SlideShare une entreprise Scribd logo
1  sur  9
Télécharger pour lire hors ligne
International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.1, March 2011
DOI : 10.5121/vlsic.2011.2101 1
HIGH SPEED MULTIPLE VALUED LOGIC FULL
ADDER USING CARBON NANO TUBE FIELD
EFFECT TRANSISTOR
Ashkan Khatir1
, Shaghayegh Abdolahzadegan2
,Iman Mahmoudi
Islamic Azad University,Science and Research Branch, Tehran, Iran
1
a.khatir@srbiau.ac.ir
2
s.abdolahzadegan@srbiau.ac.ir
Abstract
High speed Full-Adder (FA) module is a critical element in designing high performance arithmetic
circuits. In this paper, we propose a new high speed multiple-valued logic FA module. The proposed FA
is constructed by 14 transistors and 3 capacitors, using carbon nano-tube field effect transistor (CNFET)
technology. Furthermore, our proposed technique has been examined in different voltages (i.e., 0.65v and
0.9v). The observed results reveal power consumption and power delay product (PDP) improvements
compared to existing FA counterparts.
KEYWORDS
Mulitple Valued Logic; Carbon NanoTube; Carbon Nanotube Field Effect Transistor; Full Adder; High
Speed
1. INTRODUCTION
Over the past years, silicon-based electronic technology has been improved through
downscaling MOSFETs, resulting in higher device performance and density. However, there are
still some obstacles to scaling, such as diffusion areas will no longer be separated by a low
doped channel region and equivalent gate oxide thickness will fall below the tunnelling limit.
Hence, it is important to extend or complement traditional silicon technology. As one of the
promising technologies, nanotechnology avoids most of the fundamental limitations for
conventional silicon devices. Nanoelectronic is an applicable field of nanotechnology that is
producing nanoscale machines and systems efficiently, such as nanowires, nanoparticles and
Carbon Nano Tubes (CNT). CNTs have special electronic, thermal and mechanical properties
that make them attractive for the future integrated circuit applications. Transistors with carbon
nanotubes as their channel are called Carbon Nanotube Field Effect Transistor (CNFET).
Recently, some circuit applications are presented based on CNFETs, such as ring oscillators,
invertors, and logic gates [1]. Arithmetic operations are extensively used in many VLSI
applications such as signal processing, and digital communications [2], [3]. Adders are major
part of computational circuits that are used for implementing any other arithmetic operation
such as subtraction, multiplication or even logarithmic functions [4],[5]. Hence, efficiency of
Adders affects performance of whole system therefore designers attempt to produce more
efficient Adders. Many logic styles have been designed since now to produce efficient Full
Adder cells. The complementary CMOS and CPL designs are two conventional Adders based
on CMOS structure. Based on transmission function and transmission gate, TFA and TGA
designs were implemented. The other designs are classified as Hybrid designs. Applying
International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.1, March 2011
2
CNFETs in Full Adder cells will improve delay and power consumption of circuit. In this paper
a novel CNFET high speed Full Adder cell is proposed.
2. CARBON NANOTUBE FIELD EFFECT TRANSISTORS (CNFETS)
Carbon Nano Tubes (CNTs) are sheets of graphene rolled into tube [4]. Depending on their
chirality (i.e., the direction in which the graphite sheet is rolled), the single-walled carbon
nanotubes can either be metallic or semiconducting [5], [6]. CNFETs are one of the molecular
devices that avoid most fundamental silicon transistor restriction and have ballistic or near
ballistic transport in their channel [7], [8]. Therefore a semiconductor carbon nanotube is
appropriate for using as channel of field effect transistors [6]. Applied voltage to the gate can
control the electrical conductance of the CNT by changing electron density in the channel.
By using appropriate diameter suitable threshold voltage for CNFET can be achieved. The
threshold voltage of the CNFET is proportional to the inverse of the diameter of CNT and can
be expressed as:
்ܸு ൌ
଴.ସଶ
ௗሺ௡௠ሻ
For a CNT with (n, m) as chirality and a as lattice (that is carbon to carbon atom distance) the
diameter is [10]:
D CNT =
π
22
mnmna ++
As mentioned above, CNTs are used in CNFETs as channel and depending on the connections
between source and drain with channel (CNTs) there are two main CNFETs. It works on the
principle of direct tunnelling through a Schottky barrier at the source–channel junction [11];
therefore, these transistors are called Schottky Barrier CNFET (SB-CNFET). SB-CNFET shows
ambipolar behavior and Constrain usage of these transistors in conventional CMOS-like logic
families. Schottky barrier restricts the transconductance in the ON state, and thus Ion/Ioff ratio
becomes rather low [12]. Second device is MOSFET-like CNFET which is doped in un-gated
portions and has similar behaviour to CMOS transistors and it presents unipolar behaviour [13].
The semiconductor-semiconductor junction will eliminate schottky barrier and therefore there is
higher ON current unlike SB-CNFETs. Other advantages of MOSFET-like CNFETs are high
on-off ratio and their scalability compared to their schottky barrier counterparts [8]. In this
paper we utilized MOSFET-like CNFETs for proposed design.
3. MULTIPLE VALUED LOGIC
Multiple valued logic is an extension to classical two-valued logic as n-valued logic for n>2.
MVL circuits can reduce the number of operations necessary to implement a particular
mathematical function in addition to have an advantage in terms of reduced area [14]. These
reductions can improve total circuit performance.
4. PREVIOUS WORKS
Rapid improvements of technology drive designers to compete for lower power consumption,
smaller silicon area, higher speed and higher throughput. One of the major parts of every
processor, which participate in arithmetic logic unit floating point unit and address generation,
(1)
(2)
International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.1, March 2011
3
is Full Adder [14-16]. Since, the central part of digital computing lies in FA cell, increasing the
performance of this part can improve total performance dramatically.
There are two design styles for Full Adder cells. In classical Full Adder designs only one logic
style is used for the whole Full Adder cell, whereas hybrid Full Adders use more than one logic
style in a cell [17]. The static complementary CMOS Full-Adder is a 28 transistor Full Adder
Logic style, which composed of pull-up PMOS and pull-down NMOS networks. C-CMOS
provides full swing output and good driving capabilities. The main drawback of C-CMOS is
transistor count that causes large chip area and large input capacitance [18]. Another
conventional logic is complementary pass transistor logic (CPL). In CPL two different parts are
used for implementing SUM and Carry outputs. The logic style is a high speed and full swing
design, but due to the presence of a lot of internal nodes and static inverters, there is large power
dissipation [19]. Number of used transistors in this logic is 32 that results in complication in the
layout. Transmission gate Full Adder (TGA) is introduced for its low power dissipation but it
lacks driving capability. All of the above mentioned Full Adders are using single logic style.
Hybrid CMOS Full Adder is composed of three modules First module produces intermediate
signals that pass to second and third modules and it can be XOR-XOR, XOR-XNOR, XNOR-
XNOR [17],[20],[21] or even majority-not function. Second module produces a SUM and third
one Produces Carry. One example of this logic style Adder is Static Energy Recovery Full
Adder (SERF) that uses 10 transistors but its output is not full swing and has not a good driving
capability for next modules in cascading modes. NEW14T Adder [22], DB cell [17], SERF
Adder [20] and HPSC [24] are examples of hybrid Full Adders. Some circuits are designed by
majority function.
Majority function is a logic circuit that performs as a majority vote to determine the output of
the circuit. This function has odd number of inputs and thus it operates as Carry-out in Full
Adder. The majority function is represented as (3):
MajorityሺA, B, Cሻ ൌ AB ൅ AC ൅ BC ൌ C୭୳୲
In this structure majority-not gate is created with input capacitors and a static CMOS inverter at
follow. In CMOS Technology NAND, NOR and majority-not gates can be implemented by
scaled Inverters [25]. In order to implement them by CNT transistors the diameter of CNFETs
must be adjusted.
Different design of majority-not based Full Adders reported in [25-28]. These circuits are
implemented in two stages as shown in Fig 1. Although for producing carry out they all have
similar function, but in SUM output they differ in circuit structure and the transistor count. The
first stage is producing C୭୳୲
തതതതതത by means of majority-not function and in the second stage SUM is
generated by means of functions F that implemented in different styles. These Full Adders have
a simple structure but it operates very well and results in remarkable advances in reducing
power in comparison to other well-known designs. This reduction is due to simple structure,
reduced number of transistors and the lowering in switching activities. [25]
First majority-not based Full Adders is implemented by function of
SUM ൌ MajሺA, B, C୭୳୲
തതതതതത, C୭୳୲
തതതതതതሻ[25]
(3)
(4)
International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.1, March 2011
4
In this design two stages majority-not function is used first one for C୭୳୲
തതതതതത and next stage as five
input majority-not function for creating Sum. The logic of [25] is composed of two parallel
connected NMOS and PMOS transistors that provide a path to the input. Transistor count is 8
and capacitor count is 7.
Figure 1. Full Adder Design CNT-FA1 [25]
The another design low-voltage CNFET-based Full Adder circuit based on Minority Function
presented in [26] uses only 8 transistors and reduces the number of capacitors to 5 as shown in
fig 2, but uses capacitors in the middle of design which result in reduction in speed. The C୭୳୲
തതതതതത
