SlideShare une entreprise Scribd logo
1  sur  14
Semiconductors
& Leds
By Akash Ganguly
b.Tech. polymer science
Roll no. : 1308031
Index
 Semiconductors
 Concept of Energy bands
 intrinsic and extrinsic semiconductors
 Concept of electrons and holes
 N Type Semiconductors
 P type semiconductors
 P – N JUNCTION DIODE
 P-n junction in forward bias and reverse bias
 Graph for p-n junction at forward and reverse bias
 LIGHT EMITTING DIODE ( led)
 Major contributions of various scientists on LEDS
 Research on Use of LED in place of incandescent lamps!!!
 Basic Advantages of led light
 Disadvantages of leds
Semiconductors
 A semiconductor is a material which has electrical conductivity to a degree between that of a conductors
(such as copper) and that of an insulator (such as glass).
 They have resistivity or conductivity intermediate to metals and insulators.
ρ ~ 10-5 – 106Ohm m
~ 105 – 10 -6 Sm-1
 Semiconductors are the foundation of modern electronics, including transistors, solar cells, light-emitting
diodes (LEDs), quantum dots and digital and analog integrated circuits.
Concept of Energy bands
 The group of discrete but closely spaced energy levels for the orbital electrons in the atoms is called
energy band.
o The upper empty energy band is called conduction band and the lower completely filled energy band is
called valence band. In between there is a group of energy levels which cannot be occupied by the
electrons and hence called the forbidden band. Electrons can jump to the conduction band from the
valence band without stopping in the forbidden band.
o The difference of energy between the conduction band and the valence band is forbidden energy gap (Eg).
 For Silicon Eg = 1.1eV and for Germanium Eg = 0.7eV
Fermi Energy level
It is the maximum energy that an electron in the valence band
possesses at absolute zero is called Fermi energy and the level
corresponding to it is called Fermi Energy level.
Intrinsic semiconductor.
 intrinsic and extrinsic semiconductors
 A pure semiconductor is called
 To increase the electrical conductivity the semiconductor is mixed with either pentavalent impurity (
Group 15) or trivalent impurity ( Group 13). The process is called doping. The doped semiconductor is
called Extrinsic semiconductor.
 Generally one impurity atom is added for about 108 atoms of the semiconductor.
Concept of electrons and holes
 When temperature rises, an electrons jumps from the valence band and jumps to the conduction
band a vacancy is created in the valence band. This vacancy is called hole. For an intrinsic
semiconductor the sample is electrically neutral and the number of free electrons is equal to the
number of holes in the valence band.
N Type Semiconductors
 If a semiconductor is doped with a pentavalent
impurity ( Group 15 elements) such as
Arsenic(As),Antimony(Sb) , the extrinsic
semiconductor is called N Type semiconductors.
P type semiconductors
 If a semiconductor is doped with a trivalent
impurity ( Group 13 elements) such as Aluminium
(Al) , Indium (In) , the extrinsic semiconductor is
called P Type semiconductor.
P – N JUNCTION DIODE
 When a p –type semiconductor is suitably joined to an n – type semiconductor, their contact surface is
called p-n junction.
 The electronic device consisting of a p-n junction is called diode.
 Potential barrier: When a p-n junction is formed, the electrons diffuse across the junction from n-type to p-
type crystal du to concentration difference( of electrons.) Similarly holes diffuse from p-type to n-type
crystal. As a result the n-type crystal acquires a positive potential and p-type crystal acquires a negative
potential. The potential difference created across the p-n junction due to the diffusion of holes and
electrons is called barrier potential.
 The potential difference blocks the diffusion of holes and a depletion layer is developed at the junction.
 The thickness of depletion layer is about 10-6m.
P-n junction in forward bias and reverse bias
Forward Bias
 Some concepts
 Effective barrier height becomes VO - V.
 Depletion layer decreases.
i. This is the principle on which LED works.
Reverse bias
 Some Concepts
 Effective barrier height becomes V + VO .
 Depletion layer increases.
Where VO is the barrier potential.
(Coutesy:http://www.tmi.vu.lt/legacy/pfk/funkc_dariniai/diod/index.html)
Graph for p-n junction at forward and reverse bias
 Beyond knee voltage, there is a steep rise.
 In forward bias, there is knee voltage and in reverse bias, there is zener voltage.
LIGHT EMITTING DIODE ( led)
 These are specially designed diodes which give out light radiations when forward biased.
