SlideShare une entreprise Scribd logo
1  sur  26
Air or Gas Compressors:  A steady-state, steady flow machine that is used to compressed air or gas to final pressure exceeding 241.25 Kpa gage. Types of Compressor: 1. Centrifugal Compressors:  For low pressure and high capacity   applications. 2. Rotary Compressors: For medium pressure and low capacity  application. 3. Reciprocating Compressors: For high pressure and low capacity application. Uses of compressed air: 1. Operation of small engines 2. Pneumatic tools 3. Air hoists 4. Industrial cleaning by air blast 5. Tire inflation  6. Paint Spraying
7. Air lifting of liquids 8. Manufacture of plastics and other industrial products 9. To supply air in mine tunnels 10. Other specialized industrial applications Analysis of Centrifugal and Rotary Type 1   Suction 2   Discharge W   (Work) Assumption  KE = 0    PE = 0   For a compressor, work is done on the system  W =   h - Q  ,[object Object],[object Object],[object Object],P V P 2 P 1 PV k  = C
Where: m – mass flow rate in kg/sec  C p  – constant pressure specific heat in KJ/kg-  C or KJ/kg-  K
2. Polytropic compression: PV n  = C  P V P 2 P 1 PV n  = C
3. Isothermal Compression: PV = C Analysis of Reciprocating Type Compressor (Piston-in-cylinder type): piston Valves cylinder Piston rod P V P 2 P 1 PV = C
Pressure-Volume Diagram (PV) HE – head end CE – Crank end L – length of stroke P 1  – suction pressure P 2  – discharge pressure V 1’  – volume flow rate at intake V D  – displacement volume CV D  – clearance volume CV D  = V 3 V D L HE CE P V 1 2 3 4 P 2 P 1 V 1’ V D CV D
1. Isentropic Compression: PV k  = C Where: V1’ – volume flow rate at intake, m 3 /sec m – mass flow rate corresponding V 1’ P 1  – suction pressure, Kpa P 2  – discharge pressure, Kpa T 1  – suction temperature,   K T 2  – discharge temperature,   K W – work, KW 2. Polytropic Compression: PV n  = C
3. Isothermal Compression: PV = C Percent Clearance : Ratio of the clearance volume to the displacement   volume. Note: For compressor design values of C ranges from 3 to 10 percent.
Pressure Ratio:  Ratio of the discharge pressure to suction pressure. Volumetric Efficiency:  Ratio of the volume flow rate at intake to the  displacement volume. 1. For Isentropic Compression and Expansion process: PV k  = C
2. For Polytropic Compression and Expansion process: PV n  = C 2. For Isothermal Compression and Expansion process: PV = C Actual Volumetric Efficiency : Ratio of the actual volume of air drawn in by the   compressor to the displacement volume.
For an air compressor handling ambient air where pressure drop and  heating of air occurs due to fluid friction and irreversibilities of fluid flow, less amount of air is being drawn by the cylinder. The actual  volumetric efficiency is: Where: P O  – ambient air pressure in Kpa T O  – ambient air temperature in   K Displacement Volume:  Volume of air occupying the highest stroke L of the piston within the cylinder. The length of stroke L is the dis- tance from the HE (head end) to the CE (crank end).
[object Object],[object Object],[object Object],[object Object],a. Without considering the volume of the piston rod. b. Considering the volume of the piston rod.
Where: D – diameter of piston in meters d – diameter of piston rod in meters N – no. of RPM n’ – no. of cylinders Piston Speed : It is the linear speed of the piston. Compressor Performance Factor: 1. Compression Efficiency:  Ratio of Ideal Work to Indicated Work.
