SlideShare une entreprise Scribd logo
1  sur  271
Télécharger pour lire hors ligne
Mathématiques - Informatique
Bruno Lévy
ALICE Géométrie & Lumière
CENTRE INRIA Nancy Grand-Est
Symposium on Geometry Processing – Paris – 2018
Course on Numerical Optimal Transport – Bruno Lévy
Part. 1. Goals and Motivations
Part. 2. Introduction to Optimal Transport
Part. 3. Semi-Discrete Optimal Transport
Part. 4. Applications in Computational Physics
OVERVIEW
Goals and Motivations
1
Part. 1 Optimal Transport
Goal #1: “Understanding”
Part. 1 Optimal Transport
Goal #1: “Understanding”
What I can’t create
I don’t understand
Richard Feynman
Part. 1 Optimal Transport
Goal #1: “Understanding”
Jos Stam,
Stable Fluids, 1999
The art of fluid sim.
Understand fluids
Explain
Program
Part. 1 Optimal Transport
Goal #1: “Understanding”
I wrote code
Part. 1 Optimal Transport
Goal #1: “Understanding”
Your mission statement:
1. Understand the stuff
2. Explain it in simple terms
Be a good teacher, to others and to yourself
Know what you know and what you don’t know
Try to know what you don’t know
3. Program it
Part. 1 Optimal Transport
Measuring distances between functions
Part. 1 Optimal Transport
Measuring distances between functions
Part. 1 Optimal Transport
Measuring distances between functions
Part. 1 Optimal Transport
Measuring distances between function
Part. 1 Optimal Transport
Interpolating functions
Part. 1 Optimal Transport
Interpolating functions
Part. 1 Optimal Transport
Interpolating functions
Part. 1 Optimal Transport
Interpolating functions
Part. 1 Optimal Transport
Interpolating functions
Part. 1 Optimal Transport
Interpolating functions
Part. 1 Optimal Transport
Interpolating functions
Part. 1 Optimal Transport
Interpolating functions
Part. 1 Optimal Transport
Interpolating functions
Part. 1 Optimal Transport
Interpolating functions
Part. 1 Optimal Transport
Interpolating functions
Part. 1 Optimal Transport
Interpolating functions
Part. 1 Optimal Transport
Gaspard Monge - 1784
Part. 1 Optimal Transport
Gaspard Monge – geometry and light
ANR TOMMI Workshop
Cédric Villani
Optimal Transport Old & New
Topics on Optimal Transport
Yann Brenier
The polar factorization theorem
(Brenier Transport)
Part. 1 Optimal Transport
Monge-Brenier-Villani, the french connection
Part. 1 Optimal Transport
[Castro, Merigot, Thibert 2014]
Optimal transport
geometry and light
[Caffarelli, Kochengin, and Oliker 1999]
Part. 1 Optimal Transport – Image Processing
Barycenters / mixing textures
Video-style transfer,
A.I., “data sciences”
[Nicolas Bonneel, Julien Rabin, Gabriel
Peyŕe, Hanspeter Pfister]
[Nicolas Bonneel, Kalyan Sunkavalli, Sylvain
Paris, Hanspeter Pfister]
[Marco Cuturi, Gabriel Peyré]
Part. 1 Optimal Transport
Optimal transport - geometry and light
[Chwartzburg, Testuz, Tagliasacchi, Pauly, SIGGRAPH 2014]
Part. 1. Motivations
Discretization of functionals involving the Monge-Ampère operator,
Benamou, Carlier, Mérigot, Oudet
arXiv:1408.4536
The variational formulation of the Fokker-Planck equation
Jordan, Kinderlehrer and Otto
SIAM J. on Mathematical Analysis
Geostrophic current
Part. 1 Optimal Transport
How to “morph” a shape into another one of same mass
while minimizing the “effort” ?
?
T
Part. 1 Optimal Transport
How to “morph” a shape into another one of same mass
while minimizing the “effort” ?
?
T
The “effort” of the best T defines a distance between the shapes
Part. 1 Optimal Transport
How to “morph” a shape into another one
while preserving mass and minimizing the effort ?
?
T
Part. 1 Optimal Transport
Part. 1 Optimal Transport
How to “morph” a shape into another one
while preserving mass and minimizing the effort ?
?
T
“minimum action principle”
Part. 1 Optimal Transport
How to “morph” a shape into another one
while preserving mass and minimizing the effort ?
?
T
“minimum action principle”“conservation law”
Part. 1 Optimal Transport
“minimum action principle subject to conservation law”
OT=
Yann Brenier:
“Each time the Laplace operator is used in a PDE,
it can be replaced with the Monge-Ampère operator”
Part. 1 Optimal Transport
“minimum action principle subject to conservation law”
OT=
Yann Brenier:
“Each time the Laplace operator is used in a PDE,
it can be replaced with the Monge-Ampère operator”
New ways of simulating physics with a computer
Part. 1 Optimal Transport
“minimum action principle subject to conservation law”
OT=
Yann Brenier:
“Each time the Laplace operator is used in a PDE,
it can be replaced with the Monge-Ampère operator”
New ways of simulating physics with a computer
Fast Fourier Transform
Part. 1 Optimal Transport
“minimum action principle subject to conservation law”
OT=
Yann Brenier:
“Each time the Laplace operator is used in a PDE,
it can be replaced with the Monge-Ampère operator”
New ways of simulating physics with a computer
Fast Fourier Transform Fast OT algo. ???
