SlideShare une entreprise Scribd logo
1  sur  24
Sliding Mode Observers
SOLO HERMELIN
Updated: 15.09.10
1
Table of Content
SOLO
Sliding Mode Observers
2
Sliding Mode Observers
Sliding Mode Observer for a Linear Time Invariant (LTI) System
Generic Observer for a Linear Time Invariant (LTI) System
Unknown Input Observer (UIO) for a Linear Time Invariant (LTI) System
Sliding Mode Observers of Target Acceleration
References
SOLO
Sliding Mode Observers
In most of the Linear and Nonlinear Unknown Input Observers proposed so far,
the necessary and sufficient conditions for the construction of Observers is that the
Invariant Zeros of the System must lie in the open Left Half Complex Plane, and the
transfer Function Matrix between Unknown Inputs and Measurable Outputs satisfies
the Observer Matching Condition.
Observers are Dynamical Systems that are used to Estimate the State of a Plant using
its Input-Output Measurements; they were first proposed by Luenberger.
David G. Luenberger
Professor
Management Science
and Engineering
Stanford University
In some cases, the inputs of the System are unknown or partially
unknown, which led to the development of the so-called Unknown
Input Observers (UIO), first for Linear Systems. Motivated by the
development of Sliding-Mode Controllers, Sliding Mode UIOs
have been developed.
The main advantage of using Sliding-Mode Observer over their
Linear counterparts is that while in Sliding, they are Insensitive to
the Unknown Inputs and, moreover, they can be used to
Reconstruct Unknown Inputs which can be a combination of
System Disturbances, Faults or Nonlinearities.
3
Sliding Mode Observers
SOLO
4
Diagram of the LTI System
and a Sliding Mode Observer
pxnnxmnxmnxn
pmmn
CBBA
yuux
xCy
uBuBxAx
RRRR
RRRR
∈∈∈∈
∈∈∈∈



=
++=
,,,
,,,
21
21
21
21
2211

Assumptions:
( ) 222
222 ,,
mBCrankBrank
pmpCrankmBrank
==
≤==1
2
3
tu ∀≤ ρ2
Invariant Zero of the triple (A,B2,C)
are in the Open Left-Hand Complex
Plane, or equivalently
( ) 0Real
0
2
2
2
2
≥∀+=







 −
smn
C
BAIs
rank
pxmpxn
nxmnxnn
Sliding Mode Observer for a Linear Time Invariant (LTI) System
Observer:
( ) ( )
2
,
ˆˆ
,ˆ,ˆˆˆ 211
mnxp
EL
xCy
yyEBuByyLxAx
RR ∈∈



=
−+−+= η
will stabilize the Observer on the Sliding Surface
nxp
L R∈ ( ) 0ˆ =− yyF
( )
( )
( )
( )
( )
xpm
F
yyFif
yyFif
yyF
yyF
yyE
2
,0
0ˆ0
0ˆ
ˆ
ˆ
,ˆ,
RR ∈∈<





=−
≠−
−
−
=
η
η
η
Reaching the Sliding Surface
using:
( ) 0ˆ =− yyF
Sliding Mode Observers
LTI System:
L is obtain by choosing a S.P.D. matrix Q and solving for the S.P.D. matrix P defined
by the Lyapunov Algebraic Equation (A.R.E.)
SOLO
5
pxnnxmnxmnxn
pmmn
CBBA
yuux
xCy
uBuBxAx
RRRR
RRRR
∈∈∈∈
∈∈∈∈



=
++=
,,,
,,,
21
21
21
21
2211

Sliding Mode Observer for a Linear Time Invariant (LTI) System
Observer:
( ) ( )
2
,
ˆˆ
,ˆ,ˆˆˆ 211
mnxp
EL
xCy
yyEBuByyLxAx
RR ∈∈



=
−+−+= η
will stabilize the Observer on the Sliding Surface
nxp
L R∈ ( ) 0ˆ =− yyF
( )
( )
( )
( )
( )
xpm
F
yyFif
yyFif
yyF
yyF
yyE 2
,0
0ˆ0
0ˆ
ˆ
ˆ
,ˆ, RR ∈∈<





=−
≠−
−
−
= η
η
η
Reaching the Sliding Surface
using:
( ) 0ˆ =− yyF
On the Sliding Surface ( ) 11
ˆˆˆ uByLxCLAx ++−=
( ) ( ) 02 <−=−+− QCLAPPCLA
T
F is obtain by solving
Sliding Mode Observers
( ) 1
22
−
=⇒= TTTT
CCCPBFPBCF
Diagram of the LTI System
and a Sliding Mode Observer
L.T.I. System:
SOLO
Generic Observer for a Linear Time Invariant (LTI) System
pxmpxnnxmnxn
pmn
DCBA
yux
uDxCy
uBxAx
RRRR
RRR
∈∈∈∈
∈∈∈



+=
+=
,,,
,,

Observer
sxpsxmsxq
qxpqxmqxq
sxnsq
RSM
GJF
Lwz
xLw
yRuSzMw
yGuJzFz
RRR
RRR
RRR
∈∈∈
∈∈∈
∈∈∈
→



++=
++=
,,
,,
,,

A Necessary Condition for obtaining an Observer is that (A,C) is Observable.
The Observer will achieve if and only ifxLw →








=+
=+
−=
=−
−
0DRS
LTGCR
DGBTJ
CGTFAT
valueseigenstablehasF
where Tnxn is a Transformation Matrix.
L.T.I. System
Sliding Mode Observers
SOLO
Generic Observer for a Linear Time Invariant (LTI) System
pxnnxmnxn
pmn
CBA
yux
xCy
uBxAx
RRR
RRR
∈∈∈
∈∈∈



=
+=
,,
,,

Observer
sxpsxmsxq
qxpqxmqxq
sxnsq
RSG
KJF
Lwz
xLw
yRuSzGw
yKuJzFz
RRR
RRR
RRR
∈∈∈
∈∈∈
∈∈∈
→



++=
++=
,,
,,
,,

Taking Laplace Transforms we obtain
( ) ( ) ( ) ( ) ( ) ( )sUBAIsCsYsUBAIssX nn
11 −−
−=→−=
( ) ( ) ( )[ ] ( )
( ) ( ) ( )[ ] ( ){ } ( )sUBAIsCRSBAIsCJFIsGsW
sUBAIsCJFIssZ
nnq
nq
111
11
−−−
−−
−++−+−=
−+−=
L.T.I. System
Sliding Mode Observers
SOLO
Unknown Input Observer (UIO) for a Linear Time Invariant (LTI) System
nxqpxnnxmnxn
qpmn
ECBA
dyux
xCy
dEuBxAx
RRRR
RRRR
∈∈∈∈
∈∈∈∈



=
++=
,,,
,,,

Observer
DesignedbetoMatricesHKTF
xz
yHzx
yKuBTzFz
nxpnxpnxnnxn
nn
RRRR
RR
∈∈∈∈
∈∈



+=
++=
,,,
ˆ,
ˆ

( ) ( ) ( ) ( ) ( ) dECHIuBCHIxACHIyKxCKuBTzFxCHIze nnn
KKK
n −−−−−−+++=−−=
=+
  

21
21
The Estimator Error ( ) xCHIzxxe n −−=−= ˆ:
An Unknown Input Observer for an
LTI System will derive its State Error
regardless of the unknown input (disturbance)
0ˆ:
asymptotic
xxe →−=
( )td
( ) ( )[ ] ( )[ ] ( )[ ] ( ) dECHIuBCHITyHCKACHAKzCKACHAFeCKACHAe nn −−−−+−−−+−−−+−−= 1211

eyHzx −+=Substitute in this equation:
L.T.I. System
Sliding Mode Observers
SOLO
Unknown Input Observer (UIO) for a Linear Time Invariant (LTI) System
nxqpxnnxmnxn
qpmn
ECBA
dyux
xCy
dEuBxAx
RRRR
RRRR
∈∈∈∈
∈∈∈∈



=
++=
,,,
,,,

Observer
An Unknown Input Observer for an
LTI System will derive its State Error
regardless of the unknown input (disturbance)
0ˆ:
asymptotic
xxe →−=
( )td
( ) ( )[ ] ( )[ ] ( )[ ] ( ) dECHIuBCHITyHCKACHAKzCKACHAFeCKACHAe nn −−−−+−−−+−−−+−−= 1211

