SlideShare une entreprise Scribd logo
1  sur  101
Télécharger pour lire hors ligne
Projectile Motion
Projectile Motion
    y




           x
Projectile Motion
    y



        
            x
Projectile Motion
    y



        
            x
Projectile Motion
                     y       maximum range
                                   45

                         
                             x

Initial conditions
Projectile Motion
                     y            maximum range
                                        45

                         
                                  x

Initial conditions   when t = 0


          v
      
Projectile Motion
                         y            maximum range
                                            45

                             
                                      x

Initial conditions       when t = 0


          v          
                     y
      
              
              x
Projectile Motion
                         y                    maximum range
                                                    45

                             
                                              x
Initial conditions       when t = 0

                                 
                                 x
          v                         cos
                     
                     y           v
                                x  v cos
                                 
              
              x
Projectile Motion
                         y                     maximum range
                                                      45

                             
                                              x
Initial conditions       when t = 0

                                 
                                 x            
                                              y
                                    cos        sin 
          v          
                     y           v            v
                                x  v cos
                                             y  v sin 
                                              
              
              x
Projectile Motion
                         y                     maximum range
                                                      45

                             
                                              x
Initial conditions       when t = 0

                                 
                                 x            
                                              y
                                    cos        sin 
          v          
                     y           v            v
                                x  v cos
                                             y  v sin 
                                              
              
              x                  x0
Projectile Motion
                         y                     maximum range
                                                      45

                             
                                              x
Initial conditions       when t = 0

                                 
                                 x            
                                              y
          v                         cos        sin 
                     
                     y           v            v
                                x  v cos
                                             y  v sin 
                                              
              
              x                  x0          y0
  0
x           g
         y
  0
x           g
         y
x  c1

  0
x           g
         y
x  c1
        y   gt  c2
         
  0
       x                    g
                         y
      x  c1
                        y   gt  c2
                         
when t  0, x  v cos
                        y  v sin 
                         
  0
       x                    g
                         y
      x  c1
                        y   gt  c2
                         
when t  0, x  v cos
                        y  v sin 
                         
   c1  v cos
    x  v cos
    
  0
       x                      g
                           y
      x  c1
                          y   gt  c2
                           
when t  0, x  v cos
                          y  v sin 
                           
   c1  v cos              c2  v sin 
    x  v cos
                        y   gt  v sin 
                         
  0
       x                        g
                             y
      x  c1
                            y   gt  c2
                             
when t  0, x  v cos
                            y  v sin 
                             
   c1  v cos                c2  v sin 
    x  v cos
                          y   gt  v sin 
                           

                              1 2
   x  vt cos  c3      y   gt  vt sin   c4
                              2
  0
       x                        g
                             y
      x  c1
                            y   gt  c2
                             
when t  0, x  v cos
                            y  v sin 
                             
   c1  v cos                c2  v sin 
    x  v cos
                          y   gt  v sin 
                           

                              1 2
   x  vt cos  c3      y   gt  vt sin   c4
                              2
    when t  0, x  0          y0
  0
       x                        g
                             y
      x  c1
                            y   gt  c2
                             
when t  0, x  v cos
                            y  v sin 
                             
   c1  v cos                c2  v sin 
    x  v cos
                          y   gt  v sin 
                           

                              1 2
   x  vt cos  c3      y   gt  vt sin   c4
                              2
    when t  0, x  0          y0
       c3  0
    x  vt cos
  0
       x                          g
                               y
      x  c1
                             y   gt  c2
                              
when t  0, x  v cos
                             y  v sin 
                              
   c1  v cos                 c2  v sin 
    x  v cos
                           y   gt  v sin 
                            

                               1 2
   x  vt cos  c3       y   gt  vt sin   c4
                               2
    when t  0, x  0           y0
       c3  0                   c4  0
    x  vt cos               1
                         y   gt 2  vt sin 
                              2
  0
       x                                   g
                                        y
      x  c1
                                       y   gt  c2
                                        
when t  0, x  v cos
                                       y  v sin 
                                        
   c1  v cos                           c2  v sin 
    x  v cos
                                     y   gt  v sin 
                                      