2. Mechanical Efficiency:  Ratio of Indicated Work to Brake or Shaft Work. 3. Compressor Efficiency:  Ratio of Ideal Work to Brake or Shaft Work.
MULTISTAGE COMPRESSION: Multi staging is simply the compression of air or gas in two or more cylinders  in place of a single cylinder compressor. It is used in reciprocating compressors  when pressure of 300 KPa and above are desired, in order to: 1) Save power 2) Limit the gas discharge temperature 3) Limit the pressure differential per cylinder 4) Prevent vaporization of lubricating oil and to prevent its ignition if the tem- perature becomes too high. It is a common practice for multi-staging to cool the air or gas between stages  of compression in an intercooler, and it is this cooling that affects considerable  saving in   power.
For an ideal multistage compressor, with perfect inter-cooling and minimum work, the cylinder were properly designed  so that: a) the work at each stage are equal b) the air in the intercooler is cooled back to the initial temperature c) no pressure drop  occurs in the intercooler 2 Stage Compressor without pressure drop in the intercooler :  1 2 3 4 Suction Discharge Qx Intercooler 1 st  stage 2 nd  stage
Work of 1 st  stage cylinder ( W 1 ) :  Assuming Polytropic compression on  both stages. Work of 2 nd  stage cylinder ( W 2 ) :  Assuming Polytropic compression on  both stages.
For perfect inter-cooling and minimum work: W 1  = W 2 T 1  = T 3 W = W 1  + W 2 W = 2W 1 P 2  = P 3  = P x therefore P 1 V 1’  = P 3 V 3’ Where:  Px – optimum intercooler  pressure or interstage  pressure P V P 4 P 1 P x 1 4 3 2 5 6 7 8 PV n  = C W 1 W 2 S T 4 3 2 1 P 4 P x P 1 Q x
Then the work W for an ideal  2-stage compressor is: ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
With pressure drop in the intercooler: T 1     T 3  and P 2     P 3 W = W 1  + W 2 P 1 V 1’     P 3 V 3’ 2 Stage Compressor with pressure drop in the intercooler :  1 2 3 4 Suction Discharge Qx Intercooler 1 st  stage 2 nd  stage
P V P 4 P 1 P 3 1 4 3 2 5 6 7 8 PV n  = C W 1 W 2 S T 4 3 2 1 P 4 P 1 Q x P 2 P 2 P 3 3 Stage Compressor without pressure drop in the intercooler :  1 2 3 4 Suction Discharge Qx LP Intercooler 1 st  stage 2 nd  stage 3 rd  stage 5 6 Qy HP Intercooler
S T 4 3 2 1 P 6 P x P 1 Q x P y 5 6 Q y For perfect inter-cooling and minimum work: T 1  = T 3  = T 5 P x  = P 2  = P 3   W 1  = W 2  = W 3 P y  = P 4  = P 5 W = 3W1 P 1 V 1’  = P 3 V 3’  = P 5 V 5’ mRT 1  = mRT 3  = mRT 5 Therefore:  r P1  = r P2  = r P3 P V P 6 P 1 P x 1 4 3 2 5 6 7 12 PV n  = C W 1 W 2 P y 9 10 11 8 W 3
Work for each stage: 1 st  Stage: 2 nd  Stage: 3 rd  Stage: Intercooler Pressures:
Heat Losses during compression : Q 1  = mC n (T 2  – T 1 ) Q 2  = mC n (T 4  – T 3 ) Q 3  = mC n (T 6  – T 5 ) Heat loss in the LP and HP intercoolers: LP Intercooler Qx = mC p (T 2  – T 3 ) HP Intercooler Qy = mC p (T 4  – T 5 ) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Total Work: W = 3W 1
For  multistage compression with minimum work and perfect inter-cooling  and no pressure drop that occurs in the inter-coolers between stages, the  following conditions apply: 1. the work at each stage are equal 2. the pressure ratio between stages are equal 3. the air temperature in the inter-coolers are cooled to the original temperature T 1 4. the total work W is equal to Where: s – is the number of  stages. Note: For multistage compressor with pressure drop in the intercoolers the equation of W above cannot be applied. The total work is equal to the sum of the work for each stage that is computed separately.
 