We can see that if we can make the following relations:
( )
HFK
CKACHAF
CHIT
ECHI
n
n
=
−−=
−=
=−
2
1
0
the State-Estimator Error will be: eFe =
We can see that the Observer Error will be zero asymptotically iff all the eigenvalues of
F are stable.
L.T.I. System
Sliding Mode Observers
SOLO
Unknown Input Observer (UIO) for a Linear Time Invariant (LTI) System
Observer
Lemma 1: This Equation is solvable if:
( )
HFK
CKACHAF
CHIT
ECHI
n
n
=
−−=
−=
=−
2
1
0
but:
and a special solution for H is: ( ) ( )[ ] ( ) ( )†1
ECEECECECEH
TT
nxq
sp
nxp ==
−
Proof of Lemma 1:
nxqpxnnxpnxq ECHE = ( ) ( )nxqpxnnxq ECrankErank ≤⇒
( ) ( ) ( )[ ] ( )nxqnxqpxnnxqpxn ErankErankCrankECrank ≤≤ ,min
( ) ( ) qErankECrank nxqnxqpxn ==
Necesity
Sufficiency When rank (CE) = rank (E), (CE) is a full column rank matrix, because
E is assumed a full column rank matrix, and a left inverse of (CE) exists.
( ) ( ) ( )[ ] ( )TT
ECECECEC
1† −
=
and: ( )†
ECEH sp
nxp =
q.e.d.
L.T.I. System
( ) qErankECrank nxqnxqpxn == Observer Matching Condition
Sliding Mode Observers
SOLO
Unknown Input Observer (UIO) for a Linear Time Invariant (LTI) System
Observer
Lemma 2: Let:
If s1 ϵ C is an unobservable mode of the pair (C1,A) then:






=
AC
C
C1
Then the Detectability for the pair (C,A) is equivalent to
that of (C1,A). (A pair (C,A) is Detectable when all the
unobservable modes of this pair are Stable).
Proof of Lemma 2:
n
AC
C
AIs
rank
C
AIs
rank
n
n
<



















 −
=












 −
1
1
1
That means that exists a vector α ϵ Cn
such that:
n
C
AIs
rank
C
AIs
AC
C
AIs
nn
n
<




 −
⇒=




 −
⇒=









 −
11
1
00 αα
s1 is also an unobservable mode of the pair (C,A).
If s2 ϵ C is an unobservable mode of the pair (C,A) then: n
C
AIs
rank n
<












 −2
That means that always exists a vector β ϵ Cn
such that: 02
=




 −
β
C
AIs n
s2 is also an unobservable mode of the pair (C1,A).
( )
00
0
0
1
1
1
22
2
=




 −
=









 −
⇒===⇒



=
=−
βββββ
β
β
C
AIs
AC
C
AIs
CssCAC
C
AIs n
n
n
q.e.d.
L.T.I. System
Sliding Mode Observers
SOLO
Unknown Input Observer (UIO) for a Linear Time Invariant (LTI) System



=
++=
xCy
dEuBxAx
U.I.O. Observer



+=
++=
yHzx
yKuBTzFz
ˆ

Lemma 3: Necessary and Sufficient Conditions to have an
U.I.O. Observer for the L.T.I. System are:
(1)rank (C E) = rank (E)
(2)(C, A1) is a Detectable pair, where ( ) ( ) ( )[ ] ( ) ACECECECEAACECEAA
TT 1†
1 :
−
−=−=
The condition (2) is equivalent to the condition that the Invariant Zeros for the
Unknown Input, i.e., of the triplet (A,E,C) must be stable:
qpnsqn
C
EAIs
rank
pxqpxn
nxqnxnn
≥≥∈∀+=







 −
−C
0
Proof of Lemma 3 (Sufficiency):
According to Lemma 1 if rank (C E)= rank (E) exists a solution for H:
( ) ( )[ ] ( ) ( )†1
ECEECECECEH
TT
nxq
sp
nxp ==
−
and: ( ) ( )[ ]( ) CKACKACECECECEACKACHAF
TT
pxnnxnpxn
sp
nxpnxnnxn nxp 1111 −=−−=−−=
We can see that F may be Stabilized by choosing a proper K1, only if the pair (C, A1)
is Detectable.
L.T.I. System
Sliding Mode Observers
SOLO
Unknown Input Observer (UIO) for a Linear Time Invariant (LTI) System



=
++=
xCy
dEuBxAxL.T.I. System
U.I.O. Observer



+=
++=
yHzx
yKuBTzFz
ˆ

Lemma 3: Necessary and Sufficient Conditions to have an
U.I.O. Observer for the L.T.I. System are:
(1)rank (C E) = rank (E)
(2)(C, A1) is a Detectable pair, where ( ) ( ) ( )[ ] ( ) ACECECECEAACECEAA
TT 1†
1 :
−
−=−=
Proof of Lemma 3 (Necessity): ( )
HFK
CKACHAF
CHIT
ECHI
n
n
=
−−=
−=
=−
2
1
0
A General Solution for H
is
( ) ( )( )[ ]†
0
†
ECECIHECEH mnxp −+=
where is an arbitrary matrix andnxm
H R∈0
( ) ( ) ( )[ ] ( )TT
ECECECEC
1† −
=
Since the Observer is a U.I.O. Observer for the L.T.I. System
we can solve for H, T, K1, F and K2
( )[ ] [ ]
( )[ ] [ ] 111
1
011011
1
1
CKA
AC
C
HKA
ACECECI
C
HKACECEICKACHAF
C
K
T
m
T
n −=





−=





−
−−=−−=


Since the Matrix F is Stable the pair is Detectable, therefore the pair (C, A1)
is also detectable, according to Lemma 2.
( )11, AC
q.e.d.
Sliding Mode Observers
SOLO
Unknown Input Observer (UIO) for a Linear Time Invariant (LTI) System



=
++=
xCy
dEuBxAxL.T.I. System
U.I.O. Observer



+=
++=
yHzx
yKuBTzFz
ˆ

Lemma 3: Necessary and Sufficient Conditions to have an
U.I.O. Observer for the L.T.I. System are:
(1)rank (C E) = rank (E)
(2)(C, A1) is a Detectable pair, where ( ) ( ) ( )[ ] ( ) ACECECECEAACECEAA
TT 1†
1 :
−
−=−=
Proof of Lemma 3 (Necessity) (continue):
q.e.d.
( ) ( )
( ) ( )
−∈∀+=



















 −










−
−
=







 −
Csqn
C
EAIs
ECEsCECE
I
ECEsCECEI
rank
C
EAIs
rank
pxqpxn
nxqnxnn
p
n
pxqpxn
nxqnxnn
0
0
0
††
††
( )
( ) ( )
( ) −∈∀+




















−
−
=




















−
+−
=







 −
CsErank
CAECE
C
AIs
rank
ECAECE
C
ACECEAIs
rank
C
EAIs
rank
q
n
nn
pxqpxn
nxqnxnn
nxn

  
†
1
†
†
0
0
0
The condition that the pair (C, A1) is detectable, is equivalent to
therefore equivalent to the Invariant Zeros of the triplet (A,E,C) being stable
−∈∀=













 −
Csn
C
AIs
rank nxnn 1
The Condition that the Invariant Zeros of the triplet (A,E,C) are stable is:
Sliding Mode Observers
SOLO
Unknown Input Observer (UIO) for a Linear Time Invariant (LTI) System



=
++=
xCy
dEuBxAxL.T.I. System
U.I.O. Observer
Design Procedure 


+=
++=
yHzx
yKuBTzFz
ˆ

1 Check if rank (CE)=rank(E). If rank (CE)≠rank(E) go to .10
2 Compute: ( ) ( )[ ] ( ) ATACHTECECECEH pxnnxpnxn
TT
nxq
sp
nxp ===
−
1
1
,,
3 If (C1, A) Observable a U.I.O. exists, and K1 can be computed using Pole
Placements or any other Method. Go to 9
T
n
T
pp 1
,,1 
4 Construct a Transformation Matrix P by choosing n1=rank (WO) (where
WO=[C, CA1,…,CA1
n-1
]) row vectors , together othe n-n1 row vectors
to construct the nonsingular
T
n
T
n pp ,,11
+ [ ]T
n
T
n
T
n
T
ppppP ,,11 11
 +=
5 Perform [ ]0*
0 1
2221
111
1 CPC
AA
A
PAP =





= −−
6 Check Detectability of (C,A1). If one of eigenvalues of A22 is unstable, a
U.I.O. doesn’t exist and go to
10
7 Select n1 eigenvalues and assign them to using Pole Placement.*1
11 CKA p−
8 Compute where is any (n-n1)xn matrix.( ) ( )[ ]TT
p
T
pp KKPKPK 2111
1 −−
== 2
pK
9 Compute HFKKKKCKAF +=+=−= 12111 ,
10 Stop
Sliding Mode Observers
16
Sliding Mode Observers of Target Acceleration
Kinematics: ( )
→→
⋅−⋅+Λ−=Λ tataRR
td
d
MT 11

We want to Observe (Estimate) the Unknown Target Acceleration Component:
→
⋅ taT 1

Define: 0:1_ vtaestAt
Est
T =





⋅=
→
( ) mEstEst AvRz
td
d
−+Λ−= 00

The Differential Equation of the Observer will be a copy of the kinematics:
mM Ata =





⋅
→
:1

Define the Observer Error: EstEstO Rz Λ−= 
0:σ
Define the Sliding Mode Observers that must drive σO→0:
( )
( )
( )
22
11
1232
201
2/1
0121
1
3/2
10
1.1
5.1
2
vz
vz
vzsigntv
zvzsignvztv
zsigntv OO
=
=
−⋅⋅=
+−−⋅⋅=
+⋅⋅⋅=


σσ
Missile Command Acceleration
( ) ( )
( )
estAtdRsignRRsignRRNa
EstEstRSM
EstEstEstEstEstEstEstEstEstEstC _'
2
3/1
2
2/1
1 +ΛΛ+ΛΛ+Λ−=
Λ
∫   


