SlideShare une entreprise Scribd logo
1  sur  27
Télécharger pour lire hors ligne
BIBIN CHIDAMBARANATHAN
PRINCIPLE
OF
SUPERPOSITION
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
PRINCIPLE OF SUPERPOSITION
❖ When there are numbers of loads are acting together on an elastic material, the
resultant strain will be the sum of individual strains caused by each load acting
separately.
A B
C D
𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒
𝑳𝟏
𝑳𝟐 𝑳𝟑
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
A B
𝑷𝟏 𝑷𝟐
𝑳𝟏
𝑷𝟑
𝑷𝟒
A B
C D
𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒
𝑳𝟏
𝑳𝟐 𝑳𝟑
𝐷𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝐵 𝛿𝑙𝐴𝐵 =
𝑃𝐴𝐵𝐿𝐴𝐵
𝐴𝐴𝐵𝐸𝐴𝐵
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
B C
𝑷𝟏
𝑷𝟐 𝑷𝟑
𝑷𝟒
𝑳𝟐
A B
C D
𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒
𝑳𝟏
𝑳𝟐 𝑳𝟑
𝐷𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐵𝐶 𝛿𝑙𝐵𝐶 =
𝑃𝐵𝐶𝐿𝐵𝐶
𝐴𝐵𝐶
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
A B
C D
𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒
𝑳𝟏
𝑳𝟐 𝑳𝟑
C D
𝑷𝟏
𝑷𝟐
𝑷𝟑 𝑷𝟒
𝑳𝟑
𝐷𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐶𝐷 𝛿𝑙𝐶𝐷 =
𝑃𝐶𝐷𝐿𝐶𝐷
𝐴𝐶𝐷
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
𝑻𝒐𝒕𝒂𝒍 𝐝𝐞𝐟𝐨𝐫𝐦𝐚𝐭𝐢𝐨𝐧 𝜹𝒍 =
𝑷𝑨𝑩𝑳𝑨𝑩
𝑨𝑨𝑩𝑬𝑨𝑩
+
𝑷𝑩𝑪𝑳𝑩𝑪
𝑨𝑩𝑪𝑬𝑩𝑪
+
𝑷𝑪𝑫𝑳𝑪𝑫
𝑨𝑪𝑫𝑬𝑪𝑫
𝑻𝒐𝒕𝒂𝒍 𝐝𝐞𝐟𝐨𝐫𝐦𝐚𝐭𝐢𝐨𝐧 𝜹𝒍 =
𝟏
𝑬
𝑷𝑨𝑩𝑳𝑨𝑩
𝑨𝑨𝑩
+
𝑷𝑩𝑪𝑳𝑩𝑪
𝑨𝑩𝑪
+
𝑷𝑪𝑫𝑳𝑪𝑫
𝑨𝑪𝑫
𝑇𝑜𝑡𝑎𝑙 deformation 𝛿𝑙 = 𝛿𝑙𝐴𝐵 + 𝛿𝑙BC + 𝛿𝑙𝐶𝐷 𝛿𝑙𝐴𝐵 =
𝑃𝐴𝐵𝐿𝐴𝐵
𝐴𝐴𝐵𝐸𝐴𝐵
𝛿𝑙𝐵𝐶 =
𝑃𝐵𝐶𝐿𝐵𝐶
𝐴𝐵𝐶
𝛿𝑙𝐶𝐷 =
𝑃𝐶𝐷𝐿𝐶𝐷
𝐴𝐶𝐷
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
Problem 01
A brass bar having cross sectional area of 1000 𝑚𝑚2 is subjected to axial forces as shown
below. Find the total elongation of the bar. Take 𝐸 = 1.05 × 105 𝑁/𝑚𝑚2.
𝑮𝒊𝒗𝒆𝒏 𝒅𝒂𝒕𝒂:
𝑻𝒐 𝒇𝒊𝒏𝒅:
𝑇𝑜𝑡𝑎𝑙 𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑟 (𝛿𝑙) =?
𝟓𝟎 𝒌𝑵
𝟖𝟎 𝒌𝑵 𝟐𝟎 𝒌𝑵
𝟏𝟎 𝒌𝑵
𝟔𝟎𝟎 𝒎𝒎 𝟏 𝒎 𝟏. 𝟐 𝒎
A B C D
𝐴 = 1000 𝑚𝑚2
𝐿1 = 600 𝑚𝑚
𝐿2 = 1𝑚 = 1000 𝑚𝑚
𝐿3 = 1.2 𝑚 = 1200 𝑚𝑚
𝐸 = 1.05 × 105 Τ
𝑁 𝑚 𝑚2
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
𝑭𝒐𝒓𝒎𝒖𝒍𝒂:
𝑇𝑜𝑡𝑎𝑙 𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 𝛿𝑙 =
𝑃1𝐿1
𝐴1𝐸1
+
𝑃2𝐿2
𝐴2𝐸2
+
𝑃3𝐿3
𝐴3𝐸3
𝛿𝑙 =
𝑃1𝐿1 + 𝑃2𝐿2 + 𝑃3𝐿3
𝐴𝐸
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
𝟓𝟎 𝒌𝑵
𝟖𝟎 𝒌𝑵 𝟐𝟎 𝒌𝑵
𝟏𝟎 𝒌𝑵
𝟔𝟎𝟎 𝒎𝒎 𝟏 𝒎 𝟏. 𝟐 𝒎
A B C D
1 3
2
𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 1
𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑖𝑑𝑒 𝐴 = 50 𝑘𝑁 𝑇
𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑖𝑑𝑒 𝐵 = 80 − 20 − 10 = 50 𝑘𝑁 𝑇
∴ 𝑭𝒐𝒓𝒄𝒆 𝒂𝒄𝒕𝒊𝒏𝒈 𝒐𝒏 𝒔𝒆𝒄𝒕𝒊𝒐𝒏 𝟏, 𝑷𝟏 = 𝟓𝟎 𝒌𝑵 𝑻
A B
𝟓𝟎 𝒌𝑵 𝟐𝟎 𝒌𝑵
𝟔𝟎𝟎 𝒎𝒎
𝟏𝟎 𝒌𝑵
𝟖𝟎 𝒌𝑵
1
𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏:
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
𝟓𝟎 𝒌𝑵
𝟖𝟎 𝒌𝑵 𝟐𝟎 𝒌𝑵
𝟏𝟎 𝒌𝑵
𝟔𝟎𝟎 𝒎𝒎 𝟏 𝒎 𝟏. 𝟐 𝒎
A B C D
1 3
2
𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 2
𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑖𝑑𝑒 𝐵 = 50 − 80 = −30 𝑘𝑁 = 30 𝑘𝑁 𝐶
𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑖𝑑𝑒 𝐶 = −20 − 10 = −30 𝑘𝑁 = −30 𝑘𝑁 𝐶
∴ 𝑭𝒐𝒓𝒄𝒆 𝒂𝒄𝒕𝒊𝒏𝒈 𝒐𝒏 𝒔𝒆𝒄𝒕𝒊𝒐𝒏 𝟐, 𝑷𝟐 = 𝟑𝟎 𝒌𝑵 𝑪
B C
𝟓𝟎 𝒌𝑵
𝟖𝟎 𝒌𝑵 𝟏𝟎 𝒌𝑵
𝟐𝟎 𝒌𝑵
𝟏𝟎𝟎𝟎𝒎𝒎
2
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
𝟓𝟎 𝒌𝑵
𝟖𝟎 𝒌𝑵 𝟐𝟎 𝒌𝑵
𝟏𝟎 𝒌𝑵
𝟔𝟎𝟎 𝒎𝒎 𝟏 𝒎 𝟏. 𝟐 𝒎
A B C D
1 3
2
𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 3
𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑖𝑑𝑒 𝑐 = 50 + 20 − 80 = −10 𝑘𝑁 = 10 𝑘𝑁 𝐶
𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑖𝑑𝑒 𝐷 = −10 = −10 𝑘𝑁 = −10 𝑘𝑁 𝐶
∴ 𝑭𝒐𝒓𝒄𝒆 𝒂𝒄𝒕𝒊𝒏𝒈 𝒐𝒏 𝒔𝒆𝒄𝒕𝒊𝒐𝒏 𝟑, 𝑷𝟑 = 𝟏𝟎 𝒌𝑵 𝑪
C D
𝟓𝟎 𝒌𝑵
𝟖𝟎 𝒌𝑵
𝟐𝟎 𝒌𝑵 𝟏𝟎 𝒌𝑵
𝟏𝟐𝟎𝟎 𝒎𝒎
3
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
