SlideShare une entreprise Scribd logo
1  sur  6
Télécharger pour lire hors ligne
Are Three Sensors Better Than One?
J. Orlando Vera
Posted: May 5, 2003
In the past decade, manufacturers improved how products are
designed, manufactured, tested and certified. One of the most significant developments
has been the emergence of the flexible manufacturing cell as a preferred manufacturing
technique for improving the quality and reducing the cost of critical parts.
The manufacturing cell is a cluster of equipment that is ideally suited to manufacturing
similar parts and part families. Because the cell is readily adaptable to different part
types and can generally be managed by one or two operators, it is not dependent on
high volume runs for its economic justification. Whether the cell is making thousands of
one part type, or just a few, the number of parts in each run is of little consequence, as
long as the cell is always making something, and doing it to within tolerance.
Flexible manufacturing equipment in a cell requires flexible, cell-capable measurement
systems that can be used to adjust and verify setup, monitor relatively short-lived
manufacturing processes and get the most out of increasingly tight part tolerance
budgets. Perhaps the most flexible of all high-end measurement approaches is the use
of multisensor coordinate measuring machines (CMMs) that incorporate touch trigger
probes, vision metrology systems (VMS) and laser technology.
Most people in manufacturing have an intuitive sense that three sensors are better than
one. They also have understandable trepidations about how well multisensors can be
integrated into a single precision measurement system, how well operators will
assimilate knowledge required to operate different types of probes, and how much more
this technology might cost.
Probing the technologies
Although the multisensor measuring systems of the 21st century have their roots in
other CMM and VMS technologies, their designers are ultimately judged by how well
they combine and balance these technologies to create a machine with significantly
greater capability than any of the parts. The technologies include CMM touch probes,
VMS camera optics and captured picture conversion, laser-measuring devices, and
software and machine design.
The touch probe is by far the most researched technology within the metrology
community and provides enhanced capabilities within the context of multisensor
systems. Touch probes run the gamut in terms of sizes and applications. For example,
a spherical ruby type probe can range from 0.3 millimeter up to around 10 millimeters in
diameter, as well as cylindrical and conical probes.
Touch probes are best used for measuring 3-D geometrical features that require a
surface model calculation for fit, size and location. Although touch probe technology is
still advancing, its general use requirements are the most widely understood. Critical
issues for touch probes are how much staging the parts require and, for deep bore
http://www.qualitymag.com/copyright/e8f70ee7f4c38010VgnVCM10000...
1 of 6 1/11/2009 7:17 PM
measurements, the reach of the probe stylus.
In contrast to touch probes, which must move in space and time from point to point
along the part's surface, the cameras used on vision metrology systems require no
surface contact and can capture thousands of data points almost instantaneously. They
can reach down in areas or constructions where conventional probes do not fit such as
small angles and small radii.
End users also have choices when it comes to cameras, and each of these camera types
have its own set of advantages and disadvantages. For example, zoom cell cameras
generally provide greater magnification ranges, but in doing so, tend to sacrifice
accurate repositioning. This problem is the result of two types of errors inherent to all
mechanical zoom optics, "par centricity" and "parfocality." Par centricity deals with how
well an image maintains its position in the field of view, and parfocality deals with how
well the zoom lens maintains acuity of focus -- particularly on the edges -- as the zoom
cell moves to various positions from 0% to 100% magnification.
Because the amount of error in effect at any given position is not proportional to the
percentage of magnification, calibration of the zoom cell is necessary to ensure 3-D
accuracy. The industry is currently working on a set of standards that manufacturers
must follow when calibrating their zoom cells. When these standards become widely
used, there will be a closer correlation of data produced by VMS models employing
zoom cells. Currently, a standards committee is actively working to define the
standards.
Choices
Other vision metrology systems have fixed optics systems like those used in
microscopes. These have significantly greater repositioning accuracy to limit par
centricity and parfocality errors. The challenge in these systems may be in a lack of
field-of-view or depth-of-view measurements. Some recent camera designs implement
both fixed optics and zoom capabilities to achieve a greater magnification range without
sacrificing positioning accuracy. The cameras can alternate between measuring small
features that fit within a field of view, or about 1 mm2, to large features of about 8 mm2
to 1,000 mm2 within a field of view in a matter of seconds.
Captured picture conversion is another consideration. An image is captured in the
camera when the lens assembly directs it onto the pixel receptors of a charge-coupled
device (CCD). The analog signal is then converted in the camera to a digital signal that