Contenu connexe

Tendances

reciprocating compressor
reciprocating compressorreciprocating compressor
reciprocating compressorRajesh Sharma
 
001 carnot cycle
001 carnot cycle001 carnot cycle
001 carnot cyclephysics101
 
Applied thermodynamics by mc conkey (ed 5, ch-12)
Applied thermodynamics by mc conkey (ed 5, ch-12)Applied thermodynamics by mc conkey (ed 5, ch-12)
Applied thermodynamics by mc conkey (ed 5, ch-12)anasimdad007
 
Se prod thermo_examples_compressor
Se prod thermo_examples_compressorSe prod thermo_examples_compressor
Se prod thermo_examples_compressorVJTI Production
 
Cooling tower sollution in power plant
Cooling tower sollution in power plantCooling tower sollution in power plant
Cooling tower sollution in power plantMilton Msendeki
 
Air standard cycles
Air standard cyclesAir standard cycles
Air standard cyclesSoumith V
 
Closed feed water heaters :)
Closed feed water heaters :)Closed feed water heaters :)
Closed feed water heaters :)JhePoi Santos
 
Board exam on druyers
Board exam on druyersBoard exam on druyers
Board exam on druyersCharltonInao1
 
Design Considerations for Antisurge Valve Sizing
Design Considerations for Antisurge Valve SizingDesign Considerations for Antisurge Valve Sizing
Design Considerations for Antisurge Valve SizingVijay Sarathy
 
Group 7 4ChE A
Group 7 4ChE AGroup 7 4ChE A
Group 7 4ChE A4ChEAB08
 
006 isobaric process
006 isobaric process006 isobaric process
006 isobaric processphysics101
 
Thermodynamic assignment 2
Thermodynamic assignment 2Thermodynamic assignment 2
Thermodynamic assignment 2Lahiru Dilshan
 

Tendances (20)

Multistage Compression
Multistage CompressionMultistage Compression
Multistage Compression
 
reciprocating compressor
reciprocating compressorreciprocating compressor
reciprocating compressor
 
001 carnot cycle
001 carnot cycle001 carnot cycle
001 carnot cycle
 
Applied thermodynamics by mc conkey (ed 5, ch-12)
Applied thermodynamics by mc conkey (ed 5, ch-12)Applied thermodynamics by mc conkey (ed 5, ch-12)
Applied thermodynamics by mc conkey (ed 5, ch-12)
 
DJA3032 CHAPTER 2
DJA3032   CHAPTER 2DJA3032   CHAPTER 2
DJA3032 CHAPTER 2
 
Mc conkey 11-pb
Mc conkey 11-pbMc conkey 11-pb
Mc conkey 11-pb
 
Se prod thermo_examples_compressor
Se prod thermo_examples_compressorSe prod thermo_examples_compressor
Se prod thermo_examples_compressor
 
Gas turbine power plant
Gas turbine power plantGas turbine power plant
Gas turbine power plant
 
Cooling tower sollution in power plant
Cooling tower sollution in power plantCooling tower sollution in power plant
Cooling tower sollution in power plant
 
Dual cycle
Dual cycleDual cycle
Dual cycle
 
Air standard cycles
Air standard cyclesAir standard cycles
Air standard cycles
 
Closed feed water heaters :)
Closed feed water heaters :)Closed feed water heaters :)
Closed feed water heaters :)
 
Gears mom2 2
Gears mom2 2Gears mom2 2
Gears mom2 2
 
Gas turbine 1
Gas turbine  1Gas turbine  1
Gas turbine 1
 
Board exam on druyers
Board exam on druyersBoard exam on druyers
Board exam on druyers
 
Design Considerations for Antisurge Valve Sizing
Design Considerations for Antisurge Valve SizingDesign Considerations for Antisurge Valve Sizing
Design Considerations for Antisurge Valve Sizing
 
compressor
compressorcompressor
compressor
 
Group 7 4ChE A
Group 7 4ChE AGroup 7 4ChE A
Group 7 4ChE A
 
006 isobaric process
006 isobaric process006 isobaric process
006 isobaric process
 
Thermodynamic assignment 2
Thermodynamic assignment 2Thermodynamic assignment 2
Thermodynamic assignment 2
 

En vedette

Fan and blowers (mech 326)
Fan and blowers (mech 326)Fan and blowers (mech 326)
Fan and blowers (mech 326)Yuri Melliza
 
Fan and blowers (mech 326)
Fan and blowers (mech 326)Fan and blowers (mech 326)
Fan and blowers (mech 326)Yuri Melliza
 
Methods of handling Supply air in HVAC
Methods of handling Supply air in HVAC Methods of handling Supply air in HVAC
Methods of handling Supply air in HVAC Yuri Melliza
 
Thermodynamics (2013 new edition) copy
Thermodynamics (2013 new edition)   copyThermodynamics (2013 new edition)   copy
Thermodynamics (2013 new edition) copyYuri Melliza
 
Refrigeration system 2
Refrigeration system 2Refrigeration system 2
Refrigeration system 2Yuri Melliza
 