𝑇𝑜𝑡𝑎𝑙 𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 𝛿𝑙 =
𝑃1𝐿1 + 𝑃2𝐿2 + 𝑃3𝐿3
𝐴𝐸
𝛿𝑙 =
50 × 103 × 600 + −30 × 103 × 1000 + −10 × 103 × 1200
1000 × 1.05 × 105
𝛿𝑙 = −0.114 𝑚𝑚
𝑫𝒆𝒄𝒓𝒆𝒂𝒔𝒆 𝒊𝒏 𝒍𝒆𝒏𝒈𝒕𝒉 𝜹𝒍 = 𝟎. 𝟏𝟏𝟒 𝒎𝒎
𝐴 = 1000 𝑚𝑚2
𝐿1 = 600 𝑚𝑚
𝐿2 = 1𝑚 = 1000 𝑚𝑚
𝐿3 = 1.2 𝑚 = 1200 𝑚𝑚
𝐸 = 1.05 × 105 Τ
𝑁 𝑚 𝑚2
𝑃1 = 50 𝑘𝑁 𝑇
𝑃2 = 30 𝑘𝑁 𝐶
𝑃3 = 10 𝑘𝑁 𝐶
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
Problem 01
A member ABCD is subjected to point loads 𝑃1, 𝑃2, 𝑃3 and 𝑃4 as shown in the figure.
Calculate the force 𝑃2 necessary for equilibrium, if 𝑃1 = 45 𝑘𝑁, 𝑃3 = 450 𝑘𝑁 and 𝑃4 =
130 𝑘𝑁. Determine the total elongation of the member assuming 𝐸 = 2.1 × 105 𝑁/𝑚𝑚2.
𝑮𝒊𝒗𝒆𝒏 𝒅𝒂𝒕𝒂:
𝑻𝒐 𝒇𝒊𝒏𝒅:
𝑇𝑜𝑡𝑎𝑙 𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑚𝑏𝑒𝑟(𝛿𝑙) =?
A
B
𝟏𝟐𝟎𝟎 𝒎𝒎
C
𝟔𝟎𝟎 𝒎𝒎
D
𝟗𝟎𝟎 𝒎𝒎
𝟔𝟐𝟓 𝒎𝒎𝟐
𝟐𝟓𝟎𝟎 𝒎𝒎𝟐
1250 𝒎𝒎𝟐
𝑷𝟏
𝑷𝟐 𝑷𝟑
𝑷𝟒
𝐴𝐴𝐵 = 625 𝑚𝑚2
𝐴𝐵𝐶 = 2500 𝑚𝑚2
𝐴𝐶𝐷 = 1250 𝑚𝑚2
𝐿𝐴𝐵 = 1200 𝑚𝑚
𝐿𝐵𝐶 = 600 𝑚𝑚
𝐿𝐶𝐷 = 900 𝑚𝑚 𝑃1 = 45 𝑘𝑁 𝑃3 = 450 𝑘𝑁 𝑃4 = 130 𝑘𝑁
𝐹𝑜𝑟𝑐𝑒 (𝑃2) =?
𝐸 = 2.1 × 105 Τ
𝑁 𝑚 𝑚2
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
𝑭𝒐𝒓𝒎𝒖𝒍𝒂:
𝑇𝑜𝑡𝑎𝑙 𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 𝛿𝑙 =
𝑃𝐴𝐵𝐿𝐴𝐵
𝐴𝐴𝐵𝐸𝐴𝐵
+
𝑃𝐵𝐶𝐿𝐵𝐶
𝐴𝐵𝐶𝐸𝐵𝐶
+
𝑃𝐶𝐷𝐿𝐶𝐷
𝐴𝐶𝐷𝐸𝐶𝐷
𝑇𝑜𝑡𝑎𝑙 𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 𝛿𝑙 =
1
𝐸
𝑃𝐴𝐵𝐿𝐴𝐵
𝐴𝐴𝐵
+
𝑃𝐵𝐶𝐿𝐵𝐶
𝐴𝐵𝐶
+
𝑃𝐶𝐷𝐿𝐶𝐷
𝐴𝐶𝐷
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
A
B
𝟏𝟐𝟎𝟎 𝒎𝒎
C
𝟔𝟎𝟎 𝒎𝒎
D
𝟗𝟎𝟎 𝒎𝒎
𝟔𝟐𝟓 𝒎𝒎𝟐
𝟐𝟓𝟎𝟎 𝒎𝒎𝟐
1250 𝒎𝒎𝟐
𝑷𝟏
𝑷𝟐 𝑷𝟑
𝑷𝟒
𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 𝑙𝑒𝑓𝑡 = 𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 𝑟𝑖𝑔ℎ𝑡
𝑃1 + 𝑃3 = 𝑃2 + 𝑃4
45 + 450 = 𝑃2 + 130
𝑷𝟐 = 𝟑𝟔𝟓 𝒌𝑵
𝑃1 = 45 𝑘𝑁
𝑃3 = 450 𝑘𝑁
𝑃4 = 130 𝑘𝑁
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
A
B
𝟏𝟐𝟎𝟎 𝒎𝒎
C
𝟔𝟎𝟎 𝒎𝒎
D
𝟗𝟎𝟎 𝒎𝒎
𝟔𝟐𝟓 𝒎𝒎𝟐
𝟐𝟓𝟎𝟎 𝒎𝒎𝟐
1250 𝒎𝒎𝟐
𝑷𝟏
𝑷𝟐 𝑷𝟑
𝑷𝟒
𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 1
𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑖𝑑𝑒 𝐴 = 45 𝑘𝑁 𝑇
𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑖𝑑𝑒 𝐵 = 365 − 450 + 130 = 45 𝑘𝑁 𝑇
∴ 𝑭𝒐𝒓𝒄𝒆 𝒂𝒄𝒕𝒊𝒏𝒈 𝒐𝒏 𝒔𝒆𝒄𝒕𝒊𝒐𝒏 𝟏, 𝑷𝑨𝑩 = 𝟒𝟓 𝒌𝑵 𝑻
A B
𝟒𝟓 𝒌𝑵
𝟒𝟓𝟎 𝒌𝑵
𝟏𝟐𝟎𝟎 𝒎𝒎
𝟏𝟑𝟎 𝒌𝑵
𝟑𝟔𝟓 𝒌𝑵
𝟔𝟐𝟓 𝒎𝒎𝟐
𝑃1 = 45 𝑘𝑁
𝑃3 = 450 𝑘𝑁
𝑃4 = 130 𝑘𝑁
𝑃2 = 365 𝑘𝑁
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
A
B
𝟏𝟐𝟎𝟎 𝒎𝒎
C
𝟔𝟎𝟎 𝒎𝒎
D
𝟗𝟎𝟎 𝒎𝒎
𝟔𝟐𝟓 𝒎𝒎𝟐
𝟐𝟓𝟎𝟎 𝒎𝒎𝟐
1250 𝒎𝒎𝟐
𝑷𝟏
𝑷𝟐 𝑷𝟑
𝑷𝟒
𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 2
𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑖𝑑𝑒 𝐵 = 45 − 365 = −320 𝑘𝑁 = −320 𝑘𝑁 𝐶
𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑖𝑑𝑒 𝐶 = −450 + 130 = −320 𝑘𝑁 = −320 𝑘𝑁 𝐶
∴ 𝑭𝒐𝒓𝒄𝒆 𝒂𝒄𝒕𝒊𝒏𝒈 𝒐𝒏 𝒔𝒆𝒄𝒕𝒊𝒐𝒏 𝟐, 𝑷𝑩𝑪 = 𝟑𝟐𝟎 𝒌𝑵 𝑪
B C
𝟒𝟓 𝒌𝑵
𝟑𝟔𝟓 𝒌𝑵 𝟏𝟑𝟎 𝒌𝑵
𝟒𝟓𝟎 𝒌𝑵
𝟔𝟎𝟎 𝒎𝒎
𝟐𝟓𝟎𝟎 𝒎𝒎𝟐
𝑃1 = 45 𝑘𝑁
𝑃3 = 450 𝑘𝑁
𝑃4 = 130 𝑘𝑁
𝑃2 = 365 𝑘𝑁
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
A
B
𝟏𝟐𝟎𝟎 𝒎𝒎
C
𝟔𝟎𝟎 𝒎𝒎
D
𝟗𝟎𝟎 𝒎𝒎
𝟔𝟐𝟓 𝒎𝒎𝟐
𝟐𝟓𝟎𝟎 𝒎𝒎𝟐
1250 𝒎𝒎𝟐
𝑷𝟏
𝑷𝟐 𝑷𝟑
𝑷𝟒
𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 3
𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑖𝑑𝑒 𝑐 = 45 − 365 + 450 = 130 𝑘𝑁 = 130 𝑘𝑁 𝑇
𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑖𝑑𝑒 𝐷 = 130 𝑘𝑁 = 130 𝑘𝑁 𝑇
∴ 𝑭𝒐𝒓𝒄𝒆 𝒂𝒄𝒕𝒊𝒏𝒈 𝒐𝒏 𝒔𝒆𝒄𝒕𝒊𝒐𝒏 𝟑, 𝑷𝑪𝑫 = 𝟏𝟑𝟎 𝒌𝑵 (𝑻)
C D
𝟒𝟓 𝒌𝑵
𝟑𝟔𝟓 𝒌𝑵
𝟒𝟓𝟎 𝒌𝑵 𝟏𝟑𝟎 𝒌𝑵
𝟗𝟎𝟎 𝒎𝒎
1250 𝒎𝒎𝟐
𝑃1 = 45 𝑘𝑁
𝑃3 = 450 𝑘𝑁
𝑃4 = 130 𝑘𝑁
𝑃2 = 365 𝑘𝑁
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
𝑇𝑜𝑡𝑎𝑙 𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 𝛿𝑙 =
1
𝐸
𝑃𝐴𝐵𝐿𝐴𝐵
𝐴𝐴𝐵
+
𝑃𝐵𝐶𝐿𝐵𝐶
𝐴𝐵𝐶
+
𝑃𝐶𝐷𝐿𝐶𝐷
𝐴𝐶𝐷
𝛿𝑙 =
1
2.1 × 105
45 × 103 × 1200
625
+
−320 × 103 × 600
2500
+
130 × 103 × 1200
1250
𝛿𝑙 = 0.4914 𝑚𝑚
𝑰𝒏𝒄𝒓𝒆𝒂𝒔𝒆 𝒊𝒏 𝒍𝒆𝒏𝒈𝒕𝒉 𝜹𝒍 = 𝟎. 𝟒𝟗𝟏𝟒 𝒎𝒎
𝐴𝐴𝐵 = 625 𝑚𝑚2
𝐴𝐵𝐶 = 2500 𝑚𝑚2
𝐴𝐶𝐷 = 1250 𝑚𝑚2
𝐿𝐴𝐵 = 1200 𝑚𝑚
𝐿𝐵𝐶 = 600 𝑚𝑚
𝐿𝐶𝐷 = 900 𝑚𝑚
𝑃𝐴𝐵 = 45 𝑘𝑁 𝑇
𝑃𝐵𝐶 = 320 𝑘𝑁 𝐶