Optimal Transport
an elementary introduction
2
Part. 2 Optimal Transport – Monge’s problem
(X;μ) (Y;ν)
Two measures μ, ν such that ∫dμ(x) = ∫dν(x)
X Y
Part. 2 Optimal Transport – Monge’s problem
A map T is a transport map between μ and ν if
μ(T-1(B)) = ν(B) for any Borel subset B of Y
(X;μ) (Y;ν)
(Borel subset = subset that can be measured)
Part. 2 Optimal Transport – Monge’s problem
A map T is a transport map between μ and ν if
μ(T-1(B)) = ν(B) for any Borel subset B of Y
B
(X;μ) (Y;ν)
Part. 2 Optimal Transport – Monge’s problem
A map T is a transport map between μ and ν if
μ(T-1(B)) = ν(B) for any Borel subset B of Y
B
T-1(B)
(X;μ) (Y;ν)
Part. 2 Optimal Transport – Monge’s problem
A map T is a transport map between μ and ν if
μ(T-1(B)) = ν(B) for any Borel subset B of Y
Notation: if T is a transport map between μ and ν
then one writes ν = T#μ (ν is the pushforward of μ)
(X;μ) (Y;ν)
Part. 2 Optimal Transport – Monge’s problem
Monge’s problem:
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
(X;μ) (Y;ν)
Part. 2 Optimal Transport – Monge’s problem
Monge’s problem:
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
• Difficult to study
• If μ has an atom (isolated Dirac),
it can only be mapped to another Dirac
(T needs to be a map)
Part. 2 Optimal Transport – Monge’s problem
Monge’s problem:
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
Transport from a measure concentrated on L1 onto another one concentrated on L2 and L3
Part. 2 Optimal Transport – Monge’s problem
Monge’s problem:
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
Transport from a measure concentrated on L1 onto another one concentrated on L2 and L3
Part. 2 Optimal Transport – Monge’s problem
Monge’s problem:
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
Transport from a measure concentrated on L1 onto another one concentrated on L2 and L3
Part. 2 Optimal Transport – Monge’s problem
Monge’s problem:
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
Transport from a measure concentrated on L1 onto another one concentrated on L2 and L3
The infimum is never realized by a map, need for a relaxation
Part. 2 Optimal Transport – Kantorovich
Monge’s problem:
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
Kantorovich’s problem (1942):
Find a measure γ defined on X x Y
such that ∫x in X dγ(x,y) = dν(y)
and ∫y in Y dγ(x,y) = dμ(x)
that minimizes ∫∫X x Y || x – y ||2 dγ(x,y)
Part. 2 Optimal Transport – Kantorovich
Monge’s problem:
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
Kantorovich’s problem:
Find a measure γ defined on X x Y
such that ∫x in X dγ(x,y) = dν(y)
and ∫y in Y dγ(x,y) = dμ(x)
that minimizes ∫∫X x Y || x – y ||2 dγ(x,y)
“γ(x,y)” :
How much sand goes from x to y
Part. 2 Optimal Transport – Kantorovich
Monge’s problem:
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
Kantorovich’s problem:
Find a measure γ defined on X x Y
such that ∫x in X dγ(x,y) = dν(y)
and ∫y in Y dγ(x,y) = dμ(x)
that minimizes ∫∫X x Y || x – y ||2 dγ(x,y)
Everything that is
transported from x sums to “μ(x)”
Part. 2 Optimal Transport – Kantorovich
Monge’s problem:
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
Kantorovich’s problem:
Find a measure γ defined on X x Y
such that ∫x in X dγ(x,y) = dν(y)
and ∫y in Y dγ(x,y) = dμ(x)
that minimizes ∫∫X x Y || x – y ||2 dγ(x,y)
Everything that is
transported to y sums to “ν(y)”
Part. 2 Optimal Transport – Kantorovich
Transport plan – example 1/4 : translation of a segment
Part. 2 Optimal Transport – Kantorovich
Transport plan – example 1/4 : translation of a segment
Part. 2 Optimal Transport – Kantorovich
Transport plan – example 2/4 : spitting a segment
Part. 2 Optimal Transport – Kantorovich
Part. 2 Optimal Transport – Kantorovich
Part. 2 Optimal Transport – Kantorovich
Part. 2 Optimal Transport – Kantorovich
Transport plan – example 3/4 : splitting a Dirac into two Diracs
Part. 2 Optimal Transport – Kantorovich
Transport plan – example 3/4 : splitting a Dirac into two Diracs
(No transport map)
Part. 2 Optimal Transport – Kantorovich
Transport plan – example 4/4 : splitting a Dirac into two segments
Part. 2 Optimal Transport – Kantorovich
Transport plan – example 4/4 : splitting a Dirac into two segments
(No transport map)
Part. 2 Optimal Transport – Duality
Part. 2 Optimal Transport – Duality
Duality is easier to understand with a discrete version
Then we’ll go back to the continuous setting.
