SlideShare une entreprise Scribd logo
1  sur  58
Télécharger pour lire hors ligne
Dynamics
Dynamics
Newton’s Laws Of Motion
Dynamics
                    Newton’s Laws Of Motion
Law 1
“ Corpus omne perseverare in statu suo quiescendi vel movendi
  uniformiter, nisi quatenus a viribus impressis cogitur statum illum
  mutare.”
Dynamics
                    Newton’s Laws Of Motion
Law 1
“ Corpus omne perseverare in statu suo quiescendi vel movendi
  uniformiter, nisi quatenus a viribus impressis cogitur statum illum
  mutare.”
Everybody continues in its state of rest, or of uniform motion in a
right line, unless it is compelled to change that state by forces
impressed upon it.
Dynamics
                    Newton’s Laws Of Motion
Law 1
“ Corpus omne perseverare in statu suo quiescendi vel movendi
  uniformiter, nisi quatenus a viribus impressis cogitur statum illum
  mutare.”
Everybody continues in its state of rest, or of uniform motion in a
right line, unless it is compelled to change that state by forces
impressed upon it.
Law 2
“ Mutationem motus proportionalem esse vi motrici impressae, et
  fieri secundum rectam qua vis illa impritmitur.”
Dynamics
                    Newton’s Laws Of Motion
Law 1
“ Corpus omne perseverare in statu suo quiescendi vel movendi
  uniformiter, nisi quatenus a viribus impressis cogitur statum illum
  mutare.”
Everybody continues in its state of rest, or of uniform motion in a
right line, unless it is compelled to change that state by forces
impressed upon it.
Law 2
“ Mutationem motus proportionalem esse vi motrici impressae, et
  fieri secundum rectam qua vis illa impritmitur.”
The change of motion is proportional to the motive force
impressed, and it is made in the direction of the right line in which
that force is impressed.
Motive force  change in motion
Motive force  change in motion
          F acceleration
Motive force  change in motion
         F acceleration
         F  constant  acceleration
Motive force  change in motion
         F acceleration
         F  constant  acceleration
        F  ma            (constant = mass)
Motive force  change in motion
                     F acceleration
                     F  constant  acceleration
                    F  ma            (constant = mass)

Law 3
“ Actioni contrariam semper et aequalem esse reactionem: sive
  corporum duorum actions in se mutuo semper esse aequales et in
  partes contrarias dirigi.”
Motive force  change in motion
                     F acceleration
                     F  constant  acceleration
                    F  ma            (constant = mass)

Law 3
“ Actioni contrariam semper et aequalem esse reactionem: sive
  corporum duorum actions in se mutuo semper esse aequales et in
  partes contrarias dirigi.”


To every action there is always opposed an equal reaction: or, the
mutual actions of two bodies upon each other are always equal, and
directed in contrary parts.
Acceleration
Acceleration
     d 2x
  2
x
     dt
     dv
   
     dt
Acceleration
     d 2x
  2
x           (acceleration is a function of t)
     dt
     dv
   
     dt
Acceleration
     d 2x
  2
x                (acceleration is a function of t)
     dt
     dv
   
     dt
      d 1 2 
     v        (acceleration is a function of x)
     dx  2 
Acceleration
     d 2x
  2
x                (acceleration is a function of t)
     dt
     dv
   
     dt
      d 1 2 
     v        (acceleration is a function of x)
     dx  2 
     dv
  v             (acceleration is a function of v)
     dx
Acceleration
                          d 2x
                       2
                     x                (acceleration is a function of t)
                          dt
                          dv
                        
                          dt
                           d 1 2 
                          v        (acceleration is a function of x)
                          dx  2 
                          dv
                       v             (acceleration is a function of v)
                          dx
e.g. (1981)
Assume that the earth is a sphere of radius R and that, at a point r  R 
from the centre of the earth, the acceleration due to gravity is
proportional to 1 and is directed towards the earth’s centre.
                 r2
A body is projected vertically upwards from the surface of the earth with
initial speed V.
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.




    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.