                                        1
   x  vt cos  c3                y   gt 2  vt sin   c4
                                        2
    when t  0, x  0                    y0
      c3  0                            c4  0
    x  vt cos                         1 2
                                  y   gt  vt sin 
                                        2
       Note: parametric coordinates of a parabola
  0
            x                                      g
                                                y
           x  c1
                                               y   gt  c2
                                                
     when t  0, x  v cos
                                               y  v sin 
                                                
        c1  v cos                              c2  v sin 
          x  v cos
                                             y   gt  v sin 
                                              
                                                1
         x  vt cos  c3                  y   gt 2  vt sin   c4
                                                2
          when t  0, x  0                      y0
            c3  0                              c4  0
          x  vt cos                           1 2
                                          y   gt  vt sin 
                                                2
               Note: parametric coordinates of a parabola
        x
t
     v cos 
  0
          x                                     g
                                             y
         x  c1
                                            y   gt  c2
                                             
   when t  0, x  v cos
                                            y  v sin 
                                             
      c1  v cos                             c2  v sin 
        x  v cos
                                          y   gt  v sin 
                                           
                                              1 2
       x  vt cos  c3                  y   gt  vt sin   c4
                                              2
        when t  0, x  0                      y0
          c3  0                              c4  0
        x  vt cos                          1 2
                                        y   gt  vt sin 
                                             2
           Note: parametric coordinates of a parabola
      x                gx 2     x sin 
t           y 2            
   v cos          2v cos  cos 
                            2


                   gx 2
             y   2 sec 2   x tan 
                   2v
  0
          x                                       g
                                               y
         x  c1
                                              y   gt  c2
                                               
   when t  0, x  v cos
                                              y  v sin 
                                               
      c1  v cos                               c2  v sin 
        x  v cos
                                            y   gt  v sin 
                                             
                                                1
       x  vt cos  c3                    y   gt 2  vt sin   c4
                                                2
        when t  0, x  0                        y0
          c3  0                                c4  0
        x  vt cos                           1 2
                                        y   gt  vt sin 
                                              2
           Note: parametric coordinates of a parabola
      x                gx 2     x sin 
t           y 2                             gx 2
   v cos          2v cos  cos          y   2  tan 2   1  x tan 
                            2

                                                2v
                   gx 2
             y   2 sec 2   x tan 
                   2v
Common Questions
Common Questions
(1) When does the particle hit the ground?
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0                     roots of the quadratic
    ii  substitute into x
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
    i  find when y  0
                   
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0                           roots of the quadratic
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
                                                   vertex of the parabola
    ii  substitute into y
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
(4) What angle does the particle make with the ground?
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
(4) What angle does the particle make with the ground?
    i  find when y  0
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
(4) What angle does the particle make with the ground?
     i  find when y  0
    ii  substitute into y
                          
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
(4) What angle does the particle make with the ground?
    i  find when y  0
   ii  substitute into y
                                    
                                     y
   iii  tan  
                  y
                 
                 x                             
                                               x
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0                           roots of the quadratic
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
                                                   vertex of the parabola
    ii  substitute into y
(4) What angle does the particle make with the ground?
    i  find when y  0                      (i) find slope of the tangent
   ii  substitute into y
                             
                              y                        ii  m  tan
   iii  tan  
                  y
                 
                 x                        
                                          x
Summary
Summary
 A particle undergoing projectile motion obeys
Summary
 A particle undergoing projectile motion obeys
              0
            x           and            g
                                    y
Summary
 A particle undergoing projectile motion obeys
               0
             x             and         g
                                    y

 with initial conditions
Summary
 A particle undergoing projectile motion obeys
               0
             x             and          g
                                     y

 with initial conditions

           x  v cos
                          and     y  v sin 
                                   
Summary
   A particle undergoing projectile motion obeys
                  0
                x            and             g
                                          y

   with initial conditions

              x  v cos
                            and        y  v sin 
                                        

e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                 3
        tan 1 to the ground. Determine;.
                 4
Summary
    A particle undergoing projectile motion obeys
                  0
                x             and             g
                                           y