Part. 2 Optimal Transport – Duality
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
Part. 2 Optimal Transport – Duality
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
γ =
γ11
γ12
…
γ1n
γ22
…
γ2n
…
…
γmn
Є IRmn
Part. 2 Optimal Transport – Duality
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
γ =
γ11
γ12
…
γ1n
γ22
…
γ2n
…
…
γmn
c =
c11
c12
…
c1n
c22
…
c2n
…
…
cmn
Є IRmnЄ IRmn
Part. 2 Optimal Transport – Duality
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
γ =
γ11
γ12
…
γ1n
γ22
…
γ2n
…
…
γmn
c =
c11
c12
…
c1n
c22
…
c2n
…
…
cmn
cij = || xi – yj ||2
Є IRmnЄ IRmn
Part. 2 Optimal Transport – Duality
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
γ =
γ11
γ12
…
γ1n
γ22
…
γ2n
…
…
γmn
c =
c11
c12
…
c1n
c22
…
c2n
…
…
cmn
cij = || xi – yj ||2
mn X m
Є IRmnЄ IRmn
Part. 2 Optimal Transport – Duality
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
γ =
γ11
γ12
…
γ1n
γ22
…
γ2n
…
…
γmn
c =
c11
c12
…
c1n
c22
…
c2n
…
…
cmn
cij = || xi – yj ||2
mn X n
mn X m
Є IRmnЄ IRmn
Part. 2 Optimal Transport – Duality
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
γ =
γ11
γ12
…
γ1n
γ22
…
γ2n
…
…
γmn
c =
c11
c12
…
c1n
c22
…
c2n
…
…
cmn
Є IRmnЄ IRmn
mn X n
mn X m
Part. 2 Optimal Transport – Duality
Consider L(φ,ψ) = <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v>
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
< u, v > denotes the dot product between u and v
Part. 2 Optimal Transport – Duality
Consider L(φ,ψ) = <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v>
Remark: Sup[ L(φ,ψ) ] = < c, γ> if P1 γ = u and P2 γ = v
φ Є IRm
ψ Є IRn
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
Part. 2 Optimal Transport – Duality
Consider L(φ,ψ) = <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v>
Remark: Sup[ L(φ,ψ) ] = < c, γ> if P1 γ = u and P2 γ = v
φ Є IRm
ψ Є IRn
= +∞ otherwise
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
Part. 2 Optimal Transport – Duality
Consider L(φ,ψ) = <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v>
Remark: Sup[ L(φ,ψ) ] = < c, γ> if P1 γ = u and P2 γ = v
φ Є IRm
ψ Є IRn
= +∞ otherwise
Consider now: Inf [ Sup[ L(φ,ψ) ] ]
φ Є IRm
ψ Є IRn
γ ≥ 0
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
Part. 2 Optimal Transport – Duality
Consider L(φ,ψ) = <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v>
Remark: Sup[ L(φ,ψ) ] = < c, γ> if P1 γ = u and P2 γ = v
φ Є IRm
ψ Є IRn
= +∞ otherwise
Consider now: Inf [ Sup[ L(φ,ψ) ] ] = Inf [ < c, γ> ]
φ Є IRm
ψ Є IRn
γ ≥ 0 γ ≥ 0
P1 γ = u
P2 γ = v
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
Part. 2 Optimal Transport – Duality
Consider L(φ,ψ) = <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v>
Remark: Sup[ L(φ,ψ) ] = < c, γ> if P1 γ = u and P2 γ = v
φ Є IRm
ψ Є IRn
= +∞ otherwise
Consider now: Inf [ Sup[ L(φ,ψ) ] ] = Inf [ < c, γ> ] (DMK)
φ Є IRm
ψ Є IRn
γ ≥ 0 γ ≥ 0
P1 γ = u
P2 γ = v
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
Part. 2 Optimal Transport – Duality
φ Є IRm
ψ Є IRn
γ ≥ 0
Inf [ Sup[ <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v> ] ]
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
Part. 2 Optimal Transport – Duality
φ Є IRm
ψ Є IRn
γ ≥ 0
Inf [ Sup[ <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v> ] ]
φ Є IRm
ψ Є IRn
γ ≥ 0
Sup[ Inf[ <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v> ] ]
Exchange Inf Sup
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
Part. 2 Optimal Transport – Duality
φ Є IRm
ψ Є IRn
γ ≥ 0
Inf [ Sup[ <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v> ] ]
φ Є IRm
ψ Є IRn
γ ≥ 0
Sup[ Inf[ <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v> ] ]
φ Є IRm
ψ Є IRn
γ ≥ 0
Sup[ Inf[ < γ,c-P1
t φ – P2
t ψ > + <φ,u> + <ψ, v> ] ]
Exchange Inf Sup
Expand/Reorder/Collect
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
Part. 2 Optimal Transport – Duality
φ Є IRm
ψ Є IRn
γ ≥ 0
Inf [ Sup[ <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v> ] ]
φ Є IRm
ψ Є IRn
γ ≥ 0
Sup[ Inf[ <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v> ] ]
φ Є IRm
ψ Є IRn
γ ≥ 0
Sup[ Inf[ < γ,c-P1
t φ – P2
t ψ > + <φ,u> + <ψ, v> ] ]
Exchange Inf Sup
Expand/Reorder/Collect
Interpret
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
Part. 2 Optimal Transport – Duality
φ Є IRm
ψ Є IRn
γ ≥ 0
Sup[ Inf[ < γ,c-P1
t φ – P2
t ψ > + <φ,u> + <ψ, v> ] ]
Interpret
Sup[ <φ,u> + <ψ, v> ]
φ Є IRm
ψ Є IRn
P1
t φ + P2
t ψ ≤ c
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
(DDMK)
Part. 2 Optimal Transport – Duality
φ Є IRm
ψ Є IRn
γ ≥ 0
Sup[ Inf[ < γ,c-P1
t φ – P2
t ψ > + <φ,u> + <ψ, v> ] ]
Interpret
Sup[ <φ,u> + <ψ, v> ]