    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.




        r  R, v  V ,    g
                       r


    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
        v0




        r  R, v  V ,    g
                       r


    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
        v0




        r  R, v  V ,    g
                       r


    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
        v0                         resultant
                              m
                               r
                                      force



        r  R, v  V ,    g
                       r


    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
        v0                         resultant
                              m
                               r
                                      force

                                    m
                                    r2
        r  R, v  V ,    g
                       r


    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
                                                         m
          v0                   resultant         m   2
                                                   r
                            m
                              r                           r
                                  force

                                  m
                                  r2
        r  R, v  V ,    g
                       r


    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
                                                          m
          v0                      resultant      m   2
                                                   r
                               m
                                 r                        r
                                     force              
                                                     2
                                                   r
                                    m                  r
                                     r2
         r  R, v  V ,    g
                        r


    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
                                                          m
          v0                      resultant      m   2
                                                   r
                               m
                                 r                         r
                                     force              
                                                     2
                                                   r
                                    m                  r
                                       2     when r  R,    g
                                                         r
                                     r
         r  R, v  V ,    g
                        r


    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
                                                            m
          v0                      resultant       m   2
                                                     r
                               m
                                 r                           r
                                     force               
                                                       2
                                                     r
                                    m                    r
                                       2     when r  R,    g
                                                           r
                                     r                    
         r  R, v  V ,    g
                        r                      i.e.  g  2
                                                           R
                                                   gR 2
    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
                                                            m
          v0                      resultant       m   2
                                                     r
                               m
                                 r                           r
                                     force               
                                                       2
                                                     r
                                    m                    r
                                       2     when r  R,    g
                                                           r
                                     r                    
         r  R, v  V ,    g
                        r                      i.e.  g  2
                                                           R
                                                   gR 2
    O                                                 gR 2
                                                   2
                                                 r
                                                       r
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
                                                            m
          v0                      resultant       m   2
                                                     r
                               m
                                 r                           r
                                     force               
                                                       2
                                                     r
                                    m                    r
                                       2     when r  R,    g
                                                           r
                                     r                    
         r  R, v  V ,    g
                        r                      i.e.  g  2
                                                           R
                                                   gR 2
    O                                                gR 2
                                                  2
                                                r
                                                      r
                                        d  1 2   gR 2
                                            v  2
                                        dr  2      r
1 2 gR 2
  v        c
2        r
       2 gR 2
  v2         c
          r
1 2 gR 2
   v        c
 2        r
        2 gR 2
   v2         c
           r
when r  R, v  V
1 2 gR 2
     v         c
  2         r
          2 gR 2
    v2          c
             r
when r  R, v  V
           2 gR 2
i.e. V 2         c
              R
       c  V 2  2 gR
1 2 gR 2
     v         c
  2         r
          2 gR 2
    v2          c
             r
when r  R, v  V
           2 gR 2
i.e. V 2         c
              R
       c  V 2  2 gR
    2 gR 2
v 
 2
            V 2  2 gR
       r
1 2 gR 2
     v         c
  2         r
          2 gR 2          If particle never stops then r  
    v2          c
             r
when r  R, v  V
           2 gR 2
i.e. V 2         c
              R
       c  V 2  2 gR
    2 gR 2
v 
 2
            V 2  2 gR
       r
1 2 gR 2
     v         c
  2         r
          2 gR 2          If particle never stops then r  
    v2          c
             r                             2 gR 2            
                            lim v  lim
                                 2
                                                    V  2 gR 
                                                      2

when r  R, v  V           r      r 
                                           r                 
           2 gR 2                   V 2  2 gR
i.e. V 2         c
              R
       c  V 2  2 gR
    2 gR 2
v 
 2
            V 2  2 gR
       r
1 2 gR 2
    v          c
  2         r
          2 gR 2          If particle never stops then r  
    v2          c
             r                             2 gR 2            
                            lim v  lim
                                 2
                                                    V  2 gR 
                                                      2

when r  R, v  V           r      r 
                                           r                 
           2 gR 2                   V 2  2 gR
i.e. V 2         c
              R
                            Now v 2  0
       c  V 2  2 gR
    2 gR 2
v 
 2
            V 2  2 gR
       r
1 2 gR 2
    v          c
  2         r
          2 gR 2          If particle never stops then r  
    v2          c
             r                             2 gR 2            
                            lim v  lim
                                 2
                                                    V  2 gR 
                                                      2

when r  R, v  V           r      r 
                                           r                 
           2 gR 2                   V 2  2 gR
i.e. V 2         c
              R
                            Now v 2  0
       c  V 2  2 gR
                            V 2  2 gR  0
    2 gR 2
v 
 2
            V 2  2 gR
       r
1 2 gR 2
    v          c
  2         r
          2 gR 2          If particle never stops then r  
    v2          c
             r                             2 gR 2            
                            lim v  lim
                                 2
                                                    V  2 gR 
                                                      2