𝑃CD = 130 𝑘𝑁 𝑇
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
Problem 01
A tensile load of 40 kN is acting on a rod of diameter 40 mm and of length 4 m. A bore of
diameter 20 mm is made centrally on the rod. To what length the rod should be bored so
that the total extension will increase 30% under the same tensile load. Take 𝐸 = 2.1 ×
105 𝑁/𝑚𝑚2.
𝑮𝒊𝒗𝒆𝒏 𝒅𝒂𝒕𝒂:
𝑻𝒐 𝒇𝒊𝒏𝒅:
𝑙𝑒𝑛𝑔𝑡ℎ 𝑡ℎ𝑒 𝑟𝑜𝑑 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑏𝑜𝑟𝑒𝑑 (𝑥) =?
𝑃 = 40 𝑘𝑁 = 40 × 103 𝑁 𝐷 = 40 𝑚𝑚 𝐿 = 4 𝑚 = 4000 𝑚𝑚 𝐸 = 2 × 105 Τ
𝑁 𝑚 𝑚2
𝑑𝐵 = 20 𝑚𝑚 𝛿𝑙𝑆𝐵 = 1.3 𝛿𝑙 𝐷S = 40 𝑚𝑚
𝟒𝟎 𝒌𝑵
𝟒 𝒎
𝟒𝟎 𝒌𝑵
𝟒𝟎 𝒌𝑵
𝒙 𝒎
𝟒𝟎 𝒌𝑵
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
𝑭𝒐𝒓𝒎𝒖𝒍𝒂:
𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝐴 =
𝜋
4
× 𝐷2
𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝛿𝑙 =
𝑃𝐿
𝐴𝐸
𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑏𝑜𝑟𝑒𝑑 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝐴𝑠 =
𝜋
4
× 𝐷𝑆
2
𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑏𝑜𝑟𝑒𝑑 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝐴𝐵 =
𝜋
4
× (𝐷𝑆
2
−𝑑𝐵
2
)
𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑢𝑛𝑏𝑜𝑟𝑒𝑑 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝛿𝑙𝑆 =
𝑃𝐿𝑠
𝐴𝑆𝐸
𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑏𝑜𝑟𝑒𝑑 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝛿𝑙𝐵 =
𝑃𝐿𝐵
𝐴𝐵𝐸
𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑎𝑓𝑡𝑒𝑟 𝑏𝑜𝑟𝑒 𝑖𝑠 𝑚𝑎𝑑𝑒 𝛿𝑙𝑆𝐵 = 𝛿𝑙𝑆 + 𝛿𝑙𝐵
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝐴 =
𝜋
4
× 𝐷2
𝐴 =
𝜋
4
× 402
𝑪𝒓𝒐𝒔𝒔 𝒔𝒆𝒄𝒕𝒊𝒐𝒏𝒂𝒍 𝒂𝒓𝒆𝒂 𝑨 = 𝟏𝟐𝟓𝟔. 𝟔𝟒 𝒎𝒎𝟐
𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝛿𝑙 =
𝑃𝐿
𝐴𝐸
𝛿𝑙 =
40 × 103
× 4000
1256.64 × 2 × 105
𝑻𝒐𝒕𝒂𝒍 𝒆𝒙𝒕𝒆𝒏𝒔𝒊𝒐𝒏 (𝜹𝒍) = 𝟎. 𝟔𝟑𝟔𝟔 𝒎𝒎
𝟒𝟎 𝒌𝑵
𝟒 𝒎
𝟒𝟎 𝒌𝑵
𝑃 = 40 𝑘𝑁 = 40 × 103 𝑁
𝐷 = 40 𝑚𝑚
𝐿 = 4 𝑚 = 4000 𝑚𝑚
𝐸 = 2 × 105 Τ
𝑁 𝑚 𝑚2
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
𝟒𝟎 𝒌𝑵
𝒙 𝒎
𝟒𝟎 𝒌𝑵
𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑎𝑓𝑡𝑒𝑟 𝑏𝑜𝑟𝑒 𝛿𝑙𝑆𝐵 = 1.3 𝛿𝑙
𝛿𝑙𝑆𝐵 = 1.3 × 0.6366
𝑻𝒐𝒕𝒂𝒍 𝒆𝒙𝒕𝒆𝒏𝒔𝒊𝒐𝒏 𝒂𝒇𝒕𝒆𝒓 𝒃𝒐𝒓𝒆 𝜹𝒍𝑺𝑩 = 𝟎. 𝟖𝟐𝟕 𝒎𝒎
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏𝑜𝑟𝑒𝑑 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝐿𝐵 = 𝑥 𝑚
𝐿𝐵 = 1000𝑥 𝑚𝑚
𝛿𝑙 = 0.6366 𝑚𝑚
𝑳𝒆𝒏𝒈𝒕𝒉 𝒐𝒇 𝒔𝒐𝒍𝒊𝒅 𝒑𝒐𝒓𝒕𝒊𝒐𝒏 𝑳𝑺 = 𝟒𝟎𝟎𝟎 − 𝟏𝟎𝟎𝟎𝒙
𝐿 = 4 𝑚 = 4000 𝑚𝑚
𝟒 𝒎
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
𝟒𝟎 𝒌𝑵
𝒙 𝒎
𝟒𝟎 𝒌𝑵
𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑏𝑜𝑟𝑒𝑑 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝐴𝑠 =
𝜋
4
× 𝐷𝑆
2
𝐴𝑆 =
𝜋
4
× 402
𝑨𝑺 = 𝟒𝟎𝟎𝝅 𝒎𝒎𝟐
𝐷𝑆 = 40 𝑚𝑚
𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑏𝑜𝑟𝑒𝑑 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝐴𝐵 =
𝜋
4
× (𝐷𝑆
2
−𝑑𝐵
2
)
ቁ
𝐴𝐵 =
𝜋
4
× (40
2
− 202
𝑨𝑩 = 𝟑𝟎𝟎𝝅 𝒎𝒎𝟐
𝑑𝐵 = 20 𝑚𝑚
𝐷S = 40 𝑚𝑚
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑢𝑛𝑏𝑜𝑟𝑒𝑑 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝛿𝑙𝑆 =
𝑃𝐿𝑠
𝐴𝑆𝐸
𝛿𝑙𝑆 =
40 × 103
400𝜋 × 2 × 105
× 4000 − 1000𝑥
𝜹𝒍𝑺 =
𝟒 − 𝒙
𝟐𝝅
𝒎𝒎
𝑃 = 40 𝑘𝑁 = 40 × 103
𝑁
𝐸 = 2 × 105 Τ
𝑁 𝑚 𝑚2
𝐴𝑆 = 400𝜋 𝑚𝑚2
𝐿𝑆 = 4000 − 1000𝑥
𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑏𝑜𝑟𝑒𝑑 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝛿𝑙𝐵 =
𝑃𝐿𝐵
𝐴𝐵𝐸
𝛿𝑙𝐵 =
40 × 103
300𝜋 × 2 × 105
× 1000𝑥
𝜹𝒍𝑩 =
𝟒𝒙
𝟔𝝅
𝒎𝒎
𝐿𝐵 = 1000𝑥 𝑚𝑚
𝐴𝐵 = 300𝜋 𝑚𝑚2
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑎𝑓𝑡𝑒𝑟 𝑏𝑜𝑟𝑒 𝑖𝑠 𝑚𝑎𝑑𝑒 𝛿𝑙𝑆𝐵 = 𝛿𝑙𝑆 + 𝛿𝑙𝐵
0.827 =
4 − 𝑥
2𝜋
+
4𝑥
6𝜋
𝒍𝒆𝒏𝒈𝒕𝒉 𝒕𝒉𝒆 𝒓𝒐𝒅 𝒔𝒉𝒐𝒖𝒍𝒅 𝒃𝒆 𝒃𝒐𝒓𝒆𝒅 (𝒙) = 𝟑. 𝟔 𝒎
𝛿𝑙𝑆 =
4 − 𝑥
2𝜋
𝑚𝑚
𝛿𝑙𝐵 =
4𝑥
6𝜋
𝑚𝑚
𝛿𝑙𝑆𝐵 = 0.827 𝑚𝑚
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
Thank You
BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY

Contenu connexe

Tendances

STEP BY STEP USING SPACE GASS DESIGN PLATFORM
STEP BY STEP USING SPACE GASS DESIGN PLATFORMSTEP BY STEP USING SPACE GASS DESIGN PLATFORM
STEP BY STEP USING SPACE GASS DESIGN PLATFORM
Aluhisadin La Ode
 
Structural analysis part_a_april_28_2017
Structural analysis part_a_april_28_2017Structural analysis part_a_april_28_2017
Structural analysis part_a_april_28_2017
Carlos Picon
 

Tendances (20)

Lecture 12 som 10.03.2021
Lecture 12 som 10.03.2021Lecture 12 som 10.03.2021
Lecture 12 som 10.03.2021
 
Buckling of Columns
 Buckling of Columns Buckling of Columns
Buckling of Columns
 
column and it's types
column and it's  types column and it's  types
column and it's types
 
STEP BY STEP USING SPACE GASS DESIGN PLATFORM
STEP BY STEP USING SPACE GASS DESIGN PLATFORMSTEP BY STEP USING SPACE GASS DESIGN PLATFORM
STEP BY STEP USING SPACE GASS DESIGN PLATFORM
 
Design and Detailing of RC Deep beams as per IS 456-2000
Design and Detailing of RC Deep beams as per IS 456-2000Design and Detailing of RC Deep beams as per IS 456-2000
Design and Detailing of RC Deep beams as per IS 456-2000
 
Truss-method of joints
Truss-method of joints Truss-method of joints
Truss-method of joints
 
Bolted connections
Bolted connectionsBolted connections
Bolted connections
 
Introduction And Concepts: SFD & BMD
Introduction And Concepts: SFD & BMDIntroduction And Concepts: SFD & BMD
Introduction And Concepts: SFD & BMD
 
Strain energy
Strain energyStrain energy
Strain energy
 
Design of steel beams
Design of steel beamsDesign of steel beams
Design of steel beams
 
Influence line for indeterminate structures
Influence line for indeterminate structuresInfluence line for indeterminate structures
Influence line for indeterminate structures
 
Fundamentals of structural analysis
Fundamentals of structural analysisFundamentals of structural analysis
Fundamentals of structural analysis
 
Structural analysis part_a_april_28_2017
Structural analysis part_a_april_28_2017Structural analysis part_a_april_28_2017
Structural analysis part_a_april_28_2017
 
Mechanics of structures - module1
Mechanics of structures - module1Mechanics of structures - module1
Mechanics of structures - module1
 
Lec 4-flexural analysis and design of beamns
Lec 4-flexural analysis and design of beamnsLec 4-flexural analysis and design of beamns
Lec 4-flexural analysis and design of beamns
 
1
11
1
 
Som formula
Som formulaSom formula
Som formula
 
Trusses, frames & machines
Trusses, frames & machinesTrusses, frames & machines
Trusses, frames & machines
 
2974 1
2974 12974 1
2974 1
 
FLEXURAL STRESSES AND SHEAR STRESSES
FLEXURAL STRESSES AND SHEAR STRESSESFLEXURAL STRESSES AND SHEAR STRESSES
FLEXURAL STRESSES AND SHEAR STRESSES
 

Similaire à Lecture 07 som 04.03.2021

Episode 39 : Hopper Design
Episode 39 :  Hopper Design Episode 39 :  Hopper Design
Episode 39 : Hopper Design
SAJJAD KHUDHUR ABBAS
 

Similaire à Lecture 07 som 04.03.2021 (20)

Lecture 14 som 12.03.2021
Lecture 14 som 12.03.2021Lecture 14 som 12.03.2021
Lecture 14 som 12.03.2021
 
Lecture 08 som 05.03.2021
Lecture 08 som 05.03.2021Lecture 08 som 05.03.2021
Lecture 08 som 05.03.2021
 
Lecture 04 som 26.02.2021
Lecture 04 som 26.02.2021Lecture 04 som 26.02.2021
Lecture 04 som 26.02.2021
 
Lecture 05 som 27.02.2021
Lecture 05 som 27.02.2021Lecture 05 som 27.02.2021
Lecture 05 som 27.02.2021
 
Lecture 09 som 05.03.2021
Lecture 09 som 05.03.2021Lecture 09 som 05.03.2021
Lecture 09 som 05.03.2021
 
Lecture 13 som 11.03.2021
Lecture 13 som 11.03.2021Lecture 13 som 11.03.2021
Lecture 13 som 11.03.2021
 
Deflection of curved beam |Strength of Material Laboratory
Deflection of curved beam |Strength of Material LaboratoryDeflection of curved beam |Strength of Material Laboratory
Deflection of curved beam |Strength of Material Laboratory
 
Coriolis Component numerical
Coriolis Component numericalCoriolis Component numerical
Coriolis Component numerical
 
Flow system control
Flow system controlFlow system control
Flow system control
 
Process layout Q&A
Process layout Q&AProcess layout Q&A
Process layout Q&A
 
Regression intuition
Regression intuitionRegression intuition
Regression intuition
 