φ Є IRm
ψ Є IRn
P1
t φ + P2
t ψ ≤ c
φi + ψj ≤ cij (i,j)
A
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
(DDMK)
Part. 2 Optimal Transport – Kantorovich dual
Kantorovich’s problem:
Find a measure γ defined on X x Y
such that ∫x in X dγ(x,y) = dμ(x)
and ∫y in Y dγ(x,y) = dν(x)
that minimizes ∫∫X x Y || x – y ||2 dγ(x,y)
Dual formulation of Kantorovich’s problem (Continuous):
Find two functions φ in L1(μ) and ψ in L1(ν)
Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2
that maximize ∫X φdμ + ∫Y ψdν
Part. 2 Optimal Transport – Kantorovich dual
Kantorovich’s problem:
Find a measure γ defined on X x Y
such that ∫x in X dγ(x,y) = dμ(x)
and ∫y in Y dγ(x,y) = dν(x)
that minimizes ∫∫X x Y || x – y ||2 dγ(x,y)
Dual formulation of Kantorovich’s problem:
Find two functions φ in L1(μ) and ψ in L1(ν)
Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2
that maximize ∫X φdμ + ∫Y ψdν
Your point of view:
Try to minimize transport cost
Part. 2 Optimal Transport – Kantorovich dual
Kantorovich’s problem:
Find a measure γ defined on X x Y
such that ∫x in X dγ(x,y) = dμ(x)
and ∫y in Y dγ(x,y) = dν(x)
that minimizes ∫∫X x Y || x – y ||2 dγ(x,y)
Dual formulation of Kantorovich’s problem:
Find two functions φ in L1(μ) and ψ in L1(ν)
Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2
that maximize ∫X φdμ + ∫Y ψdν
Point of view of a “transport company”:
Try to maximize transport price
Your point of view:
Try to minimize transport cost
Part. 2 Optimal Transport – Kantorovich dual
Kantorovich’s problem:
Find a measure γ defined on X x Y
such that ∫x in X dγ(x,y) = dμ(x)
and ∫y in Y dγ(x,y) = dν(x)
that minimizes ∫∫X x Y || x – y ||2 dγ(x,y)
Dual formulation of Kantorovich’s problem:
Find two functions φ in L1(μ) and ψ in L1(ν)
Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2
that maximize ∫X φ(x)dμ + ∫Y ψ(y)dν
What they charge for loading at x
Your point of view:
Try to minimize transport cost
Part. 2 Optimal Transport – Kantorovich dual
Kantorovich’s problem:
Find a measure γ defined on X x Y
such that ∫x in X dγ(x,y) = dμ(x)
and ∫y in Y dγ(x,y) = dν(x)
that minimizes ∫∫X x Y || x – y ||2 dγ(x,y)
Dual formulation of Kantorovich’s problem:
Find two functions φ in L1(μ) and ψ in L1(ν)
Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2
that maximize ∫X φ(x)dμ + ∫Y ψ(y)dν
What they charge for loading at x What they charge for unloading at y
Your point of view:
Try to minimize transport cost
Part. 2 Optimal Transport – Kantorovich dual
Kantorovich’s problem:
Find a measure γ defined on X x Y
such that ∫x in X dγ(x,y) = dμ(x)
and ∫y in Y dγ(x,y) = dν(x)
that minimizes ∫∫X x Y || x – y ||2 dγ(x,y)
Dual formulation of Kantorovich’s problem:
Find two functions φ in L1(μ) and ψ in L1(ν)
Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2
that maximize ∫X φ(x)dμ + ∫Y ψ(y)dν
What they charge for loading at x What they charge for unloading at y
Price (loading + unloading) cannot
be greater than transport cost
(else you do the job yourself)
Your point of view:
Try to minimize transport cost
Part. 2 Optimal Transport – c-conjugate functions
Dual formulation of Kantorovich’s problem:
Find two functions φ in L1(μ) and ψ in L1(ν)
Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2
that maximize ∫X φ(x)dμ + ∫Y ψ(y)dν
Part. 2 Optimal Transport – c-conjugate functions
Dual formulation of Kantorovich’s problem:
Find two functions φ in L1(μ) and ψ in L1(ν)
Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2
that maximize ∫X φ(x)dμ + ∫Y ψ(y)dν
If we got two functions φ and ψ that satisfy the constraint
Then it is possible to obtain a better solution by replacing ψ with φc defined by:
For all y, φc(y) = inf x in X ½|| x – y ||2 - φ(y)
Part. 2 Optimal Transport – c-conjugate functions
Dual formulation of Kantorovich’s problem:
Find two functions φ in L1(μ) and ψ in L1(ν)
Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2
that maximize ∫X φ(x)dμ + ∫Y ψ(y)dν
If we got two functions φ and ψ that satisfy the constraint
Then it is possible to obtain a better solution by replacing ψ with φc defined by:
For all y, φc(y) = inf x in X ½|| x – y ||2 - φ(y)
• φc is called the c-conjugate function of φ
• If there is a function φ such that ψ = φc then ψ is said to be c-concave
• If ψ is c-concave, then ψ cc = ψ
Part. 2 Optimal Transport – c-conjugate functions
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
Part. 2 Optimal Transport – c-conjugate functions
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
ψ is called a “Kantorovich potential”
Part. 2 Optimal Transport – c-subdifferential
What about our initial problem ?