is sent to a video board for analysis. The camera is the part of the vision system that
converts the image.
There are three types of cameras that may be employed by multisensor systems:
Black and White. Relatively inexpensive black and white cameras provide the least
contrast change and, therefore, deliver results that are generally less accurate and
repeatable than other types of cameras, barring any specialized customization
such as cameras that are used in in-line character recognition systems. Black and
white cameras can be cost-effective for 2-D parts with sharp edge contrast and
low accuracy requirements.
Color. Of course, if colors need to be differentiated to capture a viable image for
http://www.qualitymag.com/copyright/e8f70ee7f4c38010VgnVCM10000...
2 of 6 1/11/2009 7:17 PM
analysis, a black and white camera will not do the job. Color cameras are the most
expensive choice, and are also limited because the requisite filtering prior to the
analog signal capture can block up to 50% of the light transmitted through a lens
assembly. Another problem with the color camera is its sensitivity to certain light
spectra. For example, excessive red can bloom, which means that the red can
overflow into adjacent CCD array cells to overpower the other color spectra,
causing a blurry or ghostly image. For this reason, color cameras are generally
considered the least useful for vision and metrology.
Along with the black and white camera, the color camera is generally used in
Object Character Recognition (OCR) and Object Character Verification (OCV)
applications. These provide visual confirmation that the components are in the
correct position.
Gray Scale. Most vision and multisensor systems rely primarily on gray-scale
camera designs. These allow for the analysis of 256 shades of gray for the
accurate and repeatable determination of edge and surface variations for many
types of parts and materials. If some degree of color recognition is needed, all is
not lost. Camera technologies are under development that would be better capable
of colorizing gray-scale images and these should be available within the next five
years.
Laser options
Multisensor systems frequently employ lasers to supplement video technology for
extremely accurate and rapid capture of noncontact measurement data. Lasers have
been used since the early 1980s for such purposes as collecting reverse engineering
data from models. Unfortunately, the common use of triangulation, which is the
bouncing of the laser signal at an angle of incidence of approximately 45 degrees, has
limited the usefulness in capturing data from complex parts with deep features. This
problem was attenuated by the introduction of a technology that permits low incidence
angle lasers that can work with angles that are less than 30 degrees.
Even more promising are the on-axis through the lens (TTL) laser systems that follow
the optical path and require no physical offset values when changing between camera
and laser measurement. On-axis TTL laser systems have proved to be more flexible and
repeatable than triangulation laser probes and the system shortens the time required to
switch between video and laser measurement because of the close correlation between
laser and vision system alignment.
Machine design
Many original metrology equipment manufacturers have recognized the need for
multisensor capabilities and some have answered that need by adapting existing single
sensor machines to accept additional sensors. Users who have purchased this type of
system have frequently been disappointed with the performance of the added sensors.
This is not surprising. All of the considerations that make for a sound CMM design must
be incorporated into a multisensor system and more. For example, a robust machine
with temperature stable materials is a good starting point. Good vibration damping is
also an extremely important feature for capturing measurement data with a camera.
Perhaps the most important machine design requirement is the grouping of sensors.
http://www.qualitymag.com/copyright/e8f70ee7f4c38010VgnVCM10000...
3 of 6 1/11/2009 7:17 PM
They should be grouped as closely as possible so that minimal physical adjustment and
compensation are required when changing from one sensor to the next. This
consideration has a profound impact on the precision, throughput and flexibility
attainable with the multisensor system.
In addition to integrating three types of sensors into a single automated measurement
system, good multisensor design must also encompass software integration so that the
user can readily create programs that flow effortlessly from one sensing technique to
another. This is facilitated by the use of powerful, intuitive, CAD-based, off-line
programming capabilities.
All manufacturers say their software is user-friendly, but ultimately the user must be the
judge. Meeting part programming requirements for the average part may be good
enough for a single sensor system. But it is not good enough for taking full advantage
of multisensor measurement capabilities to meet monitoring and control requirements
for flexible manufacturing cells.
Could it be?
A single flexible tool that can be used in a manufacturing cell to measure all the critical
features in an entire family of parts with one setup per part almost sounds too good to
be true. Before acquiring a multisensor system, prospective users have to ask
themselves, "Is this really a viable technology for my manufacturing cell application, or
is it just an expensive Swiss Army Knife that does a little bit of everything, but nothing
