SlideShare une entreprise Scribd logo
1  sur  3
Télécharger pour lire hors ligne
AIEEEportal.com

Properties of Triangles ( by tarun gehlot)
1.

The perpendicular bisectors of the sides of a triangle are concurrent. The point of concurrence is
called circumcentre of the triangle. If S is the circumcentre of ΔABC, then SA = SB = SC. The
circle with center S and radius SA passes through the three vertices A, B, C of the triangle. This
circle is called circumcircle of the triangle. The radius of the circumcircle of ΔABC is called
circumradius and it is denoted by R.

2.

Sine Rule :

a
b
c
=
=
= 2R.
sin A sin B sin C

∴ a = 2R sin A, b = 2R sin B, c = 2R sin C.
3.

Cosine Rule : a2 = b2 + c2 – 2bc cos A, b2 = c2 + a2 – 2ca cos B, c2 = a2 + b2 – 2ab cos C.

4.

cos A =

b2 + c 2 − a 2
2bc

, cos B =

cos C =

a2 + b2 − c 2
2ab

.

c 2 + a2 − b2
2ca

,

5.

Projection Rule : a = b cos C + c cos B, b = c cos A + a cos C, c = a cos B + b cos A.

6.

Tangent Rule or Napier’s Analogy : tan⎛
⎜

A
B−C⎞ b−c
cot ,
⎟=
2
2 ⎠ b+c
⎝

B
⎛C−A ⎞ c −a
cot ,
tan⎜
⎟=
2
⎝ 2 ⎠ c+a
C
⎛ A −B⎞ a −b
tan⎜
cot .
⎟=
2
⎝ 2 ⎠ a+b

7.

Mollweide Rule :
a+b
=
c

⎛ A −B⎞
⎛ A −B⎞
cos⎜
sin⎜
⎟
⎟
2 ⎠ a−b
⎝
⎝ 2 ⎠
=
,
C
C
c
sin
cos
2
2
(s − b)(s − c )
B
, sin =
bc
2

8.

sin

A
=
2

9.

cos

A
=
2

s( s − a)
B
, cos =
bc
2

10. tan

A
=
2

( s − b)(s − c )
s(s − a)

, tan

(s − c )(s − a)
C
, sin =
ca
2

s(s − b)
C
, cos =
ca
2
B
=
2

(s − c )(s − a)
s( s − b)

(s − a)(s − b)
.
ab

s( s − c )
.
ab

, tan

1

C
=
2

(s − a)(s − b)
s(s − c )
Properties of Triangles
11. tan

A
Δ
( s − b)(s − c )
=
=
,
2 s(s − a)
Δ

tan

B
Δ
(s − c )(s − a)
,
=
=
Δ
2 s( s − b)

tan

C
Δ
(s − a)(s − b)
=
=
Δ
2 s(s − c )

12. cot

.

A s(s − a)
B s(s − b)
C s(s − c )
, cot =
, cot =
=
2
2
Δ
Δ
Δ
2

13. Area of ΔABC is Δ =

1
1
1
2
bc sin A = ca sin B = sin C = 2R sin A sin B sin C =
2
2
2

abc
s( s − a)(s − b)(s − c ) .
4R

14. r =

B
C
Δ
A
A
B
C
= (s − a) tan = (s − b) tan = (s − c ) tan =
= 4R sin sin sin
2
2
2
2
2
2
s

a
cot

B

+ cot

C

2

C

=
cot

A

+ cot

2

B
2

15. r1 =

Δ
A
B
C
A
B
C
= 4R sin cos cos = s tan
= (s − b) cot = (s − c ) cot =
s−a
2
2
2
2
2
2

16. r2 =

Δ
C
A
B
=
= s tan = (s − c ) cot = (s − a) cot
2
2
2
s−b

4R cos

17. r3 =

A
B
C
sin cos =
2
2
2

b
tan

A
C
+ tan
2
2

.

A
B
C
Δ
=
= s tan = (s − a) cot = (s − b) cot
2
2
2
s−c

c
.
B
A
tan + tan
2
2

18.

1 1 1 1
+ + = .
r1 r2 r3 r

19. r r1 r2 r3 = Δ2.