ψ is called a “Kantorovich potential”
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
Part. 2 Optimal Transport – c-subdifferential
What about our initial problem ? (i.e., this is T() that we want to find …)
ψ is called a “Kantorovich potential”
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
Part. 2 Optimal Transport – c-subdifferential
Part. 2 Optimal Transport – c-subdifferential
Proof: see OTON, chap. 10.
Part. 2 Optimal Transport – c-subdifferential
Proof: see OTON, chap. 10.
Heuristic argument (at the beginning of the same chapter):
Part. 2 Optimal Transport – c-subdifferential
Proof: see OTON, chap. 10.
Heuristic argument (at the beginning of the same chapter):
Part. 2 Optimal Transport – c-subdifferential
Proof: see OTON, chap. 10.
Heuristic argument (at the beginning of the same chapter):
Part. 2 Optimal Transport – c-subdifferential
Proof: see OTON, chap. 10.
Heuristic argument (at the beginning of the same chapter):
Part. 2 Optimal Transport – c-subdifferential
Proof: see OTON, chap. 10.
Heuristic argument (at the beginning of the same chapter):
Part. 2 Optimal Transport – c-subdifferential
Proof: see OTON, chap. 10.
Heuristic argument (at the beginning of the same chapter):
Part. 2 Optimal Transport – c-subdifferential
Proof: see OTON, chap. 10.
Heuristic argument (at the beginning of the same chapter):
w
Part. 2 Optimal Transport – c-subdifferential
Proof: see OTON, chap. 10.
Heuristic argument (at the beginning of the same chapter):
-w
Part. 2 Optimal Transport – c-subdifferential
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
Part. 2 Optimal Transport – c-subdifferential
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
{
grad ψ(x) with ψ(x) := (½ x2- ψ(x))
Part. 2 Optimal Transport – convexity
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
{
grad ψ(x) with ψ(x) := (½ x2- ψ(x))
ψ is convex
Part. 2 Optimal Transport – convexity
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
{
grad ψ(x) with ψ(x) := (½ x2- ψ(x))
ψ is convex
Part. 2 Optimal Transport – convexity
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
{
grad ψ(x) with ψ(x) := (½ x2- ψ(x))
ψ is convex
Part. 2 Optimal Transport – no collision
If T(.) exists, then
T(x) = x – grad ψ(x) = grad (½ x2- ψ(x) )
{grad ψ (x)
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
ψ is convex
Two transported particles cannot “collide”
Part. 2 Optimal Transport – no collision
If T(.) exists, then
T(x) = x – grad ψ(x) = grad (½ x2- ψ(x) )
{grad ψ (x)
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
ψ is convex
Two transported particles cannot “collide”
Part. 2 Optimal Transport – no collision
If T(.) exists, then
T(x) = x – grad ψ(x) = grad (½ x2- ψ(x) )
{grad ψ (x)
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
ψ is convex
Two transported particles cannot “collide”
Part. 2 Optimal Transport – Monge-Ampere
What about our initial problem ? If T(.) exists, then one can show that:
T(x) = x – grad ψ(x) = grad (½ x2- ψ(x) )
{
for all borel set A, ∫A dμ = ∫T(A) (|JT|) dν (change of variable)
Jacobian of T (1st order derivatives)
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
grad ψ(x) with ψ(x) := (½ x2- ψ(x))
Part. 2 Optimal Transport – Monge-Ampere
What about our initial problem ? If T(.) exists, then one can show that:
T(x) = x – grad ψ(x) = grad (½ x2- ψ(x) )
{
for all borel set A, ∫A dμ = ∫T(A) (|JT|) dν = ∫T(A) (H ψ ) dν
Det. of the Hessian of ψ (2nd order derivatives)
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
grad ψ(x) with ψ(x) := (½ x2- ψ(x))
Part. 2 Optimal Transport – Monge-Ampere
What about our initial problem ?
T(x) = x – grad ψ(x) = grad (½ x2- ψ(x) )
{
When μ and ν have a density u and v, (H ψ(x)). v(grad ψ(x)) = u(x)
Monge-Ampère
equation
for all borel set A, ∫A dμ = ∫T(A) (|JT|) dν = ∫T(A) (H ψ ) dν
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
{grad ψ(x) with ψ(x) := (½ x2- ψ(x))
Part. 2 Optimal Transport – summary
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
Part. 2 Optimal Transport – summary
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
After several rewrites and under some conditions….
(Kantorovich formulation, dual, c-convex functions)
Part. 2 Optimal Transport – summary
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
After several rewrites and under some conditions….
(Kantorovich formulation, dual, c-convex functions)
Monge-Ampère equation
(When μ and ν have a density u and v resp.)
Solve (H ψ(x)). v(grad ψ(x)) = u(x)
Part. 2 Optimal Transport – summary
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
After several rewrites and under some conditions….
(Kantorovich formulation, dual, c-convex functions)
Brenier, Mc Cann, Trudinger: The optimal transport map is then given by:
T(x) = grad ψ(x)
Solve (H ψ(x)). v(grad ψ(x)) = u(x) Monge-Ampère equation
(When μ and ν have a density u and v resp.)