Mecanismos
MecanismosMecanismos
Mecanismos
 
GenEd_math.pdf
GenEd_math.pdfGenEd_math.pdf
GenEd_math.pdf
 
Unit5ppts
Unit5pptsUnit5ppts
Unit5ppts
 
SUEC 高中 Adv Maths (Triangulation Problem)
SUEC 高中 Adv Maths (Triangulation Problem)SUEC 高中 Adv Maths (Triangulation Problem)
SUEC 高中 Adv Maths (Triangulation Problem)
 
Unit 5 Economic Load Dispatch and Unit Commitment
Unit 5 Economic Load Dispatch and Unit CommitmentUnit 5 Economic Load Dispatch and Unit Commitment
Unit 5 Economic Load Dispatch and Unit Commitment
 
Lec 8 dynamics
Lec 8 dynamicsLec 8 dynamics
Lec 8 dynamics
 
Episode 39 : Hopper Design
Episode 39 :  Hopper Design Episode 39 :  Hopper Design
Episode 39 : Hopper Design
 
Lecture 37 som 07.05.2021
Lecture 37 som 07.05.2021Lecture 37 som 07.05.2021
Lecture 37 som 07.05.2021
 
Appendix E
Appendix EAppendix E
Appendix E
 

Plus de BIBIN CHIDAMBARANATHAN

Plus de BIBIN CHIDAMBARANATHAN (20)

ME8391 ENGINEERING THERMODYNAMICS UNIT II (SCANNED).pdf
ME8391 ENGINEERING THERMODYNAMICS UNIT II (SCANNED).pdfME8391 ENGINEERING THERMODYNAMICS UNIT II (SCANNED).pdf
ME8391 ENGINEERING THERMODYNAMICS UNIT II (SCANNED).pdf
 
ME8391 ENGINEERING THERMODYNAMICS UNIT V (SCANNED).pdf
ME8391 ENGINEERING THERMODYNAMICS UNIT V (SCANNED).pdfME8391 ENGINEERING THERMODYNAMICS UNIT V (SCANNED).pdf
ME8391 ENGINEERING THERMODYNAMICS UNIT V (SCANNED).pdf
 
ME8391 ENGINEERING THERMODYNAMICS UNIT III (SCANNED).pdf
ME8391 ENGINEERING THERMODYNAMICS UNIT III (SCANNED).pdfME8391 ENGINEERING THERMODYNAMICS UNIT III (SCANNED).pdf
ME8391 ENGINEERING THERMODYNAMICS UNIT III (SCANNED).pdf
 
ME8391 ENGINEERING THERMODYNAMICS UNIT IV (SCANNED).pdf
ME8391 ENGINEERING THERMODYNAMICS UNIT IV (SCANNED).pdfME8391 ENGINEERING THERMODYNAMICS UNIT IV (SCANNED).pdf
ME8391 ENGINEERING THERMODYNAMICS UNIT IV (SCANNED).pdf
 
ME8391 ENGINEERING THERMODYNAMICS UNIT I (SCANNED).pdf
ME8391 ENGINEERING THERMODYNAMICS UNIT I (SCANNED).pdfME8391 ENGINEERING THERMODYNAMICS UNIT I (SCANNED).pdf
ME8391 ENGINEERING THERMODYNAMICS UNIT I (SCANNED).pdf
 
THERMODYNAMICS NOTES - HAND WRITTEN - unit - 1 - PART 1.pdf
THERMODYNAMICS NOTES - HAND WRITTEN - unit - 1 - PART 1.pdfTHERMODYNAMICS NOTES - HAND WRITTEN - unit - 1 - PART 1.pdf
THERMODYNAMICS NOTES - HAND WRITTEN - unit - 1 - PART 1.pdf
 
THERMODYNAMICS NOTES - HAND WRITTEN - unit - 1 - PART 2.pdf
THERMODYNAMICS NOTES - HAND WRITTEN - unit - 1 - PART 2.pdfTHERMODYNAMICS NOTES - HAND WRITTEN - unit - 1 - PART 2.pdf
THERMODYNAMICS NOTES - HAND WRITTEN - unit - 1 - PART 2.pdf
 
X10885 (omf751)
X10885 (omf751)X10885 (omf751)
X10885 (omf751)
 
X10884 (omf551)
X10884 (omf551)X10884 (omf551)
X10884 (omf551)
 
X10732 (mg8591)
X10732 (mg8591)X10732 (mg8591)
X10732 (mg8591)
 
X10730 (mg8091)
X10730 (mg8091)X10730 (mg8091)
X10730 (mg8091)
 
X10730 (mg8091)
X10730 (mg8091)X10730 (mg8091)
X10730 (mg8091)
 
X10713 (me8793)
X10713 (me8793)X10713 (me8793)
X10713 (me8793)
 
X10712 (me8792)
X10712 (me8792)X10712 (me8792)
X10712 (me8792)
 
X10711 (me8791)
X10711 (me8791)X10711 (me8791)
X10711 (me8791)
 
X10710 (me8694)
X10710 (me8694)X10710 (me8694)
X10710 (me8694)
 
X10709 (me8693)
X10709 (me8693)X10709 (me8693)
X10709 (me8693)
 
X10708 (me8692)
X10708 (me8692)X10708 (me8692)
X10708 (me8692)
 
X10707 (me8691)
X10707 (me8691)X10707 (me8691)
X10707 (me8691)
 
X10706 (me8651)
X10706 (me8651)X10706 (me8651)
X10706 (me8651)
 

Dernier

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Dernier (20)

HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 

Lecture 07 som 04.03.2021

  • 1. BIBIN CHIDAMBARANATHAN PRINCIPLE OF SUPERPOSITION BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 2. PRINCIPLE OF SUPERPOSITION ❖ When there are numbers of loads are acting together on an elastic material, the resultant strain will be the sum of individual strains caused by each load acting separately. A B C D 𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒 𝑳𝟏 𝑳𝟐 𝑳𝟑 BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 3. A B 𝑷𝟏 𝑷𝟐 𝑳𝟏 𝑷𝟑 𝑷𝟒 A B C D 𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒 𝑳𝟏 𝑳𝟐 𝑳𝟑 𝐷𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝐵 𝛿𝑙𝐴𝐵 = 𝑃𝐴𝐵𝐿𝐴𝐵 𝐴𝐴𝐵𝐸𝐴𝐵 BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 4. B C 𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒 𝑳𝟐 A B C D 𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒 𝑳𝟏 𝑳𝟐 𝑳𝟑 𝐷𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐵𝐶 𝛿𝑙𝐵𝐶 = 𝑃𝐵𝐶𝐿𝐵𝐶 𝐴𝐵𝐶 BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 5. A B C D 𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒 𝑳𝟏 𝑳𝟐 𝑳𝟑 C D 𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒 𝑳𝟑 𝐷𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐶𝐷 𝛿𝑙𝐶𝐷 = 𝑃𝐶𝐷𝐿𝐶𝐷 𝐴𝐶𝐷 BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 6. 𝑻𝒐𝒕𝒂𝒍 𝐝𝐞𝐟𝐨𝐫𝐦𝐚𝐭𝐢𝐨𝐧 𝜹𝒍 = 𝑷𝑨𝑩𝑳𝑨𝑩 𝑨𝑨𝑩𝑬𝑨𝑩 + 𝑷𝑩𝑪𝑳𝑩𝑪 𝑨𝑩𝑪𝑬𝑩𝑪 + 𝑷𝑪𝑫𝑳𝑪𝑫 𝑨𝑪𝑫𝑬𝑪𝑫 𝑻𝒐𝒕𝒂𝒍 𝐝𝐞𝐟𝐨𝐫𝐦𝐚𝐭𝐢𝐨𝐧 𝜹𝒍 = 𝟏 𝑬 𝑷𝑨𝑩𝑳𝑨𝑩 𝑨𝑨𝑩 + 𝑷𝑩𝑪𝑳𝑩𝑪 𝑨𝑩𝑪 + 𝑷𝑪𝑫𝑳𝑪𝑫 𝑨𝑪𝑫 𝑇𝑜𝑡𝑎𝑙 deformation 𝛿𝑙 = 𝛿𝑙𝐴𝐵 + 𝛿𝑙BC + 𝛿𝑙𝐶𝐷 𝛿𝑙𝐴𝐵 = 𝑃𝐴𝐵𝐿𝐴𝐵 𝐴𝐴𝐵𝐸𝐴𝐵 𝛿𝑙𝐵𝐶 = 𝑃𝐵𝐶𝐿𝐵𝐶 𝐴𝐵𝐶 𝛿𝑙𝐶𝐷 = 𝑃𝐶𝐷𝐿𝐶𝐷 𝐴𝐶𝐷 BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 7. Problem 01 A brass bar having cross sectional area of 1000 𝑚𝑚2 is subjected to axial forces as shown below. Find the total elongation of the bar. Take 𝐸 = 1.05 × 105 𝑁/𝑚𝑚2. 𝑮𝒊𝒗𝒆𝒏 𝒅𝒂𝒕𝒂: 𝑻𝒐 𝒇𝒊𝒏𝒅: 𝑇𝑜𝑡𝑎𝑙 𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑟 (𝛿𝑙) =? 𝟓𝟎 𝒌𝑵 𝟖𝟎 𝒌𝑵 𝟐𝟎 𝒌𝑵 𝟏𝟎 𝒌𝑵 𝟔𝟎𝟎 𝒎𝒎 𝟏 𝒎 𝟏. 𝟐 𝒎 A B C D 𝐴 = 1000 𝑚𝑚2 𝐿1 = 600 𝑚𝑚 𝐿2 = 1𝑚 = 1000 𝑚𝑚 𝐿3 = 1.2 𝑚 = 1200 𝑚𝑚 𝐸 = 1.05 × 105 Τ 𝑁 𝑚 𝑚2 BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 8. 𝑭𝒐𝒓𝒎𝒖𝒍𝒂: 𝑇𝑜𝑡𝑎𝑙 𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 𝛿𝑙 = 𝑃1𝐿1 𝐴1𝐸1 + 𝑃2𝐿2 𝐴2𝐸2 + 𝑃3𝐿3 𝐴3𝐸3 𝛿𝑙 = 𝑃1𝐿1 + 𝑃2𝐿2 + 𝑃3𝐿3 𝐴𝐸 BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 9. 𝟓𝟎 𝒌𝑵 𝟖𝟎 𝒌𝑵 𝟐𝟎 𝒌𝑵 𝟏𝟎 𝒌𝑵 𝟔𝟎𝟎 𝒎𝒎 𝟏 𝒎 𝟏. 𝟐 𝒎 A B C D 1 3 2 𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 1 𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑖𝑑𝑒 𝐴 = 50 𝑘𝑁 𝑇 𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑖𝑑𝑒 𝐵 = 80 − 20 − 10 = 50 𝑘𝑁 𝑇 ∴ 𝑭𝒐𝒓𝒄𝒆 𝒂𝒄𝒕𝒊𝒏𝒈 𝒐𝒏 𝒔𝒆𝒄𝒕𝒊𝒐𝒏 𝟏, 𝑷𝟏 = 𝟓𝟎 𝒌𝑵 𝑻 A B 𝟓𝟎 𝒌𝑵 𝟐𝟎 𝒌𝑵 𝟔𝟎𝟎 𝒎𝒎 𝟏𝟎 𝒌𝑵 𝟖𝟎 𝒌𝑵 1 𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏: BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 10. 𝟓𝟎 𝒌𝑵 𝟖𝟎 𝒌𝑵 𝟐𝟎 𝒌𝑵 𝟏𝟎 𝒌𝑵 𝟔𝟎𝟎 𝒎𝒎 𝟏 𝒎 𝟏. 𝟐 𝒎 A B C D 1 3 2 𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 2 𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑖𝑑𝑒 𝐵 = 50 − 80 = −30 𝑘𝑁 = 30 𝑘𝑁 𝐶 𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑖𝑑𝑒 𝐶 = −20 − 10 = −30 𝑘𝑁 = −30 𝑘𝑁 𝐶 ∴ 𝑭𝒐𝒓𝒄𝒆 𝒂𝒄𝒕𝒊𝒏𝒈 𝒐𝒏 𝒔𝒆𝒄𝒕𝒊𝒐𝒏 𝟐, 𝑷𝟐 = 𝟑𝟎 𝒌𝑵 𝑪 B C 𝟓𝟎 𝒌𝑵 𝟖𝟎 𝒌𝑵 𝟏𝟎 𝒌𝑵 𝟐𝟎 𝒌𝑵 𝟏𝟎𝟎𝟎𝒎𝒎 2 BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 11. 𝟓𝟎 𝒌𝑵 𝟖𝟎 𝒌𝑵 𝟐𝟎 𝒌𝑵 𝟏𝟎 𝒌𝑵 𝟔𝟎𝟎 𝒎𝒎 𝟏 𝒎 𝟏. 𝟐 𝒎 A B C D 1 3 2 𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 3 𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑖𝑑𝑒 𝑐 = 50 + 20 − 80 = −10 𝑘𝑁 = 10 𝑘𝑁 𝐶 𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑖𝑑𝑒 𝐷 = −10 = −10 𝑘𝑁 = −10 𝑘𝑁 𝐶 ∴ 𝑭𝒐𝒓𝒄𝒆 𝒂𝒄𝒕𝒊𝒏𝒈 𝒐𝒏 𝒔𝒆𝒄𝒕𝒊𝒐𝒏 𝟑, 𝑷𝟑 = 𝟏𝟎 𝒌𝑵 𝑪 C D 𝟓𝟎 𝒌𝑵 𝟖𝟎 𝒌𝑵 𝟐𝟎 𝒌𝑵 𝟏𝟎 𝒌𝑵 𝟏𝟐𝟎𝟎 𝒎𝒎 3 BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 12. 