all that well?" The answer to that question breaks down to just a handful of issues:
Precision. There will almost always be times when critical dimensions must be
measured with extreme precision. The weakest link in the multisensor system's
precision measurement chain has been optics. Today's two-stage fixed and zoom
optics can provide submicron resolution over a wide field of vision. Even higher
precision optical solutions will arrive within the next three to five years.
Integration. High-level integration of a good multisensor system means that
programming the system to change from one sensor to another is no more difficult
-- perhaps even less difficult -- than changing probes with a direct computer
controlled (DCC) or computer numeric controlled (CNC) CMM. A good multisensor
system will provide seamless measurement results with no significant loss in the
error budget from positioning when changing from one sensor to another. In fact,
with a correctly configured multisensor machine, overall accuracy can be
significantly better than that achieved when setting up the same part on multiple
measurement systems.
Significant time savings can also be achieved. For example, in one application
involving measurements of multiple features on a medical part, the use of a
multisensor system reduced part handling, setup and inspection time dramatically
as compared to using multiple systems to do the task. In comparison tests using a
multisensor machine, it took three minutes to set up the medical part for touch
probe and laser measurement, and then 12 seconds to run the measurement
program and transmit the data to an offsite location. On a more conventional
machine, setup for touch sensors alone took between five and eight minutes.
Relocation and setup on a vision system took about the same amount of time, plus
http://www.qualitymag.com/copyright/e8f70ee7f4c38010VgnVCM10000...
4 of 6 1/11/2009 7:17 PM
an additional three to five minutes to verify that the datum setup correlated with
the CMM.
In these tests, the multisensor CMM measured all of the features in less time than
it took to do one function with multiple machines. One reason it can do this is the
synergy that multisensor machines can offer. For example, the definition of a plane
with the laser focus points provides rapid response within milliseconds, whereas a
touch program will require a couple of seconds, if not a full minute, for positioning.
Ease of Use. There is no question that users who are versed in only one
measurement technology such as conventional CMMs will have to learn new skills.
One of the biggest areas for most will be learning how to illuminate parts
effectively to optimize data capture by video technology. The good news is that the
basic multisensor operation can still be taught in a standard, relatively short,
training course. During the learning stages, sensor wizards in the software can
help users get past their initial unfamiliarity with different technologies.
State of Development. A major benefit of having multisensor technology in a cell is
being able to meet future measurement needs. It's a "center court" technology,
which means that it matches well with the inherent flexibility of the
manufacturing-cell environment. However, potential users are concerned that new
developments, particularly new sensor technology, could rapidly outdate today's
multisensor systems. It is true that some interesting developments, such as
ultra-high optics, are on the horizon. However, if the user invests in a true
multisensor system, as opposed to one in which additional sensor capabilities are
added as an afterthought, he or she need not fear that the system will become
outdated. Well-designed equipment and software will serve as a stable platform to
accommodate new sensor technologies as they are developed.
Relative Cost. Multisensor measurement systems cost somewhat more than single
sensor equipment, but they also do a lot more. The contribution they make to
improve quality and throughput in a manufacturing cell should more than offset the
additional cost increment.
While the market for multisensor systems is still in the early development stages, many
different systems and sizes are already available. They range in cost from about
$70,000 to about $500,000. Being able to choose the right-sized system for the
application reduces cost impact. It is also possible to buy the basic system with only
one or two sensors and add others as they are needed.
After addressing these cost concerns, the bottom line is simple: Multisensor
measurement is a promising technology with a bright future. If you are developing a
manufacturing cell that would benefit from this style of measurement, the technology is
far enough along that there is no reason why you should not begin investigating it
today.
TECH TIPS
Multisensor measuring equipment is flexible enough to be used in a manufacturing
work cell. Multisensor equipment includes touch probe, vision metrology systems
and laser systems.
http://www.qualitymag.com/copyright/e8f70ee7f4c38010VgnVCM10000...
5 of 6 1/11/2009 7:17 PM
Software must allow users to readily create programs that flow effortlessly from
one sensing technique to another.
Sensors should be grouped as closely as possible so that minimal physical
adjustment and compensation are required when changing from one sensor to the
next. There should be no significant error budget loss from positioning when
changing from one sensor to another.
Fixed and zoom optics can provide submicron resolution over a wide field of vision.
http://www.qualitymag.com/copyright/e8f70ee7f4c38010VgnVCM10000...
6 of 6 1/11/2009 7:17 PM