Semi-Discrete Optimal Transport
3
Part. 3 Optimal Transport – how to program ?
Continuous
(X;μ) (Y;ν)
Part. 3 Optimal Transport – how to program ?
Continuous
Semi-discrete
(X;μ) (Y;ν)
Part. 3 Optimal Transport – how to program ?
Continuous
Semi-discrete
Discrete
(X;μ) (Y;ν)
Part. 3 Optimal Transport – how to program ?
Continuous
Semi-discrete
Discrete
(X;μ) (Y;ν)
Part. 3 Optimal Transport – semi-discrete
∫X ψc (x)dμ + ∫Y ψ(y)dν
Sup
ψ Є ψc
(DMK)
(X;μ) (Y;ν)
Part. 3 Optimal Transport – semi-discrete
(X;μ) (Y;ν)
∑j ψ(yj) vj
∫X ψc (x)dμ + ∫Y ψ(y)dν
Sup
ψ Є ψc
(DMK)
Part. 3 Optimal Transport – semi-discrete
∫X ψc (x)dμ + ∫Y ψ(y)dν
Sup
ψ Є ψc
(DMK)
∑j ψ(yj) vj
Part. 3 Optimal Transport – semi-discrete
∫X ψc (x)dμ + ∫Y ψ(y)dν
Sup
ψ Є ψc
(DMK)
∫X inf yj ЄY [ || x – yj ||2 - ψ(yj) ] dμ
∑j ψ(yj) vj
Part. 3 Optimal Transport – semi-discrete
∫X ψc (x)dμ + ∫Y ψ(y)dν
Sup
ψ Є ψc
(DMK)
∑j ∫Lagψ(yj) || x – yj ||2 - ψ(yj) dμ
∫X inf yj ЄY [ || x – yj ||2 - ψ(yj) ] dμ
∑j ψ(yj) vj
Part. 3 Optimal Transport – semi-discrete
G(ψ) =∑j ∫Lag ψ(yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj
Sup
ψ Є ψc
(DMK)
Where: Lag ψ(yj) = { x | || x – yj ||2 – ψ(yj) < || x – yj ||2 - ψ(yj’) } for all j’ ≠ j
Part. 3 Optimal Transport – semi-discrete
G(ψ) =∑j ∫Lag ψ(yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj
Sup
ψ Є ψc
(DMK)
Where: Lag ψ(yj) = { x | || x – yj ||2 – ψ(yj) < || x – yj ||2 - ψ(yj’) } for all j’ ≠ j
Laguerre diagram of the yj’s
(with the L2 cost || x – y ||2 used here, Power diagram)
Part. 3 Optimal Transport – semi-discrete
G(ψ) =∑j ∫Lag ψ(yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj
Sup
ψ Є ψc
(DMK)
Where: Lag ψ(yj) = { x | || x – yj ||2 – ψ(yj) < || x – yj ||2 - ψ(yj’) } for all j’ ≠ j
Laguerre diagram of the yj’s
(with the L2 cost || x – y ||2 used here, Power diagram)
Weight of yj in the power diagram
Part. 3 Optimal Transport – semi-discrete
G(ψ) =∑j ∫Lag ψ(yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj
Sup
ψ Є ψc
(DMK)
Where: Lag ψ(yj) = { x | || x – yj ||2 – ψ(yj) < || x – yj ||2 - ψ(yj’) } for all j’ ≠ j
Laguerre diagram of the yj’s
(with the L2 cost || x – y ||2 used here, Power diagram)
Weight of yj in the power diagram
ψ is determined by the
weight vector [ψ(y1) ψ(y2) … ψ(ym)]
Voronoi diagram: Vor(xi) = { x | d2(x,xi) < d2(x,xj) }
Part. 3 Power Diagrams
Power diagram: Pow(xi) = { x | d2(x,xi) – ψi < d2(x,xj) – ψj }
Voronoi diagram: Vor(xi) = { x | d2(x,xi) < d2(x,xj) }
Part. 3 Power Diagrams
Part. 3 Power Diagrams
Part. 3 Optimal Transport
Theorem: (direct consequence of MK duality
alternative proof in [Aurenhammer, Hoffmann, Aronov 98] ):
Given a measure μ with density, a set of points (yj), a set of positive coefficients vj
such that ∑ vj = ∫ dμ(x), it is possible to find the weights W = [ψ(y1) ψ(y2) … ψ(ym)]
such that the map TS
W is the unique optimal transport map
between μ and ν = ∑ vj δ(yj)
Part. 3 Optimal Transport
Theorem: (direct consequence of MK duality
alternative proof in [Aurenhammer, Hoffmann, Aronov 98] ):
Given a measure μ with density, a set of points (yj), a set of positive coefficients vj
such that ∑ vj = ∫ dμ(x), it is possible to find the weights W = [ψ(y1) ψ(y2) … ψ(ym)]
such that the map TS
W is the unique optimal transport map
between μ and ν = ∑ vj δ(yj)
Proof: G(ψ) =∑j ∫Lag ψ(yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj
Is a concave function of the weight vector [ψ(y1) ψ(y2) … ψ(ym)]
Part. 3 Optimal Transport
Theorem: (direct consequence of MK duality
alternative proof in [Aurenhammer, Hoffmann, Aronov 98] ):
Given a measure μ with density, a set of points (yj), a set of positive coefficients vj
such that ∑ vj = ∫ dμ(x), it is possible to find the weights W = [ψ(y1) ψ(y2) … ψ(ym)]
such that the map TS
W is the unique optimal transport map
between μ and ν = ∑ vj δ(yj)
Proof: G(ψ) =∑j ∫Lag ψ(yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj
Is a concave function of the weight vector [ψ(y1) ψ(y2) … ψ(ym)]
Part. 3 Optimal Transport – the AHA paper
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
The (unknown) weights W = [ψ(y1) ψ(y2) … ψ(ym)]
Part. 3 Optimal Transport – the AHA paper
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
T : an arbitrary but fixed assignment.
