SlideShare une entreprise Scribd logo
1  sur  28
ANTIBIOTICS
-by RAHUL SHIVNIKAR
SOME GENERAL PRINCIPLES
• Antibiotics can be naturally produced,
semi-synthetic, or synthetic substances
• Designed to have as much selective
toxicity on the bacteria as possible
• This is more likely to be achieved
compared to antimicrobials acting against
eukaryotic cells (fungi, protozoa)
EXAMPLES OF SELECTIVE
ACTION
• Penicillin on bacterial cell wall (organisms
without cell wall won’t be inhibited eg
Mycoplasma pneumoniae)
• Sulphonamides prevent bacteria
synthesising folic acid whereas humans
can use preformed folate
• Generally drugs acting on cell membranes
or protein synthesis are more toxic to
humans
ANTIBIOTICS ACTING ON CELL
WALL OF BACTERIA
• Beta lactams:
• Penicillins, cephalosporins, carbapenems,
monobactam
• Glycopeptides:
• Vancomycin, teicoplanin
THE IDEAL
ANTIBIOTIC?:PENICILLIN
•
•
•
•
•
•

Narrow spectrum
Bactericidal
Very selective mode of action
Low serum protein binding
Widely distributed in body esp. CNS
Excreted by the kidneys
THE DEVELOPMENT OF THE
BETA LACTAMS
• Benzylenicillin and early cephalosporins mainly
active against gram positive bacteria
(strep and staph)
• Then “broad spectrum” penicillins appeared:
ampicillin, ureidopenicillins and cephalosporins:
cefuroxime, cefotaxime
• Carbapenems and latest generation of
cephalosporins, eg ceftazidime more active
against gram negatives
BENZYLPENICILLIN: MAIN
INDICATIONS
 Strep pyogenes sepsis (from sore throat to
fasciitis)
 Pneumococcal pneumonia, meningitis
 Meningococcal meningitis, sepsis
 Infective endocarditis (strep)
 Strep group B sepsis
 Diphtheria
 Syphilis, leptospirosis
Broader spectrum penicillins
• Ampicillin, amoxycillin cover most
organisms hit by penicillin but also Esch
coli, some Proteus (cause UTI’s)
• Augmentin stable to TEM1 beta lactamase
because of the clavulanic acid therefore
more active than ampicillin
• Tazocin: broader coverage than
augmentin against gram negatives
including Pseudomonas
Organisms producing TEM1beta
lactamase
•
•
•
•
•

Haemophilus influenzae
Neisseria gonorrhoeae
Bacteroides fragilis
Staph aureus
Esch coli
Carbapenems
• Imipenem, meropenem: have a very broad
spectrum activity against gram-negative
bacteria, anaerobes, streps
• Now used to treat gram negative
infections due to so called ESBL
producing organisms eg, E coli, Klebsiella
• Ertapenem is a new member of the group
but its not active against Pseudomonas
PENICILLIN IS GENERALLY
VERY SAFE BUT….
• Allergic reactions not uncommon-rashes
• Most severe reaction being anaphylaxis
• A history of anaphylaxis, urticaria, or rash immediately
after penicillin indicates risk of immediate
hypersensitivity after a further dose of any penicillin or
cephalosporin (therefore these must be avoided)
• Allergy is not dependent on the dose given ie, a small
dose could cause anaphylaxis
• Very high doses of penicillin can cause neurotoxicity
• Never give penicillin intrathecally
What antibiotics can be used in
penicillin allergy?
• Macrolides: erythromycin, clarithromycin
• (mainly gram positive cover)
• Quinolones: ciprofloxacin, levofloxacin
(mainly gram positive cover)
• Glycopeptides (serious infections)
• Fusidic acid, rifampicin, clindamycin
(mainly gram positive)
REMEMBER WHAT THE OTHER
BETA LACTAMS ARE:
• All penicillins: ampicillin, augmentin,
piperacillin, cloxacillin
• Cephalosporins: cefuroxime, cefotaxime,
ceftriaxone, ceftazidime (5-10% cross
sensitivity)
• Monobactam: aztreonam (low cross
sensitivity)
• Carbapenems: imipenem, meropenem
CLOXACILLIN
•
•
•
•
•