∑ a sin(B − C) = 0 .
ii) ∑ a cos(B − C) = 3abc

20. i)

3

3

iii) a2 sin 2B + b2 sin 2A = 4Δ

2

a
.
C
B
tan + tan
2
2

2

b

=
cot

C
2

+ cot

A
2
Properties of Triangles
a2 + b2 + c 2
4Δ

21. i) cotA + cotB + cotC =
ii) cot

A
B
C (a + b + c )2
.
cot cot =
2
2
2
4Δ

22. i) If a cos B = b cos A, then the triangle is isosceles.
ii) If a cos A = b cos B, then the triangle is isosceles or right angled.
iii)If a2 + b2 + c2 = 8R2, then the triangle is right angled.
iv) If cos2A + cos2B + cos2C = 1, then the triangle is right angled.
v) If cosA =
vi) If

sin B
, then the triangle is isosceles.
2 sin C

a
b
c
, then the triangle is equilateral.
=
=
cos A cos B cos C

vii) If cosA + cosB + cosC = 3/2, then the triangle is equilateral.
viii) If sinA + sinB + sinC =

3 3
, then the triangle is equilateral.
2

ix) If cotA + cotB + cotC = 3 , then the triangle is equilateral.
23. i) If

a2 + b2
a −b
2

2

=

sin( A + B)
, then C = 90°.
sin( A − B)

ii) If

a+b
b
= 1, then C = 60°.
+
b+c c+a

iii)If

1
1
3
, then A = 60°
+
=
a+b a+c a+b+c

iv) If

b
a2 − c 2

+

c
a2 − b 2

= 0, then A = 60°.
C
B
A
are in H.P.
, sin2 , sin2
2
2
2

i)

a, b, c are In H.P. ⇔ sin2

ii)

a, b, c are in A.P. ⇔ cot

B
A
C
, cot , cot
2
2
2

iii)

a, b, c are in A.P. ⇔ tan

A
B
C
are in H.P.
, tan , tan
2
2
2

iv)

a2, b2, c2 are in A.P. ⇔ cotA, cotB, cotC are in A.P.

v)

a2, b2, c2 are in A.P.

⇔

are in A.P.

tanA, tanB, tanC are in H.P

AIEEEportal.com

3

Contenu connexe

Tendances

Sheet 1 electromagnetics
Sheet 1 electromagneticsSheet 1 electromagnetics
Sheet 1 electromagneticsMagdi Saadawi
 
Pre-Cal 30S December 10, 2008
Pre-Cal 30S December 10, 2008Pre-Cal 30S December 10, 2008
Pre-Cal 30S December 10, 2008Darren Kuropatwa
 
Geometry - Altitude of triangle
Geometry - Altitude of triangle Geometry - Altitude of triangle
Geometry - Altitude of triangle 2IIM
 
Trigonometric Problems
Trigonometric ProblemsTrigonometric Problems
Trigonometric Problemsaluahp
 
Introduction to Differential calculus
Introduction to Differential calculusIntroduction to Differential calculus
Introduction to Differential calculusMohammed Waris Senan
 
MATERI TRIGONOMETRI (kelas X)
MATERI TRIGONOMETRI (kelas X)MATERI TRIGONOMETRI (kelas X)
MATERI TRIGONOMETRI (kelas X)Dini H Nupus
 
Day 4 examples u4f13
Day 4 examples u4f13Day 4 examples u4f13
Day 4 examples u4f13jchartiersjsd
 
Geo March 27, 2009
Geo March 27, 2009Geo March 27, 2009
Geo March 27, 2009Mr. Smith
 
2012 2013 portfolio math! -ms.bush 2
2012 2013 portfolio math! -ms.bush 22012 2013 portfolio math! -ms.bush 2
2012 2013 portfolio math! -ms.bush 2Bibi Rosario
 
Slope deflection equation structure analysis - civil engineering
Slope deflection equation   structure analysis - civil engineeringSlope deflection equation   structure analysis - civil engineering
Slope deflection equation structure analysis - civil engineeringAshu Kushwaha
 
Math unit32 angles, circles and tangents
Math unit32 angles, circles and tangentsMath unit32 angles, circles and tangents
Math unit32 angles, circles and tangentseLearningJa
 

Tendances (20)

Retas 1
Retas 1Retas 1
Retas 1
 
Sheet 1 electromagnetics
Sheet 1 electromagneticsSheet 1 electromagnetics
Sheet 1 electromagnetics
 
Ellipse
Ellipse  Ellipse
Ellipse
 
Pre-Cal 30S December 10, 2008
Pre-Cal 30S December 10, 2008Pre-Cal 30S December 10, 2008
Pre-Cal 30S December 10, 2008
 
Trigonometry [QEE-R 2012]
Trigonometry [QEE-R 2012]Trigonometry [QEE-R 2012]
Trigonometry [QEE-R 2012]
 
IME 2019 - fechada
IME 2019 - fechadaIME 2019 - fechada
IME 2019 - fechada
 
1 math
1 math1 math
1 math
 
Circunfêrencia 3
Circunfêrencia 3Circunfêrencia 3
Circunfêrencia 3
 
Geometry - Altitude of triangle
Geometry - Altitude of triangle Geometry - Altitude of triangle
Geometry - Altitude of triangle
 
