SlideShare une entreprise Scribd logo
1  sur  22
“ DOUBLE AND TRIPLE INTEGRAL”
INTRODUCTION
DEFINE DOUBLE INTEGRALS
PROPERTIES OF DOUBLE INTEGRALS
EXAMPLE OF DOUBLE INTEGRALS
DEFINE TRIPLE INTEGRALS
EXAMPLE OF TRIPLE INTEGRALS
index
Introduction:-
In elementary calculus, students have studied the
definite integral of a function of one variable . In this
chapeter we show how the notion of the definite integral
can be extended to functions of several variables. In
particular, we shall discuss the double integral of a
functions of two variable and the triple integral of a
function of three variables.
Define double integrals:-
Let f(x,y) be a function of two independent
variables x,y in - plane defined at all points in a finite
region A. let the region A be divided into n subregions
(k=1,2,…,n) of areas
let be any point inside the kth element
Let us form the sum
let us the number of subdivision becomes
infinite in such a way that the dimensions of each subdivision
approaches to zero.
kR nAAA  ,....,, 21
 kk  , kR


n
k
kkk Af
1
),( 
xy
If under these conditions, the limit
which is independent of the way in which the point
are chosen exists, then this limit is called the double
integral of over the region A, written
is defined by



n
k
kkk
n
Af
1
),(lim 
 kk  ,
),( yxf
A
dxdyyxf ),(
kk
n
k
k
A n
Afdxdyyxf   

),(lim),(
1

Properties of double integral:-
if f and g are continuous over the bounded
region R, then:
where R is composed of two subregions R1 and
R2 or
 
R R
dAyxfkdAyxkfP ),(),(.
1
    
R RR
dAyxgdAyxfdAyxgyxfP ),(),(),(),(.2
  
R R R
dAyxfdAyxfdAyxfP 1 23
),(),(),(.
  

21 1 2
),(),(),(
RR R R
dAyxfdAyxfdAyxf
dxdydA 
Example of double integrals:-
1. evaluate:
sol:-
  
1
0
2
0
.)( dxdyyx
dx
y
xy
2
0
1
0 2
²
 




 
1
0
)22( dxx
  
1
0
2
0
.)( dxdyyx
 1
02² xx 
 0)21( 
3
Example 2- when the region of integration R is the triangle
bounded by y= 0, y= x and x = 1 , show that
sol. The region of interation is shown shaded in the
adjoining figure. Let us divide the triangle OAB into
vertical strips. Then it is evident that in an elementary
strips y varies from y = 0 to y = x while x varies from
x = 0 to x = 1
).
2
3
3
(
3
1
²)²4( 

R
dxdyyx
dig
x
y
A
)1,1(
xy 
0x
0 0x 0y
R
B
dxdy
Thus the given doudle integral can be expressed as the
repeated integral
dxdyyx
R  ²)²4(
dxdyyx
x
x
y  

1
0 0
²)²4(
x
y
x x
y
xyxy
0
1
0
1
2
sin².4.
2
1
²)²4(
2
1



 






dx
x
x
xxxx
x 



 
 2
sin²4²)²4(
2
1 1
1
0




 
a
x
axax 1
sin²..
2
1
²)²(
2
1  dxxa ²)²(
   


 
1
0 0
²)²4(
x
x
y
dxdyyx yxxa  ,2






 .
32
3
3
1 







3
²1
.
3
2
3
1
.3
2
1 3

dxxxx
x 



 
 2
1
sin²4²3
2
1 1
1
0
dxxxx
x 



 
 2
1
sin²43
2
1 1
1
0
dxxx
x 



   6
²4²3
2
11
0

1
0
33
33
2
3
3
2
1







xx







2
3
33
1 
DEFINE TRIPLE INTEGRALS0:-
Let be a function
of three independent variables x,y,z defined for all points
in a finite closed three dimensional region V of space.
Divide V into n sub- regions of volumes , k= 1,2,….,n.
let us select an arbitrary point in each
and form the sum
let the number of sub-division become infinite in such a
way that the maximum dimensions of each
approaches to zero.
 zyxf ,,
kV)( ,, kkkkP 
kV
k
n
k
kkk V1
,, )( 
kV
If under these conditions, the limit
Exists, which is independent of the way in which the points
are chosen, then this limit is called the triple
integral of over the region V, written
is defined by
kkk
n
k
k
n
Vf 
)( ,
1
,lim 
)( ,, kkk 
),,( zyxf
,),,( dVzyxf
v
dVzyxf
v ),,(



n
k
kkkk
n
Vf
1
, )(lim 
Example of triple integrals:-
(1).Evaluate:
Sol:- let the given triple integral be denoted by . Then
   