when r  R, v  V           r      r 
                                           r                 
           2 gR 2                   V 2  2 gR
i.e. V 2         c
              R
                            Now v 2  0
       c  V 2  2 gR
                            V 2  2 gR  0
    2 gR 2                           V 2  2 gR
v 
 2
            V 2  2 gR
       r
1 2 gR 2
    v          c
  2         r
          2 gR 2             If particle never stops then r  
    v2          c
             r                                 2 gR 2            
                                lim v  lim
                                     2
                                                        V  2 gR 
                                                          2

when r  R, v  V               r      r 
                                               r                 
           2 gR 2                       V 2  2 gR
i.e. V 2         c
              R
                                Now v 2  0
       c  V 2  2 gR
                                V 2  2 gR  0
    2 gR 2                                V 2  2 gR
v 
 2
            V 2  2 gR
       r
                          Thus if V  2 gR the particle never stops,
                          i.e. the particle escapes the earth.
(ii) If V  2 gR ,prove that the time taken to rise to a height R above
     the earth’s surface is;
                             1
                               4  2  R
                             3          g
(ii) If V  2 gR ,prove that the time taken to rise to a height R above
     the earth’s surface is;
                             1
                               4  2  R
                             3          g
        2 gR 2
    v 
     2
                V 2  2 gR
           r
(ii) If V  2 gR ,prove that the time taken to rise to a height R above
     the earth’s surface is;
                             1
                               4  2  R
                             3          g
        2 gR 2
    v 
     2
                V 2  2 gR
           r
  If V  2 gR ,
(ii) If V  2 gR ,prove that the time taken to rise to a height R above
     the earth’s surface is;
                             1
                               4  2  R
                             3          g
        2 gR 2
    v 
     2
                V 2  2 gR
           r
                         2 gR 2
  If V  2 gR , v               2 gR  2 gR
                     2

                            r
                         2 gR 2
                   v2 
                            r
(ii) If V  2 gR ,prove that the time taken to rise to a height R above
     the earth’s surface is;
                             1
                               4  2  R
                             3          g
        2 gR 2
    v 
     2
                V 2  2 gR
           r
                         2 gR 2
  If V  2 gR , v               2 gR  2 gR
                     2

                            r
                         2 gR 2
                   v2 
                            r
                       2 gR 2
                    v                (cannot be –ve, as it does not return)
                          r
(ii) If V  2 gR ,prove that the time taken to rise to a height R above
     the earth’s surface is;
                             1
                               4  2  R
                             3          g
        2 gR 2
    v 
     2
                V 2  2 gR
           r
                         2 gR 2
  If V  2 gR , v               2 gR  2 gR
                     2

                            r
                         2 gR 2
                   v2 
                            r
                       2 gR 2
                   v                 (cannot be –ve, as it does not return)
                          r
                  dr   2 gR 2
                     
                  dt      r
(ii) If V  2 gR ,prove that the time taken to rise to a height R above
     the earth’s surface is;
                             1
                               4  2  R
                             3          g
        2 gR 2
    v 
     2
                V 2  2 gR
           r
                         2 gR 2
  If V  2 gR , v               2 gR  2 gR
                     2

                            r
                         2 gR 2
                   v2 
                            r
                       2 gR 2
                   v                 (cannot be –ve, as it does not return)
                          r
                  dr   2 gR 2
                     
                  dt      r
                  dt     r
                     
                  dr   2gR 2
2R
    1
t
   2 gR 2   
            R
                 r dr
2R
    1                   2 R                            
t
   2 gR 2       r dr     as travelling from R to 2 R 
            R           R                              
2R
    1                     2 R                            
t
   2 gR 2       r dr       as travelling from R to 2 R 
            R             R                              
                     2R
    1       2  3
           3 r 
                 2

   2 gR 2       R
2R
    1                        2 R                            
t
   2 gR 2       r dr          as travelling from R to 2 R 
            R                R                              
                     2R
    1       2  3
           3 r 
                 2

   2 gR 2       R

 
      2
        2
          2 R 2 R  R R 
   3 gR
2R
    1                         2 R                            
t
   2 gR 2        r dr          as travelling from R to 2 R 
             R                R                              
                       2R
    1        2   3
            3 r 
                   2