ITA 2013 - fechada
ITA 2013 - fechadaITA 2013 - fechada
ITA 2013 - fechada
 
Trigonometric Problems
Trigonometric ProblemsTrigonometric Problems
Trigonometric Problems
 
Introduction to Differential calculus
Introduction to Differential calculusIntroduction to Differential calculus
Introduction to Differential calculus
 
Semana 1 geo y trigo
Semana 1  geo y trigo Semana 1  geo y trigo
Semana 1 geo y trigo
 
Euclidean geometrynotes
Euclidean geometrynotesEuclidean geometrynotes
Euclidean geometrynotes
 
MATERI TRIGONOMETRI (kelas X)
MATERI TRIGONOMETRI (kelas X)MATERI TRIGONOMETRI (kelas X)
MATERI TRIGONOMETRI (kelas X)
 
Day 4 examples u4f13
Day 4 examples u4f13Day 4 examples u4f13
Day 4 examples u4f13
 
Geo March 27, 2009
Geo March 27, 2009Geo March 27, 2009
Geo March 27, 2009
 
2012 2013 portfolio math! -ms.bush 2
2012 2013 portfolio math! -ms.bush 22012 2013 portfolio math! -ms.bush 2
2012 2013 portfolio math! -ms.bush 2
 
Slope deflection equation structure analysis - civil engineering
Slope deflection equation   structure analysis - civil engineeringSlope deflection equation   structure analysis - civil engineering
Slope deflection equation structure analysis - civil engineering
 
Math unit32 angles, circles and tangents
Math unit32 angles, circles and tangentsMath unit32 angles, circles and tangents
Math unit32 angles, circles and tangents
 

Similaire à Propeties of-triangles

Trigonometry - Formula Sheet - MathonGo.pdf
Trigonometry - Formula Sheet - MathonGo.pdfTrigonometry - Formula Sheet - MathonGo.pdf
Trigonometry - Formula Sheet - MathonGo.pdfElango Palaniappan
 
Oblique Triangle
Oblique TriangleOblique Triangle
Oblique Trianglerey castro
 
Law Of Cosines Presentation
Law Of Cosines PresentationLaw Of Cosines Presentation
Law Of Cosines Presentationguest59f920
 
11 kisi2 dan cara pat matematika tp 2020 2021
11 kisi2 dan cara pat matematika tp 2020 202111 kisi2 dan cara pat matematika tp 2020 2021
11 kisi2 dan cara pat matematika tp 2020 2021Eva Nurmalasari
 
Introduction_to_trigonometry_final ppt..pptx
Introduction_to_trigonometry_final ppt..pptxIntroduction_to_trigonometry_final ppt..pptx
Introduction_to_trigonometry_final ppt..pptxSachinkumar218455
 
Cbse sample-papers-class-10-maths-sa-ii-solved-4
Cbse sample-papers-class-10-maths-sa-ii-solved-4Cbse sample-papers-class-10-maths-sa-ii-solved-4
Cbse sample-papers-class-10-maths-sa-ii-solved-4gyanpub
 
Summative Assessment Paper-1
Summative Assessment Paper-1Summative Assessment Paper-1
Summative Assessment Paper-1APEX INSTITUTE
 

Similaire à Propeties of-triangles (9)

Trigonometry
TrigonometryTrigonometry
Trigonometry
 
Trigonometry - Formula Sheet - MathonGo.pdf
Trigonometry - Formula Sheet - MathonGo.pdfTrigonometry - Formula Sheet - MathonGo.pdf
Trigonometry - Formula Sheet - MathonGo.pdf
 
Hprec10 1
Hprec10 1Hprec10 1
Hprec10 1
 
Oblique Triangle
Oblique TriangleOblique Triangle
Oblique Triangle
 
Law Of Cosines Presentation
Law Of Cosines PresentationLaw Of Cosines Presentation
Law Of Cosines Presentation
 
11 kisi2 dan cara pat matematika tp 2020 2021
11 kisi2 dan cara pat matematika tp 2020 202111 kisi2 dan cara pat matematika tp 2020 2021
11 kisi2 dan cara pat matematika tp 2020 2021
 
Introduction_to_trigonometry_final ppt..pptx
Introduction_to_trigonometry_final ppt..pptxIntroduction_to_trigonometry_final ppt..pptx
Introduction_to_trigonometry_final ppt..pptx
 