3
0
2
0
1
0
)( dxdydzzyx
I
   
3
0
2
0
1
0
)( dxdydzzyxI
dxdydzzyx   


 
3
0
2
0
1
0
)(
dxdy
z
yzxz  




3
0
2
0
1
02
²
dxdyyx  




3
0
2
0
0
2
²1
dxdyyx  




3
0
2
0
)
2
1
(
dxy
y
xy 




3
0
2
02
1
2
²
dxx 
3
0
)32(
dxx 




3
0
02
2
1
2
²2
2
 dxx 
3
0
122
 3
03² xx 
 0)3(3²3 
 99
18
(2).evaluate:-
where the region of integration V is a cylinder,which is
bounded by the following surfaces:
z = 0, z = 1,x²+y² = 4
Sol:-
form the adjoining figure it is evident that in the region
of integration V, z varies from z = 0 to z = 1, y varies from
y = to y = and x varies from x = -2 to
x = 2
dxdydzz
v
²)4( x ²)4( x
dig
1zz
2x
0z o
²)4( xy  ²)4( xy 
x
y
2x

hence
v
zdxdydz
  



2
2
²)4(
²)4(
1
0
x
x
zdxdydz
dxdyzdz
x
x  

 



2
2
²)4(
²)4(
1
0
dxdy
zx
x 









2
2
²)4(
²)4(
1
02
²
dxdy
x
x 









2
2
²)4(
²)4(
0
2
²1
dxdy
x
x 



2
2
²)4(
²)4( 2
1
dxdy
x
x 

 



2
2
²)4(
²)4(
1
2
1
  dxy
x
x



2
2
²)4(
²)4(2
1
 dxxx 

2
2 ²)4(²)4(2
1
dxx 

2
2 ²)4(22
1
dxx 
2
0 ²)4(2
dxx²)4(  Is an even
function,so
 

a
a
a
dxxfdxxf
0
)(2)(
On substituting so thatsin2x ,cos2 ddx 


dcos2.)²sin44(2
2
0 
dxdy
x
x 



2
2
²)4(
²)4(
1
2
1
.

2
0
²cos8

d



2
0 2
2cos1
8



2
02
2sin
2
1
8





 


)1²cos22cos(  xx












 02sin
2
4 







 0
2
4

2
 0sin 


dcos2.)²sin44(2
2
0 
OR
dxx 
2
0 ²)4(2   dxxa ²)²(




 
a
x
axax 1
sin²..
2
1
²)²(
2
1
xxa  ,2
2
0
1
2
sin.4.
2
1
²)²2(
2
1
2 



  x
xx
2
0
1
2
sin.22.
2
1
2 



  x
xx




 
1sin.222.2
2
1
2 1





2
.202

2
THANK YOU

Contenu connexe

Tendances

Lesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsLesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsMatthew Leingang
 
5.5 Injective and surjective functions. Dynamic slides.
5.5 Injective and surjective functions. Dynamic slides.5.5 Injective and surjective functions. Dynamic slides.
5.5 Injective and surjective functions. Dynamic slides.Jan Plaza
 
Introduction to calculus
Introduction to calculusIntroduction to calculus
Introduction to calculussheetslibrary
 
Differential Equations
Differential EquationsDifferential Equations
Differential EquationsKrupaSuthar3
 
Exact Differential Equations
Exact Differential EquationsExact Differential Equations
Exact Differential EquationsPrasad Enagandula
 
Limits And Derivative
Limits And DerivativeLimits And Derivative
Limits And DerivativeAshams kurian
 
Multiple integral(tripple integral)
Multiple integral(tripple integral)Multiple integral(tripple integral)
Multiple integral(tripple integral)jigar sable
 
Analytical Geometry in three dimension
Analytical Geometry in three dimensionAnalytical Geometry in three dimension
Analytical Geometry in three dimensionSwathiSundari
 