   2 gR 2        R

 
      2
        2
          2 R 2 R  R R 
   3 gR

 
       2
            2    2  1R R
     3R g
2R
    1                         2 R                            
t
   2 gR 2        r dr          as travelling from R to 2 R 
             R                R                              
                       2R
    1        2   3
            3 r 
                   2

   2 gR 2        R

 
      2
        2
          2 R 2 R  R R 
   3 gR

 
       2
            2    2  1R R
     3R g

 
     R
       4  2 
   3 g
2R
    1                         2 R                            
t
   2 gR 2        r dr          as travelling from R to 2 R 
             R                R                              
                       2R
    1        2   3
            3 r 
                   2

   2 gR 2        R

 
      2
        2
          2 R 2 R  R R 
   3 gR

 
       2
            2    2  1R R
     3R g

 
     R
       4  2 
   3 g

  4  2 
  1         R
  3         g
2R
    1                           2 R                            
t
   2 gR 2        r dr            as travelling from R to 2 R 
             R                  R                              
                       2R
    1        2   3
            3 r 
                   2

   2 gR 2        R

 
      2
        2
          2 R 2 R  R R 
   3 gR

 
       2
            2    2  1R R
     3R g

 
     R
       4  2 
   3 g
                               time taken to rise to a height R above
  4  2 
  1         R
                                earth' s surface is 4  2 
                                                   1         R
  3         g                                                  seconds
                                                   3         g
Exercise 8C; 3, 15, 19

Contenu connexe

En vedette

Ute leticia-vega-gonzalo-remache-emprendimientosocial-comomarcodeanlalisis-el...
Ute leticia-vega-gonzalo-remache-emprendimientosocial-comomarcodeanlalisis-el...Ute leticia-vega-gonzalo-remache-emprendimientosocial-comomarcodeanlalisis-el...
Ute leticia-vega-gonzalo-remache-emprendimientosocial-comomarcodeanlalisis-el...letyvega1989
 
Proyecto Niños Camp Nou
Proyecto Niños Camp NouProyecto Niños Camp Nou
Proyecto Niños Camp NouFC Barcelona
 
X ia project mind over matter
X ia project mind over matterX ia project mind over matter
X ia project mind over matterOnlineconference
 
Ute. proceso de construcción del plan nacional para el buen vivir
Ute. proceso de construcción del plan nacional para el buen vivirUte. proceso de construcción del plan nacional para el buen vivir
Ute. proceso de construcción del plan nacional para el buen vivirDaysi Pindo
 
交點高雄Vol.4 - 楊繡妃 - 愛戀天使工作室
交點高雄Vol.4 - 楊繡妃 - 愛戀天使工作室交點高雄Vol.4 - 楊繡妃 - 愛戀天使工作室
交點高雄Vol.4 - 楊繡妃 - 愛戀天使工作室交點
 
Trabalho 2 maio
Trabalho 2  maioTrabalho 2  maio
Trabalho 2 maioTania Neto
 
Overview of Thunderbird Online - 2014
Overview of Thunderbird Online - 2014Overview of Thunderbird Online - 2014
Overview of Thunderbird Online - 2014Leslie del Angel
 
Current trend coconut_grouppresentation_final
Current trend coconut_grouppresentation_finalCurrent trend coconut_grouppresentation_final
Current trend coconut_grouppresentation_finalCindy Hanks
 
Business case transpobrasil 2015
Business case transpobrasil 2015Business case transpobrasil 2015
Business case transpobrasil 2015Mercado Consultoria
 
Green Building Materials for Acoustics of an Auditorium - A Case Study
Green Building Materials for Acoustics of an Auditorium - A Case StudyGreen Building Materials for Acoustics of an Auditorium - A Case Study
Green Building Materials for Acoustics of an Auditorium - A Case Studyinventionjournals
 
Nevada's School Wellness Implementation Reporting Tool 4.16.15
Nevada's School Wellness Implementation Reporting Tool 4.16.15Nevada's School Wellness Implementation Reporting Tool 4.16.15
Nevada's School Wellness Implementation Reporting Tool 4.16.15Nevada Agriculture
 
UteLadiesTressOrchidSurveyProtocol
UteLadiesTressOrchidSurveyProtocolUteLadiesTressOrchidSurveyProtocol
UteLadiesTressOrchidSurveyProtocolBernardo Garza
 