Cbse sample-papers-class-10-maths-sa-ii-solved-4
Cbse sample-papers-class-10-maths-sa-ii-solved-4Cbse sample-papers-class-10-maths-sa-ii-solved-4
Cbse sample-papers-class-10-maths-sa-ii-solved-4
 
Summative Assessment Paper-1
Summative Assessment Paper-1Summative Assessment Paper-1
Summative Assessment Paper-1
 

Plus de Tarun Gehlot

Materials 11-01228
Materials 11-01228Materials 11-01228
Materials 11-01228Tarun Gehlot
 
Continuity and end_behavior
Continuity and  end_behaviorContinuity and  end_behavior
Continuity and end_behaviorTarun Gehlot
 
Continuity of functions by graph (exercises with detailed solutions)
Continuity of functions by graph   (exercises with detailed solutions)Continuity of functions by graph   (exercises with detailed solutions)
Continuity of functions by graph (exercises with detailed solutions)Tarun Gehlot
 
Factoring by the trial and-error method
Factoring by the trial and-error methodFactoring by the trial and-error method
Factoring by the trial and-error methodTarun Gehlot
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysisTarun Gehlot
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functionsTarun Gehlot
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problemsTarun Gehlot
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statisticsTarun Gehlot
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlabTarun Gehlot
 
Linear approximations and_differentials
Linear approximations and_differentialsLinear approximations and_differentials
Linear approximations and_differentialsTarun Gehlot
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximationTarun Gehlot
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functionsTarun Gehlot
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadraturesTarun Gehlot
 
Basics of set theory
Basics of set theoryBasics of set theory
Basics of set theoryTarun Gehlot
 
Numerical integration
Numerical integrationNumerical integration
Numerical integrationTarun Gehlot
 
Applications of set theory
Applications of  set theoryApplications of  set theory
Applications of set theoryTarun Gehlot
 
Miscellneous functions
Miscellneous  functionsMiscellneous  functions
Miscellneous functionsTarun Gehlot
 
Dependent v. independent variables
Dependent v. independent variablesDependent v. independent variables
Dependent v. independent variablesTarun Gehlot
 

Plus de Tarun Gehlot (20)

Materials 11-01228
Materials 11-01228Materials 11-01228
Materials 11-01228
 
Binary relations
Binary relationsBinary relations
Binary relations
 
Continuity and end_behavior
Continuity and  end_behaviorContinuity and  end_behavior
Continuity and end_behavior
 
Continuity of functions by graph (exercises with detailed solutions)
Continuity of functions by graph   (exercises with detailed solutions)Continuity of functions by graph   (exercises with detailed solutions)
Continuity of functions by graph (exercises with detailed solutions)
 
Factoring by the trial and-error method
Factoring by the trial and-error methodFactoring by the trial and-error method
Factoring by the trial and-error method
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysis
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functions
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problems
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statistics
 
Matlab commands
Matlab commandsMatlab commands
Matlab commands
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
 
Linear approximations and_differentials
Linear approximations and_differentialsLinear approximations and_differentials
Linear approximations and_differentials
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximation
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functions
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadratures
 
Basics of set theory
Basics of set theoryBasics of set theory
Basics of set theory
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Applications of set theory
Applications of  set theoryApplications of  set theory
Applications of set theory
 
Miscellneous functions
Miscellneous  functionsMiscellneous  functions
Miscellneous functions
 
Dependent v. independent variables
Dependent v. independent variablesDependent v. independent variables
Dependent v. independent variables
 

Dernier

General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 

Dernier (20)