µαα
t1, t2, t3 are Design Parameters
Observer 4: Variation of 1
( )
( )
( )
22
11
122
201
2/1
01
2/1
1
1
3/23/1
0
1.1
5.1
2
vz
vz
vzsignLv
zvzsignvzLv
zsignLv OO
=
=
−⋅⋅=
+−−⋅⋅=
+⋅⋅⋅=


σσ
Observer 1:
( )
( )
02
11
3/1
21
1
2/1
10
=
=
⋅⋅−=
+⋅⋅−=
z
vz
signv
zsignv
OOO
OOO


σσα
σσα ( )
( )
02
11
21
1
2/1
10
=
=
⋅−=
+⋅⋅−=
z
vz
signv
zsignv
OO
OOO


σρ
σσρ
L is a Design Parameter are Design Parameters21, OO αα
are Design Parameters21, OO ρρ
Observer 2: Observer 3:
Sliding Mode Observers
17
Sliding Mode Observer of Target Acceleration: MATLAB Listing
% Nonlinear Sliding Mode Target Acceleration Observers
At_est=0;
v0=0;
z0=x1;
z1=0;
z2=0;
Observer=1;
%First Observer Parameter
L=10;
%Second Observer Parameters
alphaO1=30;
alphaO2=1;
%Third Observer Parameters
rho1=20;
rho2=3;
%Fourth Observer Parameters
t1=10;
t2=3;
t3=1;
%Second Order Sliding Mode
SigmaSM=Range_est*Lamdadot_est;
y2 = alpha1*sign(SigmaSM)*abs(SigmaSM)^0.5+x2;
x2_dot =alpha2*sign(SigmaSM)*abs(SigmaSM)^(1/3);
%Nonlinear Sliding Mode Target Acceleration Observers
z0_dot=v0-Rdot_est*Lamdadot_est-Am;
SigmaO=z0-SigmaSM;
if(Observer==1)
v0=-2*L^(1/3)*abs(SigmaO)^(2/3)*sign(SigmaO)+z1;
v1=-1.5*L^(1/2)*abs(z1-v0)^(1/2)*sign(z1-v0)+z2;
v2=1.1*L*sign(z2-v1);
z1_dot=v1;
z2_dot=v2;
v0_dot=0;
At_est=v0;
end
if(Observer==2)
v0=-alphaO1*abs(SigmaO)^(1/2)*sign(SigmaO)+z1;
v1=-alphaO2*abs(SigmaO)^(1/3)*sign(SigmaO);
z1_dot=v1;
z2_dot=0;
v0_dot=0;
At_est=v0;
end
if (Observer==3)
v0=-rho1*abs(SigmaO)^(1/2)*sign(SigmaO)+z1;
v1=-rho2*sign(SigmaO);
z1_dot=v1;
z2_dot=0;
v0_dot=0;
At_est=v0;
end
if(Observer==4)
v0=-2*t1*abs(SigmaO)^(2/3)*sign(SigmaO)+z1;
v1=-1.5*t2*abs(z1-v0)^0.5*sign(z1-v0)+z2;
v2=1.1*t3*sign(z2-v1);
z1_dot=v1;
z2_dot=v2;
v0_dot=0;
At_est=v0;
end
%Missile Acceleration Command and Autopilot
Ac=-N*Rdot_est*Lamdadot_est+y2+At_est;
N = 3;
alpha1 =10;
alpha2 = 1;
%Nonlinear Sliding Mode Target Acceleration
% Observer State Integration
z0=z0+z0_dot* delta_time;
z1=z1+z1_dot* delta_time;
z2=z2+z2_dot* delta_time;
v0=v0+v0_dot* delta_time;
( )
( )
( )
22
11
1232
201
2/1
0121
1
3/2
10
1.1
5.1
2
vz
vz
vzsigntv
zvzsignvztv
zsigntv OO
=
=
−⋅⋅=
+−−⋅⋅=
+⋅⋅⋅=


σσ
( )
( )
( )
22
11
122
201
2/1
01
2/1
1
1
3/23/1
0
1.1
5.1
2
vz
vz
vzsignLv
zvzsignvzLv
zsignLv OO
=
=
−⋅⋅=
+−−⋅⋅=
+⋅⋅⋅=


σσ
( )
( )
02
11
3/1
21
1
2/1
10
=
=
⋅⋅−=
+⋅⋅−=
z
vz
signv
zsignv
OOO
OOO


σσα
σσα
( )
( )
02
11
21
1
2/1
10
=
=
⋅−=
+⋅⋅−=
z
vz
signv
zsignv
OO
OOO


σρ
σσρ
Sliding Mode Observers
18
( )
( )
( )
22
11
1232
201
2/1
0121
1
3/2
10
1.1
5.1
2
vz
vz
vzsigntv
zvzsignvztv
zsigntv OO
=
=
−⋅⋅=
+−−⋅⋅=
+⋅⋅⋅=


σσ
t1, t2, t3 are Design Parameters
Observer 4: Variation of 1
( )
( )
( )
22
11
122
201
2/1
01
2/1
1
1
3/23/1
0
1.1
5.1
2
vz
vz
vzsignLv
zvzsignvzLv
zsignLv OO
=
=
−⋅⋅=
+−−⋅⋅=
+⋅⋅⋅=


σσ
Observer 1:
( )
( )
02
11
3/1
21
1
2/1
10
=
=
⋅⋅−=
+⋅⋅−=
z
vz
signv
zsignv
OOO
OOO


σσα
σσα ( )
( )
02
11
21
1
2/1
10
=
=
⋅−=
+⋅⋅−=
z
vz
signv
zsignv
OO
OOO


σρ
σσρ
L is a Design Parameter are Design Parameters21, OO αα
are Design Parameters21, OO ρρ
Observer 2: Observer 3:
Scenario: R0=10000 m, Rdot=-1000 m/s, alpha1=10, alpha2=1, N=3, Ldot0=0.05 rad/s
A step pulse Target acceleration At=100 m/s2
starting at t=3 s and finishing at t=7s
With Not Noise
10=L 1,30 21 == OO αα 3,20 21 == OO ρρ 1,3,10 321 === ttt
0 1 2 3 4 5 6 7 8 9 10
-200
0
200
Atest
0 1 2 3 4 5 6 7 8 9 10
-1000
0
1000
z0
0 1 2 3 4 5 6 7 8 9 10
-100
0
100
z1
0 1 2 3 4 5 6 7 8 9 10
-10
0
10
SigmaO
0 1 2 3 4 5 6 7 8 9 10
-200
0
200
Atest
0 1 2 3 4 5 6 7 8 9 10
-1000
0
1000
z0
0 1 2 3 4 5 6 7 8 9 10
-20
0
20
z1
0 1 2 3 4 5 6 7 8 9 10
-50
0
50
SigmaO
0 1 2 3 4 5 6 7 8 9 10
-200
0
200
Atest
0 1 2 3 4 5 6 7 8 9 10
-1000
0
1000
z0
0 1 2 3 4 5 6 7 8 9 10
-10
0
10
z1
0 1 2 3 4 5 6 7 8 9 10
-20
0
20
SigmaO
0 1 2 3 4 5 6 7 8 9 10
-100
0
100
Atest
0 1 2 3 4 5 6 7 8 9 10
-1000
0
1000
z0
0 1 2 3 4 5 6 7 8 9 10
-200
0
200
z1
0 1 2 3 4 5 6 7 8 9 10
-200
0
200
SigmaO
Sliding Mode Observer of Target acceleration - MATLAB Results
Sliding Mode Observers
19
( )
( )
( )
22
11
1232
201
2/1
0121
1
3/2
10
1.1
5.1
2
vz
vz
vzsigntv
zvzsignvztv
zsigntv OO
=
=
−⋅⋅=
+−−⋅⋅=
+⋅⋅⋅=


σσ
t1, t2, t3 are Design Parameters
Observer 4: Variation of 1
( )
( )
( )
22
11
122
201
2/1
01
2/1
1
1
3/23/1
0
1.1
5.1
2
vz
vz
vzsignLv
zvzsignvzLv
zsignLv OO
=
=
−⋅⋅=
+−−⋅⋅=
+⋅⋅⋅=


σσ
Observer 1:
( )
( )
02
11
3/1
21
1
2/1
10
=
=
⋅⋅−=
+⋅⋅−=
z
vz
signv
zsignv
OOO
OOO