 It is heavily doped p-n junction.
 On recombination, energy released in the form of photons.
 Photons with energy equal to or slightly less than the band gap are emitted.
 When the forward current of the diode is small, the intensity of light emitted is small.
 As the forward current increases the intensity of light increases and reaches a maximum.
 Further increases in the forward current results in decrease of light intensity.
 The reverse breakdown voltages of LED are very low, typically around 5V.
 LEDs that can emit red, yellow, orange, green and blue light.
 LEDs are made of GaAs1-xPx ( Eg ~ 1.9eV for red LED) , GaAs(Eg~1.4eV) is used for making infrared LED
Major contributions by Various Scientists on LEDS
 1920 -Oleg V. Losev studied the phenomena of light emitting diodes in radio sets. His first work on 'LEDs' involved a
report on light emission from SiC. In 1927 he published a detailed report but his work was not well known until the
1950s when his papers resurfaced.
 1961 - Bob Biard and Gary Pittman developed the Infrared LED at Texas instruments. This was the first modern LED.
It was discovered by 'accident' while TI tried to make a laser diode. The discovery was made during a test of a tunnel
diode using a zinc diffused area of a GaAs (Gallium Arsenide) semi-insulating substrate.
 1962 - Nick Holonyack Jr. develops the red LED, the first LED of visible light. He used GaAsP (Gallium Arsenide
Phosphide) on a GaAs substrate. General Electric.
Research on Use of LED in place of incandescent lamps!!!
 Advantages of LEDs over conventional incandescent lamp are :
 Low operational voltage and less power.
 Fast action and no warm- up time required.
 The bandwidth of emitted light is 100 A to 500 A or in other words it is nearly but
exactly monochromatic.
 Long life and ruggedness
 Fast on-off switching capability
Basic advantages of LED Light
 Energy efficient - LED’s are now capable of outputting 135 lumens/watt
 Long Lifetime - 50,000 hours or more if properly engineered
 Rugged - LED’s are also called “Solid State Lighting (SSL) as they are made of solid material with no filament
or tube or bulb to break
 No warm-up period - LED’s light instantly – in nanoseconds
 Not affected by cold temperatures - LED’s “like” low temperatures and will start-up even in sub-zero weather
 Directional - With LED’s you can direct the light where you want it, thus no light is wasted
 Excellent Colour Rendering - LED’s do not wash out colours like other light sources such as fluorescents,
making them perfect for displays and retail applications
 Environmentally friendly - LED’s contain no mercury or other hazardous substances
 Controllable - LED’s can be controlled for brightness and colour.
OLED organic leds
These are LEDs in which the electroluminescent layer is made up of a film of organic compounds.Eg- poly(p-phenylene vinylene).
Disadvantages of leds
 There are concerns that LEDs do not provide the warmth that ordinary bulbs give when lit.
 LEDs are currently more expensive, on an initial capital cost basis, than more conventional lighting technologies.
However, when considering the total cost of ownership (including energy and maintenance costs), LEDs far surpass
incandescent or halogen sources and begin to threaten compact fluorescent lamps.
 The Chart Below compares different light sources based upon the life of the bulb and the electrical cost at 10 cents per
kWh (kilowatt hour). Note: fixture costs and installation costs are not included.
 LED performance largely depends on correctly engineering the fixture to manage the heat generated by the LED,
which causes deterioration of the LED chip itself. Over-driving the LED or not engineering the product to manage
heat in high ambient temperatures may result in overheating of the LED package, eventually leading to device
failure. Adequate heat-sinking is required to maintain long life. The most common design of a heat sink is a metal
device with many fins, which conducts the heat away from the LED.
 LEDs must be supplied with the correct voltage and current at a constant flow. This requires some electronics
expertise to design the electronic drivers.
 LED’s can shift colour due to age and temperature. Also two different white LED will have two different color
characteristics, which affect how the light is perceived.
Thank You
Special Thanks to the Foundation Course : Science and Life
As I could avail this great opportunity of making this presentation
“Since every opportunity is like a heartbeat so we should not miss it.”