    with initial conditions

              x  v cos
                             and        y  v sin 
                                         

 e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                  3
         tan 1 to the ground. Determine;.
                  4
a) greatest height obtained
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and             g
                                            y

     with initial conditions

               x  v cos
                              and        y  v sin 
                                          

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and             g
                                            y

     with initial conditions

               x  v cos
                              and        y  v sin 
                                          

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions                                       5
                                                                            3
                                                                     3
                                                          tan 1
                                                                     4
                                                                4
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and             g
                                            y

     with initial conditions

               x  v cos
                              and        y  v sin 
                                          

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions x  v cos
                                                        5
                                                                            3
                                                                     3
                                                          tan 1
                                                                     4
                                                                4
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions x  v cos
                                                         5
                                                                          3
                     x  25 
                             4
                                                       tan 1
                                                                  3
                           5                                    4
                        20m/s                                 4
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions x  v cos
                                   y  v sin 
                                                         5
                                                                          3
                     x  25 
                             4
                                                       tan 1
                                                                  3
                           5                                    4
                        20m/s                                 4
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions x  v cos
                                    y  v sin 
                                                         5
                                                                          3
                     x  25 
                             4
                                    y  25 
                                             3
                                                     tan 1
                                                                  3
                           5             5                    4
                        20m/s          15m/s                 4
  0
x          10
         y
  0
x          10
         y
x  c1

  0
x          10
         y
x  c1
        y  10t  c2
         
  0
    x                  10
                     y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  0
    x                  10
                     y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20
   x  20
   
  0
    x                  10
                     y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
  0
    x                  10
                     y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
   x  20t  c3
  0
    x                   10
                      y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
   x  20t  c3      y  5t 2  15t  c4
  0
    x                   10
                      y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
  x  20t  c3       y  5t 2  15t  c4
 when t  0, x  0      y0
  0
    x                   10
                      y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
  x  20t  c3       y  5t 2  15t  c4
 when t  0, x  0      y0
   c3  0
   x  20t
  0
    x                    10
                       y
   x  c1
                      y  10t  c2
                       
when t  0, x  20
                        y  15
                         
  c1  20                  c2  15
   x  20
                      y  10t  15
                       
  x  20t  c3        y  5t 2  15t  c4
 when t  0, x  0       y0
   c3  0               c4  0
   x  20t           y  5t 2  15t
  0
          x                             10
                                      y
         x  c1
                                     y  10t  c2
                                      
      when t  0, x  20
                                       y  15
                                        
        c1  20                           c2  15
          x  20
                                     y  10t  15
                                      
        x  20t  c3                 y  5t 2  15t  c4
       when t  0, x  0                y0
         c3  0                        c4  0
         x  20t                    y  5t 2  15t
greatest height occurs when y  0
                            
  0
          x                             10
                                      y
         x  c1
                                     y  10t  c2
                                      
      when t  0, x  20
                                       y  15
                                        
        c1  20                           c2  15
          x  20
                                     y  10t  15
                                      
        x  20t  c3                 y  5t 2  15t  c4
       when t  0, x  0                y0
         c3  0                        c4  0
         x  20t                    y  5t 2  15t
greatest height occurs when y  0
                            
           10t  15  0
                   3
              t
                   2
  0
          x                                  10
                                           y
         x  c1
                                          y  10t  c2
                                           
      when t  0, x  20
                                            y  15
                                             
        c1  20                                c2  15
          x  20
                                          y  10t  15
                                           
        x  20t  c3                      y  5t 2  15t  c4
       when t  0, x  0                     y0
         c3  0                             c4  0
         x  20t                         y  5t 2  15t
greatest height occurs when y  0
                                           3         3
                                                           2
                                                              3
           10t  15  0            when t  , y  5   15 
                                            2         2     2
                   3                               45
              t                                 
                   2                               4
  0
          x                                   10
                                            y
         x  c1
                                           y  10t  c2
                                            
      when t  0, x  20
                                             y  15
                                              
        c1  20                                 c2  15
         x  20
                                           y  10t  15
                                            