implemented by majority-not function too.
In next design [27], NAND and NOR gates are used for implementing Sum as equation of
SUM ൌ MajሺA, B, 2 ‫כ‬ NandሺA, B, Cሻ, 2 ‫כ‬ NorሺA, B, Cሻሻ. By reducing the number of capacitors,
overall performance of the circuit is improved. Figure 3
Figure2.Full Adder Design CNT-FA3 [26]
International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.1, March 2011
5
Figure 3. Full Adder Design CNT-FA2 [27]
5. PROPOSED FULL ADDER
One method to implement majority-not function is using a conventional inverter and three
capacitors connected to the inputs of inverter as presented in Fig 4. In design of majority-not
function, three capacitors are implementing Multiple-Valued logic by producing four logic
levels. The levels are 0,
୚ీీ
ଷ
,
ଶ୚ీీ
ଷ
and Vୈୈ. The inverter threshold voltage is regulated so that
it will be OFF when most number of inputs are ‘1’. By changing threshold voltage of inverter
transistors of Fig.4, the circuit can be used as Either NAND or NOR functions.
Figure 4. Majority-not Function Circuit
For NAND function, when three inputs (A, B, C) are all ‘1’, output should be ‘0’ otherwise
output should be ‘1’. For NOR function if there is one input that is ‘1’, output should be ‘0’
otherwise output should be ‘1’. As in sum formula (4) output can implemented by NOR, NAND
and majority-not functions and Fig. 5 and formula (5) will be attained.
International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.1, March 2011
6
Figure 5. Proposed Full Adder design
In proposed Adder we use less capacitors rather than contemporary CNFET Adders. The
simulation results indicate that this reduction has caused our Full Adder cell to become much
faster. This design presents a circuit which uses 14 transistors and 3 capacitors and also
produces carry and outputs. Outputs of the circuit will be connected to power supply or
ground and therewith, the circuit has good drive capability. In this design, “a” and” b” inverters
implement NOR and NAND functions respectively. When at least one input is ‘1’, the transistor
marked with ‘1’ will act as a majority function and becomes ON. The proposed design is full
swing and in comparison to previous designs uses fewer capacitors.
6. SIMULATION RESULTS
The Synopsys HSPICE circuit simulator has been used to simulate Full Adder circuits. The
circuits of C-CMOS, CPL, TGA and Hybrid are simulated using 32nm MOSFET technology.
For simulating CNFET-based circuits the proposed compact model in [8] is used. This standard
model has been designed for unipolar, MOSFET-like CNFET devices, in which each transistor
may have one or more CNTs. Circuits are compared by power consumption, propagation delay
and power delay product (PDP). For being more realistic, buffers (two cascaded inverter) are
placed at the outputs. The proposed design is compared with MOSFET designs and earlier
CNFET Full Adder designs CNT-FA1 [25] CNT-FA2 [27] and CNT-FA3 [26]. Table 1 and 2
shows the value of power, delay and PDP for C-CMOS, CPL, TGA, Hybrid, CNT-FA1, CNT-
FA2 and CNT-FA3. CNFETs are simulated in 0.9v and 0.65v. Delay is measured from middle
of the input voltage swing to the middle of the output voltage swing. Simulation results in Table
1 and 2, indicate that the smallest delay belongs to the proposed Full Adder cell. PDP is
calculated as a trade-off between power consumption and delay. It is a measure of total
performance of a circuit. From Table 1 and 2, it can be seen that the proposed Full Adder has
the best PDP.
(5)
International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.1, March 2011
7
TABLE 1. Simulation Results for 0.9v
Design
Performance Parameters
Power Delay PDP
C-CMOS 6.26E-07 5.27E-11 3.30E-17
CPL 4.87E-07 1.57E-10 7.63E-17
TFA 6.32E-07 2.89E-10 1.83E-16
TGA 6.68E-07 3.46E-10 2.31E-16
Hybrid 4.96E-07 2.93E-10 1.45E-16
CNT-FA1 1.05E-06 7.83E-11 8.20E-17
CNT-FA2 3.32E-07 1.14E-10 3.80E-17
CNT-FA3 7.83E-07 5.36E-11 4.20E-17
Proposed
Adder
8.40E-07 1.25E-11 6.17E-18
TABLE 2. Simulation Results for 0.65v
Design
Performance Parameters
Power Delay PDP
C-CMOS 2.94E-07 1.46E-10 4.28E-17
CPL 2.08E-07 4.65E-10 9.67E-17
TFA 1.52E-07 8.45E-10 1.29E-16
TGA 1.21E-07 4.76E-10 5.77E-17
Hybrid 1.71E-07 1.10E-09 1.88E-16
CNT-FA1 5.23E-07 7.97E-11 4.17E-17
CNT-FA2 4.71E-07 8.82E-11 4.15E-17
CNT-FA3 7.12E-07 7.51E-11 5.35E-17
Proposed
Adder
4.80E-07 1.29E-11 1.05E-17
Figure 6. Propagation Delay comparison chart for 0.9v and 0.65v
International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.1, March 2011
8
Figure 7. Power consumption comparison chart for 0.9v and 0.65v
Figure 8 PDP comparison chart for 0.9 and 0.65v
3. CONCLUSIONS
In this paper a novel high speed majority based CNFET Full Adder has been proposed. Using
CNFETs as a novel Full-Adder architecture improved the efficiency. The main concept of this
design is implementing (5) using majority-not function and using majority-not circuit design as
NOR and NAND functions by changing threshold voltage of CNFETs to produce intermediate
signals. In order to evaluate the performance of the design, delay, power and power-delay-
product (PDP) factors are compared with some of the state-of-the-art MOS and CNFET-based
designs. Simulations have been performed on HSPICE by using CNFET technology in two
practical voltages as 0.9v and 0.65v. To evaluate new design eight other designs, including
CMOS, CPL, TFA, TGA, Hybrid and three previous majority not based Full Adder designs are
applied. Simulation results illustrate improvements in terms of delay and PDP in comparison to
previous MOSFET and CNFET designs. The improvement in terms of PDP obtained by the
proposed Full-Adder cell as compared the best standard design amounts to 18% in 0.9v and
36% in 0.65v.
ACKNOWLEDGEMENTS
The authors would like to thank Dr. Belmond Yoberd for his literature contribution.
International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.1, March 2011
9
REFERENCES
[1] A. Javey and J. Kong, editors: ”Carbon Nanotube Electronics”, (New York: Springer, c2009), pp. 5-
260.
[2] K. Navi, M.H Moaiyeri, R. F.Mirzaei, O. Hashemipour, B. M.Nezhad, Jan. (2009), "Two New Low-
Power Full Adder Based on majority-not Gates" Microelectronics Journal, Elsevier, vol. 40, no. 1,
pp. 126-130.
[3] K. Navi, M. Maeen, O. Hashemipour, , (2009), “An Energy Efficient Full-Adder Cell for Low
Voltages”, IEICE Electron. Express, vol. 6, no. 9, pp.553-559.
[4] J. Lin and Y. Hwang: ”A Novel High-Speed and Energy E_cient 10-Transistor Full Adder Design”,
IEEE Transactions on Circuits and Systems, Vol. 54, No. 5, May 2007.
[5] Y. Jiang, A. Al-Sheraidah, Y. Wang,E. Sha, J. Chung, “A novel multiplexer-based low-power full-
Adder”. IEEE Transactions on Circuits and Systems-II: Express Briefs. v51 i7.
[6] A. Raychowdhury,K. Roy,(2007) “Carbon Nanotube Electronics: Design of High-Performance and
Low-Power Digital Circuits”, IEEE Trans. Circuits Syst. I, Reg.Papers, vol.54, no.11, pp.2391-2401,
Nov.
[7] A. Raychowdhury, K. Roy, (2005), “Carbon-Nanotube-Based Voltage-Mode Multiple-Valued Logic
Design” IEEE Trans. Nanotechol., vol 4, no.2, pp. 168-179.
[8] J. Deng, H.-S. Philip Wong, (2007),IEEE Trans. Electron Devices 54(12), 3184–3194 .
[9] J. Deng, H.-S. Philip Wong, (2007),IEEE Trans. Electron Devices 54(12), 3195–3205.
[10] Y. Bok Kim, Y. B. Kim and F. Lombardi, In Proc. (2009) IEEE International Midwest Symposium
on Circuits and Systems 1130.
[11] J. Guo, S. Datta, and M. Lundstrom, (2003)“Anumerical study of scaling issues for Schottky barrier
carbon nanotube transistors,” Phys. Rev. B, Condens. Matter, cond-mat/0 306 199.
[12] I. O’Connor, J. Liu, F. Gaffiot, F. Pregaldiny, C. Lallement, C. Maneux, J. Goguet, S. Fregonese, T.
Zimmer, L. Anghel, (2007) IEEE Trans. Circuits Syst I Regul. Pap. 54(11), 2365–2379 .
[13] J. Guo, A. Javey, H. Dai, S. Datta, M. Lundstrom, (2003) “Predicted Performance advantages of
carbon nanotube transistors with doped nanotubes source/drain,” Phys. Rev. B, Condens. Matter,
cond-mat/0 309 039.
[14] P. Keshavarzian, K. Navi, M.K Rafsanjani,( 2008) “Efficient Ternary Galois Field Circuit Design
Through Carbon Nanotube Technology”. ICTTA 2008. pp.1.
[15] K. Navi, et al.: ”A novel low-power full-adder cell with new technique in designing logical gates
based on static CMOS inverter,” Microelectronics Journal, Vol. 40, pp. 1441-1448, 2009.
[16] K. Navi, M. Maeen, V. Froutan, S. Timarchi, and O. Kavehei: ”A novel low-power full-adder cell
for low voltage”, Integration, the VLSI Journal (2009, In press), Elsevier.
[17] A.M. Shams, T. K. Darwish, M. A. Bayoumi,(2002) “Performance analysis of low-power 1-bit
CMOS Full Adder cells,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol.
10, Issue: 1, pp. 20 – 29.
[18] R. Shalem, E. John, and L. K. John, (1999) “A novel low-power energy recovery Full Adder cell,” in
Proc. Great Lakes Symp. VLSI , pp. 380–383.
[19] U. Ko, P.T. Balsara, W. Lee, (1995) IEEE Trans. Very Large Scale Integr. (VLSI) syst. 3(2), 327–
333
[20] R. Zimmermann, W. Fichtner, (1997) IEEE J. Solid-State Circuits 32, 1079–1090.
[21] C.H. Chang, J. Gu and M. Zhang: ”A Review of 0.18-?m Full Adder Performances for tree
Structured Arithmetic Circuits”, IEEE Transactions on very large scale integration (VLSI) systems,
Vol. 13, NO. 6, 2005.
[22] M. Alioto, G. Palumbo,(2002) IEEE Trans. Very Large Scale Integr. (VLSI) syst. 10(6), 806–823
[23] D. Radhakrishnan, (2001) “Low-voltage Low-power CMOS Full Adder,” IEE Procd. of Circ. Dev.
Sys.,vol. 148,no.1.
[24] M. Zhang, J. Gu, and C. H. Chang, (2003) “A novel hybrid pass logic with static CMOS output drive
full-Adder cell,” in Proc. IEEE Int. Symp. Circuits Syst, pp. 317–320.
[25] K.Navi, A. Momeni, F. Sharifi, P. Keshavarzian,(2009)"Two novel ultra high speed carbon nanotube
Full-Adder cells ", IEICE Electronics Express, Vol. 6, No. 19 , pp.1395-1401.
[26] K. Navi, R. Sharifi Rad, M.H .Moaiyeri, A.Momeni,(2010) “A Low-Voltage and Energy-Efficient
Full Adder Cell Based on Carbon Nanotube Technology” , Nano Micro Letters, Vol 2, No 2. pp. 114-
120.
[27] K.Navi, M.Rashtian, A.khatir, P.Keshavarzian, O.Hashemipour,(2010) “ High Speed Capacitor-
Inverter Based Carbon Nanotube Full Adder” . Nanoscale Ress Lett, Vol 5, pp.859-862.