Xplicit image 11
Xplicit image 11Xplicit image 11
Xplicit image 11Xplicit Inc
 
JPRart Portfolio
JPRart PortfolioJPRart Portfolio
JPRart Portfoliojprart001
 
Korea And Japan 2015
Korea And Japan 2015Korea And Japan 2015
Korea And Japan 2015典玄 三田
 

En vedette (16)

Ute leticia-vega-gonzalo-remache-emprendimientosocial-comomarcodeanlalisis-el...
Ute leticia-vega-gonzalo-remache-emprendimientosocial-comomarcodeanlalisis-el...Ute leticia-vega-gonzalo-remache-emprendimientosocial-comomarcodeanlalisis-el...
Ute leticia-vega-gonzalo-remache-emprendimientosocial-comomarcodeanlalisis-el...
 
Proyecto Niños Camp Nou
Proyecto Niños Camp NouProyecto Niños Camp Nou
Proyecto Niños Camp Nou
 
X ia project mind over matter
X ia project mind over matterX ia project mind over matter
X ia project mind over matter
 
Ute. proceso de construcción del plan nacional para el buen vivir
Ute. proceso de construcción del plan nacional para el buen vivirUte. proceso de construcción del plan nacional para el buen vivir
Ute. proceso de construcción del plan nacional para el buen vivir
 
交點高雄Vol.4 - 楊繡妃 - 愛戀天使工作室
交點高雄Vol.4 - 楊繡妃 - 愛戀天使工作室交點高雄Vol.4 - 楊繡妃 - 愛戀天使工作室
交點高雄Vol.4 - 楊繡妃 - 愛戀天使工作室
 
Trabalho 2 maio
Trabalho 2  maioTrabalho 2  maio
Trabalho 2 maio
 
Overview of Thunderbird Online - 2014
Overview of Thunderbird Online - 2014Overview of Thunderbird Online - 2014
Overview of Thunderbird Online - 2014
 
Current trend coconut_grouppresentation_final
Current trend coconut_grouppresentation_finalCurrent trend coconut_grouppresentation_final
Current trend coconut_grouppresentation_final
 
Business case transpobrasil 2015
Business case transpobrasil 2015Business case transpobrasil 2015
Business case transpobrasil 2015
 
Green Building Materials for Acoustics of an Auditorium - A Case Study
Green Building Materials for Acoustics of an Auditorium - A Case StudyGreen Building Materials for Acoustics of an Auditorium - A Case Study
Green Building Materials for Acoustics of an Auditorium - A Case Study
 
Rio negro instructivo para presidentes_de_mesa_elecciones_14-06-2015
Rio negro instructivo para presidentes_de_mesa_elecciones_14-06-2015Rio negro instructivo para presidentes_de_mesa_elecciones_14-06-2015
Rio negro instructivo para presidentes_de_mesa_elecciones_14-06-2015
 
Nevada's School Wellness Implementation Reporting Tool 4.16.15
Nevada's School Wellness Implementation Reporting Tool 4.16.15Nevada's School Wellness Implementation Reporting Tool 4.16.15
Nevada's School Wellness Implementation Reporting Tool 4.16.15
 
UteLadiesTressOrchidSurveyProtocol
UteLadiesTressOrchidSurveyProtocolUteLadiesTressOrchidSurveyProtocol
UteLadiesTressOrchidSurveyProtocol
 
Xplicit image 11
Xplicit image 11Xplicit image 11
Xplicit image 11
 
JPRart Portfolio
JPRart PortfolioJPRart Portfolio
JPRart Portfolio
 
Korea And Japan 2015
Korea And Japan 2015Korea And Japan 2015
Korea And Japan 2015
 

Similaire à X2 t06 01 acceleration (2012)

X2 t06 01 acceleration (2013)
X2 t06 01 acceleration (2013)X2 t06 01 acceleration (2013)
X2 t06 01 acceleration (2013)Nigel Simmons
 
X2 t06 02 resisted motion (2013)
X2 t06 02 resisted motion (2013)X2 t06 02 resisted motion (2013)
X2 t06 02 resisted motion (2013)Nigel Simmons
 
IMPULS AND MOMENTUM
IMPULS AND MOMENTUMIMPULS AND MOMENTUM
IMPULS AND MOMENTUMNopiputri
 
Motion in two dimensions
Motion in two dimensionsMotion in two dimensions
Motion in two dimensionsmkhwanda
 