Contenu connexe

Tendances

GROUP_18_MEMS_NEMS
GROUP_18_MEMS_NEMSGROUP_18_MEMS_NEMS
GROUP_18_MEMS_NEMS
SOUMYA PANDA
 
Aiar. unit v. machine vision 1462642546237
Aiar. unit v. machine vision 1462642546237Aiar. unit v. machine vision 1462642546237
Aiar. unit v. machine vision 1462642546237
Kunal mane
 
Machine vision project
Machine vision projectMachine vision project
Machine vision project
Wei Ang
 

Tendances (20)

Machine Vision System
Machine Vision SystemMachine Vision System
Machine Vision System
 
Nems2
Nems2Nems2
Nems2
 
GROUP_18_MEMS_NEMS
GROUP_18_MEMS_NEMSGROUP_18_MEMS_NEMS
GROUP_18_MEMS_NEMS
 
APPLICATIONS OF MACHINE VISION
APPLICATIONS OF MACHINE VISIONAPPLICATIONS OF MACHINE VISION
APPLICATIONS OF MACHINE VISION
 
MEMS
MEMSMEMS
MEMS
 
Aiar. unit v. machine vision 1462642546237
Aiar. unit v. machine vision 1462642546237Aiar. unit v. machine vision 1462642546237
Aiar. unit v. machine vision 1462642546237
 
Unit III - Solved Question Bank- Robotics Engineering -
Unit III - Solved Question Bank-  Robotics Engineering -Unit III - Solved Question Bank-  Robotics Engineering -
Unit III - Solved Question Bank- Robotics Engineering -
 
Micro-electro-mechanical Systems
Micro-electro-mechanical Systems Micro-electro-mechanical Systems
Micro-electro-mechanical Systems
 
Machine Vision Systems And Applications
Machine Vision Systems And ApplicationsMachine Vision Systems And Applications
Machine Vision Systems And Applications
 
Mems ppt svit
Mems ppt svitMems ppt svit
Mems ppt svit
 
Sensors, MEMS, Internet of Things
Sensors, MEMS, Internet of ThingsSensors, MEMS, Internet of Things
Sensors, MEMS, Internet of Things
 
NEMS MEMS PAPER
NEMS MEMS PAPERNEMS MEMS PAPER
NEMS MEMS PAPER
 
Vision measuring machines
Vision measuring machinesVision measuring machines
Vision measuring machines
 
Vision sensors for recognition and assessment of objects and scenes
Vision sensors for recognition and assessment of objects and scenesVision sensors for recognition and assessment of objects and scenes
Vision sensors for recognition and assessment of objects and scenes
 
Mems application
Mems applicationMems application
Mems application
 
Mems technology
Mems technologyMems technology
Mems technology
 
Machine vision project
Machine vision projectMachine vision project
Machine vision project
 
C
CC
C
 
StereoCheck, StereoCheckRM, and CheckBRW - Stereotactic Coordinates Verification
StereoCheck, StereoCheckRM, and CheckBRW - Stereotactic Coordinates VerificationStereoCheck, StereoCheckRM, and CheckBRW - Stereotactic Coordinates Verification
StereoCheck, StereoCheckRM, and CheckBRW - Stereotactic Coordinates Verification
 
Micro Electromechanical System (MEMS)
Micro Electromechanical System (MEMS)Micro Electromechanical System (MEMS)
Micro Electromechanical System (MEMS)
 

En vedette (17)

Vmobile presentation
Vmobile presentationVmobile presentation
Vmobile presentation
 
01 introduction
01 introduction01 introduction
01 introduction
 
01 intro to mis
01 intro to mis01 intro to mis
01 intro to mis
 
SAR Presentation
SAR PresentationSAR Presentation
SAR Presentation
 
01 intro
01 intro01 intro
01 intro
 
Production Machining Article January 2009
Production Machining Article January 2009Production Machining Article January 2009
Production Machining Article January 2009
 
Nouns
NounsNouns
Nouns
 
Ins basic
Ins basicIns basic
Ins basic
 
2014_Pantec_Metrology_BU_PPT_revVERJA
2014_Pantec_Metrology_BU_PPT_revVERJA2014_Pantec_Metrology_BU_PPT_revVERJA
2014_Pantec_Metrology_BU_PPT_revVERJA
 
20 days of human rights activism 2011
20 days of human rights activism 201120 days of human rights activism 2011
20 days of human rights activism 2011
 
401.ch08.karayan
401.ch08.karayan401.ch08.karayan
401.ch08.karayan
 
Verbal and non verbal communication-Types of nonverbals
Verbal and non verbal communication-Types of nonverbalsVerbal and non verbal communication-Types of nonverbals
Verbal and non verbal communication-Types of nonverbals
 
Arts and Crafts Entre[p
Arts and Crafts Entre[pArts and Crafts Entre[p
Arts and Crafts Entre[p
 