Contenu connexe

Tendances

Hall Effect And Application To identification of Semi-conductors
Hall Effect And Application To identification of Semi-conductorsHall Effect And Application To identification of Semi-conductors
Hall Effect And Application To identification of Semi-conductors
Omkar Rane
 
B.tech sem i engineering physics u ii chapter 1-band theory of solid
B.tech sem i engineering physics u ii chapter 1-band theory of solidB.tech sem i engineering physics u ii chapter 1-band theory of solid
B.tech sem i engineering physics u ii chapter 1-band theory of solid
Rai University
 
Electromagnetic theory
Electromagnetic theoryElectromagnetic theory
Electromagnetic theory
Kumar
 

Tendances (20)

Hall Effect And Application To identification of Semi-conductors
Hall Effect And Application To identification of Semi-conductorsHall Effect And Application To identification of Semi-conductors
Hall Effect And Application To identification of Semi-conductors
 
Phototransistor
PhototransistorPhototransistor
Phototransistor
 
rectifiers and all about rectifier
rectifiers and all about rectifierrectifiers and all about rectifier
rectifiers and all about rectifier
 
Semiconductor diodes
Semiconductor diodesSemiconductor diodes
Semiconductor diodes
 
P n junction--eema
P n junction--eemaP n junction--eema
P n junction--eema
 
B.tech sem i engineering physics u ii chapter 1-band theory of solid
B.tech sem i engineering physics u ii chapter 1-band theory of solidB.tech sem i engineering physics u ii chapter 1-band theory of solid
B.tech sem i engineering physics u ii chapter 1-band theory of solid
 
Tunnel diode
Tunnel diodeTunnel diode
Tunnel diode
 
Hetero junction
Hetero junctionHetero junction
Hetero junction
 
P n junction characteristics
P n junction characteristicsP n junction characteristics
P n junction characteristics
 
Type of all kind of diode.zenzer diode,p n junction diode,pin diode,led diode...
Type of all kind of diode.zenzer diode,p n junction diode,pin diode,led diode...Type of all kind of diode.zenzer diode,p n junction diode,pin diode,led diode...
Type of all kind of diode.zenzer diode,p n junction diode,pin diode,led diode...
 
Pin diode
Pin diodePin diode
Pin diode
 
Chapter 4b
Chapter 4bChapter 4b
Chapter 4b
 
Light emitting diode
Light emitting diodeLight emitting diode
Light emitting diode
 
Light Emitting Diode(LED)
Light Emitting Diode(LED)Light Emitting Diode(LED)
Light Emitting Diode(LED)
 
Avalanche photodiode & there bandwidth
Avalanche photodiode & there bandwidthAvalanche photodiode & there bandwidth
Avalanche photodiode & there bandwidth
 
Electromagnetic theory
Electromagnetic theoryElectromagnetic theory
Electromagnetic theory
 
Photodiode working principle characteristics and applications
Photodiode working principle characteristics and applicationsPhotodiode working principle characteristics and applications
Photodiode working principle characteristics and applications
 
Application of diode
Application of diodeApplication of diode
Application of diode
 
Photo diode
Photo diodePhoto diode
Photo diode
 
Metal Semi-Conductor Junctions
Metal Semi-Conductor JunctionsMetal Semi-Conductor Junctions
Metal Semi-Conductor Junctions
 

En vedette

Engineering physics 8(semiconductors)
Engineering physics 8(semiconductors)Engineering physics 8(semiconductors)
Engineering physics 8(semiconductors)
Nexus
 
Engineering physics 7(conductors, insulators and semiconductors)
Engineering physics 7(conductors, insulators and semiconductors)Engineering physics 7(conductors, insulators and semiconductors)
Engineering physics 7(conductors, insulators and semiconductors)
Nexus
 
Physics of LEDs
Physics of LEDsPhysics of LEDs
Physics of LEDs
Tan Kim
 
Semiconductors
SemiconductorsSemiconductors
Semiconductors
Mian Usman
 
LED-Light Emitting Diode
LED-Light Emitting DiodeLED-Light Emitting Diode
LED-Light Emitting Diode
Aon Ali Jaffery
 

En vedette (20)

Engineering physics 8(semiconductors)
Engineering physics 8(semiconductors)Engineering physics 8(semiconductors)
Engineering physics 8(semiconductors)
 
Engineering physics 7(conductors, insulators and semiconductors)
Engineering physics 7(conductors, insulators and semiconductors)Engineering physics 7(conductors, insulators and semiconductors)
Engineering physics 7(conductors, insulators and semiconductors)
 
Lec1 introduction to semiconductors
Lec1 introduction to semiconductorsLec1 introduction to semiconductors
Lec1 introduction to semiconductors
 
LED (Light Emitter Diode)
LED (Light Emitter Diode)LED (Light Emitter Diode)
LED (Light Emitter Diode)
 