σσα
σσα ( )
( )
02
11
21
1
2/1
10
=
=
⋅−=
+⋅⋅−=
z
vz
signv
zsignv
OO
OOO


σρ
σσρ
L is a Design Parameter are Design Parameters21, OO αα
are Design Parameters21, OO ρρ
Observer 2: Observer 3:
0 1 2 3 4 5 6 7 8 9 10
-200
0
200
Atest
0 1 2 3 4 5 6 7 8 9 10
-1000
0
1000
z0
0 1 2 3 4 5 6 7 8 9 10
-100
0
100
z1
0 1 2 3 4 5 6 7 8 9 10
-100
0
100
SigmaO
0 1 2 3 4 5 6 7 8 9 10
-200
0
200
Atest
0 1 2 3 4 5 6 7 8 9 10
-1000
0
1000
z0
0 1 2 3 4 5 6 7 8 9 10
-10
0
10
z1
0 1 2 3 4 5 6 7 8 9 10
-20
0
20
SigmaO
0 1 2 3 4 5 6 7 8 9 10
-200
0
200
Atest
0 1 2 3 4 5 6 7 8 9 10
-1000
0
1000
z0
0 1 2 3 4 5 6 7 8 9 10
-20
0
20
z1
0 1 2 3 4 5 6 7 8 9 10
-50
0
50
SigmaO
0 1 2 3 4 5 6 7 8 9 10
-200
0
200
Atest
0 1 2 3 4 5 6 7 8 9 10
-1000
0
1000
z0
0 1 2 3 4 5 6 7 8 9 10
-100
0
100
z1
0 1 2 3 4 5 6 7 8 9 10
-20
0
20
SigmaO
Scenario: R0=10000 m, Rdot=-1000 m/s, alpha1=10, alpha2=1, N=3, Ldot0=0.05 rad/s
A step pulse Target acceleration At=100 m/s2
starting at t=3 s and finishing at t=7s
With Lamda_dot Noise Filtered with Time Constant of 200msec
10=L 1,30 21 == OO αα 3,20 21 == OO ρρ 1,3,10 321 === ttt
Sliding Mode Observer of Target acceleration - MATLAB Results
Sliding Mode Observers
20
Sliding Mode Observer of Target acceleration - MATLAB Results
Scenario: R0=1000 m, Rdot=-1000 m/s, alpha1=30, alpha2=1, N=3, Ldot0=0.05 rad/s
No Target acceleration , No Measurement Noises
Observer Output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5
0
5
Atest
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100
0
100
z0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1
0
1
z1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1
0
0.1
SigmaO
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-50
0
50
100
X1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-400
-200
0
200
X1
d
ot
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
0.5
1
X2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-500
0
500
Am
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1
0
0.1
Lamda
d
ot
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5
0
0.5
Lamda
d
ot2
Sliding Mode Observers
21
Sliding Mode Observer of Target acceleration - MATLAB Results
Scenario: R0=1000 m, Rdot=-1000 m/s, alpha1=30, alpha2=1, N=3, Ldot0=0.05 rad/s
A step pulse Target acceleration At=100 m/s2
starting at t=0.3 s and finishing at t=0.6s
Without Noise
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-50
0
50
100
X1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-400
-200
0
200
X1
d
ot
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
0.5
1
X2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-500
0
500
Am
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1
0
0.1
Lamdad
ot
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5
0
5
Lamdad
ot2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100
0
100
Atest
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100
0
100
z0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20
0
20
z1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-10
0
10
SigmaO
Observer Output
Sliding Mode Observers
22
Return to Table of Content
Sliding Mode Observer of Target acceleration - MATLAB Results
Scenario: R0=1000 m, Rdot=-1000 m/s, alpha1=30, alpha2=1, N=3, Ldot0=0.05 rad/s
A step pulse Target acceleration At=100 m/s2
starting at t=0.3 s and finishing at t=0.6s
With Lamda_dot Noise Filtered with Time Constant of 20msec
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-50
0
50
100
X1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-400
-200
0
200
X1
d
ot
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
0.5
1
1.5
X2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-500
0
500
Am
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1
0
0.1
Lamda
d
ot
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5
0
5
Lamda
d
ot2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200
0
200
Atest
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100
0
100
z0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20
0
20
z1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-10
0
10
SigmaO
Observer
Output 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1
0
0.1
Lamda
d
ot
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5
0
5
Lamdad
ot2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.05
0
0.05
Noise
L
amdadot
Lamda_dot
Noise
Sliding Mode Observers
References
SOLO
O’Reilly, J., “Observers for Linear Systems”, Academic Press, 1983
23
Chen, J., Patton, R., J., “Robust Model-Based Fault Diagnosis for Dynamic Systems”,
Kluwer Academic Publishers, 1999
Sliding Mode Observers
24
SOLO
Technion
Israeli Institute of Technology
1964 – 1968 BSc EE
1968 – 1971 MSc EE
Israeli Air Force
1970 – 1974
RAFAEL
Israeli Armament Development Authority
1974 –2013
Stanford University
1983 – 1986 PhD AA

Contenu connexe

Tendances

Inverted Pendulum Control System
Inverted Pendulum Control SystemInverted Pendulum Control System
Inverted Pendulum Control System
Aniket Govindaraju
 
VTU Syllabus - 2010 Scheme (III to VIII Semester)
VTU Syllabus - 2010 Scheme (III to VIII Semester)VTU Syllabus - 2010 Scheme (III to VIII Semester)
VTU Syllabus - 2010 Scheme (III to VIII Semester)
Ravikiran A
 

Tendances (20)

PUMA-560 Robot Manipulator Position Sliding Mode Control Methods Using MATLAB...
PUMA-560 Robot Manipulator Position Sliding Mode Control Methods Using MATLAB...PUMA-560 Robot Manipulator Position Sliding Mode Control Methods Using MATLAB...
PUMA-560 Robot Manipulator Position Sliding Mode Control Methods Using MATLAB...
 
Ch.02 modeling in frequency domain
Ch.02 modeling in frequency domainCh.02 modeling in frequency domain
Ch.02 modeling in frequency domain
 
Sfg 5
Sfg 5Sfg 5
Sfg 5
 
signal & system inverse z-transform
signal & system inverse z-transformsignal & system inverse z-transform
signal & system inverse z-transform
 
Sliding mode control
Sliding mode controlSliding mode control
Sliding mode control
 
Chapter 20
Chapter 20Chapter 20
Chapter 20
 
FastCampus 2018 SLAM Workshop
FastCampus 2018 SLAM WorkshopFastCampus 2018 SLAM Workshop
FastCampus 2018 SLAM Workshop
 
Inverted Pendulum Control System
Inverted Pendulum Control SystemInverted Pendulum Control System
Inverted Pendulum Control System
 
Reduced ordered binary decision diagram
Reduced ordered binary decision diagramReduced ordered binary decision diagram
Reduced ordered binary decision diagram
 
[PRML勉強会資料] パターン認識と機械学習 第3章 線形回帰モデル (章頭-3.1.5)(p.135-145)
[PRML勉強会資料] パターン認識と機械学習 第3章 線形回帰モデル (章頭-3.1.5)(p.135-145)[PRML勉強会資料] パターン認識と機械学習 第3章 線形回帰モデル (章頭-3.1.5)(p.135-145)
[PRML勉強会資料] パターン認識と機械学習 第3章 線形回帰モデル (章頭-3.1.5)(p.135-145)
 
Control system Lab record
Control system Lab record Control system Lab record
Control system Lab record
 
ROS搭載ラズパイでLチカしてみる
ROS搭載ラズパイでLチカしてみるROS搭載ラズパイでLチカしてみる
ROS搭載ラズパイでLチカしてみる
 
SLIDING MODE CONTROL AND ITS APPLICATION
SLIDING MODE CONTROL AND ITS APPLICATIONSLIDING MODE CONTROL AND ITS APPLICATION
SLIDING MODE CONTROL AND ITS APPLICATION
 
Mathematical Modelling of Electro-Mechanical System in Matlab
Mathematical Modelling of Electro-Mechanical System in MatlabMathematical Modelling of Electro-Mechanical System in Matlab
Mathematical Modelling of Electro-Mechanical System in Matlab
 
HSpice Essential Examples
HSpice Essential ExamplesHSpice Essential Examples
HSpice Essential Examples
 
THE CMOS VLSI DESIGN
THE CMOS VLSI DESIGNTHE CMOS VLSI DESIGN
THE CMOS VLSI DESIGN
 
Feedback linearisation
Feedback linearisationFeedback linearisation
Feedback linearisation
 
Week 15 state space rep may 25 2016 final
Week 15 state space rep   may 25  2016 finalWeek 15 state space rep   may 25  2016 final
Week 15 state space rep may 25 2016 final
 
Stability Analysis of Discrete System
Stability Analysis of Discrete SystemStability Analysis of Discrete System
Stability Analysis of Discrete System
 
VTU Syllabus - 2010 Scheme (III to VIII Semester)
VTU Syllabus - 2010 Scheme (III to VIII Semester)VTU Syllabus - 2010 Scheme (III to VIII Semester)
VTU Syllabus - 2010 Scheme (III to VIII Semester)
 

En vedette

En vedette (13)

Aerodynamics part i
Aerodynamics   part iAerodynamics   part i
Aerodynamics part i
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutaway
 
Aerodynamics part ii
Aerodynamics   part iiAerodynamics   part ii
Aerodynamics part ii
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observers
 
Color theory
Color theoryColor theory
Color theory
 
Aerodynamics part iii
Aerodynamics   part iiiAerodynamics   part iii
Aerodynamics part iii
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization Approach
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles ii
 
5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
 
1 tracking systems1
1 tracking systems11 tracking systems1
1 tracking systems1
 
Electromagnetics
ElectromagneticsElectromagnetics
Electromagnetics
 
Diffraction
Diffraction Diffraction
Diffraction
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i
 

Similaire à Sliding Mode Observers

Similaire à Sliding Mode Observers (20)

The Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space ApproachThe Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space Approach
 
control systems.pdf
control systems.pdfcontrol systems.pdf
control systems.pdf
 
state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...
 