Part. 3 Optimal Transport – the AHA paper
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
T : an arbitrary but fixed assignment.
Part. 3 Optimal Transport – the AHA paper
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
T : an arbitrary but fixed assignment.
Part. 3 Optimal Transport – the AHA paper
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
T : an arbitrary but fixed assignment.
Part. 3 Optimal Transport – the AHA paper
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
W
fT(W)
fT(W)
Part. 3 Optimal Transport – the AHA paper
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
W
fT(W)
fT(W)
Part. 3 Optimal Transport – the AHA paper
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
fT(W) is linear in W
fT(W)
W
fT(W)
Fixed T
Part. 3 Optimal Transport – the AHA paper
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
fT(W) is linear in W
f TW
(W) : defined by Laguerre diagram
fT(W)
fixed W
W
Part. 3 Optimal Transport – the AHA paper
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
fT(W) is linear in W
f TW
(W) = minT fT(W)
fT(W)
fixed W
W
Part. 3 Optimal Transport – the AHA paper
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
fT(W) is linear in W
f: W → f TW
(W) is concave !!
(because its graph is the lower
enveloppe of linear functions)
fT(W)
W
fT(W)
f TW
(W) = minT fT(W)
Part. 3 Optimal Transport – the AHA paper
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
fT(W) is linear in W
f: W → f TW
(W) is concave
(because its graph is the lower
enveloppe of linear functions)
fT(W)
W
fT(W)
f TW
(W) = minT fT(W)
Consider g(W) = f TW
(W) + ∑vj ψj
Part. 3 Optimal Transport – the AHA paper
fT(W)
W
fT(W)
f TW
(W) = minT fT(W)
Consider g(W) = f TW
(W) + ∑vj ψj
vj -∫Lag
ψ
(yj) dμ(x) and g is concave.∂ g / ∂ ψ j =
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
fT(W) is linear in W
f: W → f TW
(W) is concave
(because its graph is the lower
enveloppe of linear functions)
Part. 3 Optimal Transport – the algorithm
Semi-discrete OT Summary:
∫X ψc (x)dμ + ∫Y ψ(y)dν
Sup
ψ Є ψc
(DMK) G(ψ) =
Part. 3 Optimal Transport – the algorithm
Semi-discrete OT Summary:
G(ψ) = g(W) =∑j ∫Lag
ψ
(yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj is concave
∫X ψc (x)dμ + ∫Y ψ(y)dν
Sup
ψ Є ψc
(DMK) G(ψ) =
Part. 3 Optimal Transport – the algorithm
Semi-discrete OT Summary:
G(ψ) = g(W) =∑j ∫Lag
ψ
(yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj is concave
vj -∫Lag(yj)dμ(x) (= 0 at the maximum)∂ G / ∂ ψ j =
∫X ψc (x)dμ + ∫Y ψ(y)dν
Sup
ψ Є ψc
(DMK) G(ψ) =
Part. 3 Optimal Transport – the algorithm
Semi-discrete OT Summary:
G(ψ) = g(W) =∑j ∫Lag
ψ
(yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj is concave
vj -∫Lag(yj)dμ(x) (= 0 at the maximum)∂ G / ∂ ψ j =
∫X ψc (x)dμ + ∫Y ψ(y)dν
Sup
ψ Є ψc
(DMK) G(ψ) =
Desired mass at yj Mass transported to yj
Part. 3 Optimal Transport – the Hessian
vj -∫Lag(yj)dμ(x)∂ G / ∂ ψ j =
Part. 3 Optimal Transport – the Hessian
vj -∫Lag(yj)dμ(x)∂ G / ∂ ψ j =
∂
2
G / ∂ ψ i ψ j = - ∂ / ∂ ψ j ∫Lag(yj)dμ(x)