Cooling Tower & Dryer Fundamentals
Cooling Tower & Dryer FundamentalsCooling Tower & Dryer Fundamentals
Cooling Tower & Dryer FundamentalsYuri Melliza
 
Hydraulics for engineers
Hydraulics for engineersHydraulics for engineers
Hydraulics for engineersYuri Melliza
 
Using User Defined Component in Thermoflow
Using User Defined Component in ThermoflowUsing User Defined Component in Thermoflow
Using User Defined Component in ThermoflowAli Rafiei
 
Lifting plan for bypass stack installation
Lifting plan for bypass stack installationLifting plan for bypass stack installation
Lifting plan for bypass stack installationShah Jalal
 
Fuels and combustion(2013)
Fuels and combustion(2013)Fuels and combustion(2013)
Fuels and combustion(2013)Yuri Melliza
 
Internal combustion engine power plant
Internal combustion engine power plantInternal combustion engine power plant
Internal combustion engine power plantYuri Melliza
 
Mech tech power plant 09
Mech tech power plant 09Mech tech power plant 09
Mech tech power plant 09Yuri Melliza
 
Strategic sourcing
Strategic sourcingStrategic sourcing
Strategic sourcingNathan
 

En vedette (20)

Dryers
DryersDryers
Dryers
 
Heat transfer
Heat transferHeat transfer
Heat transfer
 
Fan and blowers (mech 326)
Fan and blowers (mech 326)Fan and blowers (mech 326)
Fan and blowers (mech 326)
 
Pump principles
Pump principlesPump principles
Pump principles
 
Fan and blowers (mech 326)
Fan and blowers (mech 326)Fan and blowers (mech 326)
Fan and blowers (mech 326)
 
Methods of handling Supply air in HVAC
Methods of handling Supply air in HVAC Methods of handling Supply air in HVAC
Methods of handling Supply air in HVAC
 
Thermodynamics (2013 new edition) copy
Thermodynamics (2013 new edition)   copyThermodynamics (2013 new edition)   copy
Thermodynamics (2013 new edition) copy
 
Refrigeration system 2
Refrigeration system 2Refrigeration system 2
Refrigeration system 2
 
Cooling Tower & Dryer Fundamentals
Cooling Tower & Dryer FundamentalsCooling Tower & Dryer Fundamentals
Cooling Tower & Dryer Fundamentals
 
Pumps (mech 326)
Pumps (mech 326)Pumps (mech 326)
Pumps (mech 326)
 
Cooling tower
Cooling towerCooling tower
Cooling tower
 
Hydraulics for engineers
Hydraulics for engineersHydraulics for engineers
Hydraulics for engineers
 
Using User Defined Component in Thermoflow
Using User Defined Component in ThermoflowUsing User Defined Component in Thermoflow
Using User Defined Component in Thermoflow
 
Lifting plan for bypass stack installation
Lifting plan for bypass stack installationLifting plan for bypass stack installation
Lifting plan for bypass stack installation
 
Fuels and combustion(2013)
Fuels and combustion(2013)Fuels and combustion(2013)
Fuels and combustion(2013)
 
Heat Transfer
Heat TransferHeat Transfer
Heat Transfer
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Internal combustion engine power plant
Internal combustion engine power plantInternal combustion engine power plant
Internal combustion engine power plant
 
Mech tech power plant 09
Mech tech power plant 09Mech tech power plant 09
Mech tech power plant 09
 
Strategic sourcing
Strategic sourcingStrategic sourcing
Strategic sourcing
 

Similaire à Compressor

LECTURE Notes on compressor
LECTURE Notes on compressorLECTURE Notes on compressor
LECTURE Notes on compressorYuri Melliza
 
ProjectreportMMC_16101_compressor_01.pdf
ProjectreportMMC_16101_compressor_01.pdfProjectreportMMC_16101_compressor_01.pdf
ProjectreportMMC_16101_compressor_01.pdfpk500138
 
Unit no 3 air compressor
Unit no 3 air compressorUnit no 3 air compressor
Unit no 3 air compressorsandeshkrasal
 
Gas turbine 2 - regeneration and intercooling
Gas turbine   2 - regeneration and intercoolingGas turbine   2 - regeneration and intercooling
Gas turbine 2 - regeneration and intercoolingNihal Senanayake
 
Refrigeration system (MECH 324)
Refrigeration system (MECH 324)Refrigeration system (MECH 324)
Refrigeration system (MECH 324)Yuri Melliza
 