Modern Control - Lec07 - State Space Modeling of LTI Systems
Modern Control - Lec07 - State Space Modeling of LTI SystemsModern Control - Lec07 - State Space Modeling of LTI Systems
Modern Control - Lec07 - State Space Modeling of LTI Systems
 
backstepping ppt.ppt
backstepping ppt.pptbackstepping ppt.ppt
backstepping ppt.ppt
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical System
 
Consider the system.docx
Consider the system.docxConsider the system.docx
Consider the system.docx
 
time response analysis
time response analysistime response analysis
time response analysis
 
lec-7_phase_plane_analysis.pptx
lec-7_phase_plane_analysis.pptxlec-7_phase_plane_analysis.pptx
lec-7_phase_plane_analysis.pptx
 
ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU ...
ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU ...ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU ...
ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU ...
 
ANALYSIS AND SLIDING CONTROLLER DESIGN FOR HYBRID SYNCHRONIZATION OF HYPERCHA...
ANALYSIS AND SLIDING CONTROLLER DESIGN FOR HYBRID SYNCHRONIZATION OF HYPERCHA...ANALYSIS AND SLIDING CONTROLLER DESIGN FOR HYBRID SYNCHRONIZATION OF HYPERCHA...
ANALYSIS AND SLIDING CONTROLLER DESIGN FOR HYBRID SYNCHRONIZATION OF HYPERCHA...
 
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
  Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...  Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
 
Unit 2 signal &amp;system
Unit 2 signal &amp;systemUnit 2 signal &amp;system
Unit 2 signal &amp;system
 
Anti-Synchronization Of Four-Scroll Chaotic Systems Via Sliding Mode Control
Anti-Synchronization Of Four-Scroll Chaotic Systems Via Sliding Mode Control Anti-Synchronization Of Four-Scroll Chaotic Systems Via Sliding Mode Control
Anti-Synchronization Of Four-Scroll Chaotic Systems Via Sliding Mode Control
 
Msc lecture07
Msc lecture07Msc lecture07
Msc lecture07
 
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTOR
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTORADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTOR
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTOR
 
Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)
 
Systems ppt
Systems pptSystems ppt
Systems ppt
 
ACTIVE CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF THE WANG-CHEN-YUAN SYSTEM
ACTIVE CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF THE WANG-CHEN-YUAN SYSTEMACTIVE CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF THE WANG-CHEN-YUAN SYSTEM
ACTIVE CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF THE WANG-CHEN-YUAN SYSTEM
 
Fourier and Laplace transforms in analysis of CT systems PDf.pdf
Fourier and Laplace transforms in analysis of CT systems PDf.pdfFourier and Laplace transforms in analysis of CT systems PDf.pdf
Fourier and Laplace transforms in analysis of CT systems PDf.pdf
 

Plus de Solo Hermelin

Plus de Solo Hermelin (20)

Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizations
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectories
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles i
 
Analytic dynamics
Analytic dynamicsAnalytic dynamics
Analytic dynamics
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hms
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systems
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instruments
 
2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft Warhead
 
1 susceptibility vulnerability
1 susceptibility vulnerability1 susceptibility vulnerability
1 susceptibility vulnerability
 
15 sky cars
15 sky cars15 sky cars
15 sky cars
 
14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii
 
13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i
 
Calculus of variation problems
Calculus of variation   problemsCalculus of variation   problems
Calculus of variation problems
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
7 air-to-air combat
7 air-to-air combat7 air-to-air combat
7 air-to-air combat
 

Dernier

Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
MohamedFarag457087
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
seri bangash
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Silpa
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
Silpa
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Sérgio Sacani
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
Scintica Instrumentation
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
Silpa
 

Dernier (20)

Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptx
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
 
Atp synthase , Atp synthase complex 1 to 4.
Atp synthase , Atp synthase complex 1 to 4.Atp synthase , Atp synthase complex 1 to 4.
Atp synthase , Atp synthase complex 1 to 4.
 
Genetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditionsGenetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditions
 
Grade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsGrade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its Functions
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
 
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspects
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
 