𝑇𝑜𝑡𝑎𝑙 𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 𝛿𝑙 = 𝑃1𝐿1 + 𝑃2𝐿2 + 𝑃3𝐿3 𝐴𝐸 𝛿𝑙 = 50 × 103 × 600 + −30 × 103 × 1000 + −10 × 103 × 1200 1000 × 1.05 × 105 𝛿𝑙 = −0.114 𝑚𝑚 𝑫𝒆𝒄𝒓𝒆𝒂𝒔𝒆 𝒊𝒏 𝒍𝒆𝒏𝒈𝒕𝒉 𝜹𝒍 = 𝟎. 𝟏𝟏𝟒 𝒎𝒎 𝐴 = 1000 𝑚𝑚2 𝐿1 = 600 𝑚𝑚 𝐿2 = 1𝑚 = 1000 𝑚𝑚 𝐿3 = 1.2 𝑚 = 1200 𝑚𝑚 𝐸 = 1.05 × 105 Τ 𝑁 𝑚 𝑚2 𝑃1 = 50 𝑘𝑁 𝑇 𝑃2 = 30 𝑘𝑁 𝐶 𝑃3 = 10 𝑘𝑁 𝐶 BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 13. Problem 01 A member ABCD is subjected to point loads 𝑃1, 𝑃2, 𝑃3 and 𝑃4 as shown in the figure. Calculate the force 𝑃2 necessary for equilibrium, if 𝑃1 = 45 𝑘𝑁, 𝑃3 = 450 𝑘𝑁 and 𝑃4 = 130 𝑘𝑁. Determine the total elongation of the member assuming 𝐸 = 2.1 × 105 𝑁/𝑚𝑚2. 𝑮𝒊𝒗𝒆𝒏 𝒅𝒂𝒕𝒂: 𝑻𝒐 𝒇𝒊𝒏𝒅: 𝑇𝑜𝑡𝑎𝑙 𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑚𝑏𝑒𝑟(𝛿𝑙) =? A B 𝟏𝟐𝟎𝟎 𝒎𝒎 C 𝟔𝟎𝟎 𝒎𝒎 D 𝟗𝟎𝟎 𝒎𝒎 𝟔𝟐𝟓 𝒎𝒎𝟐 𝟐𝟓𝟎𝟎 𝒎𝒎𝟐 1250 𝒎𝒎𝟐 𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒 𝐴𝐴𝐵 = 625 𝑚𝑚2 𝐴𝐵𝐶 = 2500 𝑚𝑚2 𝐴𝐶𝐷 = 1250 𝑚𝑚2 𝐿𝐴𝐵 = 1200 𝑚𝑚 𝐿𝐵𝐶 = 600 𝑚𝑚 𝐿𝐶𝐷 = 900 𝑚𝑚 𝑃1 = 45 𝑘𝑁 𝑃3 = 450 𝑘𝑁 𝑃4 = 130 𝑘𝑁 𝐹𝑜𝑟𝑐𝑒 (𝑃2) =? 𝐸 = 2.1 × 105 Τ 𝑁 𝑚 𝑚2 BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 14. 𝑭𝒐𝒓𝒎𝒖𝒍𝒂: 𝑇𝑜𝑡𝑎𝑙 𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 𝛿𝑙 = 𝑃𝐴𝐵𝐿𝐴𝐵 𝐴𝐴𝐵𝐸𝐴𝐵 + 𝑃𝐵𝐶𝐿𝐵𝐶 𝐴𝐵𝐶𝐸𝐵𝐶 + 𝑃𝐶𝐷𝐿𝐶𝐷 𝐴𝐶𝐷𝐸𝐶𝐷 𝑇𝑜𝑡𝑎𝑙 𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 𝛿𝑙 = 1 𝐸 𝑃𝐴𝐵𝐿𝐴𝐵 𝐴𝐴𝐵 + 𝑃𝐵𝐶𝐿𝐵𝐶 𝐴𝐵𝐶 + 𝑃𝐶𝐷𝐿𝐶𝐷 𝐴𝐶𝐷 BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 15. A B 𝟏𝟐𝟎𝟎 𝒎𝒎 C 𝟔𝟎𝟎 𝒎𝒎 D 𝟗𝟎𝟎 𝒎𝒎 𝟔𝟐𝟓 𝒎𝒎𝟐 𝟐𝟓𝟎𝟎 𝒎𝒎𝟐 1250 𝒎𝒎𝟐 𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒 𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 𝑙𝑒𝑓𝑡 = 𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 𝑟𝑖𝑔ℎ𝑡 𝑃1 + 𝑃3 = 𝑃2 + 𝑃4 45 + 450 = 𝑃2 + 130 𝑷𝟐 = 𝟑𝟔𝟓 𝒌𝑵 𝑃1 = 45 𝑘𝑁 𝑃3 = 450 𝑘𝑁 𝑃4 = 130 𝑘𝑁 BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 16. A B 𝟏𝟐𝟎𝟎 𝒎𝒎 C 𝟔𝟎𝟎 𝒎𝒎 D 𝟗𝟎𝟎 𝒎𝒎 𝟔𝟐𝟓 𝒎𝒎𝟐 𝟐𝟓𝟎𝟎 𝒎𝒎𝟐 1250 𝒎𝒎𝟐 𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒 𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 1 𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑖𝑑𝑒 𝐴 = 45 𝑘𝑁 𝑇 𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑖𝑑𝑒 𝐵 = 365 − 450 + 130 = 45 𝑘𝑁 𝑇 ∴ 𝑭𝒐𝒓𝒄𝒆 𝒂𝒄𝒕𝒊𝒏𝒈 𝒐𝒏 𝒔𝒆𝒄𝒕𝒊𝒐𝒏 𝟏, 𝑷𝑨𝑩 = 𝟒𝟓 𝒌𝑵 𝑻 A B 𝟒𝟓 𝒌𝑵 𝟒𝟓𝟎 𝒌𝑵 𝟏𝟐𝟎𝟎 𝒎𝒎 𝟏𝟑𝟎 𝒌𝑵 𝟑𝟔𝟓 𝒌𝑵 𝟔𝟐𝟓 𝒎𝒎𝟐 𝑃1 = 45 𝑘𝑁 𝑃3 = 450 𝑘𝑁 𝑃4 = 130 𝑘𝑁 𝑃2 = 365 𝑘𝑁 BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 17. A B 𝟏𝟐𝟎𝟎 𝒎𝒎 C 𝟔𝟎𝟎 𝒎𝒎 D 𝟗𝟎𝟎 𝒎𝒎 𝟔𝟐𝟓 𝒎𝒎𝟐 𝟐𝟓𝟎𝟎 𝒎𝒎𝟐 1250 𝒎𝒎𝟐 𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒 𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 2 𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑖𝑑𝑒 𝐵 = 45 − 365 = −320 𝑘𝑁 = −320 𝑘𝑁 𝐶 𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑖𝑑𝑒 𝐶 = −450 + 130 = −320 𝑘𝑁 = −320 𝑘𝑁 𝐶 ∴ 𝑭𝒐𝒓𝒄𝒆 𝒂𝒄𝒕𝒊𝒏𝒈 𝒐𝒏 𝒔𝒆𝒄𝒕𝒊𝒐𝒏 𝟐, 𝑷𝑩𝑪 = 𝟑𝟐𝟎 𝒌𝑵 𝑪 B C 𝟒𝟓 𝒌𝑵 𝟑𝟔𝟓 𝒌𝑵 𝟏𝟑𝟎 𝒌𝑵 𝟒𝟓𝟎 𝒌𝑵 𝟔𝟎𝟎 𝒎𝒎 𝟐𝟓𝟎𝟎 𝒎𝒎𝟐 𝑃1 = 45 𝑘𝑁 𝑃3 = 450 𝑘𝑁 𝑃4 = 130 𝑘𝑁 𝑃2 = 365 𝑘𝑁 BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 18. A B 𝟏𝟐𝟎𝟎 𝒎𝒎 C 𝟔𝟎𝟎 𝒎𝒎 D 𝟗𝟎𝟎 𝒎𝒎 𝟔𝟐𝟓 𝒎𝒎𝟐 𝟐𝟓𝟎𝟎 𝒎𝒎𝟐 1250 𝒎𝒎𝟐 𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒 𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 3 𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑖𝑑𝑒 𝑐 = 45 − 365 + 450 = 130 𝑘𝑁 = 130 𝑘𝑁 𝑇 𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑖𝑑𝑒 𝐷 = 130 𝑘𝑁 = 130 𝑘𝑁 𝑇 ∴ 𝑭𝒐𝒓𝒄𝒆 𝒂𝒄𝒕𝒊𝒏𝒈 𝒐𝒏 𝒔𝒆𝒄𝒕𝒊𝒐𝒏 𝟑, 𝑷𝑪𝑫 = 𝟏𝟑𝟎 𝒌𝑵 (𝑻) C D 𝟒𝟓 𝒌𝑵 𝟑𝟔𝟓 𝒌𝑵 𝟒𝟓𝟎 𝒌𝑵 𝟏𝟑𝟎 𝒌𝑵 𝟗𝟎𝟎 𝒎𝒎 1250 𝒎𝒎𝟐 𝑃1 = 45 𝑘𝑁 𝑃3 = 450 𝑘𝑁 𝑃4 = 130 𝑘𝑁 𝑃2 = 365 𝑘𝑁 BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 19. 𝑇𝑜𝑡𝑎𝑙 𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 𝛿𝑙 = 1 𝐸 𝑃𝐴𝐵𝐿𝐴𝐵 𝐴𝐴𝐵 + 𝑃𝐵𝐶𝐿𝐵𝐶 𝐴𝐵𝐶 + 𝑃𝐶𝐷𝐿𝐶𝐷 𝐴𝐶𝐷 𝛿𝑙 = 1 2.1 × 105 45 × 103 × 1200 625 + −320 × 103 × 600 2500 + 130 × 103 × 1200 1250 𝛿𝑙 = 0.4914 𝑚𝑚 𝑰𝒏𝒄𝒓𝒆𝒂𝒔𝒆 𝒊𝒏 𝒍𝒆𝒏𝒈𝒕𝒉 𝜹𝒍 = 𝟎. 