BASICS OF AXIAL FLOW COMPRESSOR AND ITS WORKING PRINCIPLE.ppt
BASICS OF AXIAL FLOW COMPRESSOR AND ITS WORKING PRINCIPLE.pptBASICS OF AXIAL FLOW COMPRESSOR AND ITS WORKING PRINCIPLE.ppt
BASICS OF AXIAL FLOW COMPRESSOR AND ITS WORKING PRINCIPLE.pptshaiksohel0804
 
Se prod thermo_chapter_2_compressor
Se prod thermo_chapter_2_compressorSe prod thermo_chapter_2_compressor
Se prod thermo_chapter_2_compressorVJTI Production
 
AIR COMPRESSOR.ppt
AIR COMPRESSOR.pptAIR COMPRESSOR.ppt
AIR COMPRESSOR.pptAlagarSamy63
 
Buenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptxBuenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptxEVABUENAFE
 
Buenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptxBuenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptxEVABUENAFE
 
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...dineshprabhu41
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
3110006_BME_Chapter 9_Air Compressor (1).pdf
3110006_BME_Chapter 9_Air Compressor (1).pdf3110006_BME_Chapter 9_Air Compressor (1).pdf
3110006_BME_Chapter 9_Air Compressor (1).pdfNilesh839639
 

Similaire à Compressor (20)

LECTURE Notes on compressor
LECTURE Notes on compressorLECTURE Notes on compressor
LECTURE Notes on compressor
 
Aircompressor unit 5
Aircompressor unit 5Aircompressor unit 5
Aircompressor unit 5
 
ProjectreportMMC_16101_compressor_01.pdf
ProjectreportMMC_16101_compressor_01.pdfProjectreportMMC_16101_compressor_01.pdf
ProjectreportMMC_16101_compressor_01.pdf
 
Unit no 3 air compressor
Unit no 3 air compressorUnit no 3 air compressor
Unit no 3 air compressor
 
Gas turbine 2 - regeneration and intercooling
Gas turbine   2 - regeneration and intercoolingGas turbine   2 - regeneration and intercooling
Gas turbine 2 - regeneration and intercooling
 
Refrigeration system (MECH 324)
Refrigeration system (MECH 324)Refrigeration system (MECH 324)
Refrigeration system (MECH 324)
 
010
010010
010
 
BASICS OF AXIAL FLOW COMPRESSOR AND ITS WORKING PRINCIPLE.ppt
BASICS OF AXIAL FLOW COMPRESSOR AND ITS WORKING PRINCIPLE.pptBASICS OF AXIAL FLOW COMPRESSOR AND ITS WORKING PRINCIPLE.ppt
BASICS OF AXIAL FLOW COMPRESSOR AND ITS WORKING PRINCIPLE.ppt
 
Gas Turbine Cycles - 5.pptx
Gas Turbine Cycles - 5.pptxGas Turbine Cycles - 5.pptx
Gas Turbine Cycles - 5.pptx
 
Se prod thermo_chapter_2_compressor
Se prod thermo_chapter_2_compressorSe prod thermo_chapter_2_compressor
Se prod thermo_chapter_2_compressor
 
AIR COMPRESSOR.ppt
AIR COMPRESSOR.pptAIR COMPRESSOR.ppt
AIR COMPRESSOR.ppt
 
Buenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptxBuenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptx
 
Buenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptxBuenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptx
 
Air comprosser
Air comprosserAir comprosser
Air comprosser
 
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
 
Air compressor
Air compressorAir compressor
Air compressor
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Chap 03
Chap 03Chap 03
Chap 03
 
3110006_BME_Chapter 9_Air Compressor (1).pdf
3110006_BME_Chapter 9_Air Compressor (1).pdf3110006_BME_Chapter 9_Air Compressor (1).pdf
3110006_BME_Chapter 9_Air Compressor (1).pdf
 
4.8.compressors
4.8.compressors4.8.compressors
4.8.compressors
 

Plus de Yuri Melliza

Airconditioning system (ppt)
Airconditioning system (ppt)Airconditioning system (ppt)
Airconditioning system (ppt)Yuri Melliza
 
Fundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notesFundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notesYuri Melliza
 