Sliding Mode Observers

  • 1. Sliding Mode Observers SOLO HERMELIN Updated: 15.09.10 1
  • 2. Table of Content SOLO Sliding Mode Observers 2 Sliding Mode Observers Sliding Mode Observer for a Linear Time Invariant (LTI) System Generic Observer for a Linear Time Invariant (LTI) System Unknown Input Observer (UIO) for a Linear Time Invariant (LTI) System Sliding Mode Observers of Target Acceleration References
  • 3. SOLO Sliding Mode Observers In most of the Linear and Nonlinear Unknown Input Observers proposed so far, the necessary and sufficient conditions for the construction of Observers is that the Invariant Zeros of the System must lie in the open Left Half Complex Plane, and the transfer Function Matrix between Unknown Inputs and Measurable Outputs satisfies the Observer Matching Condition. Observers are Dynamical Systems that are used to Estimate the State of a Plant using its Input-Output Measurements; they were first proposed by Luenberger. David G. Luenberger Professor Management Science and Engineering Stanford University In some cases, the inputs of the System are unknown or partially unknown, which led to the development of the so-called Unknown Input Observers (UIO), first for Linear Systems. Motivated by the development of Sliding-Mode Controllers, Sliding Mode UIOs have been developed. The main advantage of using Sliding-Mode Observer over their Linear counterparts is that while in Sliding, they are Insensitive to the Unknown Inputs and, moreover, they can be used to Reconstruct Unknown Inputs which can be a combination of System Disturbances, Faults or Nonlinearities. 3 Sliding Mode Observers
  • 4. SOLO 4 Diagram of the LTI System and a Sliding Mode Observer pxnnxmnxmnxn pmmn CBBA yuux xCy uBuBxAx RRRR RRRR ∈∈∈∈ ∈∈∈∈    = ++= ,,, ,,, 21 21 21 21 2211  Assumptions: ( ) 222 222 ,, mBCrankBrank pmpCrankmBrank == ≤==1 2 3 tu ∀≤ ρ2 Invariant Zero of the triple (A,B2,C) are in the Open Left-Hand Complex Plane, or equivalently ( ) 0Real 0 2 2 2 2 ≥∀+=         − smn C BAIs rank pxmpxn nxmnxnn Sliding Mode Observer for a Linear Time Invariant (LTI) System Observer: ( ) ( ) 2 , ˆˆ ,ˆ,ˆˆˆ 211 mnxp EL xCy yyEBuByyLxAx RR ∈∈    = −+−+= η will stabilize the Observer on the Sliding Surface nxp L R∈ ( ) 0ˆ =− yyF ( ) ( ) ( ) ( ) ( ) xpm F yyFif yyFif yyF yyF yyE 2 ,0 0ˆ0 0ˆ ˆ ˆ ,ˆ, RR ∈∈<      =− ≠− − − = η η η Reaching the Sliding Surface using: ( ) 0ˆ =− yyF Sliding Mode Observers LTI System:
  • 5. L is obtain by choosing a S.P.D. matrix Q and solving for the S.P.D. matrix P defined by the Lyapunov Algebraic Equation (A.R.E.) SOLO 5 pxnnxmnxmnxn pmmn CBBA yuux xCy uBuBxAx RRRR RRRR ∈∈∈∈ ∈∈∈∈    = ++= ,,, ,,, 21 21 21 21 2211  Sliding Mode Observer for a Linear Time Invariant (LTI) System Observer: ( ) ( ) 2 , ˆˆ ,ˆ,ˆˆˆ 211 mnxp EL xCy yyEBuByyLxAx RR ∈∈    = −+−+= η will stabilize the Observer on the Sliding Surface nxp L R∈ ( ) 0ˆ =− yyF ( ) ( ) ( ) ( ) ( ) xpm F yyFif yyFif yyF yyF yyE 2 ,0 0ˆ0 0ˆ ˆ ˆ ,ˆ, RR ∈∈<      =− ≠− − − = η η η Reaching the Sliding Surface using: ( ) 0ˆ =− yyF On the Sliding Surface ( ) 11 ˆˆˆ uByLxCLAx ++−= ( ) ( ) 02 <−=−+− QCLAPPCLA T F is obtain by solving Sliding Mode Observers ( ) 1 22 − =⇒= TTTT CCCPBFPBCF Diagram of the LTI System and a Sliding Mode Observer L.T.I. System:
  • 6. SOLO Generic Observer for a Linear Time Invariant (LTI) System pxmpxnnxmnxn pmn DCBA yux uDxCy uBxAx RRRR RRR ∈∈∈∈ ∈∈∈    += += ,,, ,,  Observer sxpsxmsxq qxpqxmqxq sxnsq RSM GJF Lwz xLw yRuSzMw yGuJzFz RRR RRR RRR ∈∈∈ ∈∈∈ ∈∈∈ →    ++= ++= ,, ,, ,,  A Necessary Condition for obtaining an Observer is that (A,C) is Observable. The Observer will achieve if and only ifxLw →         =+ =+ −= =− − 0DRS LTGCR DGBTJ CGTFAT valueseigenstablehasF where Tnxn is a Transformation Matrix. L.T.I. System Sliding Mode Observers
  • 7. SOLO Generic Observer for a Linear Time Invariant (LTI) System pxnnxmnxn pmn CBA yux xCy uBxAx RRR RRR ∈∈∈ ∈∈∈    = += ,, ,,  Observer sxpsxmsxq qxpqxmqxq sxnsq RSG KJF Lwz xLw yRuSzGw yKuJzFz RRR RRR RRR ∈∈∈ ∈∈∈ ∈∈∈ →    ++= ++= ,, ,, ,,  Taking Laplace Transforms we obtain ( ) ( ) ( ) ( ) ( ) ( )sUBAIsCsYsUBAIssX nn 11 −− −=→−= ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ){ } ( )sUBAIsCRSBAIsCJFIsGsW sUBAIsCJFIssZ nnq nq 111 11 −−− −− −++−+−= −+−= L.T.I. System Sliding Mode Observers
  • 8. SOLO Unknown Input Observer (UIO) for a Linear Time Invariant (LTI) System nxqpxnnxmnxn qpmn ECBA dyux xCy dEuBxAx RRRR RRRR ∈∈∈∈ ∈∈∈∈    = ++= ,,, ,,,  Observer DesignedbetoMatricesHKTF xz yHzx yKuBTzFz nxpnxpnxnnxn nn RRRR RR ∈∈∈∈ ∈∈    += ++= ,,, ˆ, ˆ  ( ) ( ) ( ) ( ) ( ) dECHIuBCHIxACHIyKxCKuBTzFxCHIze nnn KKK n −−−−−−+++=−−= =+     21 21 The Estimator Error ( ) xCHIzxxe n −−=−= ˆ: An Unknown Input Observer for an LTI System will derive its State Error regardless of the unknown input (disturbance) 0ˆ: asymptotic xxe →−= ( )td ( ) ( )[ ] ( )[ ] ( )[ ] ( ) dECHIuBCHITyHCKACHAKzCKACHAFeCKACHAe nn −−−−+−−−+−−−+−−= 1211  eyHzx −+=Substitute in this equation: L.T.I. System Sliding Mode Observers
  • 9. SOLO Unknown Input Observer (UIO) for a Linear Time Invariant (LTI) System nxqpxnnxmnxn qpmn ECBA dyux xCy dEuBxAx RRRR RRRR ∈∈∈∈ ∈∈∈∈    = ++= ,,, ,,,  Observer An Unknown Input Observer for an LTI System will derive its State Error regardless of the unknown input (disturbance) 0ˆ: asymptotic xxe →−= ( )td ( ) ( )[ ] ( )[ ] ( )[ ] ( ) dECHIuBCHITyHCKACHAKzCKACHAFeCKACHAe nn −−−−+−−−+−−−+−−= 1211  We can see that if we can make the following relations: ( ) HFK CKACHAF CHIT ECHI n n = −−= −= =− 2 1 0 the State-Estimator Error will be: eFe = We can see that the Observer Error will be zero asymptotically iff all the eigenvalues of F are stable. L.T.I. System Sliding Mode Observers
  • 10. SOLO Unknown Input Observer (UIO) for a Linear Time Invariant (LTI) System Observer Lemma 1: This Equation is solvable if: ( ) HFK CKACHAF CHIT ECHI n n = −−= −= =− 2 1 0 but: and a special solution for H is: ( ) ( )[ ] ( ) ( )†1 ECEECECECEH TT nxq sp nxp == − Proof of Lemma 1: nxqpxnnxpnxq ECHE = ( ) ( )nxqpxnnxq ECrankErank ≤⇒ ( ) ( ) ( )[ ] ( )nxqnxqpxnnxqpxn ErankErankCrankECrank ≤≤ ,min ( ) ( ) qErankECrank nxqnxqpxn == Necesity Sufficiency When rank (CE) = rank (E), (CE) is a full column rank matrix, because E is assumed a full column rank matrix, and a left inverse of (CE) exists. ( ) ( ) ( )[ ] ( )TT ECECECEC 1† − = and: ( )† ECEH sp nxp = q.e.d. L.T.I. System ( ) qErankECrank nxqnxqpxn == Observer Matching Condition Sliding Mode Observers
  • 11. SOLO Unknown Input Observer (UIO) for a Linear Time Invariant (LTI) System Observer Lemma 2: Let: If s1 ϵ C is an unobservable mode of the pair (C1,A) then:       = AC C C1 Then the Detectability for the pair (C,A) is equivalent to that of (C1,A). (A pair (C,A) is Detectable when all the unobservable modes of this pair are Stable). Proof of Lemma 2: n AC C AIs rank C AIs rank n n <                     − =              − 1 1 1 That means that exists a vector α ϵ Cn such that: n C AIs rank C AIs AC C AIs nn n <      − ⇒=      − ⇒=           − 11 1 00 αα s1 is also an unobservable mode of the pair (C,A). If s2 ϵ C is an unobservable mode of the pair (C,A) then: n C AIs rank n <              −2 That means that always exists a vector β ϵ Cn such that: 02 =      − β C AIs n s2 is also an unobservable mode of the pair (C1,A). ( ) 00 0 0 1 1 1 22 2 =      − =           − ⇒===⇒    = =− βββββ β β C AIs AC C AIs CssCAC C AIs n n n q.e.d. L.T.I. System Sliding Mode Observers
  • 12. SOLO Unknown Input Observer (UIO) for a Linear Time Invariant (LTI) System    = ++= xCy dEuBxAx U.I.O. Observer    += ++= yHzx yKuBTzFz ˆ  Lemma 3: Necessary and Sufficient Conditions to have an U.I.O. Observer for the L.T.I. System are: (1)rank (C E) = rank (E) (2)(C, A1) is a Detectable pair, where ( ) ( ) ( )[ ] ( ) ACECECECEAACECEAA TT 1† 1 : − −=−= The condition (2) is equivalent to the condition that the Invariant Zeros for the Unknown Input, i.e., of the triplet (A,E,C) must be stable: qpnsqn C EAIs rank pxqpxn nxqnxnn ≥≥∈∀+=         − −C 0 Proof of Lemma 3 (Sufficiency): According to Lemma 1 if rank (C E)= rank (E) exists a solution for H: ( ) ( )[ ] ( ) ( )†1 ECEECECECEH TT nxq sp nxp == − and: ( ) ( )[ ]( ) CKACKACECECECEACKACHAF TT pxnnxnpxn sp nxpnxnnxn nxp 1111 −=−−=−−= We can see that F may be Stabilized by choosing a proper K1, only if the pair (C, A1) is Detectable. L.T.I. System Sliding Mode Observers
  • 13. SOLO Unknown Input Observer (UIO) for a Linear Time Invariant (LTI) System    = ++= xCy dEuBxAxL.T.I. System U.I.O. Observer    += ++= yHzx yKuBTzFz ˆ  Lemma 3: Necessary and Sufficient Conditions to have an U.I.O. Observer for the L.T.I. System are: (1)rank (C E) = rank (E) (2)(C, A1) is a Detectable pair, where ( ) ( ) ( )[ ] ( ) ACECECECEAACECEAA TT 1† 1 : − −=−= Proof of Lemma 3 (Necessity): ( ) HFK CKACHAF CHIT ECHI n n = −−= −= =− 2 1 0 A General Solution for H is ( ) ( )( )[ ]† 0 † ECECIHECEH mnxp −+= where is an arbitrary matrix andnxm H R∈0 ( ) ( ) ( )[ ] ( )TT ECECECEC 1† − = Since the Observer is a U.I.O. Observer for the L.T.I. System we can solve for H, T, K1, F and K2 ( )[ ] [ ] ( )[ ] [ ] 111 1 011011 1 1 CKA AC C HKA ACECECI C HKACECEICKACHAF C K T m T n −=      −=      − −−=−−=   Since the Matrix F is Stable the pair is Detectable, therefore the pair (C, A1) is also detectable, according to Lemma 2. ( )11, AC q.e.d. Sliding Mode Observers
  • 14. SOLO Unknown Input Observer (UIO) for a Linear Time Invariant (LTI) System    = ++= xCy dEuBxAxL.T.I. System U.I.O. Observer    += ++= yHzx yKuBTzFz ˆ  Lemma 3: Necessary and Sufficient Conditions to have an U.I.O. Observer for the L.T.I. System are: (1)rank (C E) = rank (E) (2)(C, A1) is a Detectable pair, where ( ) ( ) ( )[ ] ( ) ACECECECEAACECEAA TT 1† 1 : − −=−= Proof of Lemma 3 (Necessity) (continue): q.e.d. ( ) ( ) ( ) ( ) −∈∀+=                     −           − − =         − Csqn C EAIs ECEsCECE I ECEsCECEI rank C EAIs rank pxqpxn nxqnxnn p n pxqpxn nxqnxnn 0 0 0 †† †† ( ) ( ) ( ) ( ) −∈∀+                     − − =                     − +− =         − CsErank CAECE C AIs rank ECAECE C ACECEAIs rank C EAIs rank q n nn pxqpxn nxqnxnn nxn     † 1 † † 0 0 0 The condition that the pair (C, A1) is detectable, is equivalent to therefore equivalent to the Invariant Zeros of the triplet (A,E,C) being stable −∈∀=               − Csn C AIs rank nxnn 1 The Condition that the Invariant Zeros of the triplet (A,E,C) are stable is: Sliding Mode Observers