General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 

Propeties of-triangles

  • 1. AIEEEportal.com Properties of Triangles ( by tarun gehlot) 1. The perpendicular bisectors of the sides of a triangle are concurrent. The point of concurrence is called circumcentre of the triangle. If S is the circumcentre of ΔABC, then SA = SB = SC. The circle with center S and radius SA passes through the three vertices A, B, C of the triangle. This circle is called circumcircle of the triangle. The radius of the circumcircle of ΔABC is called circumradius and it is denoted by R. 2. Sine Rule : a b c = = = 2R. sin A sin B sin C ∴ a = 2R sin A, b = 2R sin B, c = 2R sin C. 3. Cosine Rule : a2 = b2 + c2 – 2bc cos A, b2 = c2 + a2 – 2ca cos B, c2 = a2 + b2 – 2ab cos C. 4. cos A = b2 + c 2 − a 2 2bc , cos B = cos C = a2 + b2 − c 2 2ab . c 2 + a2 − b2 2ca , 5. Projection Rule : a = b cos C + c cos B, b = c cos A + a cos C, c = a cos B + b cos A. 6. Tangent Rule or Napier’s Analogy : tan⎛ ⎜ A B−C⎞ b−c cot , ⎟= 2 2 ⎠ b+c ⎝ B ⎛C−A ⎞ c −a cot , tan⎜ ⎟= 2 ⎝ 2 ⎠ c+a C ⎛ A −B⎞ a −b tan⎜ cot . ⎟= 2 ⎝ 2 ⎠ a+b 7. Mollweide Rule : a+b = c ⎛ A −B⎞ ⎛ A −B⎞ cos⎜ sin⎜ ⎟ ⎟ 2 ⎠ a−b ⎝ ⎝ 2 ⎠ = , C C c sin cos 2 2 (s − b)(s − c ) B , sin = bc 2 8. sin A = 2 9. cos A = 2 s( s − a) B , cos = bc 2 10. tan A = 2 ( s − b)(s − c ) s(s − a) , tan (s − c )(s − a) C , sin = ca 2 s(s − b) C , cos = ca 2 B = 2 (s − c )(s − a) s( s − b) (s − a)(s − b) . ab s( s − c ) . ab , tan 1 C = 2 (s − a)(s − b) s(s − c )
  • 2. Properties of Triangles 11. tan A Δ ( s − b)(s − c ) = = , 2 s(s − a) Δ tan B Δ (s − c )(s − a) , = = Δ 2 s( s − b) tan C Δ (s − a)(s − b) = = Δ 2 s(s − c ) 12. cot . A s(s − a) B s(s − b) C s(s − c ) , cot = , cot = = 2 2 Δ Δ Δ 2 13. Area of ΔABC is Δ = 1 1 1 2 bc sin A = ca sin B = sin C = 2R sin A sin B sin C = 2 2 2 abc s( s − a)(s − b)(s − c ) . 4R 14. r = B C Δ A A B C = (s − a) tan = (s − b) tan = (s − c ) tan = = 4R sin sin sin 2 2 2 2 2 2 s a cot B + cot C 2 C = cot A + cot 2 B 2 15. r1 = Δ A B C A B C = 4R sin cos cos = s tan = (s − b) cot = (s − c ) cot = s−a 2 2 2 2 2 2 16. r2 = Δ C A B = = s tan = (s − c ) cot = (s − a) cot 2 2 2 s−b 4R cos 17. r3 = A B C sin cos = 2 2 2 b tan A C + tan 2 2 . A B C Δ = = s tan = (s − a) cot = (s − b) cot 2 2 2 s−c c . B A tan + tan 2 2 18. 1 1 1 1 + + = . r1 r2 r3 r 19. r r1 r2 r3 = Δ2. ∑ a sin(B − C) = 0 . ii) ∑ a cos(B − C) = 3abc 20. i) 3 3 iii) a2 sin 2B + b2 sin 2A = 4Δ 2 a . C B tan + tan 2 2 2 b = cot C 2 + cot A 2
  • 3. Properties of Triangles a2 + b2 + c 2 4Δ 21. i) cotA + cotB + cotC = ii) cot A B C (a + b + c )2 . cot cot = 2 2 2 4Δ 22. i) If a cos B = b cos A, then the triangle is isosceles. ii) If a cos A = b cos B, then the triangle is isosceles or right angled. iii)If a2 + b2 + c2 = 8R2, then the triangle is right angled. iv) If cos2A + cos2B + cos2C = 1, then the triangle is right angled. v) If cosA = vi) If sin B , then the triangle is isosceles. 2 sin C a b c , then the triangle is equilateral. = = cos A cos B cos C vii) If cosA + cosB + cosC = 3/2, then the triangle is equilateral. viii) If sinA + sinB + sinC = 3 3 , then the triangle is equilateral. 2 ix) If cotA + cotB + cotC = 3 , then the triangle is equilateral. 23. i) If a2 + b2 a −b 2 2 = sin( A + B) , then C = 90°. sin( A − B) ii) If a+b b = 1, then C = 60°. + b+c c+a iii)If 1 1 3 , then A = 60° + = a+b a+c a+b+c iv) If b a2 − c 2 + c a2 − b 2 = 0, then A = 60°. C B A are in H.P. , sin2 , sin2 2 2 2 i) a, b, c are In H.P. ⇔ sin2 ii) a, b, c are in A.P. ⇔ cot B A C , cot , cot 2 2 2 iii) a, b, c are in A.P. ⇔ tan A B C are in H.P. , tan , tan 2 2 2 iv) a2, b2, c2 are in A.P. ⇔ cotA, cotB, cotC are in A.P. v) a2, b2, c2 are in A.P. ⇔ are in A.P. tanA, tanB, tanC are in H.P AIEEEportal.com 3