Aorticvalve 97 (2)
Aorticvalve 97 (2)Aorticvalve 97 (2)
Aorticvalve 97 (2)
 
1 esab01astrategy ethiopia_march_fnal
1 esab01astrategy ethiopia_march_fnal1 esab01astrategy ethiopia_march_fnal
1 esab01astrategy ethiopia_march_fnal
 
Verb tense time line
Verb tense time lineVerb tense time line
Verb tense time line
 
Prantsusmaa
PrantsusmaaPrantsusmaa
Prantsusmaa
 

Similaire à Quality Magazine Feature Article May 2003

Photonics spectra cc_dvs_cmos_litwiller
Photonics spectra cc_dvs_cmos_litwillerPhotonics spectra cc_dvs_cmos_litwiller
Photonics spectra cc_dvs_cmos_litwiller
Trần Hùng
 
Mobile CMOS Image Sensor Test System through Image Processing Technique
Mobile CMOS Image Sensor Test System through Image Processing TechniqueMobile CMOS Image Sensor Test System through Image Processing Technique
Mobile CMOS Image Sensor Test System through Image Processing Technique
ijtsrd
 
Metris 2009
Metris 2009Metris 2009
Metris 2009
Yann Nee
 
Computer application for testing (contact and non-contact)
Computer application for testing (contact and non-contact)Computer application for testing (contact and non-contact)
Computer application for testing (contact and non-contact)
Ghassan Alshahiri
 

Similaire à Quality Magazine Feature Article May 2003 (20)

Considerations When Choosing A Smart Camera
Considerations When Choosing A Smart CameraConsiderations When Choosing A Smart Camera
Considerations When Choosing A Smart Camera
 
Photonics spectra cc_dvs_cmos_litwiller
Photonics spectra cc_dvs_cmos_litwillerPhotonics spectra cc_dvs_cmos_litwiller
Photonics spectra cc_dvs_cmos_litwiller
 
Mobile CMOS Image Sensor Test System through Image Processing Technique
Mobile CMOS Image Sensor Test System through Image Processing TechniqueMobile CMOS Image Sensor Test System through Image Processing Technique
Mobile CMOS Image Sensor Test System through Image Processing Technique
 
76832073-3d-Machine-Vision-Systems.doc
76832073-3d-Machine-Vision-Systems.doc76832073-3d-Machine-Vision-Systems.doc
76832073-3d-Machine-Vision-Systems.doc
 
Considerations When Choosing A Smart Camera
Considerations When Choosing A Smart CameraConsiderations When Choosing A Smart Camera
Considerations When Choosing A Smart Camera
 
Machine Vision: The Key Considerations for Successful Visual Inspection
Machine Vision: The Key Considerations for Successful Visual InspectionMachine Vision: The Key Considerations for Successful Visual Inspection
Machine Vision: The Key Considerations for Successful Visual Inspection
 
Seminar report on image sensor
Seminar report on image sensorSeminar report on image sensor
Seminar report on image sensor
 
Outsourcing the Design & Manufacturing of Projection Engines for 3D Metrology...
Outsourcing the Design & Manufacturing of Projection Engines for 3D Metrology...Outsourcing the Design & Manufacturing of Projection Engines for 3D Metrology...
Outsourcing the Design & Manufacturing of Projection Engines for 3D Metrology...
 
Digital versus film photography wikipedia
Digital versus film photography wikipediaDigital versus film photography wikipedia
Digital versus film photography wikipedia
 
NEWS_Vol+11_EN
NEWS_Vol+11_ENNEWS_Vol+11_EN
NEWS_Vol+11_EN
 
Why Customizable Imaging Software is Better than a "Jack of All Trades"
Why Customizable Imaging Software is Better than a "Jack of All Trades"Why Customizable Imaging Software is Better than a "Jack of All Trades"
Why Customizable Imaging Software is Better than a "Jack of All Trades"
 
How to select the best industrial camera
How to select the best industrial cameraHow to select the best industrial camera
How to select the best industrial camera
 
A novel approach towards a Smarter DSLR Camera
A novel approach towards a Smarter DSLR CameraA novel approach towards a Smarter DSLR Camera
A novel approach towards a Smarter DSLR Camera
 
Metris 2009
Metris 2009Metris 2009
Metris 2009
 
NewMetricsforCCTV_edited
NewMetricsforCCTV_editedNewMetricsforCCTV_edited
NewMetricsforCCTV_edited
 
Computer application for testing (contact and non-contact)
Computer application for testing (contact and non-contact)Computer application for testing (contact and non-contact)
Computer application for testing (contact and non-contact)
 