4.1 implicit differentiation
4.1 implicit differentiation4.1 implicit differentiation
4.1 implicit differentiationdicosmo178
 
Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability Seyid Kadher
 
INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT 03062679929
 
Application of partial derivatives
Application of partial derivativesApplication of partial derivatives
Application of partial derivativesMaharshi Dave
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityMatthew Leingang
 

Tendances (20)

Lesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsLesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic Functions
 
5.5 Injective and surjective functions. Dynamic slides.
5.5 Injective and surjective functions. Dynamic slides.5.5 Injective and surjective functions. Dynamic slides.
5.5 Injective and surjective functions. Dynamic slides.
 
Introduction to differential equation
Introduction to differential equationIntroduction to differential equation
Introduction to differential equation
 
Directional derivative and gradient
Directional derivative and gradientDirectional derivative and gradient
Directional derivative and gradient
 
The integral
The integralThe integral
The integral
 
Introduction to calculus
Introduction to calculusIntroduction to calculus
Introduction to calculus
 
Differential Equations
Differential EquationsDifferential Equations
Differential Equations
 
Exact Differential Equations
Exact Differential EquationsExact Differential Equations
Exact Differential Equations
 
Limits And Derivative
Limits And DerivativeLimits And Derivative
Limits And Derivative
 
Multiple integral(tripple integral)
Multiple integral(tripple integral)Multiple integral(tripple integral)
Multiple integral(tripple integral)
 
Analytical Geometry in three dimension
Analytical Geometry in three dimensionAnalytical Geometry in three dimension
Analytical Geometry in three dimension
 
4.1 implicit differentiation
4.1 implicit differentiation4.1 implicit differentiation
4.1 implicit differentiation
 
1523 double integrals
1523 double integrals1523 double integrals
1523 double integrals
 
Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability
 
INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT
 
LINER SURFACE AND VOLUM INTERGRALS Karishma mansuri
LINER SURFACE AND VOLUM INTERGRALS Karishma mansuriLINER SURFACE AND VOLUM INTERGRALS Karishma mansuri
LINER SURFACE AND VOLUM INTERGRALS Karishma mansuri
 
Application of partial derivatives
Application of partial derivativesApplication of partial derivatives
Application of partial derivatives
 
Double integration
Double integrationDouble integration
Double integration
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and Continuity
 

Similaire à Double & triple integral unit 5 paper 1 , B.Sc. 2 Mathematics

machinelearning project
machinelearning projectmachinelearning project
machinelearning projectLianli Liu
 
Chapter3partialderivatives 150105021210-conversion-gate02
Chapter3partialderivatives 150105021210-conversion-gate02Chapter3partialderivatives 150105021210-conversion-gate02
Chapter3partialderivatives 150105021210-conversion-gate02Cleophas Rwemera
 
Z transform and Properties of Z Transform
Z transform and Properties of Z TransformZ transform and Properties of Z Transform
Z transform and Properties of Z TransformAnujKumar734472
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSZac Darcy
 
Relative superior mandelbrot and julia sets for integer and non integer values
Relative superior mandelbrot and julia sets for integer and non integer valuesRelative superior mandelbrot and julia sets for integer and non integer values
Relative superior mandelbrot and julia sets for integer and non integer valueseSAT Journals
 
Relative superior mandelbrot sets and relative
Relative superior mandelbrot sets and relativeRelative superior mandelbrot sets and relative
Relative superior mandelbrot sets and relativeeSAT Publishing House
 
Chapter 1 pt 2
Chapter 1 pt 2Chapter 1 pt 2
Chapter 1 pt 2SinYK
 
Schrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanicsSchrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanicsRakeshPatil2528
 
LECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdf
LECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdfLECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdf
LECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdfanuj298979
 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transformAmr E. Mohamed
 
DOUBLE INTEGRALS PPT GTU CALCULUS (2110014)
DOUBLE INTEGRALS PPT GTU CALCULUS (2110014) DOUBLE INTEGRALS PPT GTU CALCULUS (2110014)
DOUBLE INTEGRALS PPT GTU CALCULUS (2110014) Panchal Anand
 