Gravitation
GravitationGravitation
GravitationEdnexa
 
X2 T07 01 Acceleration
X2 T07 01 AccelerationX2 T07 01 Acceleration
X2 T07 01 AccelerationNigel Simmons
 
Theory of relativity
Theory of relativityTheory of relativity
Theory of relativityKumar
 
physics430_lecture21 for students chemistry
physics430_lecture21 for students chemistryphysics430_lecture21 for students chemistry
physics430_lecture21 for students chemistryumarovagunnel
 

Similaire à X2 t06 01 acceleration (2012) (9)

X2 t06 01 acceleration (2013)
X2 t06 01 acceleration (2013)X2 t06 01 acceleration (2013)
X2 t06 01 acceleration (2013)
 
X2 t06 02 resisted motion (2013)
X2 t06 02 resisted motion (2013)X2 t06 02 resisted motion (2013)
X2 t06 02 resisted motion (2013)
 
IMPULS AND MOMENTUM
IMPULS AND MOMENTUMIMPULS AND MOMENTUM
IMPULS AND MOMENTUM
 
Motion in two dimensions
Motion in two dimensionsMotion in two dimensions
Motion in two dimensions
 
Attitude Dynamics of Re-entry Vehicle
Attitude Dynamics of Re-entry VehicleAttitude Dynamics of Re-entry Vehicle
Attitude Dynamics of Re-entry Vehicle
 
Gravitation
GravitationGravitation
Gravitation
 
X2 T07 01 Acceleration
X2 T07 01 AccelerationX2 T07 01 Acceleration
X2 T07 01 Acceleration
 
Theory of relativity
Theory of relativityTheory of relativity
Theory of relativity
 
physics430_lecture21 for students chemistry
physics430_lecture21 for students chemistryphysics430_lecture21 for students chemistry
physics430_lecture21 for students chemistry
 

Plus de Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Plus de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Dernier

PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfSanaAli374401
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Shubhangi Sonawane
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.MateoGardella
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfChris Hunter
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 

Dernier (20)

PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 

X2 t06 01 acceleration (2012)