𝟒𝟗𝟏𝟒 𝒎𝒎 𝐴𝐴𝐵 = 625 𝑚𝑚2 𝐴𝐵𝐶 = 2500 𝑚𝑚2 𝐴𝐶𝐷 = 1250 𝑚𝑚2 𝐿𝐴𝐵 = 1200 𝑚𝑚 𝐿𝐵𝐶 = 600 𝑚𝑚 𝐿𝐶𝐷 = 900 𝑚𝑚 𝑃𝐴𝐵 = 45 𝑘𝑁 𝑇 𝑃𝐵𝐶 = 320 𝑘𝑁 𝐶 𝑃CD = 130 𝑘𝑁 𝑇 BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 20. Problem 01 A tensile load of 40 kN is acting on a rod of diameter 40 mm and of length 4 m. A bore of diameter 20 mm is made centrally on the rod. To what length the rod should be bored so that the total extension will increase 30% under the same tensile load. Take 𝐸 = 2.1 × 105 𝑁/𝑚𝑚2. 𝑮𝒊𝒗𝒆𝒏 𝒅𝒂𝒕𝒂: 𝑻𝒐 𝒇𝒊𝒏𝒅: 𝑙𝑒𝑛𝑔𝑡ℎ 𝑡ℎ𝑒 𝑟𝑜𝑑 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑏𝑜𝑟𝑒𝑑 (𝑥) =? 𝑃 = 40 𝑘𝑁 = 40 × 103 𝑁 𝐷 = 40 𝑚𝑚 𝐿 = 4 𝑚 = 4000 𝑚𝑚 𝐸 = 2 × 105 Τ 𝑁 𝑚 𝑚2 𝑑𝐵 = 20 𝑚𝑚 𝛿𝑙𝑆𝐵 = 1.3 𝛿𝑙 𝐷S = 40 𝑚𝑚 𝟒𝟎 𝒌𝑵 𝟒 𝒎 𝟒𝟎 𝒌𝑵 𝟒𝟎 𝒌𝑵 𝒙 𝒎 𝟒𝟎 𝒌𝑵 BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 21. 𝑭𝒐𝒓𝒎𝒖𝒍𝒂: 𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝐴 = 𝜋 4 × 𝐷2 𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝛿𝑙 = 𝑃𝐿 𝐴𝐸 𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑏𝑜𝑟𝑒𝑑 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝐴𝑠 = 𝜋 4 × 𝐷𝑆 2 𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑏𝑜𝑟𝑒𝑑 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝐴𝐵 = 𝜋 4 × (𝐷𝑆 2 −𝑑𝐵 2 ) 𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑢𝑛𝑏𝑜𝑟𝑒𝑑 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝛿𝑙𝑆 = 𝑃𝐿𝑠 𝐴𝑆𝐸 𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑏𝑜𝑟𝑒𝑑 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝛿𝑙𝐵 = 𝑃𝐿𝐵 𝐴𝐵𝐸 𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑎𝑓𝑡𝑒𝑟 𝑏𝑜𝑟𝑒 𝑖𝑠 𝑚𝑎𝑑𝑒 𝛿𝑙𝑆𝐵 = 𝛿𝑙𝑆 + 𝛿𝑙𝐵 BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 22. 𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝐴 = 𝜋 4 × 𝐷2 𝐴 = 𝜋 4 × 402 𝑪𝒓𝒐𝒔𝒔 𝒔𝒆𝒄𝒕𝒊𝒐𝒏𝒂𝒍 𝒂𝒓𝒆𝒂 𝑨 = 𝟏𝟐𝟓𝟔. 𝟔𝟒 𝒎𝒎𝟐 𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝛿𝑙 = 𝑃𝐿 𝐴𝐸 𝛿𝑙 = 40 × 103 × 4000 1256.64 × 2 × 105 𝑻𝒐𝒕𝒂𝒍 𝒆𝒙𝒕𝒆𝒏𝒔𝒊𝒐𝒏 (𝜹𝒍) = 𝟎. 𝟔𝟑𝟔𝟔 𝒎𝒎 𝟒𝟎 𝒌𝑵 𝟒 𝒎 𝟒𝟎 𝒌𝑵 𝑃 = 40 𝑘𝑁 = 40 × 103 𝑁 𝐷 = 40 𝑚𝑚 𝐿 = 4 𝑚 = 4000 𝑚𝑚 𝐸 = 2 × 105 Τ 𝑁 𝑚 𝑚2 BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 23. 𝟒𝟎 𝒌𝑵 𝒙 𝒎 𝟒𝟎 𝒌𝑵 𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑎𝑓𝑡𝑒𝑟 𝑏𝑜𝑟𝑒 𝛿𝑙𝑆𝐵 = 1.3 𝛿𝑙 𝛿𝑙𝑆𝐵 = 1.3 × 0.6366 𝑻𝒐𝒕𝒂𝒍 𝒆𝒙𝒕𝒆𝒏𝒔𝒊𝒐𝒏 𝒂𝒇𝒕𝒆𝒓 𝒃𝒐𝒓𝒆 𝜹𝒍𝑺𝑩 = 𝟎. 𝟖𝟐𝟕 𝒎𝒎 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏𝑜𝑟𝑒𝑑 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝐿𝐵 = 𝑥 𝑚 𝐿𝐵 = 1000𝑥 𝑚𝑚 𝛿𝑙 = 0.6366 𝑚𝑚 𝑳𝒆𝒏𝒈𝒕𝒉 𝒐𝒇 𝒔𝒐𝒍𝒊𝒅 𝒑𝒐𝒓𝒕𝒊𝒐𝒏 𝑳𝑺 = 𝟒𝟎𝟎𝟎 − 𝟏𝟎𝟎𝟎𝒙 𝐿 = 4 𝑚 = 4000 𝑚𝑚 𝟒 𝒎 BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 24. 𝟒𝟎 𝒌𝑵 𝒙 𝒎 𝟒𝟎 𝒌𝑵 𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑏𝑜𝑟𝑒𝑑 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝐴𝑠 = 𝜋 4 × 𝐷𝑆 2 𝐴𝑆 = 𝜋 4 × 402 𝑨𝑺 = 𝟒𝟎𝟎𝝅 𝒎𝒎𝟐 𝐷𝑆 = 40 𝑚𝑚 𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑏𝑜𝑟𝑒𝑑 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝐴𝐵 = 𝜋 4 × (𝐷𝑆 2 −𝑑𝐵 2 ) ቁ 𝐴𝐵 = 𝜋 4 × (40 2 − 202 𝑨𝑩 = 𝟑𝟎𝟎𝝅 𝒎𝒎𝟐 𝑑𝐵 = 20 𝑚𝑚 𝐷S = 40 𝑚𝑚 BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 25. 𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑢𝑛𝑏𝑜𝑟𝑒𝑑 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝛿𝑙𝑆 = 𝑃𝐿𝑠 𝐴𝑆𝐸 𝛿𝑙𝑆 = 40 × 103 400𝜋 × 2 × 105 × 4000 − 1000𝑥 𝜹𝒍𝑺 = 𝟒 − 𝒙 𝟐𝝅 𝒎𝒎 𝑃 = 40 𝑘𝑁 = 40 × 103 𝑁 𝐸 = 2 × 105 Τ 𝑁 𝑚 𝑚2 𝐴𝑆 = 400𝜋 𝑚𝑚2 𝐿𝑆 = 4000 − 1000𝑥 𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑏𝑜𝑟𝑒𝑑 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝛿𝑙𝐵 = 𝑃𝐿𝐵 𝐴𝐵𝐸 𝛿𝑙𝐵 = 40 × 103 300𝜋 × 2 × 105 × 1000𝑥 𝜹𝒍𝑩 = 𝟒𝒙 𝟔𝝅 𝒎𝒎 𝐿𝐵 = 1000𝑥 𝑚𝑚 𝐴𝐵 = 300𝜋 𝑚𝑚2 BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 26. 𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑎𝑓𝑡𝑒𝑟 𝑏𝑜𝑟𝑒 𝑖𝑠 𝑚𝑎𝑑𝑒 𝛿𝑙𝑆𝐵 = 𝛿𝑙𝑆 + 𝛿𝑙𝐵 0.827 = 4 − 𝑥 2𝜋 + 4𝑥 6𝜋 𝒍𝒆𝒏𝒈𝒕𝒉 𝒕𝒉𝒆 𝒓𝒐𝒅 𝒔𝒉𝒐𝒖𝒍𝒅 𝒃𝒆 𝒃𝒐𝒓𝒆𝒅 (𝒙) = 𝟑. 𝟔 𝒎 𝛿𝑙𝑆 = 4 − 𝑥 2𝜋 𝑚𝑚 𝛿𝑙𝐵 = 4𝑥 6𝜋 𝑚𝑚 𝛿𝑙𝑆𝐵 = 0.827 𝑚𝑚 BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY
  • 27. Thank You BIBIN.C / ASSOCIATE PROFESSOR / MECHANICAL ENGINEERING / RMK COLLEGE OF ENGINEERING AND TECHNOLOGY