Module 10 (air standard cycle)
Module 10 (air standard cycle)Module 10 (air standard cycle)
Module 10 (air standard cycle)Yuri Melliza
 
Module 9 (second law & carnot cycle)
Module 9 (second law & carnot cycle)Module 9 (second law & carnot cycle)
Module 9 (second law & carnot cycle)Yuri Melliza
 
Module 8 (fuels and combustion)
Module 8 (fuels and combustion)Module 8 (fuels and combustion)
Module 8 (fuels and combustion)Yuri Melliza
 
Module 7 (processes of fluids)
Module 7 (processes of fluids)Module 7 (processes of fluids)
Module 7 (processes of fluids)Yuri Melliza
 
Module 6 (ideal or perfect gas and gas mixture) 2021 2022
Module 6 (ideal or perfect gas and gas mixture) 2021   2022Module 6 (ideal or perfect gas and gas mixture) 2021   2022
Module 6 (ideal or perfect gas and gas mixture) 2021 2022Yuri Melliza
 
Module 5 (properties of pure substance)2021 2022
Module 5 (properties of pure substance)2021 2022Module 5 (properties of pure substance)2021 2022
Module 5 (properties of pure substance)2021 2022Yuri Melliza
 
Module 4 (first law of thermodynamics) 2021 2022
Module 4 (first law of thermodynamics) 2021 2022Module 4 (first law of thermodynamics) 2021 2022
Module 4 (first law of thermodynamics) 2021 2022Yuri Melliza
 
Module 2 (forms of energy) 2021 2022
Module 2 (forms of energy) 2021   2022Module 2 (forms of energy) 2021   2022
Module 2 (forms of energy) 2021 2022Yuri Melliza
 
Module 1 (terms and definition & properties of fluids)2021 2022
Module 1 (terms and definition & properties of fluids)2021 2022Module 1 (terms and definition & properties of fluids)2021 2022
Module 1 (terms and definition & properties of fluids)2021 2022Yuri Melliza
 
Fuels and Combustion
Fuels and CombustionFuels and Combustion
Fuels and CombustionYuri Melliza
 
Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)Yuri Melliza
 
AIR STANDARD CYCLE
AIR STANDARD CYCLEAIR STANDARD CYCLE
AIR STANDARD CYCLEYuri Melliza
 
Chapter 7 Processes of Fluids
Chapter 7 Processes of FluidsChapter 7 Processes of Fluids
Chapter 7 Processes of FluidsYuri Melliza
 
Chapter 6 Gas Mixture
Chapter 6 Gas MixtureChapter 6 Gas Mixture
Chapter 6 Gas MixtureYuri Melliza
 
Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)Yuri Melliza
 
Chapter 4 (propertiesof pure substance)
Chapter 4 (propertiesof pure substance)Chapter 4 (propertiesof pure substance)
Chapter 4 (propertiesof pure substance)Yuri Melliza
 

Plus de Yuri Melliza (20)

Airconditioning system (ppt)
Airconditioning system (ppt)Airconditioning system (ppt)
Airconditioning system (ppt)
 
Fundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notesFundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notes
 
Module 10 (air standard cycle)
Module 10 (air standard cycle)Module 10 (air standard cycle)
Module 10 (air standard cycle)
 
Module 9 (second law & carnot cycle)
Module 9 (second law & carnot cycle)Module 9 (second law & carnot cycle)
Module 9 (second law & carnot cycle)
 
Module 8 (fuels and combustion)
Module 8 (fuels and combustion)Module 8 (fuels and combustion)
Module 8 (fuels and combustion)
 
Module 7 (processes of fluids)
Module 7 (processes of fluids)Module 7 (processes of fluids)
Module 7 (processes of fluids)
 
Module 6 (ideal or perfect gas and gas mixture) 2021 2022
Module 6 (ideal or perfect gas and gas mixture) 2021   2022Module 6 (ideal or perfect gas and gas mixture) 2021   2022
Module 6 (ideal or perfect gas and gas mixture) 2021 2022
 
Module 5 (properties of pure substance)2021 2022
Module 5 (properties of pure substance)2021 2022Module 5 (properties of pure substance)2021 2022
Module 5 (properties of pure substance)2021 2022
 
Module 4 (first law of thermodynamics) 2021 2022
Module 4 (first law of thermodynamics) 2021 2022Module 4 (first law of thermodynamics) 2021 2022
Module 4 (first law of thermodynamics) 2021 2022
 