Contenu connexe

Tendances

PERFORMANCE OF DIFFERENT CMOS LOGIC STYLES FOR LOW POWER AND HIGH SPEED
PERFORMANCE OF DIFFERENT CMOS LOGIC STYLES FOR LOW POWER AND HIGH SPEED PERFORMANCE OF DIFFERENT CMOS LOGIC STYLES FOR LOW POWER AND HIGH SPEED
PERFORMANCE OF DIFFERENT CMOS LOGIC STYLES FOR LOW POWER AND HIGH SPEED VLSICS Design
 
age acknowledging reliable multiplier
age acknowledging reliable multiplierage acknowledging reliable multiplier
age acknowledging reliable multiplierIJAEMSJORNAL
 
LOW POWER-AREA DESIGNS OF 1BIT FULL ADDER IN CADENCE VIRTUOSO PLATFORM
LOW POWER-AREA DESIGNS OF 1BIT FULL ADDER IN CADENCE VIRTUOSO PLATFORMLOW POWER-AREA DESIGNS OF 1BIT FULL ADDER IN CADENCE VIRTUOSO PLATFORM
LOW POWER-AREA DESIGNS OF 1BIT FULL ADDER IN CADENCE VIRTUOSO PLATFORMVLSICS Design
 
A SEMI BLIND CHANNEL ESTIMATION METHOD BASED ON HYBRID NEURAL NETWORKS FOR UP...
A SEMI BLIND CHANNEL ESTIMATION METHOD BASED ON HYBRID NEURAL NETWORKS FOR UP...A SEMI BLIND CHANNEL ESTIMATION METHOD BASED ON HYBRID NEURAL NETWORKS FOR UP...
A SEMI BLIND CHANNEL ESTIMATION METHOD BASED ON HYBRID NEURAL NETWORKS FOR UP...ijwmn
 
logical effort based dual mode logic gates by mallika
logical effort based dual mode logic gates by mallikalogical effort based dual mode logic gates by mallika
logical effort based dual mode logic gates by mallikaMallika Naidu
 
IRJET- Re-Configuration Topology for On-Chip Networks by Back-Tracking
IRJET- Re-Configuration Topology for On-Chip Networks by Back-TrackingIRJET- Re-Configuration Topology for On-Chip Networks by Back-Tracking
IRJET- Re-Configuration Topology for On-Chip Networks by Back-TrackingIRJET Journal
 
HIGH SPEED REVERSE CONVERTER FOR HIGH DYNAMIC RANGE MODULI SET
HIGH SPEED REVERSE CONVERTER FOR HIGH DYNAMIC RANGE MODULI SETHIGH SPEED REVERSE CONVERTER FOR HIGH DYNAMIC RANGE MODULI SET
HIGH SPEED REVERSE CONVERTER FOR HIGH DYNAMIC RANGE MODULI SETP singh
 