        x  20t  c3                       y  5t 2  15t  c4
       when t  0, x  0                      y0
         c3  0                              c4  0
         x  20t                          y  5t 2  15t
greatest height occurs when y  0
                                              3         3
                                                             2
                                                                3
           10t  15  0             when t  , y  5   15 
                                               2        2     2
                   3                                 45
              t                                   
                   2                                 4
                                 1
           greatest height is 11 m above the ground
                                 4
b) range
b) range
  time of flight is 3 seconds
b) range
  time of flight is 3 seconds
  when t  3, x  203
                 60
b) range
  time of flight is 3 seconds
  when t  3, x  203
                 60
   range is 60m
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                           1
c) velocity and direction of the ball after second
                                           2
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                           1
c) velocity and direction of the ball after second
                                           2
             1                    1
   when t  , x  20
                         y  10   15
                           
             2                     2
                              10
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                           1
c) velocity and direction of the ball after second
                                           2
             1                    1
   when t  , x  20
                         y  10   15
                                                    10 5
             2                     2                        10
                              10                    
                                                         20
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                           1
c) velocity and direction of the ball after second
                                           2
             1                    1
   when t  , x  20
                         y  10   15
                                                    10 5
             2                     2                        10
                              10                    
         1
 tan                                                   20
         2
       2634
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                           1
c) velocity and direction of the ball after second
                                           2
             1                    1
   when t  , x  20
                         y  10   15
                                                       10 5
             2                     2                             10
                              10                      
         1
 tan                                                     20
         2
       2634
                       1
                after second, velocity  10 5m/s and it is traveling at
                       2
                  an angle of 2634 to the horizontal
d) cartesian equation of the path
d) cartesian equation of the path

        x  20t
             x
        t
            20
d) cartesian equation of the path

        x  20t              y  5t 2  15t
                                         2
             x                      x   15 x 
        t                   y  5         
            20                      20      20 
                                 x 2 3x
                             y      
                                 80    4
d) cartesian equation of the path

        x  20t              y  5t 2  15t
                                         2
             x                      x   15 x 
        t                   y  5         
            20                      20      20 
                                 x 2 3x
                             y      
                                 80    4
d) cartesian equation of the path

        x  20t              y  5t 2  15t
                                         2
             x                      x   15 x 
        t                   y  5         
            20                      20      20 
                                 x 2 3x
                             y      
                                 80    4
d) cartesian equation of the path

         x  20t              y  5t 2  15t
                                          2
              x                      x   15 x 
         t                   y  5         
             20                      20      20 
                                  x 2 3x
                              y      
                                  80    4
Using the cartesian equation to solve the problem
d) cartesian equation of the path

         x  20t               y  5t 2  15t
                                              2
              x                       x   15 x 
         t                    y  5         
             20                       20      20 
                                   x 2 3x
                               y      
                                   80    4
Using the cartesian equation to solve the problem
a) greatest height is y value of the vertex
d) cartesian equation of the path

         x  20t               y  5t 2  15t
                                              2
              x                       x   15 x 
         t                    y  5         
             20                       20      20 
                                   x 2 3x
                               y      
                                   80    4
Using the cartesian equation to solve the problem
a) greatest height is y value of the vertex
          2
      3          1
       4( )(0)
      4         80
       9
    
      16
d) cartesian equation of the path

         x  20t               y  5t 2  15t
                                              2
              x                       x   15 x 
         t                    y  5         
             20                       20      20 
                                   x 2 3x
                               y      
                                   80    4
Using the cartesian equation to solve the problem
a) greatest height is y value of the vertex             
          2                                       y
      3          1                                   4a
       4( )(0)
      4         80                                    9 20
                                                     
       9                                               16 1
    
      16                                             45
                                                   
                                                      4
d) cartesian equation of the path

         x  20t               y  5t 2  15t
                                              2
              x                       x     x
         t                    y  5   15 
             20                       20    20 
                                   x 2 3x
                               y      
                                   80    4
Using the cartesian equation to solve the problem
a) greatest height is y value of the vertex           
          2                                     y
      3          1                                 4a
       4( )(0)
      4         80                                  9 20
                                                   