Module 2 (forms of energy) 2021 2022
Module 2 (forms of energy) 2021   2022Module 2 (forms of energy) 2021   2022
Module 2 (forms of energy) 2021 2022
 
Module 1 (terms and definition & properties of fluids)2021 2022
Module 1 (terms and definition & properties of fluids)2021 2022Module 1 (terms and definition & properties of fluids)2021 2022
Module 1 (terms and definition & properties of fluids)2021 2022
 
Me 312 module 1
Me 312 module 1Me 312 module 1
Me 312 module 1
 
Fuels and Combustion
Fuels and CombustionFuels and Combustion
Fuels and Combustion
 
Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)
 
AIR STANDARD CYCLE
AIR STANDARD CYCLEAIR STANDARD CYCLE
AIR STANDARD CYCLE
 
Me 12 quiz no. 3
Me 12 quiz no. 3Me 12 quiz no. 3
Me 12 quiz no. 3
 
Chapter 7 Processes of Fluids
Chapter 7 Processes of FluidsChapter 7 Processes of Fluids
Chapter 7 Processes of Fluids
 
Chapter 6 Gas Mixture
Chapter 6 Gas MixtureChapter 6 Gas Mixture
Chapter 6 Gas Mixture
 
Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)
 
Chapter 4 (propertiesof pure substance)
Chapter 4 (propertiesof pure substance)Chapter 4 (propertiesof pure substance)
Chapter 4 (propertiesof pure substance)
 

Dernier

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docxPoojaSen20
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesShubhangi Sonawane
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIShubhangi Sonawane
 

Dernier (20)