GF Machining Solutions - AgieCharmilles EDM - Optical Measuring
GF Machining Solutions - AgieCharmilles EDM - Optical MeasuringGF Machining Solutions - AgieCharmilles EDM - Optical Measuring
GF Machining Solutions - AgieCharmilles EDM - Optical Measuring
 
A novel and innovative method for designing of rf mems devices
A novel and innovative method for designing of rf mems devicesA novel and innovative method for designing of rf mems devices
A novel and innovative method for designing of rf mems devices
 
A novel and innovative method for designing of rf mems devices
A novel and innovative method for designing of rf mems devicesA novel and innovative method for designing of rf mems devices
A novel and innovative method for designing of rf mems devices
 
Probing Systems seminar
Probing Systems seminarProbing Systems seminar
Probing Systems seminar
 

Quality Magazine Feature Article May 2003

  • 1. Are Three Sensors Better Than One? J. Orlando Vera Posted: May 5, 2003 In the past decade, manufacturers improved how products are designed, manufactured, tested and certified. One of the most significant developments has been the emergence of the flexible manufacturing cell as a preferred manufacturing technique for improving the quality and reducing the cost of critical parts. The manufacturing cell is a cluster of equipment that is ideally suited to manufacturing similar parts and part families. Because the cell is readily adaptable to different part types and can generally be managed by one or two operators, it is not dependent on high volume runs for its economic justification. Whether the cell is making thousands of one part type, or just a few, the number of parts in each run is of little consequence, as long as the cell is always making something, and doing it to within tolerance. Flexible manufacturing equipment in a cell requires flexible, cell-capable measurement systems that can be used to adjust and verify setup, monitor relatively short-lived manufacturing processes and get the most out of increasingly tight part tolerance budgets. Perhaps the most flexible of all high-end measurement approaches is the use of multisensor coordinate measuring machines (CMMs) that incorporate touch trigger probes, vision metrology systems (VMS) and laser technology. Most people in manufacturing have an intuitive sense that three sensors are better than one. They also have understandable trepidations about how well multisensors can be integrated into a single precision measurement system, how well operators will assimilate knowledge required to operate different types of probes, and how much more this technology might cost. Probing the technologies Although the multisensor measuring systems of the 21st century have their roots in other CMM and VMS technologies, their designers are ultimately judged by how well they combine and balance these technologies to create a machine with significantly greater capability than any of the parts. The technologies include CMM touch probes, VMS camera optics and captured picture conversion, laser-measuring devices, and software and machine design. The touch probe is by far the most researched technology within the metrology community and provides enhanced capabilities within the context of multisensor systems. Touch probes run the gamut in terms of sizes and applications. For example, a spherical ruby type probe can range from 0.3 millimeter up to around 10 millimeters in diameter, as well as cylindrical and conical probes. Touch probes are best used for measuring 3-D geometrical features that require a surface model calculation for fit, size and location. Although touch probe technology is still advancing, its general use requirements are the most widely understood. Critical issues for touch probes are how much staging the parts require and, for deep bore http://www.qualitymag.com/copyright/e8f70ee7f4c38010VgnVCM10000... 1 of 6 1/11/2009 7:17 PM
  • 2. measurements, the reach of the probe stylus. In contrast to touch probes, which must move in space and time from point to point along the part's surface, the cameras used on vision metrology systems require no surface contact and can capture thousands of data points almost instantaneously. They can reach down in areas or constructions where conventional probes do not fit such as small angles and small radii. End users also have choices when it comes to cameras, and each of these camera types have its own set of advantages and disadvantages. For example, zoom cell cameras generally provide greater magnification ranges, but in doing so, tend to sacrifice accurate repositioning. This problem is the result of two types of errors inherent to all mechanical zoom optics, "par centricity" and "parfocality." Par centricity deals with how well an image maintains its position in the field of view, and parfocality deals with how well the zoom lens maintains acuity of focus -- particularly on the edges -- as the zoom cell moves to various positions from 0% to 100% magnification. Because the amount of error in effect at any given position is not proportional to the percentage of magnification, calibration of the zoom cell is necessary to ensure 3-D accuracy. The industry is currently working on a set of standards that manufacturers must follow when calibrating their zoom cells. When these standards become widely used, there will be a closer correlation of data produced by VMS models employing zoom cells. Currently, a standards committee is actively working to define the standards. Choices Other vision metrology systems have fixed optics systems like those used in microscopes. These have significantly greater repositioning accuracy to limit par centricity and parfocality errors. The challenge in these systems may be in a lack of field-of-view or depth-of-view measurements. Some recent camera designs implement both fixed optics and zoom capabilities to