Narrow spectrum: Staph aureus (MSSA)
Stable to TEM1 beta lactamase
Similar antibiotics are methicillin, nafcillin
Similar safety profile to benzylpenicillin
MRSA emerged in the early 1970’s (MecA
gene encoding additional pbp)
Cephalosporins: main uses
• Cefuroxime: surgical prophylaxis
• Cefotaxime/ceftriaxone: meningitis
nosocomial infections excluding
Pseudomonal,
• Ceftazidime: nosocomial infections
including Pseudomonal
Problems with antibiotic resistance:
how does it happen?
• Some bacteria are naturally resistant to
particular antibiotics (Pseudomonas has
permeability barrier to many antibiotics)
• Some typically susceptible species have minority
populations which are resistant by virtue of
mutational resistance (pneumococcus)
• Other species acquire resistance via plasmids
(“infectious resistance”) eg Neisseria
gonorrhoeae, many gram negatives
Current major antibiotic resistance
problems: community infections
• Respiratory tract: penicillin resistance in
pneumococcus (5-10%)
• Gastrointestinal: quinolone resistance in
Campylobacter
• Sexually transmitted: penicillin, quinolone
resistance in gonococcus
• Urinary tract: beta lactam resistance in Esch coli
• MRSA and MDRTB
• Tropical: multidrug resistance in Salmonella
typhi, Shigella spp
Current major resistance problems:
hospital infections
• MRSA: current strains are often multiplyantibiotic resistant
• VISA/GISA: intermediate resistance to
glycopeptides (thickened cell wall)
• VRSA/GRSA: highly resistant (transferable on
plasmids) from enterococci
• VRE: enterococci (multiply resis tant)
• Broad spectrum beta lactam resistant (ESBL)
Esch coli, Klebsiella
• Multiply antibiotic resistant enterobacteria:
Acinetobacter, Stenotrophomonas, Serratia
Other major antibiotic groups:
aminoglycosides
• Gentamicin, amikacin (tobramycin,
streptomycin)
• Mainly active against gram negative
bacteria
• Mainly used to treat nosocomial infections:
pneumonia in ITU, septicaemia
• Limiting factors are nephrotoxicity (and
ototoxicity) and resistance
• Also used in combination
How we give aminoglycosides
• For serious nosocomial infections:
“extended interval” or once daily dosing
• 5 or 7mg/kg for gentamicin (Hartford
nomogram)
• Rationale based on concentrationdependent killing and post-antibiotic effect
• Reduced risk of nephrotoxicity
• In infective endocarditis use lower doses
to give synergy with penicillin
Some indications and limitations
of particular antibiotics
Community acquired pneumonia
• Pneumococcus (and H influenzae) are most
likely: therefore ampicillin, amoxycillin or
augmentin
• Severe pneumonia: cefotaxime
• Severe atypical pneumonia (Legionella):
macrolide or quinolone
• Resistant pneumococcus: vancomycin or
linezolid (new antibiotic!)
• A new quinolone moxifloxacin covers most of
these pathogens (likely to be used more in
community)
Community acquired urinary
infections
•
•
•
•
•
•
•

Ampicillin, amoxycillin, augmentin
Oral cephalosporin: cephradine
Trimethroprim
Nalidixic acid
Nitrofurantoin
Ciprofloxacin
Mecillinam
Skin and soft tissue infections
• Cellulitis ? Streptococcal: penicillin or
augmentin
• Infected eczema ? Staphylococccal/mixed:
penicillin+flucloxacillin or augmentin
• Necrotising fasciitis: penicillin+clindamycin
• Septic arthritis: fluclox+fusidic acid
• Gangrene: metronidazole
Where there is deep-seated
infection: bone, abscess
• Need an antibiotic with good tissue and
phagocyte penetration
• Examples are rifampicin, clindamycin,
fusidic acid, ciprofloxacin, metronidazole
• So for treatment of Staph aureus
osteomyelitis: flucloxacillin+ fusidic acid
Why do we use combination
therapy?
• When treating serious infection empirically
we want to cover a broad spectrum
(severe pneumonia:cefotaxime+erythromycin)