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
 

Compressor

  • 1. Air or Gas Compressors: A steady-state, steady flow machine that is used to compressed air or gas to final pressure exceeding 241.25 Kpa gage. Types of Compressor: 1. Centrifugal Compressors: For low pressure and high capacity applications. 2. Rotary Compressors: For medium pressure and low capacity application. 3. Reciprocating Compressors: For high pressure and low capacity application. Uses of compressed air: 1. Operation of small engines 2. Pneumatic tools 3. Air hoists 4. Industrial cleaning by air blast 5. Tire inflation 6. Paint Spraying
  • 2.
  • 3. Where: m – mass flow rate in kg/sec C p – constant pressure specific heat in KJ/kg-  C or KJ/kg-  K
  • 4. 2. Polytropic compression: PV n = C P V P 2 P 1 PV n = C
  • 5. 3. Isothermal Compression: PV = C Analysis of Reciprocating Type Compressor (Piston-in-cylinder type): piston Valves cylinder Piston rod P V P 2 P 1 PV = C
  • 6. Pressure-Volume Diagram (PV) HE – head end CE – Crank end L – length of stroke P 1 – suction pressure P 2 – discharge pressure V 1’ – volume flow rate at intake V D – displacement volume CV D – clearance volume CV D = V 3 V D L HE CE P V 1 2 3 4 P 2 P 1 V 1’ V D CV D
  • 7. 1. Isentropic Compression: PV k = C Where: V1’ – volume flow rate at intake, m 3 /sec m – mass flow rate corresponding V 1’ P 1 – suction pressure, Kpa P 2 – discharge pressure, Kpa T 1 – suction temperature,  K T 2 – discharge temperature,  K W – work, KW 2. Polytropic Compression: PV n = C
  • 8. 3. Isothermal Compression: PV = C Percent Clearance : Ratio of the clearance volume to the displacement volume. Note: For compressor design values of C ranges from 3 to 10 percent.
  • 9. Pressure Ratio: Ratio of the discharge pressure to suction pressure. Volumetric Efficiency: Ratio of the volume flow rate at intake to the displacement volume. 1. For Isentropic Compression and Expansion process: PV k = C
  • 10. 2. For Polytropic Compression and Expansion process: PV n = C 2. For Isothermal Compression and Expansion process: PV = C Actual Volumetric Efficiency : Ratio of the actual volume of air drawn in by the compressor to the displacement volume.
  • 11. For an air compressor handling ambient air where pressure drop and heating of air occurs due to fluid friction and irreversibilities of fluid flow, less amount of air is being drawn by the cylinder. The actual volumetric efficiency is: Where: P O – ambient air pressure in Kpa T O – ambient air temperature in  K Displacement Volume: Volume of air occupying the highest stroke L of the piston within the cylinder. The length of stroke L is the dis- tance from the HE (head end) to the CE (crank end).
  • 12.
  • 13. Where: D – diameter of piston in meters d – diameter of piston rod in meters N – no. of RPM n’ – no. of cylinders Piston Speed : It is the linear speed of the piston. Compressor Performance Factor: 1. Compression Efficiency: Ratio of Ideal Work to Indicated Work.
  • 14. 2. Mechanical Efficiency: Ratio of Indicated Work to Brake or Shaft Work. 3. Compressor Efficiency: Ratio of Ideal Work to Brake or Shaft Work.
  • 15. MULTISTAGE COMPRESSION: Multi staging is simply the compression of air or gas in two or more cylinders in place of a single cylinder compressor. It is used in reciprocating compressors when pressure of 300 KPa and above are desired, in order to: 1) Save power 2) Limit the gas discharge temperature 3) Limit the pressure differential per cylinder 4) Prevent vaporization of lubricating oil and to prevent its ignition if the tem- perature becomes too high. It is a common practice for multi-staging to cool the air or gas between stages of compression in an intercooler, and it is this cooling that affects considerable saving in power.
  • 16. For an ideal multistage compressor, with perfect inter-cooling and minimum work, the cylinder were properly designed so that: a) the work at each stage are equal b) the air in the intercooler is cooled back to the initial temperature c) no pressure drop occurs in the intercooler 2 Stage Compressor without pressure drop in the intercooler : 1 2 3 4 Suction Discharge Qx Intercooler 1 st stage 2 nd stage
  • 17. Work of 1 st stage cylinder ( W 1 ) : Assuming Polytropic compression on both stages. Work of 2 nd stage cylinder ( W 2 ) : Assuming Polytropic compression on both stages.
  • 18. For perfect inter-cooling and minimum work: W 1 = W 2 T 1 = T 3 W = W 1 + W 2 W = 2W 1 P 2 = P 3 = P x therefore P 1 V 1’ = P 3 V 3’ Where: Px – optimum intercooler pressure or interstage pressure P V P 4 P 1 P x 1 4 3 2 5 6 7 8 PV n = C W 1 W 2 S T 4 3 2 1 P 4 P x P 1 Q x
  • 19.
  • 20. With pressure drop in the intercooler: T 1  T 3 and P 2  P 3 W = W 1 + W 2 P 1 V 1’  P 3 V 3’ 2 Stage Compressor with pressure drop in the intercooler : 1 2 3 4 Suction Discharge Qx Intercooler 1 st stage 2 nd stage
  • 21. P V P 4 P 1 P 3 1 4 3 2 5 6 7 8 PV n = C W 1 W 2 S T 4 3 2 1 P 4 P 1 Q x P 2 P 2 P 3 3 Stage Compressor without pressure drop in the intercooler : 1 2 3 4 Suction Discharge Qx LP Intercooler 1 st stage 2 nd stage 3 rd stage 5 6 Qy HP Intercooler
  • 22. S T 4 3 2 1 P 6 P x P 1 Q x P y 5 6 Q y For perfect inter-cooling and minimum work: T 1 = T 3 = T 5 P x = P 2 = P 3 W 1 = W 2 = W 3 P y = P 4 = P 5 W = 3W1 P 1 V 1’ = P 3 V 3’ = P 5 V 5’ mRT 1 = mRT 3 = mRT 5 Therefore: r P1 = r P2 = r P3 P V P 6 P 1 P x 1 4 3 2 5 6 7 12 PV n = C W 1 W 2 P y 9 10 11 8 W 3
  • 23. Work for each stage: 1 st Stage: 2 nd Stage: 3 rd Stage: Intercooler Pressures:
  • 24.
  • 25. For multistage compression with minimum work and perfect inter-cooling and no pressure drop that occurs in the inter-coolers between stages, the following conditions apply: 1. the work at each stage are equal 2. the pressure ratio between stages are equal 3. the air temperature in the inter-coolers are cooled to the original temperature T 1 4. the total work W is equal to Where: s – is the number of stages. Note: For multistage compressor with pressure drop in the intercoolers the equation of W above cannot be applied. The total work is equal to the sum of the work for each stage that is computed separately.
  • 26.