Physics of LEDs
Physics of LEDsPhysics of LEDs
Physics of LEDs
 
Semiconductors
SemiconductorsSemiconductors
Semiconductors
 
Lâmpadas LED - Apresentacao
Lâmpadas LED - ApresentacaoLâmpadas LED - Apresentacao
Lâmpadas LED - Apresentacao
 
Hsc physics revision for semiconductors and communication
Hsc physics revision for semiconductors and communicationHsc physics revision for semiconductors and communication
Hsc physics revision for semiconductors and communication
 
Ss for b,ed
Ss for b,edSs for b,ed
Ss for b,ed
 
Semiconductor and devices
Semiconductor and devicesSemiconductor and devices
Semiconductor and devices
 
Semiconductors
SemiconductorsSemiconductors
Semiconductors
 
Polymer in the real life - Devoxx France - 2016 04-20
Polymer in the real life - Devoxx France - 2016 04-20Polymer in the real life - Devoxx France - 2016 04-20
Polymer in the real life - Devoxx France - 2016 04-20
 
Semiconductors
SemiconductorsSemiconductors
Semiconductors
 
Application and advances of polymers
Application and advances of polymersApplication and advances of polymers
Application and advances of polymers
 
Applications of polymer in daily life
Applications  of  polymer in   daily   lifeApplications  of  polymer in   daily   life
Applications of polymer in daily life
 
LED-Light Emitting Diode
LED-Light Emitting DiodeLED-Light Emitting Diode
LED-Light Emitting Diode
 
Led Ppt
Led PptLed Ppt
Led Ppt
 
Polymer science: preparation and uses of polymers
Polymer science: preparation and uses of polymersPolymer science: preparation and uses of polymers
Polymer science: preparation and uses of polymers
 
It all starts here
It all starts hereIt all starts here
It all starts here
 
LED Lighting Presentation
LED Lighting PresentationLED Lighting Presentation
LED Lighting Presentation
 

Similaire à Semiconductors and LEDs

Types of Diodes Advantages and disadvantages, LE
Types of Diodes Advantages and disadvantages, LETypes of Diodes Advantages and disadvantages, LE
Types of Diodes Advantages and disadvantages, LE
Musab Hussain
 

Similaire à Semiconductors and LEDs (20)

V.s.arjun led
V.s.arjun ledV.s.arjun led
V.s.arjun led
 
Types of Diodes Advantages and disadvantages, LE
Types of Diodes Advantages and disadvantages, LETypes of Diodes Advantages and disadvantages, LE
Types of Diodes Advantages and disadvantages, LE
 
Tejpratap
TejpratapTejpratap
Tejpratap
 
Physics investigotory project class 12th by nohar tandon
Physics investigotory project class 12th by nohar  tandonPhysics investigotory project class 12th by nohar  tandon
Physics investigotory project class 12th by nohar tandon
 
NS & NT Presentation1.pptx
NS & NT Presentation1.pptxNS & NT Presentation1.pptx
NS & NT Presentation1.pptx
 
Led 1
Led 1Led 1
Led 1
 
Diodes // LED // OLED
Diodes // LED // OLEDDiodes // LED // OLED
Diodes // LED // OLED
 
Tech led ppt(pptplanet.com)
Tech led ppt(pptplanet.com)Tech led ppt(pptplanet.com)
Tech led ppt(pptplanet.com)
 
Optical source LED by sufiyan a khan
Optical source LED by sufiyan a khanOptical source LED by sufiyan a khan
Optical source LED by sufiyan a khan
 
8. semiconductors.rr
8. semiconductors.rr8. semiconductors.rr
8. semiconductors.rr
 
Semiconductor diodes
Semiconductor diodesSemiconductor diodes
Semiconductor diodes
 
Unit4 special semiconductor devices class4
Unit4 special semiconductor devices class4Unit4 special semiconductor devices class4
Unit4 special semiconductor devices class4
 
LED
LEDLED
LED
 
LED Unit 5
LED Unit 5 LED Unit 5
LED Unit 5
 
Semiconductor Nanomaterials
Semiconductor NanomaterialsSemiconductor Nanomaterials
Semiconductor Nanomaterials
 
Edc(electronics devices and circuits)
Edc(electronics devices and circuits)Edc(electronics devices and circuits)
Edc(electronics devices and circuits)
 