       9                                             16 1
    
      16                                           45
                                                 
                                                    4
                                1
          greatest height is 11 m above the ground
                                4
b) range
b) range
    x 2 3x
y      
   80     4
   x      x 
  3 
   4     20 
b) range
    x 2 3x
y      
   80     4
   x      x 
  3 
   4     20 
roots are 0 and 60
 range is 60m
1
b) range             c) velocity and direction of the ball after second
                                                                2
    x 2 3x
y      
   80     4
   x      x 
  3 
   4     20 
roots are 0 and 60
 range is 60m
1
b) range             c) velocity and direction of the ball after second
                                                                2
    x 2 3x                       1
                        when t  , x  10
y      
   80     4                       2
   x      x 
  3 
   4     20 
roots are 0 and 60
 range is 60m
1
b) range             c) velocity and direction of the ball after second
                                                                2
    x 2 3x                       1
                        when t  , x  10                x 2 3x
y                                                 y        
   80     4                       2
                                                        80      4
   x      x                                     dy  x 3
  3                                                     
   4     20                                     dx 40 4
roots are 0 and 60
 range is 60m
1
b) range             c) velocity and direction of the ball after second
                                                                2
    x 2 3x                       1
                        when t  , x  10                x 2 3x
y                                                 y        
   80     4                       2
                                                        80      4
   x      x                                     dy  x 3
  3                                                     
   4     20                                     dx 40 4
roots are 0 and 60                   dy 1
                        when x  10, 
 range is 60m                       dx 2
1
b) range             c) velocity and direction of the ball after second
                                                                2
    x 2 3x                       1
                        when t  , x  10                x 2 3x
y                                                 y        
   80     4                       2
                                                        80      4
   x      x                                     dy  x 3
  3                                                     
   4     20                                     dx 40 4
                                     dy 1                   1
roots are 0 and 60      when x  10,              tan  
 range is 60m                       dx 2                   2
                                                         2634
1
b) range             c) velocity and direction of the ball after second
                                                                2
    x 2 3x                       1
                        when t  , x  10                x 2 3x
y                                                 y        
   80     4                       2
                                                        80      4
   x      x                                     dy  x 3
  3                                                     
   4     20                                     dx 40 4
                                      dy 1                  1
roots are 0 and 60      when x  10,              tan  
 range is 60m                        dx 2                  2
                                v
                                       x                 2634
                                    t cos 
1
b) range             c) velocity and direction of the ball after second
                                                                2
    x 2 3x                       1
                        when t  , x  10                x 2 3x
y                                                 y        
   80     4                       2
                                                        80      4
   x      x                                     dy  x 3
  3                                                     
   4     20                                     dx 40 4
                                      dy 1                  1
roots are 0 and 60      when x  10,              tan  
 range is 60m                        dx 2                  2
                                v
                                       x                 2634
                                    t cos                    5
                                                                 1
                                                         
                                                             2
1
b) range             c) velocity and direction of the ball after second
                                                                 2
    x 2 3x                       1
                        when t  , x  10                x 2 3x
y                                                 y        
   80     4                       2
                                                        80       4
   x      x                                     dy  x 3
  3                                                     
   4     20                                     dx 40 4
                                      dy 1                  1
roots are 0 and 60      when x  10,              tan  
 range is 60m                        dx 2                  2
                                v
                                       x                 2634
                                    t cos                    5
                                                                   1
                                       10                  
                                                              2
                                     1 2
                                       
                                     2     5
                                  10 5
1
b) range             c) velocity and direction of the ball after second
                                                                 2
    x 2 3x                       1
                        when t  , x  10                x 2 3x
y                                                 y        
   80     4                       2
                                                        80       4
   x      x                                     dy  x 3
  3                                                     
   4     20                                     dx 40 4
                                      dy 1                  1
roots are 0 and 60      when x  10,              tan  
 range is 60m                        dx 2                  2
                                v
                                       x                 2634
                                    t cos                    5
                                                                   1
                                       10                  
                                                              2
                                     1 2
                                       