  • 15. SOLO Unknown Input Observer (UIO) for a Linear Time Invariant (LTI) System    = ++= xCy dEuBxAxL.T.I. System U.I.O. Observer Design Procedure    += ++= yHzx yKuBTzFz ˆ  1 Check if rank (CE)=rank(E). If rank (CE)≠rank(E) go to .10 2 Compute: ( ) ( )[ ] ( ) ATACHTECECECEH pxnnxpnxn TT nxq sp nxp === − 1 1 ,, 3 If (C1, A) Observable a U.I.O. exists, and K1 can be computed using Pole Placements or any other Method. Go to 9 T n T pp 1 ,,1  4 Construct a Transformation Matrix P by choosing n1=rank (WO) (where WO=[C, CA1,…,CA1 n-1 ]) row vectors , together othe n-n1 row vectors to construct the nonsingular T n T n pp ,,11 + [ ]T n T n T n T ppppP ,,11 11  += 5 Perform [ ]0* 0 1 2221 111 1 CPC AA A PAP =      = −− 6 Check Detectability of (C,A1). If one of eigenvalues of A22 is unstable, a U.I.O. doesn’t exist and go to 10 7 Select n1 eigenvalues and assign them to using Pole Placement.*1 11 CKA p− 8 Compute where is any (n-n1)xn matrix.( ) ( )[ ]TT p T pp KKPKPK 2111 1 −− == 2 pK 9 Compute HFKKKKCKAF +=+=−= 12111 , 10 Stop Sliding Mode Observers
  • 16. 16 Sliding Mode Observers of Target Acceleration Kinematics: ( ) →→ ⋅−⋅+Λ−=Λ tataRR td d MT 11  We want to Observe (Estimate) the Unknown Target Acceleration Component: → ⋅ taT 1  Define: 0:1_ vtaestAt Est T =      ⋅= → ( ) mEstEst AvRz td d −+Λ−= 00  The Differential Equation of the Observer will be a copy of the kinematics: mM Ata =      ⋅ → :1  Define the Observer Error: EstEstO Rz Λ−=  0:σ Define the Sliding Mode Observers that must drive σO→0: ( ) ( ) ( ) 22 11 1232 201 2/1 0121 1 3/2 10 1.1 5.1 2 vz vz vzsigntv zvzsignvztv zsigntv OO = = −⋅⋅= +−−⋅⋅= +⋅⋅⋅=   σσ Missile Command Acceleration ( ) ( ) ( ) estAtdRsignRRsignRRNa EstEstRSM EstEstEstEstEstEstEstEstEstEstC _' 2 3/1 2 2/1 1 +ΛΛ+ΛΛ+Λ−= Λ ∫      µαα t1, t2, t3 are Design Parameters Observer 4: Variation of 1 ( ) ( ) ( ) 22 11 122 201 2/1 01 2/1 1 1 3/23/1 0 1.1 5.1 2 vz vz vzsignLv zvzsignvzLv zsignLv OO = = −⋅⋅= +−−⋅⋅= +⋅⋅⋅=   σσ Observer 1: ( ) ( ) 02 11 3/1 21 1 2/1 10 = = ⋅⋅−= +⋅⋅−= z vz signv zsignv OOO OOO   σσα σσα ( ) ( ) 02 11 21 1 2/1 10 = = ⋅−= +⋅⋅−= z vz signv zsignv OO OOO   σρ σσρ L is a Design Parameter are Design Parameters21, OO αα are Design Parameters21, OO ρρ Observer 2: Observer 3: Sliding Mode Observers
  • 17. 17 Sliding Mode Observer of Target Acceleration: MATLAB Listing % Nonlinear Sliding Mode Target Acceleration Observers At_est=0; v0=0; z0=x1; z1=0; z2=0; Observer=1; %First Observer Parameter L=10; %Second Observer Parameters alphaO1=30; alphaO2=1; %Third Observer Parameters rho1=20; rho2=3; %Fourth Observer Parameters t1=10; t2=3; t3=1; %Second Order Sliding Mode SigmaSM=Range_est*Lamdadot_est; y2 = alpha1*sign(SigmaSM)*abs(SigmaSM)^0.5+x2; x2_dot =alpha2*sign(SigmaSM)*abs(SigmaSM)^(1/3); %Nonlinear Sliding Mode Target Acceleration Observers z0_dot=v0-Rdot_est*Lamdadot_est-Am; SigmaO=z0-SigmaSM; if(Observer==1) v0=-2*L^(1/3)*abs(SigmaO)^(2/3)*sign(SigmaO)+z1; v1=-1.5*L^(1/2)*abs(z1-v0)^(1/2)*sign(z1-v0)+z2; v2=1.1*L*sign(z2-v1); z1_dot=v1; z2_dot=v2; v0_dot=0; At_est=v0; end if(Observer==2) v0=-alphaO1*abs(SigmaO)^(1/2)*sign(SigmaO)+z1; v1=-alphaO2*abs(SigmaO)^(1/3)*sign(SigmaO); z1_dot=v1; z2_dot=0; v0_dot=0; At_est=v0; end if (Observer==3) v0=-rho1*abs(SigmaO)^(1/2)*sign(SigmaO)+z1; v1=-rho2*sign(SigmaO); z1_dot=v1; z2_dot=0; v0_dot=0; At_est=v0; end if(Observer==4) v0=-2*t1*abs(SigmaO)^(2/3)*sign(SigmaO)+z1; v1=-1.5*t2*abs(z1-v0)^0.5*sign(z1-v0)+z2; v2=1.1*t3*sign(z2-v1); z1_dot=v1; z2_dot=v2; v0_dot=0; At_est=v0; end %Missile Acceleration Command and Autopilot Ac=-N*Rdot_est*Lamdadot_est+y2+At_est; N = 3; alpha1 =10; alpha2 = 1; %Nonlinear Sliding Mode Target Acceleration % Observer State Integration z0=z0+z0_dot* delta_time; z1=z1+z1_dot* delta_time; z2=z2+z2_dot* delta_time; v0=v0+v0_dot* delta_time; ( ) ( ) ( ) 22 11 1232 201 2/1 0121 1 3/2 10 1.1 5.1 2 vz vz vzsigntv zvzsignvztv zsigntv OO = = −⋅⋅= +−−⋅⋅= +⋅⋅⋅=   σσ ( ) ( ) ( ) 22 11 122 201 2/1 01 2/1 1 1 3/23/1 0 1.1 5.1 2 vz vz vzsignLv zvzsignvzLv zsignLv OO = = −⋅⋅= +−−⋅⋅= +⋅⋅⋅=   σσ ( ) ( ) 02 11 3/1 21 1 2/1 10 = = ⋅⋅−= +⋅⋅−= z vz signv zsignv OOO OOO   σσα σσα ( ) ( ) 02 11 21 1 2/1 10 = = ⋅−= +⋅⋅−= z vz signv zsignv OO OOO   σρ σσρ Sliding Mode Observers
  • 18. 18 ( ) ( ) ( ) 22 11 1232 201 2/1 0121 1 3/2 10 1.1 5.1 2 vz vz vzsigntv zvzsignvztv zsigntv OO = = −⋅⋅= +−−⋅⋅= +⋅⋅⋅=   σσ t1, t2, t3 are Design Parameters Observer 4: Variation of 1 ( ) ( ) ( ) 22 11 122 201 2/1 01 2/1 1 1 3/23/1 0 1.1 5.1 2 vz vz vzsignLv zvzsignvzLv zsignLv OO = = −⋅⋅= +−−⋅⋅= +⋅⋅⋅=   σσ Observer 1: ( ) ( ) 02 11 3/1 21 1 2/1 10 = = ⋅⋅−= +⋅⋅−= z vz signv zsignv OOO OOO   σσα σσα ( ) ( ) 02 11 21 1 2/1 10 = = ⋅−= +⋅⋅−= z vz signv zsignv OO OOO   σρ σσρ L is a Design Parameter are Design Parameters21, OO αα are Design Parameters21, OO ρρ Observer 2: Observer 3: Scenario: R0=10000 m, Rdot=-1000 m/s, alpha1=10, alpha2=1, N=3, Ldot0=0.05 rad/s A step pulse Target acceleration At=100 m/s2 starting at t=3 s and finishing at t=7s With Not Noise 10=L 1,30 21 == OO αα 3,20 21 == OO ρρ 1,3,10 321 === ttt 0 1 2 3 4 5 6 7 8 9 10 -200 0 200 Atest 0 1 2 3 4 5 6 7 8 9 10 -1000 0 1000 z0 0 1 2 3 4 5 6 7 8 9 10 -100 0 100 z1 0 1 2 3 4 5 6 7 8 9 10 -10 0 10 SigmaO 0 1 2 3 4 5 6 7 8 9 10 -200 0 200 Atest 0 1 2 3 4 5 6 7 8 9 10 -1000 0 1000 z0 0 1 2 3 4 5 6 7 8 9 10 -20 0 20 z1 0 1 2 3 4 5 6 7 8 9 10 -50 0 50 SigmaO 0 1 2 3 4 5 6 7 8 9 10 -200 0 200 Atest 0 1 2 3 4 5 6 7 8 9 10 -1000 0 1000 z0 0 1 2 3 4 5 6 7 8 9 10 -10 0 10 z1 0 1 2 3 4 5 6 7 8 9 10 -20 0 20 SigmaO 0 1 2 3 4 5 6 7 8 9 10 -100 0 100 Atest 0 1 2 3 4 5 6 7 8 9 10 -1000 0 1000 z0 0 1 2 3 4 5 6 7 8 9 10 -200 0 200 z1 0 1 2 3 4 5 6 7 8 9 10 -200 0 200 SigmaO Sliding Mode Observer of Target acceleration - MATLAB Results Sliding Mode Observers
  • 19. 19 ( ) ( ) ( ) 22 11 1232 201 2/1 0121 1 3/2 10 1.1 5.1 2 vz vz vzsigntv zvzsignvztv zsigntv OO = = −⋅⋅= +−−⋅⋅= +⋅⋅⋅=   σσ t1, t2, t3 are Design Parameters Observer 4: Variation of 1 ( ) ( ) ( ) 22 11 122 201 2/1 01 2/1 1 1 3/23/1 0 1.1 5.1 2 vz vz vzsignLv zvzsignvzLv zsignLv OO = = −⋅⋅= +−−⋅⋅= +⋅⋅⋅=   σσ Observer 1: ( ) ( ) 02 11 3/1 21 1 2/1 10 = = ⋅⋅−= +⋅⋅−= z vz signv zsignv OOO OOO   σσα σσα ( ) ( ) 02 11 21 1 2/1 10 = = ⋅−= +⋅⋅−= z vz signv zsignv OO OOO   σρ σσρ L is a Design Parameter are Design Parameters21, OO αα are Design Parameters21, OO ρρ Observer 2: Observer 3: 0 1 2 3 4 5 6 7 8 9 10 -200 0 200 Atest 0 1 2 3 4 5 6 7 8 9 10 -1000 0 1000 z0 0 1 2 3 4 5 6 7 8 9 10 -100 0 100 z1 0 1 2 3 4 5 6 7 8 9 10 -100 0 100 SigmaO 0 1 2 3 4 5 6 7 8 9 10 -200 0 200 Atest 0 1 2 3 4 5 6 7 8 9 10 -1000 0 1000 z0 0 1 2 3 4 5 6 7 8 9 10 -10 0 10 z1 0 1 2 3 4 5 6 7 8 9 10 -20 0 20 SigmaO 0 1 2 3 4 5 6 7 8 9 10 -200 0 200 Atest 0 1 2 3 4 5 6 7 8 9 10 -1000 0 1000 z0 0 1 2 3 4 5 6 7 8 9 10 -20 0 20 z1 0 1 2 3 4 5 6 7 8 9 10 -50 0 50 SigmaO 0 1 2 3 4 5 6 7 8 9 10 -200 0 200 Atest 0 1 2 3 4 5 6 7 8 9 10 -1000 0 1000 z0 0 1 2 3 4 5 6 7 8 9 10 -100 0 100 z1 0 1 2 3 4 5 6 7 8 9 10 -20 0 20 SigmaO Scenario: R0=10000 m, Rdot=-1000 m/s, alpha1=10, alpha2=1, N=3, Ldot0=0.05 rad/s A step pulse Target acceleration At=100 m/s2 starting at t=3 s and finishing at t=7s With Lamda_dot Noise Filtered with Time Constant of 200msec 10=L 1,30 21 == OO αα 3,20 21 == OO ρρ 1,3,10 321 === ttt Sliding Mode Observer of Target acceleration - MATLAB Results Sliding Mode Observers
  • 20. 20 Sliding Mode Observer of Target acceleration - MATLAB Results Scenario: R0=1000 m, Rdot=-1000 m/s, alpha1=30, alpha2=1, N=3, Ldot0=0.05 rad/s No Target acceleration , No Measurement Noises Observer Output 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -5 0 5 Atest 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -100 0 100 z0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -1 0 1 z1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -0.1 0 0.1 SigmaO 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -50 0 50 100 X1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -400 -200 0 200 X1 d ot 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.5 1 X2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -500 0 500 Am 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -0.1 0 0.1 Lamda d ot 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -0.5 0 0.5 Lamda d ot2 Sliding Mode Observers
  • 21. 21 Sliding Mode Observer of Target acceleration - MATLAB Results Scenario: R0=1000 m, Rdot=-1000 m/s, alpha1=30, alpha2=1, N=3, Ldot0=0.05 rad/s A step pulse Target acceleration At=100 m/s2 starting at t=0.3 s and finishing at t=0.6s Without Noise 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -50 0 50 100 X1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -400 -200 0 200 X1 d ot 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.5 1 X2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -500 0 500 Am 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -0.1 0 0.1 Lamdad ot 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -5 0 5 Lamdad ot2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -100 0 100 Atest 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -100 0 100 z0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -20 0 20 z1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -10 0 10 SigmaO Observer Output Sliding Mode Observers
  • 22. 22 Return to Table of Content Sliding Mode Observer of Target acceleration - MATLAB Results Scenario: R0=1000 m, Rdot=-1000 m/s, alpha1=30, alpha2=1, N=3, Ldot0=0.05 rad/s A step pulse Target acceleration At=100 m/s2 starting at t=0.3 s and finishing at t=0.6s With Lamda_dot Noise Filtered with Time Constant of 20msec 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -50 0 50 100 X1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -400 -200 0 200 X1 d ot 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.5 1 1.5 X2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -500 0 500 Am 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -0.1 0 0.1 Lamda d ot 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -5 0 5 Lamda d ot2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -200 0 200 Atest 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -100 0 100 z0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -20 0 20 z1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -10 0 10 SigmaO Observer Output 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -0.1 0 0.1 Lamda d ot 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -5 0 5 Lamdad ot2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -0.05 0 0.05 Noise L amdadot Lamda_dot Noise Sliding Mode Observers
  • 23. References SOLO O’Reilly, J., “Observers for Linear Systems”, Academic Press, 1983 23 Chen, J., Patton, R., J., “Robust Model-Based Fault Diagnosis for Dynamic Systems”, Kluwer Academic Publishers, 1999 Sliding Mode Observers
  • 24. 24 SOLO Technion Israeli Institute of Technology 1964 – 1968 BSc EE 1968 – 1971 MSc EE Israeli Air Force 1970 – 1974 RAFAEL Israeli Armament Development Authority 1974 –2013 Stanford University 1983 – 1986 PhD AA