  • 3. Dynamics Newton’s Laws Of Motion Law 1 “ Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter, nisi quatenus a viribus impressis cogitur statum illum mutare.”
  • 4. Dynamics Newton’s Laws Of Motion Law 1 “ Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter, nisi quatenus a viribus impressis cogitur statum illum mutare.” Everybody continues in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed upon it.
  • 5. Dynamics Newton’s Laws Of Motion Law 1 “ Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter, nisi quatenus a viribus impressis cogitur statum illum mutare.” Everybody continues in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed upon it. Law 2 “ Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum rectam qua vis illa impritmitur.”
  • 6. Dynamics Newton’s Laws Of Motion Law 1 “ Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter, nisi quatenus a viribus impressis cogitur statum illum mutare.” Everybody continues in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed upon it. Law 2 “ Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum rectam qua vis illa impritmitur.” The change of motion is proportional to the motive force impressed, and it is made in the direction of the right line in which that force is impressed.
  • 7. Motive force  change in motion
  • 8. Motive force  change in motion F acceleration
  • 9. Motive force  change in motion F acceleration F  constant  acceleration
  • 10. Motive force  change in motion F acceleration F  constant  acceleration  F  ma (constant = mass)
  • 11. Motive force  change in motion F acceleration F  constant  acceleration  F  ma (constant = mass) Law 3 “ Actioni contrariam semper et aequalem esse reactionem: sive corporum duorum actions in se mutuo semper esse aequales et in partes contrarias dirigi.”
  • 12. Motive force  change in motion F acceleration F  constant  acceleration  F  ma (constant = mass) Law 3 “ Actioni contrariam semper et aequalem esse reactionem: sive corporum duorum actions in se mutuo semper esse aequales et in partes contrarias dirigi.” To every action there is always opposed an equal reaction: or, the mutual actions of two bodies upon each other are always equal, and directed in contrary parts.
  • 14. Acceleration d 2x   2 x dt dv  dt
  • 15. Acceleration d 2x   2 x (acceleration is a function of t) dt dv  dt
  • 16. Acceleration d 2x   2 x (acceleration is a function of t) dt dv  dt d 1 2    v  (acceleration is a function of x) dx  2 
  • 17. Acceleration d 2x   2 x (acceleration is a function of t) dt dv  dt d 1 2    v  (acceleration is a function of x) dx  2  dv v (acceleration is a function of v) dx
  • 18. Acceleration d 2x   2 x (acceleration is a function of t) dt dv  dt d 1 2    v  (acceleration is a function of x) dx  2  dv v (acceleration is a function of v) dx e.g. (1981) Assume that the earth is a sphere of radius R and that, at a point r  R  from the centre of the earth, the acceleration due to gravity is proportional to 1 and is directed towards the earth’s centre. r2 A body is projected vertically upwards from the surface of the earth with initial speed V.
  • 19. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface.
  • 20. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. O
  • 21. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. O
  • 22. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. r  R, v  V ,    g r O
  • 23. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. v0 r  R, v  V ,    g r O
  • 24. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. v0 r  R, v  V ,    g r O
  • 25. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. v0 resultant m r force r  R, v  V ,    g r O
  • 26. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. v0 resultant m r force m r2 r  R, v  V ,    g r O
  • 27. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. m v0 resultant m   2 r m r r force m r2 r  R, v  V ,    g r O
  • 28. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. m v0 resultant m   2 r m r r force    2 r m r r2 r  R, v  V ,    g r O
  • 29. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. m v0 resultant m   2 r m r r force    2 r m r 2 when r  R,    g r r r  R, v  V ,    g r O
  • 30. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. m v0 resultant m   2 r m r r force    2 r m r 2 when r  R,    g r r  r  R, v  V ,    g r i.e.  g  2 R   gR 2 O