THE LIGHT EMITTING DIODE
THE LIGHT EMITTING DIODETHE LIGHT EMITTING DIODE
THE LIGHT EMITTING DIODE
 
Semiconductors
SemiconductorsSemiconductors
Semiconductors
 
BASIC ELECTRONICS on physics for teaching grade 12
BASIC ELECTRONICS on physics for teaching grade 12BASIC ELECTRONICS on physics for teaching grade 12
BASIC ELECTRONICS on physics for teaching grade 12
 
Basic Electronics 1 by Dr. Mathivanan Velumani
Basic Electronics 1 by Dr. Mathivanan VelumaniBasic Electronics 1 by Dr. Mathivanan Velumani
Basic Electronics 1 by Dr. Mathivanan Velumani
 

Dernier

Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 

Dernier (20)

Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptx
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 

Semiconductors and LEDs

  • 1. Semiconductors & Leds By Akash Ganguly b.Tech. polymer science Roll no. : 1308031
  • 2. Index  Semiconductors  Concept of Energy bands  intrinsic and extrinsic semiconductors  Concept of electrons and holes  N Type Semiconductors  P type semiconductors  P – N JUNCTION DIODE  P-n junction in forward bias and reverse bias  Graph for p-n junction at forward and reverse bias  LIGHT EMITTING DIODE ( led)  Major contributions of various scientists on LEDS  Research on Use of LED in place of incandescent lamps!!!  Basic Advantages of led light  Disadvantages of leds
  • 3. Semiconductors  A semiconductor is a material which has electrical conductivity to a degree between that of a conductors (such as copper) and that of an insulator (such as glass).  They have resistivity or conductivity intermediate to metals and insulators. ρ ~ 10-5 – 106Ohm m ~ 105 – 10 -6 Sm-1  Semiconductors are the foundation of modern electronics, including transistors, solar cells, light-emitting diodes (LEDs), quantum dots and digital and analog integrated circuits. Concept of Energy bands  The group of discrete but closely spaced energy levels for the orbital electrons in the atoms is called energy band. o The upper empty energy band is called conduction band and the lower completely filled energy band is called valence band. In between there is a group of energy levels which cannot be occupied by the electrons and hence called the forbidden band. Electrons can jump to the conduction band from the valence band without stopping in the forbidden band. o The difference of energy between the conduction band and the valence band is forbidden energy gap (Eg).
  • 4.  For Silicon Eg = 1.1eV and for Germanium Eg = 0.7eV Fermi Energy level It is the maximum energy that an electron in the valence band possesses at absolute zero is called Fermi energy and the level corresponding to it is called Fermi Energy level. Intrinsic semiconductor.  intrinsic and extrinsic semiconductors  A pure semiconductor is called  To increase the electrical conductivity the semiconductor is mixed with either pentavalent impurity ( Group 15) or trivalent impurity ( Group 13). The process is called doping. The doped semiconductor is called Extrinsic semiconductor.  Generally one impurity atom is added for about 108 atoms of the semiconductor. Concept of electrons and holes  When temperature rises, an electrons jumps from the valence band and jumps to the conduction band a vacancy is created in the valence band. This vacancy is called hole. For an intrinsic semiconductor the sample is electrically neutral and the number of free electrons is equal to the number of holes in the valence band.
  • 5. N Type Semiconductors  If a semiconductor is doped with a pentavalent impurity ( Group 15 elements) such as Arsenic(As),Antimony(Sb) , the extrinsic semiconductor is called N Type semiconductors. P type semiconductors  If a semiconductor is doped with a trivalent impurity ( Group 13 elements) such as Aluminium (Al) , Indium (In) , the extrinsic semiconductor is called P Type semiconductor.
  • 6. P – N JUNCTION DIODE  When a p –type semiconductor is suitably joined to an n – type semiconductor, their contact surface is called p-n junction.  The electronic device consisting of a p-n junction is called diode.  Potential barrier: When a p-n junction is formed, the electrons diffuse across the junction from n-type to p- type crystal du to concentration difference( of electrons.) Similarly holes diffuse from p-type to n-type crystal. As a result the n-type crystal acquires a positive potential and p-type crystal acquires a negative potential. The potential difference created across the p-n junction due to the diffusion of holes and electrons is called barrier potential.  The potential difference blocks the diffusion of holes and a depletion layer is developed at the junction.  The thickness of depletion layer is about 10-6m.
  • 7. P-n junction in forward bias and reverse bias Forward Bias  Some concepts  Effective barrier height becomes VO - V.  Depletion layer decreases. i. This is the principle on which LED works. Reverse bias  Some Concepts  Effective barrier height becomes V + VO .  Depletion layer increases. Where VO is the barrier potential.