A High Speed Pipelined Dynamic Circuit Implementation Using Modified TSPC Log...
A High Speed Pipelined Dynamic Circuit Implementation Using Modified TSPC Log...A High Speed Pipelined Dynamic Circuit Implementation Using Modified TSPC Log...
A High Speed Pipelined Dynamic Circuit Implementation Using Modified TSPC Log...IDES Editor
 
Flexible dsp accelerator architecture exploiting carry save arithmetic
Flexible dsp accelerator architecture exploiting carry save arithmeticFlexible dsp accelerator architecture exploiting carry save arithmetic
Flexible dsp accelerator architecture exploiting carry save arithmeticNexgen Technology
 
Iaetsd stbc-ofdm downlink baseband receiver for mobile wman
Iaetsd stbc-ofdm downlink baseband receiver for mobile wmanIaetsd stbc-ofdm downlink baseband receiver for mobile wman
Iaetsd stbc-ofdm downlink baseband receiver for mobile wmanIaetsd Iaetsd
 
16nm bulk cmos docccii based configurable analog
16nm bulk cmos docccii based configurable analog16nm bulk cmos docccii based configurable analog
16nm bulk cmos docccii based configurable analogeSAT Publishing House
 
Design of Quaternary Logical Circuit Using Voltage and Current Mode Logic
Design of Quaternary Logical Circuit Using Voltage and Current Mode LogicDesign of Quaternary Logical Circuit Using Voltage and Current Mode Logic
Design of Quaternary Logical Circuit Using Voltage and Current Mode LogicVLSICS Design
 

Tendances (18)

PERFORMANCE OF DIFFERENT CMOS LOGIC STYLES FOR LOW POWER AND HIGH SPEED
PERFORMANCE OF DIFFERENT CMOS LOGIC STYLES FOR LOW POWER AND HIGH SPEED PERFORMANCE OF DIFFERENT CMOS LOGIC STYLES FOR LOW POWER AND HIGH SPEED
PERFORMANCE OF DIFFERENT CMOS LOGIC STYLES FOR LOW POWER AND HIGH SPEED
 
age acknowledging reliable multiplier
age acknowledging reliable multiplierage acknowledging reliable multiplier
age acknowledging reliable multiplier
 
LOW POWER-AREA DESIGNS OF 1BIT FULL ADDER IN CADENCE VIRTUOSO PLATFORM
LOW POWER-AREA DESIGNS OF 1BIT FULL ADDER IN CADENCE VIRTUOSO PLATFORMLOW POWER-AREA DESIGNS OF 1BIT FULL ADDER IN CADENCE VIRTUOSO PLATFORM
LOW POWER-AREA DESIGNS OF 1BIT FULL ADDER IN CADENCE VIRTUOSO PLATFORM
 
Ijetcas14 400
Ijetcas14 400Ijetcas14 400
Ijetcas14 400
 
A SEMI BLIND CHANNEL ESTIMATION METHOD BASED ON HYBRID NEURAL NETWORKS FOR UP...
A SEMI BLIND CHANNEL ESTIMATION METHOD BASED ON HYBRID NEURAL NETWORKS FOR UP...A SEMI BLIND CHANNEL ESTIMATION METHOD BASED ON HYBRID NEURAL NETWORKS FOR UP...
A SEMI BLIND CHANNEL ESTIMATION METHOD BASED ON HYBRID NEURAL NETWORKS FOR UP...
 
logical effort based dual mode logic gates by mallika
logical effort based dual mode logic gates by mallikalogical effort based dual mode logic gates by mallika
logical effort based dual mode logic gates by mallika
 
IRJET- Re-Configuration Topology for On-Chip Networks by Back-Tracking
IRJET- Re-Configuration Topology for On-Chip Networks by Back-TrackingIRJET- Re-Configuration Topology for On-Chip Networks by Back-Tracking
IRJET- Re-Configuration Topology for On-Chip Networks by Back-Tracking
 
R,aouami wccs
R,aouami wccsR,aouami wccs
R,aouami wccs
 
HIGH SPEED REVERSE CONVERTER FOR HIGH DYNAMIC RANGE MODULI SET
HIGH SPEED REVERSE CONVERTER FOR HIGH DYNAMIC RANGE MODULI SETHIGH SPEED REVERSE CONVERTER FOR HIGH DYNAMIC RANGE MODULI SET
HIGH SPEED REVERSE CONVERTER FOR HIGH DYNAMIC RANGE MODULI SET
 
Is3515091514
Is3515091514Is3515091514
Is3515091514
 
Jc2415921599
Jc2415921599Jc2415921599
Jc2415921599
 
A High Speed Pipelined Dynamic Circuit Implementation Using Modified TSPC Log...
A High Speed Pipelined Dynamic Circuit Implementation Using Modified TSPC Log...A High Speed Pipelined Dynamic Circuit Implementation Using Modified TSPC Log...
A High Speed Pipelined Dynamic Circuit Implementation Using Modified TSPC Log...
 
Flexible dsp accelerator architecture exploiting carry save arithmetic
Flexible dsp accelerator architecture exploiting carry save arithmeticFlexible dsp accelerator architecture exploiting carry save arithmetic
Flexible dsp accelerator architecture exploiting carry save arithmetic
 
Iaetsd stbc-ofdm downlink baseband receiver for mobile wman
Iaetsd stbc-ofdm downlink baseband receiver for mobile wmanIaetsd stbc-ofdm downlink baseband receiver for mobile wman
Iaetsd stbc-ofdm downlink baseband receiver for mobile wman
 
16nm bulk cmos docccii based configurable analog
16nm bulk cmos docccii based configurable analog16nm bulk cmos docccii based configurable analog
16nm bulk cmos docccii based configurable analog
 
Design of Quaternary Logical Circuit Using Voltage and Current Mode Logic
Design of Quaternary Logical Circuit Using Voltage and Current Mode LogicDesign of Quaternary Logical Circuit Using Voltage and Current Mode Logic
Design of Quaternary Logical Circuit Using Voltage and Current Mode Logic
 
K010346973
K010346973K010346973
K010346973
 
Computer networks ct2
Computer networks ct2Computer networks ct2
Computer networks ct2
 

Similaire à HIGH SPEED MULTIPLE VALUED LOGIC FULL ADDER USING CARBON NANO TUBE FIELD EFFECT TRANSISTOR

Designing High-Speed, Low-Power Full Adder Cells Based on Carbon Nanotube Tec...
Designing High-Speed, Low-Power Full Adder Cells Based on Carbon Nanotube Tec...Designing High-Speed, Low-Power Full Adder Cells Based on Carbon Nanotube Tec...
Designing High-Speed, Low-Power Full Adder Cells Based on Carbon Nanotube Tec...VLSICS Design
 
DESIGNING HIGH-SPEED, LOW-POWER FULL ADDER CELLS BASED ON CARBON NANOTUBE TEC...
DESIGNING HIGH-SPEED, LOW-POWER FULL ADDER CELLS BASED ON CARBON NANOTUBE TEC...DESIGNING HIGH-SPEED, LOW-POWER FULL ADDER CELLS BASED ON CARBON NANOTUBE TEC...
DESIGNING HIGH-SPEED, LOW-POWER FULL ADDER CELLS BASED ON CARBON NANOTUBE TEC...VLSICS Design
 
CNFET BASED BASIC GATES AND A NOVEL FULLADDER CELL
CNFET BASED BASIC GATES AND A NOVEL FULLADDER CELLCNFET BASED BASIC GATES AND A NOVEL FULLADDER CELL
CNFET BASED BASIC GATES AND A NOVEL FULLADDER CELLVLSICS Design
 
Design and analysis of cntfet based d flip flop
Design and analysis of cntfet based d flip flopDesign and analysis of cntfet based d flip flop
Design and analysis of cntfet based d flip flopIAEME Publication
 
Design and analysis of cntfet based d flip flop
Design and analysis of cntfet based d flip flopDesign and analysis of cntfet based d flip flop
Design and analysis of cntfet based d flip flopIAEME Publication
 