  • 31. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. m v0 resultant m   2 r m r r force    2 r m r 2 when r  R,    g r r  r  R, v  V ,    g r i.e.  g  2 R   gR 2 O  gR 2   2 r r
  • 32. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. m v0 resultant m   2 r m r r force    2 r m r 2 when r  R,    g r r  r  R, v  V ,    g r i.e.  g  2 R   gR 2 O  gR 2   2 r r d  1 2   gR 2  v  2 dr  2  r
  • 33. 1 2 gR 2 v  c 2 r 2 gR 2 v2  c r
  • 34. 1 2 gR 2 v  c 2 r 2 gR 2 v2  c r when r  R, v  V
  • 35. 1 2 gR 2 v  c 2 r 2 gR 2 v2  c r when r  R, v  V 2 gR 2 i.e. V 2  c R c  V 2  2 gR
  • 36. 1 2 gR 2 v  c 2 r 2 gR 2 v2  c r when r  R, v  V 2 gR 2 i.e. V 2  c R c  V 2  2 gR 2 gR 2 v  2  V 2  2 gR r
  • 37. 1 2 gR 2 v  c 2 r 2 gR 2 If particle never stops then r   v2  c r when r  R, v  V 2 gR 2 i.e. V 2  c R c  V 2  2 gR 2 gR 2 v  2  V 2  2 gR r
  • 38. 1 2 gR 2 v  c 2 r 2 gR 2 If particle never stops then r   v2  c r  2 gR 2  lim v  lim 2  V  2 gR  2 when r  R, v  V r  r   r  2 gR 2  V 2  2 gR i.e. V 2  c R c  V 2  2 gR 2 gR 2 v  2  V 2  2 gR r
  • 39. 1 2 gR 2 v  c 2 r 2 gR 2 If particle never stops then r   v2  c r  2 gR 2  lim v  lim 2  V  2 gR  2 when r  R, v  V r  r   r  2 gR 2  V 2  2 gR i.e. V 2  c R Now v 2  0 c  V 2  2 gR 2 gR 2 v  2  V 2  2 gR r
  • 40. 1 2 gR 2 v  c 2 r 2 gR 2 If particle never stops then r   v2  c r  2 gR 2  lim v  lim 2  V  2 gR  2 when r  R, v  V r  r   r  2 gR 2  V 2  2 gR i.e. V 2  c R Now v 2  0 c  V 2  2 gR V 2  2 gR  0 2 gR 2 v  2  V 2  2 gR r
  • 41. 1 2 gR 2 v  c 2 r 2 gR 2 If particle never stops then r   v2  c r  2 gR 2  lim v  lim 2  V  2 gR  2 when r  R, v  V r  r   r  2 gR 2  V 2  2 gR i.e. V 2  c R Now v 2  0 c  V 2  2 gR V 2  2 gR  0 2 gR 2 V 2  2 gR v  2  V 2  2 gR r
  • 42. 1 2 gR 2 v  c 2 r 2 gR 2 If particle never stops then r   v2  c r  2 gR 2  lim v  lim 2  V  2 gR  2 when r  R, v  V r  r   r  2 gR 2  V 2  2 gR i.e. V 2  c R Now v 2  0 c  V 2  2 gR V 2  2 gR  0 2 gR 2 V 2  2 gR v  2  V 2  2 gR r Thus if V  2 gR the particle never stops, i.e. the particle escapes the earth.
  • 43. (ii) If V  2 gR ,prove that the time taken to rise to a height R above the earth’s surface is; 1 4  2  R 3 g
  • 44. (ii) If V  2 gR ,prove that the time taken to rise to a height R above the earth’s surface is; 1 4  2  R 3 g 2 gR 2 v  2  V 2  2 gR r
  • 45. (ii) If V  2 gR ,prove that the time taken to rise to a height R above the earth’s surface is; 1 4  2  R 3 g 2 gR 2 v  2  V 2  2 gR r If V  2 gR ,
  • 46. (ii) If V  2 gR ,prove that the time taken to rise to a height R above the earth’s surface is; 1 4  2  R 3 g 2 gR 2 v  2  V 2  2 gR r 2 gR 2 If V  2 gR , v   2 gR  2 gR 2 r 2 gR 2 v2  r
  • 47. (ii) If V  2 gR ,prove that the time taken to rise to a height R above the earth’s surface is; 1 4  2  R 3 g 2 gR 2 v  2  V 2  2 gR r 2 gR 2 If V  2 gR , v   2 gR  2 gR 2 r 2 gR 2 v2  r 2 gR 2 v (cannot be –ve, as it does not return) r
  • 48. (ii) If V  2 gR ,prove that the time taken to rise to a height R above the earth’s surface is; 1 4  2  R 3 g 2 gR 2 v  2  V 2  2 gR r 2 gR 2 If V  2 gR , v   2 gR  2 gR 2 r 2 gR 2 v2  r 2 gR 2 v (cannot be –ve, as it does not return) r dr 2 gR 2  dt r
  • 49. (ii) If V  2 gR ,prove that the time taken to rise to a height R above the earth’s surface is; 1 4  2  R 3 g 2 gR 2 v  2  V 2  2 gR r 2 gR 2 If V  2 gR , v   2 gR  2 gR 2 r 2 gR 2 v2  r 2 gR 2 v (cannot be –ve, as it does not return) r dr 2 gR 2  dt r dt r  dr 2gR 2
  • 50. 2R 1 t 2 gR 2  R r dr
  • 51. 2R 1 2 R  t 2 gR 2  r dr   as travelling from R to 2 R  R R 
  • 52. 2R 1 2 R  t 2 gR 2  r dr   as travelling from R to 2 R  R R  2R 1 2  3  3 r  2 2 gR 2  R
  • 53. 2R 1 2 R  t 2 gR 2  r dr   as travelling from R to 2 R  R R  2R 1 2  3  3 r  2 2 gR 2  R  2 2 2 R 2 R  R R  3 gR
  • 54. 2R 1 2 R  t 2 gR 2  r dr   as travelling from R to 2 R  R R  2R 1 2  3  3 r  2 2 gR 2  R  2 2 2 R 2 R  R R  3 gR  2 2 2  1R R 3R g
  • 55. 2R 1 2 R  t 2 gR 2  r dr   as travelling from R to 2 R  R R  2R 1 2  3  3 r  2 2 gR 2  R  2 2 2 R 2 R  R R  3 gR  2 2 2  1R R 3R g  R 4  2  3 g
  • 56. 2R 1 2 R  t 2 gR 2  r dr   as travelling from R to 2 R  R R  2R 1 2  3  3 r  2 2 gR 2  R  2 2 2 R 2 R  R R  3 gR  2 2 2  1R R 3R g  R 4  2  3 g  4  2  1 R 3 g
  • 57. 2R 1 2 R  t 2 gR 2  r dr   as travelling from R to 2 R  R R  2R 1 2  3  3 r  2 2 gR 2  R  2 2 2 R 2 R  R R  3 gR  2 2 2  1R R 3R g  R 4  2  3 g  time taken to rise to a height R above  4  2  1 R earth' s surface is 4  2  1 R 3 g seconds 3 g
  • 58. Exercise 8C; 3, 15, 19