Kumaraswamy disribution
Kumaraswamy disributionKumaraswamy disribution
Kumaraswamy disributionPankaj Das
 
Equations of graphs
Equations of graphsEquations of graphs
Equations of graphsPalash Dey
 
Principal Component Analysis
Principal Component AnalysisPrincipal Component Analysis
Principal Component AnalysisSumit Singh
 
Convolution and FFT
Convolution and FFTConvolution and FFT
Convolution and FFTChenghao Jin
 

Similaire à Double & triple integral unit 5 paper 1 , B.Sc. 2 Mathematics (20)

machinelearning project
machinelearning projectmachinelearning project
machinelearning project
 
Chapter3partialderivatives 150105021210-conversion-gate02
Chapter3partialderivatives 150105021210-conversion-gate02Chapter3partialderivatives 150105021210-conversion-gate02
Chapter3partialderivatives 150105021210-conversion-gate02
 
Z transform and Properties of Z Transform
Z transform and Properties of Z TransformZ transform and Properties of Z Transform
Z transform and Properties of Z Transform
 
lec z-transform.ppt
lec z-transform.pptlec z-transform.ppt
lec z-transform.ppt
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
 
Relative superior mandelbrot and julia sets for integer and non integer values
Relative superior mandelbrot and julia sets for integer and non integer valuesRelative superior mandelbrot and julia sets for integer and non integer values
Relative superior mandelbrot and julia sets for integer and non integer values
 
Relative superior mandelbrot sets and relative
Relative superior mandelbrot sets and relativeRelative superior mandelbrot sets and relative
Relative superior mandelbrot sets and relative
 
Chapter 1 pt 2
Chapter 1 pt 2Chapter 1 pt 2
Chapter 1 pt 2
 
Schrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanicsSchrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanics
 
LECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdf
LECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdfLECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdf
LECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdf
 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transform
 
DOUBLE INTEGRALS PPT GTU CALCULUS (2110014)
DOUBLE INTEGRALS PPT GTU CALCULUS (2110014) DOUBLE INTEGRALS PPT GTU CALCULUS (2110014)
DOUBLE INTEGRALS PPT GTU CALCULUS (2110014)
 
Kumaraswamy disribution
Kumaraswamy disributionKumaraswamy disribution
Kumaraswamy disribution
 
Equations of graphs
Equations of graphsEquations of graphs
Equations of graphs
 
Principal Component Analysis
Principal Component AnalysisPrincipal Component Analysis
Principal Component Analysis
 
UNIT I_3.pdf
UNIT I_3.pdfUNIT I_3.pdf
UNIT I_3.pdf
 
3_AJMS_222_19.pdf
3_AJMS_222_19.pdf3_AJMS_222_19.pdf
3_AJMS_222_19.pdf
 
Convolution and FFT
Convolution and FFTConvolution and FFT
Convolution and FFT
 
Vectors and Kinematics
Vectors and KinematicsVectors and Kinematics
Vectors and Kinematics
 
Lecture_note2.pdf
Lecture_note2.pdfLecture_note2.pdf
Lecture_note2.pdf
 

Plus de Shri Shankaracharya College, Bhilai,Junwani

Plus de Shri Shankaracharya College, Bhilai,Junwani (20)

Environment Economics &Ethics invisible hand & Malthusian theory
Environment Economics &Ethics invisible hand & Malthusian theoryEnvironment Economics &Ethics invisible hand & Malthusian theory
Environment Economics &Ethics invisible hand & Malthusian theory
 
Azadi ka amrut mahotsav, Mahilayon ka yogdan swatantrata Sangram mein
Azadi ka amrut mahotsav, Mahilayon ka yogdan swatantrata Sangram meinAzadi ka amrut mahotsav, Mahilayon ka yogdan swatantrata Sangram mein
Azadi ka amrut mahotsav, Mahilayon ka yogdan swatantrata Sangram mein
 
B.ed 1,scientific temper
B.ed 1,scientific temperB.ed 1,scientific temper
B.ed 1,scientific temper
 
Aims and objectives of bio. sci. 14 9-20
Aims and objectives of bio. sci. 14 9-20Aims and objectives of bio. sci. 14 9-20
Aims and objectives of bio. sci. 14 9-20
 