Delay Optimized Full Adder Design for High Speed VLSI Applications
Delay Optimized Full Adder Design for High Speed VLSI ApplicationsDelay Optimized Full Adder Design for High Speed VLSI Applications
Delay Optimized Full Adder Design for High Speed VLSI ApplicationsIRJET Journal
 
Iaetsd design of a low power multiband clock distribution circuit
Iaetsd design of a low power multiband clock distribution circuitIaetsd design of a low power multiband clock distribution circuit
Iaetsd design of a low power multiband clock distribution circuitIaetsd Iaetsd
 
NEW DESIGN METHODOLOGIES FOR HIGH-SPEED MIXED-MODE CMOS FULL ADDER CIRCUITS
NEW DESIGN METHODOLOGIES FOR HIGH-SPEED MIXED-MODE CMOS FULL ADDER CIRCUITSNEW DESIGN METHODOLOGIES FOR HIGH-SPEED MIXED-MODE CMOS FULL ADDER CIRCUITS
NEW DESIGN METHODOLOGIES FOR HIGH-SPEED MIXED-MODE CMOS FULL ADDER CIRCUITSVLSICS Design
 
Design of Three-Input XOR/XNOR using Systematic Cell Design Methodology
Design of Three-Input XOR/XNOR using Systematic Cell Design MethodologyDesign of Three-Input XOR/XNOR using Systematic Cell Design Methodology
Design of Three-Input XOR/XNOR using Systematic Cell Design MethodologyAssociate Professor in VSB Coimbatore
 
THE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERS
THE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERSTHE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERS
THE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERSIJCSEA Journal
 
THE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERS
THE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERSTHE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERS
THE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERSIJCSEA Journal
 
THE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERS
THE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERSTHE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERS
THE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERSIJCSEA Journal
 
Design and Analysis of Low Power High Speed Hybrid logic 8-T Full Adder Circuit
Design and Analysis of Low Power High Speed Hybrid logic 8-T Full Adder CircuitDesign and Analysis of Low Power High Speed Hybrid logic 8-T Full Adder Circuit
Design and Analysis of Low Power High Speed Hybrid logic 8-T Full Adder CircuitAssociate Professor in VSB Coimbatore
 
Iaetsd design and simulation of high speed cmos full adder (2)
Iaetsd design and simulation of high speed cmos full adder (2)Iaetsd design and simulation of high speed cmos full adder (2)
Iaetsd design and simulation of high speed cmos full adder (2)Iaetsd Iaetsd
 
Design and Analysis of Power and Variability Aware Digital Summing Circuit
Design and Analysis of Power and Variability Aware Digital Summing CircuitDesign and Analysis of Power and Variability Aware Digital Summing Circuit
Design and Analysis of Power and Variability Aware Digital Summing CircuitIDES Editor
 
ENERGY EFFICIENT FULL ADDER CELL DESIGN WITH USING CARBON NANOTUBE FIELD EFFE...
ENERGY EFFICIENT FULL ADDER CELL DESIGN WITH USING CARBON NANOTUBE FIELD EFFE...ENERGY EFFICIENT FULL ADDER CELL DESIGN WITH USING CARBON NANOTUBE FIELD EFFE...
ENERGY EFFICIENT FULL ADDER CELL DESIGN WITH USING CARBON NANOTUBE FIELD EFFE...VLSICS Design
 
DESIGN OF A LOW POWER MULTIBAND CLOCK DISTRIBUTION CIRCUIT USING SINGLE PHASE...
DESIGN OF A LOW POWER MULTIBAND CLOCK DISTRIBUTION CIRCUIT USING SINGLE PHASE...DESIGN OF A LOW POWER MULTIBAND CLOCK DISTRIBUTION CIRCUIT USING SINGLE PHASE...
DESIGN OF A LOW POWER MULTIBAND CLOCK DISTRIBUTION CIRCUIT USING SINGLE PHASE...IJERA Editor
 
PARALLEL BIJECTIVE PROCESSING OF REGULAR NANO SYSTOLIC GRIDS VIA CARBON FIELD...
PARALLEL BIJECTIVE PROCESSING OF REGULAR NANO SYSTOLIC GRIDS VIA CARBON FIELD...PARALLEL BIJECTIVE PROCESSING OF REGULAR NANO SYSTOLIC GRIDS VIA CARBON FIELD...
PARALLEL BIJECTIVE PROCESSING OF REGULAR NANO SYSTOLIC GRIDS VIA CARBON FIELD...ijcsit
 

Similaire à HIGH SPEED MULTIPLE VALUED LOGIC FULL ADDER USING CARBON NANO TUBE FIELD EFFECT TRANSISTOR (20)

Designing High-Speed, Low-Power Full Adder Cells Based on Carbon Nanotube Tec...
Designing High-Speed, Low-Power Full Adder Cells Based on Carbon Nanotube Tec...Designing High-Speed, Low-Power Full Adder Cells Based on Carbon Nanotube Tec...
Designing High-Speed, Low-Power Full Adder Cells Based on Carbon Nanotube Tec...
 
DESIGNING HIGH-SPEED, LOW-POWER FULL ADDER CELLS BASED ON CARBON NANOTUBE TEC...
DESIGNING HIGH-SPEED, LOW-POWER FULL ADDER CELLS BASED ON CARBON NANOTUBE TEC...DESIGNING HIGH-SPEED, LOW-POWER FULL ADDER CELLS BASED ON CARBON NANOTUBE TEC...
DESIGNING HIGH-SPEED, LOW-POWER FULL ADDER CELLS BASED ON CARBON NANOTUBE TEC...
 
CNFET BASED BASIC GATES AND A NOVEL FULLADDER CELL
CNFET BASED BASIC GATES AND A NOVEL FULLADDER CELLCNFET BASED BASIC GATES AND A NOVEL FULLADDER CELL
CNFET BASED BASIC GATES AND A NOVEL FULLADDER CELL
 
Design and analysis of cntfet based d flip flop
Design and analysis of cntfet based d flip flopDesign and analysis of cntfet based d flip flop
Design and analysis of cntfet based d flip flop
 
Design and analysis of cntfet based d flip flop
Design and analysis of cntfet based d flip flopDesign and analysis of cntfet based d flip flop
Design and analysis of cntfet based d flip flop
 
Ch33509513
Ch33509513Ch33509513
Ch33509513
 
Delay Optimized Full Adder Design for High Speed VLSI Applications
Delay Optimized Full Adder Design for High Speed VLSI ApplicationsDelay Optimized Full Adder Design for High Speed VLSI Applications
Delay Optimized Full Adder Design for High Speed VLSI Applications
 
ha_report modified
ha_report  modifiedha_report  modified
ha_report modified
 
Iaetsd design of a low power multiband clock distribution circuit
Iaetsd design of a low power multiband clock distribution circuitIaetsd design of a low power multiband clock distribution circuit
Iaetsd design of a low power multiband clock distribution circuit
 
NEW DESIGN METHODOLOGIES FOR HIGH-SPEED MIXED-MODE CMOS FULL ADDER CIRCUITS
NEW DESIGN METHODOLOGIES FOR HIGH-SPEED MIXED-MODE CMOS FULL ADDER CIRCUITSNEW DESIGN METHODOLOGIES FOR HIGH-SPEED MIXED-MODE CMOS FULL ADDER CIRCUITS
NEW DESIGN METHODOLOGIES FOR HIGH-SPEED MIXED-MODE CMOS FULL ADDER CIRCUITS
 
Design of Three-Input XOR/XNOR using Systematic Cell Design Methodology
Design of Three-Input XOR/XNOR using Systematic Cell Design MethodologyDesign of Three-Input XOR/XNOR using Systematic Cell Design Methodology
Design of Three-Input XOR/XNOR using Systematic Cell Design Methodology
 
THE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERS
THE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERSTHE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERS
THE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERS
 
THE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERS
THE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERSTHE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERS
THE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERS
 