  • 8. (Coutesy:http://www.tmi.vu.lt/legacy/pfk/funkc_dariniai/diod/index.html) Graph for p-n junction at forward and reverse bias  Beyond knee voltage, there is a steep rise.  In forward bias, there is knee voltage and in reverse bias, there is zener voltage.
  • 9. LIGHT EMITTING DIODE ( led)  These are specially designed diodes which give out light radiations when forward biased.  It is heavily doped p-n junction.  On recombination, energy released in the form of photons.  Photons with energy equal to or slightly less than the band gap are emitted.  When the forward current of the diode is small, the intensity of light emitted is small.  As the forward current increases the intensity of light increases and reaches a maximum.  Further increases in the forward current results in decrease of light intensity.  The reverse breakdown voltages of LED are very low, typically around 5V.  LEDs that can emit red, yellow, orange, green and blue light.  LEDs are made of GaAs1-xPx ( Eg ~ 1.9eV for red LED) , GaAs(Eg~1.4eV) is used for making infrared LED
  • 10. Major contributions by Various Scientists on LEDS  1920 -Oleg V. Losev studied the phenomena of light emitting diodes in radio sets. His first work on 'LEDs' involved a report on light emission from SiC. In 1927 he published a detailed report but his work was not well known until the 1950s when his papers resurfaced.  1961 - Bob Biard and Gary Pittman developed the Infrared LED at Texas instruments. This was the first modern LED. It was discovered by 'accident' while TI tried to make a laser diode. The discovery was made during a test of a tunnel diode using a zinc diffused area of a GaAs (Gallium Arsenide) semi-insulating substrate.  1962 - Nick Holonyack Jr. develops the red LED, the first LED of visible light. He used GaAsP (Gallium Arsenide Phosphide) on a GaAs substrate. General Electric.
  • 11. Research on Use of LED in place of incandescent lamps!!!  Advantages of LEDs over conventional incandescent lamp are :  Low operational voltage and less power.  Fast action and no warm- up time required.  The bandwidth of emitted light is 100 A to 500 A or in other words it is nearly but exactly monochromatic.  Long life and ruggedness  Fast on-off switching capability
  • 12. Basic advantages of LED Light  Energy efficient - LED’s are now capable of outputting 135 lumens/watt  Long Lifetime - 50,000 hours or more if properly engineered  Rugged - LED’s are also called “Solid State Lighting (SSL) as they are made of solid material with no filament or tube or bulb to break  No warm-up period - LED’s light instantly – in nanoseconds  Not affected by cold temperatures - LED’s “like” low temperatures and will start-up even in sub-zero weather  Directional - With LED’s you can direct the light where you want it, thus no light is wasted  Excellent Colour Rendering - LED’s do not wash out colours like other light sources such as fluorescents, making them perfect for displays and retail applications  Environmentally friendly - LED’s contain no mercury or other hazardous substances  Controllable - LED’s can be controlled for brightness and colour. OLED organic leds These are LEDs in which the electroluminescent layer is made up of a film of organic compounds.Eg- poly(p-phenylene vinylene).
  • 13. Disadvantages of leds  There are concerns that LEDs do not provide the warmth that ordinary bulbs give when lit.  LEDs are currently more expensive, on an initial capital cost basis, than more conventional lighting technologies. However, when considering the total cost of ownership (including energy and maintenance costs), LEDs far surpass incandescent or halogen sources and begin to threaten compact fluorescent lamps.  The Chart Below compares different light sources based upon the life of the bulb and the electrical cost at 10 cents per kWh (kilowatt hour). Note: fixture costs and installation costs are not included.  LED performance largely depends on correctly engineering the fixture to manage the heat generated by the LED, which causes deterioration of the LED chip itself. Over-driving the LED or not engineering the product to manage heat in high ambient temperatures may result in overheating of the LED package, eventually leading to device failure. Adequate heat-sinking is required to maintain long life. The most common design of a heat sink is a metal device with many fins, which conducts the heat away from the LED.  LEDs must be supplied with the correct voltage and current at a constant flow. This requires some electronics expertise to design the electronic drivers.  LED’s can shift colour due to age and temperature. Also two different white LED will have two different color characteristics, which affect how the light is perceived.
  • 14. Thank You Special Thanks to the Foundation Course : Science and Life As I could avail this great opportunity of making this presentation “Since every opportunity is like a heartbeat so we should not miss it.”