achieve a greater magnification range without sacrificing positioning accuracy. The cameras can alternate between measuring small features that fit within a field of view, or about 1 mm2, to large features of about 8 mm2 to 1,000 mm2 within a field of view in a matter of seconds. Captured picture conversion is another consideration. An image is captured in the camera when the lens assembly directs it onto the pixel receptors of a charge-coupled device (CCD). The analog signal is then converted in the camera to a digital signal that is sent to a video board for analysis. The camera is the part of the vision system that converts the image. There are three types of cameras that may be employed by multisensor systems: Black and White. Relatively inexpensive black and white cameras provide the least contrast change and, therefore, deliver results that are generally less accurate and repeatable than other types of cameras, barring any specialized customization such as cameras that are used in in-line character recognition systems. Black and white cameras can be cost-effective for 2-D parts with sharp edge contrast and low accuracy requirements. Color. Of course, if colors need to be differentiated to capture a viable image for http://www.qualitymag.com/copyright/e8f70ee7f4c38010VgnVCM10000... 2 of 6 1/11/2009 7:17 PM
  • 3. analysis, a black and white camera will not do the job. Color cameras are the most expensive choice, and are also limited because the requisite filtering prior to the analog signal capture can block up to 50% of the light transmitted through a lens assembly. Another problem with the color camera is its sensitivity to certain light spectra. For example, excessive red can bloom, which means that the red can overflow into adjacent CCD array cells to overpower the other color spectra, causing a blurry or ghostly image. For this reason, color cameras are generally considered the least useful for vision and metrology. Along with the black and white camera, the color camera is generally used in Object Character Recognition (OCR) and Object Character Verification (OCV) applications. These provide visual confirmation that the components are in the correct position. Gray Scale. Most vision and multisensor systems rely primarily on gray-scale camera designs. These allow for the analysis of 256 shades of gray for the accurate and repeatable determination of edge and surface variations for many types of parts and materials. If some degree of color recognition is needed, all is not lost. Camera technologies are under development that would be better capable of colorizing gray-scale images and these should be available within the next five years. Laser options Multisensor systems frequently employ lasers to supplement video technology for extremely accurate and rapid capture of noncontact measurement data. Lasers have been used since the early 1980s for such purposes as collecting reverse engineering data from models. Unfortunately, the common use of triangulation, which is the bouncing of the laser signal at an angle of incidence of approximately 45 degrees, has limited the usefulness in capturing data from complex parts with deep features. This problem was attenuated by the introduction of a technology that permits low incidence angle lasers that can work with angles that are less than 30 degrees. Even more promising are the on-axis through the lens (TTL) laser systems that follow the optical path and require no physical offset values when changing between camera and laser measurement. On-axis TTL laser systems have proved to be more flexible and repeatable than triangulation laser probes and the system shortens the time required to switch between video and laser measurement because of the close correlation between laser and vision system alignment. Machine design Many original metrology equipment manufacturers have recognized the need for multisensor capabilities and some have answered that need by adapting existing single sensor machines to accept additional sensors. Users who have purchased this type of system have frequently been disappointed with the performance of the added sensors. This is not surprising. All of the considerations that make for a sound CMM design must be incorporated into a multisensor system and more. For example, a robust machine with temperature stable materials is a good starting point. Good vibration damping is also an extremely important feature for capturing measurement data with a camera. Perhaps the most important machine design requirement is the grouping of sensors. http://www.qualitymag.com/copyright/e8f70ee7f4c38010VgnVCM10000... 3 of 6 1/11/2009 7:17 PM
  • 4. They should be grouped as closely as possible so that minimal physical adjustment and compensation are required when changing from one sensor to the next. This consideration has a profound impact on the precision, throughput and flexibility attainable with the multisensor system. In addition to integrating three types of sensors into a single automated measurement system, good multisensor design must also encompass software integration so that the user can readily create programs that flow effortlessly from one sensing technique to another. This is facilitated by the use of powerful, intuitive, CAD-based, off-line programming capabilities. All manufacturers say their software is user-friendly, but ultimately the user must be the judge. Meeting part programming requirements for the average part may be good enough for a single sensor system. But it is not good enough for taking full advantage of multisensor measurement capabilities to meet monitoring and control requirements for flexible manufacturing cells. Could it be? A single flexible tool that can be used in a manufacturing cell to measure all the critical features in an entire family of parts with one setup per part almost sounds too good to be true. Before