THE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERS
THE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERSTHE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERS
THE INFLUENCE OF SILICON AREA ON THE PERFORMANCE OF THE FULL ADDERS
 
Design and Analysis of Low Power High Speed Hybrid logic 8-T Full Adder Circuit
Design and Analysis of Low Power High Speed Hybrid logic 8-T Full Adder CircuitDesign and Analysis of Low Power High Speed Hybrid logic 8-T Full Adder Circuit
Design and Analysis of Low Power High Speed Hybrid logic 8-T Full Adder Circuit
 
Iaetsd design and simulation of high speed cmos full adder (2)
Iaetsd design and simulation of high speed cmos full adder (2)Iaetsd design and simulation of high speed cmos full adder (2)
Iaetsd design and simulation of high speed cmos full adder (2)
 
Design and Analysis of Power and Variability Aware Digital Summing Circuit
Design and Analysis of Power and Variability Aware Digital Summing CircuitDesign and Analysis of Power and Variability Aware Digital Summing Circuit
Design and Analysis of Power and Variability Aware Digital Summing Circuit
 
ENERGY EFFICIENT FULL ADDER CELL DESIGN WITH USING CARBON NANOTUBE FIELD EFFE...
ENERGY EFFICIENT FULL ADDER CELL DESIGN WITH USING CARBON NANOTUBE FIELD EFFE...ENERGY EFFICIENT FULL ADDER CELL DESIGN WITH USING CARBON NANOTUBE FIELD EFFE...
ENERGY EFFICIENT FULL ADDER CELL DESIGN WITH USING CARBON NANOTUBE FIELD EFFE...
 
DESIGN OF A LOW POWER MULTIBAND CLOCK DISTRIBUTION CIRCUIT USING SINGLE PHASE...
DESIGN OF A LOW POWER MULTIBAND CLOCK DISTRIBUTION CIRCUIT USING SINGLE PHASE...DESIGN OF A LOW POWER MULTIBAND CLOCK DISTRIBUTION CIRCUIT USING SINGLE PHASE...
DESIGN OF A LOW POWER MULTIBAND CLOCK DISTRIBUTION CIRCUIT USING SINGLE PHASE...
 
PARALLEL BIJECTIVE PROCESSING OF REGULAR NANO SYSTOLIC GRIDS VIA CARBON FIELD...
PARALLEL BIJECTIVE PROCESSING OF REGULAR NANO SYSTOLIC GRIDS VIA CARBON FIELD...PARALLEL BIJECTIVE PROCESSING OF REGULAR NANO SYSTOLIC GRIDS VIA CARBON FIELD...
PARALLEL BIJECTIVE PROCESSING OF REGULAR NANO SYSTOLIC GRIDS VIA CARBON FIELD...
 

Dernier

Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Christo Ananth
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdfSuman Jyoti
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01KreezheaRecto
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringmulugeta48
 
Vivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design SpainVivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design Spaintimesproduction05
 
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICSUNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICSrknatarajan
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...SUHANI PANDEY
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfRagavanV2
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLManishPatel169454
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 

Dernier (20)

(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
Vivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design SpainVivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design Spain
 
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICSUNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 