Notes de l'éditeur

  1. Zak, S.H., Hui, S., “Output Feedback Variable Structure Controllers and Stste Estimators for Uncertain Dynamic Systems”, TR-EE 91-46, November 1991 Floquet,T., Edwards, C., Spurgeon, S.,K., “On Sliding Mode Observers for Systems with Unknown Inputs”, Int. J. Adapt. Control Signal Process, vol. 21, pp. 638-656, 2007 Kalsi, K., Lian, J., Hui, S., Zak, S.,H., “Sliding-Mode Observers for Systems With Unknown Inputs”, August 22, 2008, Draft
  2. Zak, S.,H., Hui, S., “Output Feedback Variable Structure Controllers and State Estimators for Uncertain Dynamic Systems”, TR-EE 91-46, November 1991 Kalsi, K., Lian, J., Hui, S., Zak, S.,H., “Sliding-Mode Observers for Systems with Unknown Inputs”
  3. Chen, J., Patton, R., J., “Robust Model-Based Fault Diagnosis for Dynamic Systems”, Kluwer Academic Publishers, 1999
  4. Chen, J., Patton, R., J., “Robust Model-Based Fault Diagnosis for Dynamic Systems”, Kluwer Academic Publishers, 1999
  5. Chen, J., Patton, R., J., “Robust Model-Based Fault Diagnosis for Dynamic Systems”, Kluwer Academic Publishers, 1999
  6. Chen, J., Patton, R., J., “Robust Model-Based Fault Diagnosis for Dynamic Systems”, Kluwer Academic Publishers, 1999
  7. Chen, J., Patton, R., J., “Robust Model-Based Fault Diagnosis for Dynamic Systems”, Kluwer Academic Publishers, 1999
  8. Chen, J., Patton, R., J., “Robust Model-Based Fault Diagnosis for Dynamic Systems”, Kluwer Academic Publishers, 1999
  9. Chen, J., Patton, R., J., “Robust Model-Based Fault Diagnosis for Dynamic Systems”, Kluwer Academic Publishers, 1999
  10. Chen, J., Patton, R., J., “Robust Model-Based Fault Diagnosis for Dynamic Systems”, Kluwer Academic Publishers, 1999
  11. Chen, J., Patton, R., J., “Robust Model-Based Fault Diagnosis for Dynamic Systems”, Kluwer Academic Publishers, 1999