• To prevent the emergence of drug
resistance: tuberculosis regimens
• For synergy: infective endocarditis
(aminoglycoside)

• For mixed infections eg, abdominal sepsis
(tazocin+metronidazole)
Factors to consider when
prescribing an antibiotic
• Any history of allergy, toxicity?
• Is it appropriate for the spectrum I want to
cover?
• What route of admin: oral or i.v?
• Any factors affecting absorption ?
• Is it going to reach the site of infection?
• Any drug interactions?
• Any serious toxicity eg, hepatic, renal?
• Does it need monitoring eg aminoglycosides,
vancomycin, streptomycin?
Some other antibiotics occasionally
used
• Co-trimoxazole (Stenotrophomonas)
• Chloramphenicol (typhoid fever,
meningitis)
• Colistin (resistant Pseudomonas) topical
• Neomycin: gut decontamination, topical

Contenu connexe

Tendances

Antibiotics basics for clinicians
Antibiotics basics for cliniciansAntibiotics basics for clinicians
Antibiotics basics for clinicians
Satish Kamboj
 
Antibiotics Etiology & Treatment Of Bacterial Infections In Children
Antibiotics Etiology & Treatment Of Bacterial Infections In ChildrenAntibiotics Etiology & Treatment Of Bacterial Infections In Children
Antibiotics Etiology & Treatment Of Bacterial Infections In Children
Dang Thanh Tuan
 

Tendances (20)

NurseReview.Org - Antibiotics Updates (advanced pharmacology for nurse practi...
NurseReview.Org - Antibiotics Updates (advanced pharmacology for nurse practi...NurseReview.Org - Antibiotics Updates (advanced pharmacology for nurse practi...
NurseReview.Org - Antibiotics Updates (advanced pharmacology for nurse practi...
 
Antibiotics
AntibioticsAntibiotics
Antibiotics
 
Antibiotic policy
Antibiotic policyAntibiotic policy
Antibiotic policy
 
Antibiotics part iii
Antibiotics part iiiAntibiotics part iii
Antibiotics part iii
 
Antimicrobials general I
Antimicrobials general IAntimicrobials general I
Antimicrobials general I
 
Antibiotics
AntibioticsAntibiotics
Antibiotics
 
Antibiotics treatment & management
Antibiotics treatment & management Antibiotics treatment & management
Antibiotics treatment & management
 
Antibiotics i
Antibiotics iAntibiotics i
Antibiotics i
 
Obat antimikroba
Obat antimikrobaObat antimikroba
Obat antimikroba
 
Antibiotics
AntibioticsAntibiotics
Antibiotics
 
Antibiotic Therapy
Antibiotic TherapyAntibiotic Therapy
Antibiotic Therapy
 
Antibiotics and its principles
Antibiotics and its principlesAntibiotics and its principles
Antibiotics and its principles
 
Antibiotic classes
Antibiotic classes Antibiotic classes
Antibiotic classes
 
Antibiotic (asif) nsupharmacy
Antibiotic (asif) nsupharmacyAntibiotic (asif) nsupharmacy
Antibiotic (asif) nsupharmacy
 
Antibiotics basics for clinicians
Antibiotics basics for cliniciansAntibiotics basics for clinicians
Antibiotics basics for clinicians
 
Anti microbials
Anti microbialsAnti microbials
Anti microbials
 
Antibacterial Agents/ Antibiotics (Ocular Pharmacology)(healthkura.com)
Antibacterial Agents/ Antibiotics (Ocular Pharmacology)(healthkura.com)Antibacterial Agents/ Antibiotics (Ocular Pharmacology)(healthkura.com)
Antibacterial Agents/ Antibiotics (Ocular Pharmacology)(healthkura.com)
 