HIGH SPEED MULTIPLE VALUED LOGIC FULL ADDER USING CARBON NANO TUBE FIELD EFFECT TRANSISTOR

  • 1. International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.1, March 2011 DOI : 10.5121/vlsic.2011.2101 1 HIGH SPEED MULTIPLE VALUED LOGIC FULL ADDER USING CARBON NANO TUBE FIELD EFFECT TRANSISTOR Ashkan Khatir1 , Shaghayegh Abdolahzadegan2 ,Iman Mahmoudi Islamic Azad University,Science and Research Branch, Tehran, Iran 1 a.khatir@srbiau.ac.ir 2 s.abdolahzadegan@srbiau.ac.ir Abstract High speed Full-Adder (FA) module is a critical element in designing high performance arithmetic circuits. In this paper, we propose a new high speed multiple-valued logic FA module. The proposed FA is constructed by 14 transistors and 3 capacitors, using carbon nano-tube field effect transistor (CNFET) technology. Furthermore, our proposed technique has been examined in different voltages (i.e., 0.65v and 0.9v). The observed results reveal power consumption and power delay product (PDP) improvements compared to existing FA counterparts. KEYWORDS Mulitple Valued Logic; Carbon NanoTube; Carbon Nanotube Field Effect Transistor; Full Adder; High Speed 1. INTRODUCTION Over the past years, silicon-based electronic technology has been improved through downscaling MOSFETs, resulting in higher device performance and density. However, there are still some obstacles to scaling, such as diffusion areas will no longer be separated by a low doped channel region and equivalent gate oxide thickness will fall below the tunnelling limit. Hence, it is important to extend or complement traditional silicon technology. As one of the promising technologies, nanotechnology avoids most of the fundamental limitations for conventional silicon devices. Nanoelectronic is an applicable field of nanotechnology that is producing nanoscale machines and systems efficiently, such as nanowires, nanoparticles and Carbon Nano Tubes (CNT). CNTs have special electronic, thermal and mechanical properties that make them attractive for the future integrated circuit applications. Transistors with carbon nanotubes as their channel are called Carbon Nanotube Field Effect Transistor (CNFET). Recently, some circuit applications are presented based on CNFETs, such as ring oscillators, invertors, and logic gates [1]. Arithmetic operations are extensively used in many VLSI applications such as signal processing, and digital communications [2], [3]. Adders are major part of computational circuits that are used for implementing any other arithmetic operation such as subtraction, multiplication or even logarithmic functions [4],[5]. Hence, efficiency of Adders affects performance of whole system therefore designers attempt to produce more efficient Adders. Many logic styles have been designed since now to produce efficient Full Adder cells. The complementary CMOS and CPL designs are two conventional Adders based on CMOS structure. Based on transmission function and transmission gate, TFA and TGA designs were implemented. The other designs are classified as Hybrid designs. Applying
  • 2. International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.1, March 2011 2 CNFETs in Full Adder cells will improve delay and power consumption of circuit. In this paper a novel CNFET high speed Full Adder cell is proposed. 2. CARBON NANOTUBE FIELD EFFECT TRANSISTORS (CNFETS) Carbon Nano Tubes (CNTs) are sheets of graphene rolled into tube [4]. Depending on their chirality (i.e., the direction in which the graphite sheet is rolled), the single-walled carbon nanotubes can either be metallic or semiconducting [5], [6]. CNFETs are one of the molecular devices that avoid most fundamental silicon transistor restriction and have ballistic or near ballistic transport in their channel [7], [8]. Therefore a semiconductor carbon nanotube is appropriate for using as channel of field effect transistors [6]. Applied voltage to the gate can control the electrical conductance of the CNT by changing electron density in the channel. By using appropriate diameter suitable threshold voltage for CNFET can be achieved. The threshold voltage of the CNFET is proportional to the inverse of the diameter of CNT and can be expressed as: ்ܸு ൌ ଴.ସଶ ௗሺ௡௠ሻ For a CNT with (n, m) as chirality and a as lattice (that is carbon to carbon atom distance) the diameter is [10]: D CNT = π 22 mnmna ++ As mentioned above, CNTs are used in CNFETs as channel and depending on the connections between source and drain with channel (CNTs) there are two main CNFETs. It works on the principle of direct tunnelling through a Schottky barrier at the source–channel junction [11]; therefore, these transistors are called Schottky Barrier CNFET (SB-CNFET). SB-CNFET shows ambipolar behavior and Constrain usage of these transistors in conventional CMOS-like logic families. Schottky barrier restricts the transconductance in the ON state, and thus Ion/Ioff ratio becomes rather low [12]. Second device is MOSFET-like CNFET which is doped in un-gated portions and has similar behaviour to CMOS transistors and it presents unipolar behaviour [13]. The semiconductor-semiconductor junction will eliminate schottky barrier and therefore there is higher ON current unlike SB-CNFETs. Other advantages of MOSFET-like CNFETs are high on-off ratio and their scalability compared to their schottky barrier counterparts [8]. In this paper we utilized MOSFET-like CNFETs for proposed design. 3. MULTIPLE VALUED LOGIC Multiple valued logic is an extension to classical two-valued logic as n-valued logic for n>2. MVL circuits can reduce the number of operations necessary to implement a particular mathematical function in addition to have an advantage in terms of reduced area [14]. These reductions can improve total circuit performance. 4. PREVIOUS WORKS Rapid improvements of technology drive designers to compete for lower power consumption, smaller silicon area, higher speed and higher throughput. One of the major parts of every processor, which participate in arithmetic logic unit floating point unit and address generation, (1) (2)
  • 3. International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.1, March 2011 3 is Full Adder [14-16]. Since, the central part of digital computing lies in FA cell, increasing the performance of this part can improve total performance dramatically. There are two design styles for Full Adder cells. In classical Full Adder designs only one logic style is used for the whole Full Adder cell, whereas hybrid Full Adders use more than one logic style in a cell [17]. The static complementary CMOS Full-Adder is a 28 transistor Full Adder Logic style, which composed of pull-up PMOS and pull-down NMOS networks. C-CMOS provides full swing output and good driving capabilities. The main drawback of C-CMOS is transistor count that causes large chip area and large input capacitance [18]. Another conventional logic is complementary pass transistor logic (CPL). In CPL two different parts are used for implementing SUM and Carry outputs. The logic style is a high speed and full swing design, but due to the presence of a lot of internal nodes and static inverters, there is large power dissipation [19]. Number of used transistors in this logic is 32 that results in complication in the layout. Transmission gate Full Adder (TGA) is introduced for its low power dissipation but it lacks driving capability. All of the above mentioned Full Adders are using single logic style. Hybrid CMOS Full Adder is composed of three modules First module produces intermediate signals that pass to second and third modules and it can be XOR-XOR, XOR-XNOR, XNOR- XNOR [17],[20],[21] or even majority-not function. Second module produces a SUM and third one Produces Carry. One example of this logic style Adder is Static Energy Recovery Full Adder (SERF) that uses 10 transistors but its output is not full swing and has not a good driving capability for next modules in cascading modes. NEW14T Adder [22], DB cell [17], SERF Adder [20] and HPSC [24] are examples of hybrid Full Adders. Some circuits are designed by majority function. Majority function is a logic circuit that performs as a majority vote to determine the output of the circuit. This function has odd number of inputs and thus it operates as Carry-out in Full Adder. The majority function is represented as (3): MajorityሺA, B, Cሻ ൌ AB ൅ AC ൅ BC ൌ C୭୳୲ In this structure majority-not gate is created with input capacitors and a static CMOS inverter at follow. In CMOS Technology NAND, NOR and majority-not gates can be implemented by scaled Inverters [25]. In order to implement them by CNT transistors the diameter of CNFETs must be adjusted. Different design of majority-not based Full Adders reported in [25-28]. These circuits are implemented in two stages as shown in Fig 1. Although for producing carry out they all have similar function, but in SUM output they differ in circuit structure and the transistor count. The first stage is producing C୭୳୲ തതതതതത by means of majority-not function and in the second stage SUM is generated by means of functions F that implemented in different styles. These Full Adders have a simple structure but it operates very well and results in remarkable advances in reducing power in comparison to other well-known designs. This reduction is due to simple structure, reduced number of transistors and the lowering in switching activities. [25] First majority-not based Full Adders is implemented by function of SUM ൌ MajሺA, B, C୭୳୲ തതതതതത, C୭୳୲ തതതതതതሻ[25] (3) (4)
  • 4. International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.1, March 2011 4 In this design two stages majority-not function is used first one for C୭୳୲ തതതതതത and next stage as five input majority-not function for creating Sum. The logic of [25] is composed of two parallel connected NMOS and PMOS transistors that provide a path to the input. Transistor count is 8 and capacitor count is 7. Figure 1. Full Adder Design CNT-FA1 [25] The another design low-voltage CNFET-based Full Adder circuit based on Minority Function presented in [26] uses only 8 transistors and reduces the number of capacitors to 5 as shown in fig 2, but uses capacitors in the middle of design which result in reduction in speed. The C୭୳୲ തതതതതത implemented by majority-not function too. In next design [27], NAND and NOR gates are used for implementing Sum as equation of SUM ൌ MajሺA, B, 2 ‫כ‬ NandሺA, B, Cሻ, 2 ‫כ‬ NorሺA, B, Cሻሻ. By reducing the number of capacitors, overall performance of the circuit is improved. Figure 3 Figure2.Full Adder Design CNT-FA3 [26]
