 2 x 4  6 x3  2 x 2  4 x 3  10 x 2  2 x  3
  • 24. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2  4 x x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3 2 x 4  6 x3  2 x 2  4 x 3  10 x 2  2 x  3
  • 25. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2  4 x x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3 2 x 4  6 x3  2 x 2  4 x 3  10 x 2  2 x  3  4 x 3  12 x 2  4 x
  • 26. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2  4 x x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3 2 x 4  6 x3  2 x 2  4 x 3  10 x 2  2 x  3  4 x 3  12 x 2  4 x  2x2  6x
  • 27. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2  4 x x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3 2 x 4  6 x3  2 x 2  4 x 3  10 x 2  2 x  3  4 x 3  12 x 2  4 x  2x2  6x  3
  • 28. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2  4 x  2 x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3 2 x 4  6 x3  2 x 2  4 x 3  10 x 2  2 x  3  4 x 3  12 x 2  4 x  2x2  6x  3
  • 29. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2  4 x  2 x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3 2 x 4  6 x3  2 x 2  4 x 3  10 x 2  2 x  3  4 x 3  12 x 2  4 x  2x2  6x  3  2x2  6x  2
  • 30. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2  4 x  2 x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3 2 x 4  6 x3  2 x 2  4 x 3  10 x 2  2 x  3  4 x 3  12 x 2  4 x  2x2  6x  3  2x2  6x  2 1
  • 31. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2  4 x  2 x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3 2 x 4  6 x3  2 x 2  4 x 3  10 x 2  2 x  3  4 x 3  12 x 2  4 x  2x2  6x  3  2x2  6x  2 1 (ii) Hence write f(x) = g(x)q(x) + r(x) where q(x) and r(x) are polynomials and r(x) has degree less than 2.
  • 32. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2  4 x  2 x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3 2 x 4  6 x3  2 x 2  4 x 3  10 x 2  2 x  3  4 x 3  12 x 2  4 x  2x2  6x  3  2x2  6x  2 1 (ii) Hence write f(x) = g(x)q(x) + r(x) where q(x) and r(x) are polynomials and r(x) has degree less than 2. 2 x 4  10 x 3  12 x 2  2 x  3  x 2  3 x  12 x 2  4 x  2   1
  • 33. Further graphing of polynomials P x  R x  y  Q x   A x  A x 
  • 34. Further graphing of polynomials P x  R x  y  Q x   A x  A x  solve A(x) = 0 to find vertical asymptotes
  • 35. Further graphing of polynomials P x  R x  y  Q x   A x  A x  y = Q(x) is the horizontal/oblique asymptote solve A(x) = 0 to find vertical asymptotes
  • 36. Further graphing of polynomials solve R(x) = 0 to find where (if anywhere) the curve cuts the horizontal/oblique asymptote P x  R x  y  Q x   A x  A x  y = Q(x) is the horizontal/oblique asymptote solve A(x) = 0 to find vertical asymptotes
  • 37. 8x Example: Sketch the graph of y  x  2 , clearly indicating any x 9 asymptotes and any points where the graph meets the axes.
  • 38. 8x Example: Sketch the graph of y  x  2 , clearly indicating any x 9 asymptotes and any points where the graph meets the axes. • vertical asymptotes at x  3
  • 40. 8x Example: Sketch the graph of y  x  2 , clearly indicating any x 9 asymptotes and any points where the graph meets the axes. • vertical asymptotes at x  3 • oblique asymptote at y  x
  • 42. 8x Example: Sketch the graph of y  x  2 , clearly indicating any x 9 asymptotes and any points where the graph meets the axes. • vertical asymptotes at x  3 • oblique asymptote at y  x • curve meets oblique asymptote at 8x = 0 x=0
  • 45. Exercise 4C; 1c, 2bdfh, 3bd, 4ac, 6ace, 7b, 8, 11, 14*