Antibiotics
AntibioticsAntibiotics
Antibiotics
 
A summary of pharmaceutical microbiology part 2 - drugs
A summary of pharmaceutical microbiology   part 2 - drugsA summary of pharmaceutical microbiology   part 2 - drugs
A summary of pharmaceutical microbiology part 2 - drugs
 
Antibiotics Etiology & Treatment Of Bacterial Infections In Children
Antibiotics Etiology & Treatment Of Bacterial Infections In ChildrenAntibiotics Etiology & Treatment Of Bacterial Infections In Children
Antibiotics Etiology & Treatment Of Bacterial Infections In Children
 

En vedette

Antibiotics and antibacterial drugs
Antibiotics and antibacterial drugsAntibiotics and antibacterial drugs
Antibiotics and antibacterial drugs
vasanramkumar
 
Introduction to antibiotics // basic principles
Introduction to antibiotics // basic principlesIntroduction to antibiotics // basic principles
Introduction to antibiotics // basic principles
arielandysteve
 
Penicillins, cephalosporins, amido penicillins
Penicillins, cephalosporins, amido penicillinsPenicillins, cephalosporins, amido penicillins
Penicillins, cephalosporins, amido penicillins
N K
 

En vedette (20)

Chemotherapy seyoum
Chemotherapy seyoumChemotherapy seyoum
Chemotherapy seyoum
 
ANTIMICROBIALS/ ANTIBIOTICS : GENERAL CONSIDERATIONS
 ANTIMICROBIALS/ ANTIBIOTICS : GENERAL CONSIDERATIONS ANTIMICROBIALS/ ANTIBIOTICS : GENERAL CONSIDERATIONS
ANTIMICROBIALS/ ANTIBIOTICS : GENERAL CONSIDERATIONS
 
Basic principles of antimicrobial therapy
Basic principles of  antimicrobial therapy Basic principles of  antimicrobial therapy
Basic principles of antimicrobial therapy
 
PHARMACOLOGY - ANTIBIOTICS
PHARMACOLOGY - ANTIBIOTICSPHARMACOLOGY - ANTIBIOTICS
PHARMACOLOGY - ANTIBIOTICS
 
Presentation on antibiotics.
Presentation on antibiotics.Presentation on antibiotics.
Presentation on antibiotics.
 
Antimicrobial 3 wafaa
Antimicrobial 3 wafaaAntimicrobial 3 wafaa
Antimicrobial 3 wafaa
 
Antibiotics: Introduction to classification
Antibiotics: Introduction to classificationAntibiotics: Introduction to classification
Antibiotics: Introduction to classification
 
Principles of antibiotic therapy
Principles of antibiotic therapyPrinciples of antibiotic therapy
Principles of antibiotic therapy
 
Antibiotics and antibacterial drugs
Antibiotics and antibacterial drugsAntibiotics and antibacterial drugs
Antibiotics and antibacterial drugs
 
Introduction to antibiotics // basic principles
Introduction to antibiotics // basic principlesIntroduction to antibiotics // basic principles
Introduction to antibiotics // basic principles
 
Alkylating agents and antimetabolites
Alkylating agents and antimetabolitesAlkylating agents and antimetabolites
Alkylating agents and antimetabolites
 
Antimetabolites in cancer chemotherapy
Antimetabolites in cancer chemotherapyAntimetabolites in cancer chemotherapy
Antimetabolites in cancer chemotherapy
 
Antibiotics
AntibioticsAntibiotics
Antibiotics
 
Penicillins, cephalosporins, amido penicillins
Penicillins, cephalosporins, amido penicillinsPenicillins, cephalosporins, amido penicillins
Penicillins, cephalosporins, amido penicillins
 
Immunosuppressants
ImmunosuppressantsImmunosuppressants
Immunosuppressants
 
medicinal chemistry of Anticancer agents
medicinal chemistry of Anticancer agentsmedicinal chemistry of Anticancer agents
medicinal chemistry of Anticancer agents
 
Anticancer drugs 3 antimetabolites
Anticancer drugs 3 antimetabolitesAnticancer drugs 3 antimetabolites
Anticancer drugs 3 antimetabolites
 