  • 5. International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.1, March 2011 5 Figure 3. Full Adder Design CNT-FA2 [27] 5. PROPOSED FULL ADDER One method to implement majority-not function is using a conventional inverter and three capacitors connected to the inputs of inverter as presented in Fig 4. In design of majority-not function, three capacitors are implementing Multiple-Valued logic by producing four logic levels. The levels are 0, ୚ీీ ଷ , ଶ୚ీీ ଷ and Vୈୈ. The inverter threshold voltage is regulated so that it will be OFF when most number of inputs are ‘1’. By changing threshold voltage of inverter transistors of Fig.4, the circuit can be used as Either NAND or NOR functions. Figure 4. Majority-not Function Circuit For NAND function, when three inputs (A, B, C) are all ‘1’, output should be ‘0’ otherwise output should be ‘1’. For NOR function if there is one input that is ‘1’, output should be ‘0’ otherwise output should be ‘1’. As in sum formula (4) output can implemented by NOR, NAND and majority-not functions and Fig. 5 and formula (5) will be attained.
  • 6. International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.1, March 2011 6 Figure 5. Proposed Full Adder design In proposed Adder we use less capacitors rather than contemporary CNFET Adders. The simulation results indicate that this reduction has caused our Full Adder cell to become much faster. This design presents a circuit which uses 14 transistors and 3 capacitors and also produces carry and outputs. Outputs of the circuit will be connected to power supply or ground and therewith, the circuit has good drive capability. In this design, “a” and” b” inverters implement NOR and NAND functions respectively. When at least one input is ‘1’, the transistor marked with ‘1’ will act as a majority function and becomes ON. The proposed design is full swing and in comparison to previous designs uses fewer capacitors. 6. SIMULATION RESULTS The Synopsys HSPICE circuit simulator has been used to simulate Full Adder circuits. The circuits of C-CMOS, CPL, TGA and Hybrid are simulated using 32nm MOSFET technology. For simulating CNFET-based circuits the proposed compact model in [8] is used. This standard model has been designed for unipolar, MOSFET-like CNFET devices, in which each transistor may have one or more CNTs. Circuits are compared by power consumption, propagation delay and power delay product (PDP). For being more realistic, buffers (two cascaded inverter) are placed at the outputs. The proposed design is compared with MOSFET designs and earlier CNFET Full Adder designs CNT-FA1 [25] CNT-FA2 [27] and CNT-FA3 [26]. Table 1 and 2 shows the value of power, delay and PDP for C-CMOS, CPL, TGA, Hybrid, CNT-FA1, CNT- FA2 and CNT-FA3. CNFETs are simulated in 0.9v and 0.65v. Delay is measured from middle of the input voltage swing to the middle of the output voltage swing. Simulation results in Table 1 and 2, indicate that the smallest delay belongs to the proposed Full Adder cell. PDP is calculated as a trade-off between power consumption and delay. It is a measure of total performance of a circuit. From Table 1 and 2, it can be seen that the proposed Full Adder has the best PDP. (5)
  • 7. International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.1, March 2011 7 TABLE 1. Simulation Results for 0.9v Design Performance Parameters Power Delay PDP C-CMOS 6.26E-07 5.27E-11 3.30E-17 CPL 4.87E-07 1.57E-10 7.63E-17 TFA 6.32E-07 2.89E-10 1.83E-16 TGA 6.68E-07 3.46E-10 2.31E-16 Hybrid 4.96E-07 2.93E-10 1.45E-16 CNT-FA1 1.05E-06 7.83E-11 8.20E-17 CNT-FA2 3.32E-07 1.14E-10 3.80E-17 CNT-FA3 7.83E-07 5.36E-11 4.20E-17 Proposed Adder 8.40E-07 1.25E-11 6.17E-18 TABLE 2. Simulation Results for 0.65v Design Performance Parameters Power Delay PDP C-CMOS 2.94E-07 1.46E-10 4.28E-17 CPL 2.08E-07 4.65E-10 9.67E-17 TFA 1.52E-07 8.45E-10 1.29E-16 TGA 1.21E-07 4.76E-10 5.77E-17 Hybrid 1.71E-07 1.10E-09 1.88E-16 CNT-FA1 5.23E-07 7.97E-11 4.17E-17 CNT-FA2 4.71E-07 8.82E-11 4.15E-17 CNT-FA3 7.12E-07 7.51E-11 5.35E-17 Proposed Adder 4.80E-07 1.29E-11 1.05E-17 Figure 6. Propagation Delay comparison chart for 0.9v and 0.65v
  • 8. International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.1, March 2011 8 Figure 7. Power consumption comparison chart for 0.9v and 0.65v Figure 8 PDP comparison chart for 0.9 and 0.65v 3. CONCLUSIONS In this paper a novel high speed majority based CNFET Full Adder has been proposed. Using CNFETs as a novel Full-Adder architecture improved the efficiency. The main concept of this design is implementing (5) using majority-not function and using majority-not circuit design as NOR and NAND functions by changing threshold voltage of CNFETs to produce intermediate signals. In order to evaluate the performance of the design, delay, power and power-delay- product (PDP) factors are compared with some of the state-of-the-art MOS and CNFET-based designs. Simulations have been performed on HSPICE by using CNFET technology in two practical voltages as 0.9v and 0.65v. To evaluate new design eight other designs, including CMOS, CPL, TFA, TGA, Hybrid and three previous majority not based Full Adder designs are applied. Simulation results illustrate improvements in terms of delay and PDP in comparison to previous MOSFET and CNFET designs. The improvement in terms of PDP obtained by the proposed Full-Adder cell as compared the best standard design amounts to 18% in 0.9v and 36% in 0.65v. ACKNOWLEDGEMENTS The authors would like to thank Dr. Belmond Yoberd for his literature contribution.
  • 9. International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.1, March 2011 9 REFERENCES [1] A. Javey and J. Kong, editors: ”Carbon Nanotube Electronics”, (New York: Springer, c2009), pp. 5- 260. [2] K. Navi, M.H Moaiyeri, R. F.Mirzaei, O. Hashemipour, B. M.Nezhad, Jan. (2009), "Two New Low- Power Full Adder Based on majority-not Gates" Microelectronics Journal, Elsevier, vol. 40, no. 1, pp. 126-130. [3] K. Navi, M. Maeen, O. Hashemipour, , (2009), “An Energy Efficient Full-Adder Cell for Low Voltages”, IEICE Electron. Express, vol. 6, no. 9, pp.553-559. [4] J. Lin and Y. Hwang: ”A Novel High-Speed and Energy E_cient 10-Transistor Full Adder Design”, IEEE Transactions on Circuits and Systems, Vol. 54, No. 5, May 2007. [5] Y. Jiang, A. Al-Sheraidah, Y. Wang,E. Sha, J. Chung, “A novel multiplexer-based low-power full- Adder”. IEEE Transactions on Circuits and Systems-II: Express Briefs. v51 i7. [6] A. Raychowdhury,K. Roy,(2007) “Carbon Nanotube Electronics: Design of High-Performance and Low-Power Digital Circuits”, IEEE Trans. Circuits Syst. I, Reg.Papers, vol.54, no.11, pp.2391-2401, Nov. [7] A. Raychowdhury, K. Roy, (2005), “Carbon-Nanotube-Based Voltage-Mode Multiple-Valued Logic Design” IEEE Trans. Nanotechol., vol 4, no.2, pp. 168-179. [8] J. Deng, H.-S. Philip Wong, (2007),IEEE Trans. Electron Devices 54(12), 3184–3194 . [9] J. Deng, H.-S. Philip Wong, (2007),IEEE Trans. Electron Devices 54(12), 3195–3205. [10] Y. Bok Kim, Y. B. Kim and F. Lombardi, In Proc. (2009) IEEE International Midwest Symposium on Circuits and Systems 1130. [11] J. Guo, S. Datta, and M. Lundstrom, (2003)“Anumerical study of scaling issues for Schottky barrier carbon nanotube transistors,” Phys. Rev. B, Condens. Matter, cond-mat/0 306 199. [12] I. O’Connor, J. Liu, F. Gaffiot, F. Pregaldiny, C. Lallement, C. Maneux, J. Goguet, S. Fregonese, T. Zimmer, L. Anghel, (2007) IEEE Trans. Circuits Syst I Regul. Pap. 54(11), 2365–2379 . [13] J. Guo, A. Javey, H. Dai, S. Datta, M. Lundstrom, (2003) “Predicted Performance advantages of carbon nanotube transistors with doped nanotubes source/drain,” Phys. Rev. B, Condens. Matter, cond-mat/0 309 039. [14] P. Keshavarzian, K. Navi, M.K Rafsanjani,( 2008) “Efficient Ternary Galois Field Circuit Design Through Carbon Nanotube Technology”. ICTTA 2008. pp.1. [15] K. Navi, et al.: ”A novel low-power full-adder cell with new technique in designing logical gates based on static CMOS inverter,” Microelectronics Journal, Vol. 40, pp. 1441-1448, 2009. [16] K. Navi, M. Maeen, V. Froutan, S. Timarchi, and O. Kavehei: ”A novel low-power full-adder cell for low voltage”, Integration, the VLSI Journal (2009, In press), Elsevier. [17] A.M. Shams, T. K. Darwish, M. A. Bayoumi,(2002) “Performance analysis of low-power 1-bit CMOS Full Adder cells,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 10, Issue: 1, pp. 20 – 29. [18] R. Shalem, E. John, and L. K. John, (1999) “A novel low-power energy recovery Full Adder cell,” in Proc. Great Lakes Symp. VLSI , pp. 380–383. [19] U. Ko, P.T. Balsara, W. Lee, (1995) IEEE Trans. Very Large Scale Integr. (VLSI) syst. 3(2), 327– 333 [20] R. Zimmermann, W. Fichtner, (1997) IEEE J. Solid-State Circuits 32, 1079–1090. [21] C.H. Chang, J. Gu and M. Zhang: ”A Review of 0.18-?m Full Adder Performances for tree Structured Arithmetic Circuits”, IEEE Transactions on very large scale integration (VLSI) systems, Vol. 13, NO. 6, 2005. [22] M. Alioto, G. Palumbo,(2002) IEEE Trans. Very Large Scale Integr. (VLSI) syst. 10(6), 806–823 [23] D. Radhakrishnan, (2001) “Low-voltage Low-power CMOS Full Adder,” IEE Procd. of Circ. Dev. Sys.,vol. 148,no.1. [24] M. Zhang, J. Gu, and C. H. Chang, (2003) “A novel hybrid pass logic with static CMOS output drive full-Adder cell,” in Proc. IEEE Int. Symp. Circuits Syst, pp. 317–320. [25] K.Navi, A. Momeni, F. Sharifi, P. Keshavarzian,(2009)"Two novel ultra high speed carbon nanotube Full-Adder cells ", IEICE Electronics Express, Vol. 6, No. 19 , pp.1395-1401. [26] K. Navi, R. Sharifi Rad, M.H .Moaiyeri, A.Momeni,(2010) “A Low-Voltage and Energy-Efficient Full Adder Cell Based on Carbon Nanotube Technology” , Nano Micro Letters, Vol 2, No 2. pp. 114- 120. [27] K.Navi, M.Rashtian, A.khatir, P.Keshavarzian, O.Hashemipour,(2010) “ High Speed Capacitor- Inverter Based Carbon Nanotube Full Adder” . Nanoscale Ress Lett, Vol 5, pp.859-862.