acquiring a multisensor system, prospective users have to ask themselves, "Is this really a viable technology for my manufacturing cell application, or is it just an expensive Swiss Army Knife that does a little bit of everything, but nothing all that well?" The answer to that question breaks down to just a handful of issues: Precision. There will almost always be times when critical dimensions must be measured with extreme precision. The weakest link in the multisensor system's precision measurement chain has been optics. Today's two-stage fixed and zoom optics can provide submicron resolution over a wide field of vision. Even higher precision optical solutions will arrive within the next three to five years. Integration. High-level integration of a good multisensor system means that programming the system to change from one sensor to another is no more difficult -- perhaps even less difficult -- than changing probes with a direct computer controlled (DCC) or computer numeric controlled (CNC) CMM. A good multisensor system will provide seamless measurement results with no significant loss in the error budget from positioning when changing from one sensor to another. In fact, with a correctly configured multisensor machine, overall accuracy can be significantly better than that achieved when setting up the same part on multiple measurement systems. Significant time savings can also be achieved. For example, in one application involving measurements of multiple features on a medical part, the use of a multisensor system reduced part handling, setup and inspection time dramatically as compared to using multiple systems to do the task. In comparison tests using a multisensor machine, it took three minutes to set up the medical part for touch probe and laser measurement, and then 12 seconds to run the measurement program and transmit the data to an offsite location. On a more conventional machine, setup for touch sensors alone took between five and eight minutes. Relocation and setup on a vision system took about the same amount of time, plus http://www.qualitymag.com/copyright/e8f70ee7f4c38010VgnVCM10000... 4 of 6 1/11/2009 7:17 PM
  • 5. an additional three to five minutes to verify that the datum setup correlated with the CMM. In these tests, the multisensor CMM measured all of the features in less time than it took to do one function with multiple machines. One reason it can do this is the synergy that multisensor machines can offer. For example, the definition of a plane with the laser focus points provides rapid response within milliseconds, whereas a touch program will require a couple of seconds, if not a full minute, for positioning. Ease of Use. There is no question that users who are versed in only one measurement technology such as conventional CMMs will have to learn new skills. One of the biggest areas for most will be learning how to illuminate parts effectively to optimize data capture by video technology. The good news is that the basic multisensor operation can still be taught in a standard, relatively short, training course. During the learning stages, sensor wizards in the software can help users get past their initial unfamiliarity with different technologies. State of Development. A major benefit of having multisensor technology in a cell is being able to meet future measurement needs. It's a "center court" technology, which means that it matches well with the inherent flexibility of the manufacturing-cell environment. However, potential users are concerned that new developments, particularly new sensor technology, could rapidly outdate today's multisensor systems. It is true that some interesting developments, such as ultra-high optics, are on the horizon. However, if the user invests in a true multisensor system, as opposed to one in which additional sensor capabilities are added as an afterthought, he or she need not fear that the system will become outdated. Well-designed equipment and software will serve as a stable platform to accommodate new sensor technologies as they are developed. Relative Cost. Multisensor measurement systems cost somewhat more than single sensor equipment, but they also do a lot more. The contribution they make to improve quality and throughput in a manufacturing cell should more than offset the additional cost increment. While the market for multisensor systems is still in the early development stages, many different systems and sizes are already available. They range in cost from about $70,000 to about $500,000. Being able to choose the right-sized system for the application reduces cost impact. It is also possible to buy the basic system with only one or two sensors and add others as they are needed. After addressing these cost concerns, the bottom line is simple: Multisensor measurement is a promising technology with a bright future. If you are developing a manufacturing cell that would benefit from this style of measurement, the technology is far enough along that there is no reason why you should not begin investigating it today. TECH TIPS Multisensor measuring equipment is flexible enough to be used in a manufacturing work cell. Multisensor equipment includes touch probe, vision metrology systems and laser systems. http://www.qualitymag.com/copyright/e8f70ee7f4c38010VgnVCM10000... 5 of 6 1/11/2009 7:17 PM
  • 6. Software must allow users to readily create programs that flow effortlessly from one sensing technique to another. Sensors should be grouped as closely as possible so that minimal physical adjustment and compensation are required when changing from one sensor to the next. There should be no significant error budget loss from positioning when changing from one sensor to another. Fixed and zoom optics can provide submicron resolution over a wide field of vision. http://www.qualitymag.com/copyright/e8f70ee7f4c38010VgnVCM10000... 6 of 6 1/11/2009 7:17 PM