                                     2     5
                                   10 5
                               1
                        after second, velocity  10 5m/s and it is
                               2
                       traveling at an angle of 26 34 to the horizontal
1
b) range                  c) velocity and direction of the ball after second
                                                                      2
      x 3x
        2                              1
                             when t  , x  10                x 2 3x
 y                                                     y        
      80     4                         2
                                                             80       4
     x       x                                       dy  x 3
    3                                                        
     4      20                                       dx 40 4
                                           dy 1                  1
roots are 0 and 60           when x  10,              tan  
  range is 60m                            dx 2                  2
                                     v
                                            x                 2634
                                         t cos                    5
                                                                        1
                                            10                  
Exercise 3G; 1ac, 2ac,                                             2
                                          1 2
4, 6, 8, 9, 11, 13, 16, 18                  
                                          2     5
 Exercise 3H; 2, 4, 6,                10 5
                                  1
       7, 10, 11           after second, velocity  10 5m/s and it is
                                  2
                          traveling at an angle of 26 34 to the horizontal

Contenu connexe

Plus de Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

Plus de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Dernier

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Dernier (20)

Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 

12 x1 t07 01 projectile motion (2012)

  • 5. Projectile Motion y maximum range   45  x Initial conditions
  • 6. Projectile Motion y maximum range   45  x Initial conditions when t = 0 v 
  • 7. Projectile Motion y maximum range   45  x Initial conditions when t = 0 v  y   x
  • 8. Projectile Motion y maximum range   45  x Initial conditions when t = 0  x v  cos  y v  x  v cos   x
  • 9. Projectile Motion y maximum range   45  x Initial conditions when t = 0  x  y  cos  sin  v  y v v  x  v cos  y  v sin    x
  • 10. Projectile Motion y maximum range   45  x Initial conditions when t = 0  x  y  cos  sin  v  y v v  x  v cos  y  v sin    x x0
  • 11. Projectile Motion y maximum range   45  x Initial conditions when t = 0  x  y v  cos  sin   y v v  x  v cos  y  v sin    x x0 y0
  • 12.   0 x    g y
  • 13.   0 x    g y x  c1 
  • 14.   0 x    g y x  c1  y   gt  c2 
  • 15.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin  
  • 16.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos x  v cos 
  • 17.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin  
  • 18.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2
  • 19.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2 when t  0, x  0 y0
  • 20.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2 when t  0, x  0 y0 c3  0 x  vt cos
  • 21.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2 when t  0, x  0 y0 c3  0 c4  0 x  vt cos 1 y   gt 2  vt sin  2
  • 22.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 x  vt cos  c3 y   gt 2  vt sin   c4 2 when t  0, x  0 y0 c3  0 c4  0 x  vt cos 1 2 y   gt  vt sin  2 Note: parametric coordinates of a parabola
  • 23.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 x  vt cos  c3 y   gt 2  vt sin   c4 2 when t  0, x  0 y0 c3  0 c4  0 x  vt cos 1 2 y   gt  vt sin  2 Note: parametric coordinates of a parabola x t v cos 
  • 24.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2 when t  0, x  0 y0 c3  0 c4  0 x  vt cos 1 2 y   gt  vt sin  2 Note: parametric coordinates of a parabola x gx 2 x sin  t y 2  v cos  2v cos  cos  2 gx 2 y   2 sec 2   x tan  2v
  • 25.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 x  vt cos  c3 y   gt 2  vt sin   c4 2 when t  0, x  0 y0 c3  0 c4  0 x  vt cos 1 2 y   gt  vt sin  2 Note: parametric coordinates of a parabola x gx 2 x sin  t y 2  gx 2 v cos  2v cos  cos  y   2  tan 2   1  x tan  2 2v gx 2 y   2 sec 2   x tan  2v