Principles of Antimicrobial therapy _Pharmacology
Principles of Antimicrobial therapy_PharmacologyPrinciples of Antimicrobial therapy_Pharmacology
Principles of Antimicrobial therapy _Pharmacology
 
Antibiotics
AntibioticsAntibiotics
Antibiotics
 
Anti metabolites
Anti metabolitesAnti metabolites
Anti metabolites
 

Similaire à Antibiotics

Antibiotics
AntibioticsAntibiotics
Antibiotics
jonolesu
 
Microbiology - bacteria, fungi, yeasts and viruses
Microbiology - bacteria, fungi, yeasts and virusesMicrobiology - bacteria, fungi, yeasts and viruses
Microbiology - bacteria, fungi, yeasts and viruses
meducationdotnet
 

Similaire à Antibiotics (20)

Antibiotics
AntibioticsAntibiotics
Antibiotics
 
Antibiotics
AntibioticsAntibiotics
Antibiotics
 
6 beta lactum drugs dental
6  beta lactum drugs dental6  beta lactum drugs dental
6 beta lactum drugs dental
 
Cephalosporin.pptx
Cephalosporin.pptxCephalosporin.pptx
Cephalosporin.pptx
 
Cephalosporins
CephalosporinsCephalosporins
Cephalosporins
 
Antibiotics
AntibioticsAntibiotics
Antibiotics
 
Microbiology - bacteria, fungi, yeasts and viruses
Microbiology - bacteria, fungi, yeasts and virusesMicrobiology - bacteria, fungi, yeasts and viruses
Microbiology - bacteria, fungi, yeasts and viruses
 
Antimicrobials 1
Antimicrobials 1Antimicrobials 1
Antimicrobials 1
 
Pharmacotherapy in ent 1
Pharmacotherapy in ent 1Pharmacotherapy in ent 1
Pharmacotherapy in ent 1
 
Infectious_Diseases.pptx
Infectious_Diseases.pptxInfectious_Diseases.pptx
Infectious_Diseases.pptx
 
Beta lactam antibiotics
Beta lactam antibioticsBeta lactam antibiotics
Beta lactam antibiotics
 
Peniciliin
PeniciliinPeniciliin
Peniciliin
 
Antibiotics
AntibioticsAntibiotics
Antibiotics
 
antibiotics.pptx
antibiotics.pptxantibiotics.pptx
antibiotics.pptx
 
Antibiotics, chemistry of penicillin, cephalosporin, tetracycline
Antibiotics, chemistry of penicillin, cephalosporin, tetracyclineAntibiotics, chemistry of penicillin, cephalosporin, tetracycline
Antibiotics, chemistry of penicillin, cephalosporin, tetracycline
 
Antibiotics by DR: ABBAS ALI SHAH
Antibiotics by DR: ABBAS ALI SHAH Antibiotics by DR: ABBAS ALI SHAH
Antibiotics by DR: ABBAS ALI SHAH
 
Antimicrobial Agents and Resistance.pptx
Antimicrobial Agents and Resistance.pptxAntimicrobial Agents and Resistance.pptx
Antimicrobial Agents and Resistance.pptx
 
antibiotic principles.ppt
antibiotic principles.pptantibiotic principles.ppt
antibiotic principles.ppt
 