Ict application in bio.sc.24 9
Ict application in bio.sc.24 9Ict application in bio.sc.24 9
Ict application in bio.sc.24 9
 
Runges kutta method
Runges kutta methodRunges kutta method
Runges kutta method
 
Isolation & preservation of culture of microorganism
Isolation & preservation of  culture of microorganismIsolation & preservation of  culture of microorganism
Isolation & preservation of culture of microorganism
 
Learners understanding,unit 1, 15-9-20
Learners understanding,unit 1, 15-9-20Learners understanding,unit 1, 15-9-20
Learners understanding,unit 1, 15-9-20
 
Basics concept of physical chemistry
Basics concept of physical chemistryBasics concept of physical chemistry
Basics concept of physical chemistry
 
equilibrium of Firm
equilibrium  of Firmequilibrium  of Firm
equilibrium of Firm
 
indifference curve
 indifference curve indifference curve
indifference curve
 
Equilibrium
  Equilibrium  Equilibrium
Equilibrium
 
Crystal field theory
Crystal field theoryCrystal field theory
Crystal field theory
 
Utility
UtilityUtility
Utility
 
New economic reform
New economic reform New economic reform
New economic reform
 
Iso product Curve
Iso product CurveIso product Curve
Iso product Curve
 
Malnutrition
MalnutritionMalnutrition
Malnutrition
 
Demand theory
Demand theoryDemand theory
Demand theory
 
Land reform
Land reformLand reform
Land reform
 
Isomerism
IsomerismIsomerism
Isomerism
 

Dernier

Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...RKavithamani
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 

Dernier (20)

Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 

Double & triple integral unit 5 paper 1 , B.Sc. 2 Mathematics

  • 1. “ DOUBLE AND TRIPLE INTEGRAL”
  • 2. INTRODUCTION DEFINE DOUBLE INTEGRALS PROPERTIES OF DOUBLE INTEGRALS EXAMPLE OF DOUBLE INTEGRALS DEFINE TRIPLE INTEGRALS EXAMPLE OF TRIPLE INTEGRALS index
  • 3. Introduction:- In elementary calculus, students have studied the definite integral of a function of one variable . In this chapeter we show how the notion of the definite integral can be extended to functions of several variables. In particular, we shall discuss the double integral of a functions of two variable and the triple integral of a function of three variables.
  • 4. Define double integrals:- Let f(x,y) be a function of two independent variables x,y in - plane defined at all points in a finite region A. let the region A be divided into n subregions (k=1,2,…,n) of areas let be any point inside the kth element Let us form the sum let us the number of subdivision becomes infinite in such a way that the dimensions of each subdivision approaches to zero. kR nAAA  ,....,, 21  kk  , kR   n k kkk Af 1 ),(  xy
  • 5. If under these conditions, the limit which is independent of the way in which the point are chosen exists, then this limit is called the double integral of over the region A, written is defined by    n k kkk n Af 1 ),(lim   kk  , ),( yxf A dxdyyxf ),( kk n k k A n Afdxdyyxf     ),(lim),( 1 
  • 6. Properties of double integral:- if f and g are continuous over the bounded region R, then: where R is composed of two subregions R1 and R2 or   R R dAyxfkdAyxkfP ),(),(. 1      R RR dAyxgdAyxfdAyxgyxfP ),(),(),(),(.2    R R R dAyxfdAyxfdAyxfP 1 23 ),(),(),(.     21 1 2 ),(),(),( RR R R dAyxfdAyxfdAyxf dxdydA 
  • 7. Example of double integrals:- 1. evaluate: sol:-    1 0 2 0 .)( dxdyyx dx y xy 2 0 1 0 2 ²         1 0 )22( dxx    1 0 2 0 .)( dxdyyx  1 02² xx   0)21(  3
  • 8. Example 2- when the region of integration R is the triangle bounded by y= 0, y= x and x = 1 , show that sol. The region of interation is shown shaded in the adjoining figure. Let us divide the triangle OAB into vertical strips. Then it is evident that in an elementary strips y varies from y = 0 to y = x while x varies from x = 0 to x = 1 ). 2 3 3 ( 3 1 ²)²4(   R dxdyyx
  • 10. Thus the given doudle integral can be expressed as the repeated integral dxdyyx R  ²)²4( dxdyyx x x y    1 0 0 ²)²4( x y x x y xyxy 0 1 0 1 2 sin².4. 2 1 ²)²4( 2 1            dx x x xxxx x        2 sin²4²)²4( 2 1 1 1 0       a x axax 1 sin².. 2 1 ²)²( 2 1  dxxa ²)²(         1 0 0 ²)²4( x x y dxdyyx yxxa  ,2
  • 11.        . 32 3 3 1         3 ²1 . 3 2 3 1 .3 2 1 3  dxxxx x        2 1 sin²4²3 2 1 1 1 0 dxxxx x        2 1 sin²43 2 1 1 1 0 dxxx x        6 ²4²3 2 11 0  1 0 33 33 2 3 3 2 1        xx        2 3 33 1 
  • 12. DEFINE TRIPLE INTEGRALS0:- Let be a function of three independent variables x,y,z defined for all points in a finite closed three dimensional region V of space. Divide V into n sub- regions of volumes , k= 1,2,….,n. let us select an arbitrary point in each and form the sum let the number of sub-division become infinite in such a way that the maximum dimensions of each approaches to zero.  zyxf ,, kV)( ,, kkkkP  kV k n k kkk V1 ,, )(  kV
  • 13. If under these conditions, the limit Exists, which is independent of the way in which the points are chosen, then this limit is called the triple integral of over the region V, written is defined by kkk n k k n Vf  )( , 1 ,lim  )( ,, kkk  ),,( zyxf ,),,( dVzyxf v dVzyxf v ),,(    n k kkkk n Vf 1 , )(lim 
  • 14. Example of triple integrals:- (1).Evaluate: Sol:- let the given triple integral be denoted by . Then     3 0 2 0 1 0 )( dxdydzzyx I     3 0 2 0 1 0 )( dxdydzzyxI dxdydzzyx        3 0 2 0 1 0 )( dxdy z yzxz       3 0 2 0 1 02 ² dxdyyx       3 0 2 0 0 2 ²1
  • 15. dxdyyx       3 0 2 0 ) 2 1 ( dxy y xy      3 0 2 02 1 2 ² dxx  3 0 )32( dxx      3 0 02 2 1 2 ²2 2  dxx  3 0 122  3 03² xx   0)3(3²3   99 18
  • 16. (2).evaluate:- where the region of integration V is a cylinder,which is bounded by the following surfaces: z = 0, z = 1,x²+y² = 4 Sol:- form the adjoining figure it is evident that in the region of integration V, z varies from z = 0 to z = 1, y varies from y = to y = and x varies from x = -2 to x = 2 dxdydzz v ²)4( x ²)4( x
  • 17. dig 1zz 2x 0z o ²)4( xy  ²)4( xy  x y 2x 
  • 18. hence v zdxdydz       2 2 ²)4( ²)4( 1 0 x x zdxdydz dxdyzdz x x         2 2 ²)4( ²)4( 1 0 dxdy zx x           2 2 ²)4( ²)4( 1 02 ² dxdy x x           2 2 ²)4( ²)4( 0 2 ²1 dxdy x x     2 2 ²)4( ²)4( 2 1
  • 19. dxdy x x        2 2 ²)4( ²)4( 1 2 1   dxy x x    2 2 ²)4( ²)4(2 1  dxxx   2 2 ²)4(²)4(2 1 dxx   2 2 ²)4(22 1 dxx  2 0 ²)4(2 dxx²)4(  Is an even function,so    a a a dxxfdxxf 0 )(2)( On substituting so thatsin2x ,cos2 ddx    dcos2.)²sin44(2 2 0  dxdy x x     2 2 ²)4( ²)4( 1 2 1
  • 20. .  2 0 ²cos8  d    2 0 2 2cos1 8    2 02 2sin 2 1 8          )1²cos22cos(  xx              02sin 2 4          0 2 4  2  0sin    dcos2.)²sin44(2 2 0 
  • 21. OR dxx  2 0 ²)4(2   dxxa ²)²(       a x axax 1 sin².. 2 1 ²)²( 2 1 xxa  ,2 2 0 1 2 sin.4. 2 1 ²)²2( 2 1 2       x xx 2 0 1 2 sin.22. 2 1 2       x xx       1sin.222.2 2 1 2 1      2 .202  2