  • 27. Common Questions (1) When does the particle hit the ground?
  • 28. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0
  • 29. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle?
  • 30. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0
  • 31. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x
  • 32. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 roots of the quadratic ii  substitute into x
  • 33. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle?
  • 34. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0 
  • 35. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y
  • 36. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 roots of the quadratic ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  vertex of the parabola ii  substitute into y
  • 37. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y (4) What angle does the particle make with the ground?
  • 38. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y (4) What angle does the particle make with the ground? i  find when y  0
  • 39. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y (4) What angle does the particle make with the ground? i  find when y  0 ii  substitute into y 
  • 40. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y (4) What angle does the particle make with the ground? i  find when y  0 ii  substitute into y   y iii  tan   y  x  x
  • 41. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 roots of the quadratic ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  vertex of the parabola ii  substitute into y (4) What angle does the particle make with the ground? i  find when y  0 (i) find slope of the tangent ii  substitute into y   y  ii  m  tan iii  tan   y  x  x
  • 43. Summary A particle undergoing projectile motion obeys
  • 44. Summary A particle undergoing projectile motion obeys   0 x and    g y
  • 45. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions
  • 46. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin  
  • 47. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4
  • 48. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained
  • 49. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions
  • 50. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions 5 3 3   tan 1 4 4
  • 51. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions x  v cos  5 3 3   tan 1 4 4
  • 52. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions x  v cos  5 3 x  25  4     tan 1 3 5 4  20m/s 4
  • 53. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions x  v cos  y  v sin   5 3 x  25  4     tan 1 3 5 4  20m/s 4
  • 54. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions x  v cos  y  v sin   5 3 x  25  4 y  25  3       tan 1 3 5 5 4  20m/s  15m/s 4
  • 55.   0 x   10 y
  • 56.   0 x   10 y x  c1 
  • 57.   0 x   10 y x  c1  y  10t  c2 
  • 58.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15 
  • 59.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 x  20 
  • 60.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15 
  • 61.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3
  • 62.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4
  • 63.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0
  • 64.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 x  20t
  • 65.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t
  • 66.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t greatest height occurs when y  0 
  • 67.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t greatest height occurs when y  0   10t  15  0 3 t 2
  • 68.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t greatest height occurs when y  0  3 3 2  3  10t  15  0 when t  , y  5   15  2 2  2 3 45 t  2 4
  • 69.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t greatest height occurs when y  0  3  3 2  3  10t  15  0 when t  , y  5   15  2 2  2 3 45 t  2 4 1  greatest height is 11 m above the ground 4
  • 71. b) range time of flight is 3 seconds
  • 72. b) range time of flight is 3 seconds when t  3, x  203  60
  • 73. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m
  • 74. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2
  • 75. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2 1 1 when t  , x  20  y  10   15  2  2  10
  • 76. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2 1 1 when t  , x  20  y  10   15  10 5 2  2 10  10  20