Antibiotics
AntibioticsAntibiotics
Antibiotics
 
Antibiotics
AntibioticsAntibiotics
Antibiotics
 

Antibiotics

  • 2. SOME GENERAL PRINCIPLES • Antibiotics can be naturally produced, semi-synthetic, or synthetic substances • Designed to have as much selective toxicity on the bacteria as possible • This is more likely to be achieved compared to antimicrobials acting against eukaryotic cells (fungi, protozoa)
  • 3. EXAMPLES OF SELECTIVE ACTION • Penicillin on bacterial cell wall (organisms without cell wall won’t be inhibited eg Mycoplasma pneumoniae) • Sulphonamides prevent bacteria synthesising folic acid whereas humans can use preformed folate • Generally drugs acting on cell membranes or protein synthesis are more toxic to humans
  • 4. ANTIBIOTICS ACTING ON CELL WALL OF BACTERIA • Beta lactams: • Penicillins, cephalosporins, carbapenems, monobactam • Glycopeptides: • Vancomycin, teicoplanin
  • 5. THE IDEAL ANTIBIOTIC?:PENICILLIN • • • • • • Narrow spectrum Bactericidal Very selective mode of action Low serum protein binding Widely distributed in body esp. CNS Excreted by the kidneys
  • 6. THE DEVELOPMENT OF THE BETA LACTAMS • Benzylenicillin and early cephalosporins mainly active against gram positive bacteria (strep and staph) • Then “broad spectrum” penicillins appeared: ampicillin, ureidopenicillins and cephalosporins: cefuroxime, cefotaxime • Carbapenems and latest generation of cephalosporins, eg ceftazidime more active against gram negatives
  • 7. BENZYLPENICILLIN: MAIN INDICATIONS  Strep pyogenes sepsis (from sore throat to fasciitis)  Pneumococcal pneumonia, meningitis  Meningococcal meningitis, sepsis  Infective endocarditis (strep)  Strep group B sepsis  Diphtheria  Syphilis, leptospirosis
  • 8. Broader spectrum penicillins • Ampicillin, amoxycillin cover most organisms hit by penicillin but also Esch coli, some Proteus (cause UTI’s) • Augmentin stable to TEM1 beta lactamase because of the clavulanic acid therefore more active than ampicillin • Tazocin: broader coverage than augmentin against gram negatives including Pseudomonas
  • 9. Organisms producing TEM1beta lactamase • • • • • Haemophilus influenzae Neisseria gonorrhoeae Bacteroides fragilis Staph aureus Esch coli
  • 10. Carbapenems • Imipenem, meropenem: have a very broad spectrum activity against gram-negative bacteria, anaerobes, streps • Now used to treat gram negative infections due to so called ESBL producing organisms eg, E coli, Klebsiella • Ertapenem is a new member of the group but its not active against Pseudomonas
  • 11. PENICILLIN IS GENERALLY VERY SAFE BUT…. • Allergic reactions not uncommon-rashes • Most severe reaction being anaphylaxis • A history of anaphylaxis, urticaria, or rash immediately after penicillin indicates risk of immediate hypersensitivity after a further dose of any penicillin or cephalosporin (therefore these must be avoided) • Allergy is not dependent on the dose given ie, a small dose could cause anaphylaxis • Very high doses of penicillin can cause neurotoxicity • Never give penicillin intrathecally
  • 12. What antibiotics can be used in penicillin allergy? • Macrolides: erythromycin, clarithromycin • (mainly gram positive cover) • Quinolones: ciprofloxacin, levofloxacin (mainly gram positive cover) • Glycopeptides (serious infections) • Fusidic acid, rifampicin, clindamycin (mainly gram positive)
  • 13. REMEMBER WHAT THE OTHER BETA LACTAMS ARE: • All penicillins: ampicillin, augmentin, piperacillin, cloxacillin • Cephalosporins: cefuroxime, cefotaxime, ceftriaxone, ceftazidime (5-10% cross sensitivity) • Monobactam: aztreonam (low cross sensitivity) • Carbapenems: imipenem, meropenem
  • 14. CLOXACILLIN • • • • • Narrow spectrum: Staph aureus (MSSA) Stable to TEM1 beta lactamase Similar antibiotics are methicillin, nafcillin Similar safety profile to benzylpenicillin MRSA emerged in the early 1970’s (MecA gene encoding additional pbp)
  • 15. Cephalosporins: main uses • Cefuroxime: surgical prophylaxis • Cefotaxime/ceftriaxone: meningitis nosocomial infections excluding Pseudomonal, • Ceftazidime: nosocomial infections including Pseudomonal
  • 16. Problems with antibiotic resistance: how does it happen? • Some bacteria are naturally resistant to particular antibiotics (Pseudomonas has permeability barrier to many antibiotics) • Some typically susceptible species have minority populations which are resistant by virtue of mutational resistance (pneumococcus) • Other species acquire resistance via plasmids (“infectious resistance”) eg Neisseria gonorrhoeae, many gram negatives
  • 17. Current major antibiotic resistance problems: community infections • Respiratory tract: penicillin resistance in pneumococcus (5-10%) • Gastrointestinal: quinolone resistance in Campylobacter • Sexually transmitted: penicillin, quinolone resistance in gonococcus • Urinary tract: beta lactam resistance in Esch coli • MRSA and MDRTB • Tropical: multidrug resistance in Salmonella typhi, Shigella spp
  • 18. Current major resistance problems: hospital infections • MRSA: current strains are often multiplyantibiotic resistant • VISA/GISA: intermediate resistance to glycopeptides (thickened cell wall) • VRSA/GRSA: highly resistant (transferable on plasmids) from enterococci • VRE: enterococci (multiply resis tant) • Broad spectrum beta lactam resistant (ESBL) Esch coli, Klebsiella • Multiply antibiotic resistant enterobacteria: Acinetobacter, Stenotrophomonas, Serratia
  • 19. Other major antibiotic groups: aminoglycosides • Gentamicin, amikacin (tobramycin, streptomycin) • Mainly active against gram negative bacteria • Mainly used to treat nosocomial infections: pneumonia in ITU, septicaemia • Limiting factors are nephrotoxicity (and ototoxicity) and resistance • Also used in combination
  • 20. How we give aminoglycosides • For serious nosocomial infections: “extended interval” or once daily dosing • 5 or 7mg/kg for gentamicin (Hartford nomogram) • Rationale based on concentrationdependent killing and post-antibiotic effect • Reduced risk of nephrotoxicity • In infective endocarditis use lower doses to give synergy with penicillin
  • 21. Some indications and limitations of particular antibiotics
  • 22. Community acquired pneumonia • Pneumococcus (and H influenzae) are most likely: therefore ampicillin, amoxycillin or augmentin • Severe pneumonia: cefotaxime • Severe atypical pneumonia (Legionella): macrolide or quinolone • Resistant pneumococcus: vancomycin or linezolid (new antibiotic!) • A new quinolone moxifloxacin covers most of these pathogens (likely to be used more in community)
  • 23. Community acquired urinary infections • • • • • • • Ampicillin, amoxycillin, augmentin Oral cephalosporin: cephradine Trimethroprim Nalidixic acid Nitrofurantoin Ciprofloxacin Mecillinam
  • 24. Skin and soft tissue infections • Cellulitis ? Streptococcal: penicillin or augmentin • Infected eczema ? Staphylococccal/mixed: penicillin+flucloxacillin or augmentin • Necrotising fasciitis: penicillin+clindamycin • Septic arthritis: fluclox+fusidic acid • Gangrene: metronidazole
  • 25. Where there is deep-seated infection: bone, abscess • Need an antibiotic with good tissue and phagocyte penetration • Examples are rifampicin, clindamycin, fusidic acid, ciprofloxacin, metronidazole • So for treatment of Staph aureus osteomyelitis: flucloxacillin+ fusidic acid
  • 26. Why do we use combination therapy? • When treating serious infection empirically we want to cover a broad spectrum (severe pneumonia:cefotaxime+erythromycin) • To prevent the emergence of drug resistance: tuberculosis regimens • For synergy: infective endocarditis (aminoglycoside) • For mixed infections eg, abdominal sepsis (tazocin+metronidazole)
  • 27. Factors to consider when prescribing an antibiotic • Any history of allergy, toxicity? • Is it appropriate for the spectrum I want to cover? • What route of admin: oral or i.v? • Any factors affecting absorption ? • Is it going to reach the site of infection? • Any drug interactions? • Any serious toxicity eg, hepatic, renal? • Does it need monitoring eg aminoglycosides, vancomycin, streptomycin?
  • 28. Some other antibiotics occasionally used • Co-trimoxazole (Stenotrophomonas) • Chloramphenicol (typhoid fever, meningitis) • Colistin (resistant Pseudomonas) topical • Neomycin: gut decontamination, topical