  • 77. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2 1 1 when t  , x  20  y  10   15  10 5 2  2 10  10  1 tan   20 2   2634
  • 78. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2 1 1 when t  , x  20  y  10   15  10 5 2  2 10  10  1 tan   20 2   2634 1  after second, velocity  10 5m/s and it is traveling at 2 an angle of 2634 to the horizontal
  • 79. d) cartesian equation of the path
  • 80. d) cartesian equation of the path x  20t x t 20
  • 81. d) cartesian equation of the path x  20t y  5t 2  15t 2 x  x   15 x  t y  5    20  20   20   x 2 3x y  80 4
  • 82. d) cartesian equation of the path x  20t y  5t 2  15t 2 x  x   15 x  t y  5    20  20   20   x 2 3x y  80 4
  • 83. d) cartesian equation of the path x  20t y  5t 2  15t 2 x  x   15 x  t y  5    20  20   20   x 2 3x y  80 4
  • 84. d) cartesian equation of the path x  20t y  5t 2  15t 2 x  x   15 x  t y  5    20  20   20   x 2 3x y  80 4 Using the cartesian equation to solve the problem
  • 85. d) cartesian equation of the path x  20t y  5t 2  15t 2 x  x   15 x  t y  5    20  20   20   x 2 3x y  80 4 Using the cartesian equation to solve the problem a) greatest height is y value of the vertex
  • 86. d) cartesian equation of the path x  20t y  5t 2  15t 2 x  x   15 x  t y  5    20  20   20   x 2 3x y  80 4 Using the cartesian equation to solve the problem a) greatest height is y value of the vertex 2 3 1     4( )(0) 4 80 9  16
  • 87. d) cartesian equation of the path x  20t y  5t 2  15t 2 x  x   15 x  t y  5    20  20   20   x 2 3x y  80 4 Using the cartesian equation to solve the problem a) greatest height is y value of the vertex  2 y 3 1 4a     4( )(0) 4 80 9 20    9 16 1  16 45  4
  • 88. d) cartesian equation of the path x  20t y  5t 2  15t 2 x  x  x t y  5   15  20  20   20   x 2 3x y  80 4 Using the cartesian equation to solve the problem a) greatest height is y value of the vertex  2 y 3 1 4a     4( )(0) 4 80 9 20    9 16 1  16 45  4 1  greatest height is 11 m above the ground 4
  • 90. b) range  x 2 3x y  80 4 x x   3  4 20 
  • 91. b) range  x 2 3x y  80 4 x x   3  4 20  roots are 0 and 60  range is 60m
  • 92. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x y  80 4 x x   3  4 20  roots are 0 and 60  range is 60m
  • 93. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x 1 when t  , x  10 y  80 4 2 x x   3  4 20  roots are 0 and 60  range is 60m
  • 94. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x 1 when t  , x  10  x 2 3x y  y  80 4 2 80 4 x x  dy  x 3  3    4 20  dx 40 4 roots are 0 and 60  range is 60m
  • 95. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x 1 when t  , x  10  x 2 3x y  y  80 4 2 80 4 x x  dy  x 3  3    4 20  dx 40 4 roots are 0 and 60 dy 1 when x  10,   range is 60m dx 2
  • 96. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x 1 when t  , x  10  x 2 3x y  y  80 4 2 80 4 x x  dy  x 3  3    4 20  dx 40 4 dy 1 1 roots are 0 and 60 when x  10,  tan    range is 60m dx 2 2   2634
  • 97. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x 1 when t  , x  10  x 2 3x y  y  80 4 2 80 4 x x  dy  x 3  3    4 20  dx 40 4 dy 1 1 roots are 0 and 60 when x  10,  tan    range is 60m dx 2 2 v x   2634 t cos 
  • 98. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x 1 when t  , x  10  x 2 3x y  y  80 4 2 80 4 x x  dy  x 3  3    4 20  dx 40 4 dy 1 1 roots are 0 and 60 when x  10,  tan    range is 60m dx 2 2 v x   2634 t cos  5 1  2
  • 99. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x 1 when t  , x  10  x 2 3x y  y  80 4 2 80 4 x x  dy  x 3  3    4 20  dx 40 4 dy 1 1 roots are 0 and 60 when x  10,  tan    range is 60m dx 2 2 v x   2634 t cos  5 1 10   2 1 2  2 5  10 5
  • 100. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x 1 when t  , x  10  x 2 3x y  y  80 4 2 80 4 x x  dy  x 3  3    4 20  dx 40 4 dy 1 1 roots are 0 and 60 when x  10,  tan    range is 60m dx 2 2 v x   2634 t cos  5 1 10   2 1 2  2 5  10 5 1  after second, velocity  10 5m/s and it is 2 traveling at an angle of 26 34 to the horizontal
  • 101. 1 b) range c) velocity and direction of the ball after second 2  x 3x 2 1 when t  , x  10  x 2 3x y  y  80 4 2 80 4 x x  dy  x 3  3    4 20  dx 40 4 dy 1 1 roots are 0 and 60 when x  10,  tan    range is 60m dx 2 2 v x   2634 t cos  5 1 10  Exercise 3G; 1ac, 2ac,  2 1 2 4, 6, 8, 9, 11, 13, 16, 18  2 5 Exercise 3H; 2, 4, 6,  10 5 1 7, 10, 11  after second, velocity  10 5m/s and it is 2 traveling at an angle of 26 34 to the horizontal