Part. 3 Optimal Transport – the Hessian
vj -∫Lag(yj)dμ(x)∂ G / ∂ ψ j =
∂
2
G / ∂ ψ i ψ j = - ∂ / ∂ ψ j ∫Lag(yj)dμ(x)
yi
yj
Part. 3 Optimal Transport – the Hessian
vj -∫Lag(yj)dμ(x)∂ G / ∂ ψ j =
∂
2
G / ∂ ψ i ψ j = - ∂ / ∂ ψ j ∫Lag(yj)dμ(x)
yi
yj
ψ j ψ j + δψ j
Part. 3 Optimal Transport – the Hessian
vj -∫Lag(yj)dμ(x)∂ G / ∂ ψ j =
∂
2
G / ∂ ψ i ψ j = - ∂ / ∂ ψ j ∫Lag(yj)dμ(x)
yi
yj
ψ j ψ j + δψ j
Reynold’s thm:
∂ / ∂ ψ j ∫Lag(yj)dμ(x) = ∫∂ Lag(yj) v.n dμ(x)
Part. 3 Optimal Transport – the Hessian
yi
yj
Reynold’s thm:
∂ / ∂ ψ j ∫Lag(yj)dμ(x) = ∫∂ Lag(yj) v.n dμ(x)
fij(x) = 0
Part. 3 Optimal Transport – the Hessian
yi
yj
Reynold’s thm:
∂ / ∂ ψ j ∫Lag(yj)dμ(x) = ∫∂ Lag(yj) v.n dμ(x)
fij(x) = 0
c(x,yi) - c(x,yj) + ψ j - ψ i = 0
Part. 3 the Hessian
yi
yj
Reynold’s thm:
∂ / ∂ ψ j ∫Lag(yj)dμ(x) = ∫∂ Lag(yj) v.n dμ(x)
fij(x) = 0
c(x,yi) - c(x,yj) + ψ j - ψ i = 0
δx
δψ j
dfij = gradx(c(x,yi) - c(x,yj))dx + dψ j
n
Part. 3 the Hessian
yi
yj
Reynold’s thm:
∂ / ∂ ψ j ∫Lag(yj)dμ(x) = ∫∂ Lag(yj) v.n dμ(x)
fij(x) = 0
c(x,yi) - c(x,yj) + ψ j - ψ i = 0
δx
δψ j
dfij = gradx(c(x,yi) - c(x,yj))dx + dψ j
n
δx = δh n = δh gradx fij(x) / || gradx fij(x)||
Part. 3 the Hessian
yi
yj
Reynold’s thm:
∂ / ∂ ψ j ∫Lag(yj)dμ(x) = ∫∂ Lag(yj) v.n dμ(x)
fij(x) = 0
c(x,yi) - c(x,yj) + ψ j - ψ i = 0
δx
δψ j
dfij = gradx(c(x,yi) - c(x,yj))dx + dψ j
n
δx = δh n = δh gradx fij(x) / || gradx fij(x)||
δh
Part. 3 the Hessian
yi
yj
Reynold’s thm:
∂ / ∂ ψ j ∫Lag(yj)dμ(x) = ∫∂ Lag(yj) v.n dμ(x)
fij(x) = 0
c(x,yi) - c(x,yj) + ψ j - ψ i = 0
δx
δψ j
dfij = gradx(c(x,yi) - c(x,yj))dx + dψ j
n
δx = δh n = δh gradx fij(x) / || gradx fij(x)||
δh
∂ h / ∂ ψ j = -1/ || gradx c(x,yi) – gradx c(x,yj) ||
Part. 3 the Hessian
yi
yj
Reynold’s thm:
∂ / ∂ ψ j ∫Lag(yj)dμ(x) = ∫∂ Lag(yj) v.n dμ(x)
fij(x) = 0
c(x,yi) - c(x,yj) + ψ j - ψ i = 0
δx
δψ j
dfij = gradx(c(x,yi) - c(x,yj))dx + dψ j
n
δx = δh n = δh gradx fij(x) / || gradx fij(x)||
δh
∂ h / ∂ ψ j = -1/ || gradx c(x,yi) – gradx c(x,yj) ||
∂ / ∂ ψ j ∫Lag(yj)dμ(x) = ∫Lag(yi) ∩Lag(yj) -1/|| gradx c(x,yi) – gradx c(x,yj) ||dμ(x)
Part. 3 the Hessian
∂
2
/ ∂ ψ i ∂ ψ j F = ∫Lag(yi) ∩ Lag(yj) -1/|| gradx c(x,yi) – gradx c(x,yj) ||dμ(x)
∂
2
/ ∂ ψ i
2 F = - ∑ ∂
2
/ ∂ ψ i ∂ ψ j
Part. 3 the Hessian
∂
2
/ ∂ ψ i ∂ ψ j F = ∫Lag(yi) ∩ Lag(yj) -1/|| gradx c(x,yi) – gradx c(x,yj) ||dμ(x)
∂
2
/ ∂ ψ i
2 F = - ∑ ∂
2
/ ∂ ψ i ∂ ψ j
c(x,y) = || x – y ||2
∂
2
/ ∂ ψ i ∂ ψ j F = ∫Lag(yi) ∩ Lag(yj) 1 / || xj – xi || dμ(x)
Part. 3 the Hessian
∂
2
/ ∂ ψ i ∂ ψ j F = ∫Lag(yi) ∩ Lag(yj) -1/|| gradx c(x,yi) – gradx c(x,yj) ||dμ(x)
∂
2
/ ∂ ψ i
2 F = - ∑ ∂
2
/ ∂ ψ i ∂ ψ j
c(x,y) = || x – y ||2
∂
2
/ ∂ ψ i ∂ ψ j F = ∫Lag(yi) ∩ Lag(yj) 1 / || xj – xi || dμ(x)
IP1 FEM Laplacian (not a big surprise)
Part. 3 Optimal Transport
Let’s program it !
Hierarchical algorithm [Mérigot]
Geometry, 3D [L], [L, Schwindt]
Damped Newton algorithm, [Kitagawa, Mérigot, Thibert]
Optimal Transport
applications in computational physics
4
Euler
Lagrange
The Least Action Principle
Hamilton,
Legendre,
Maupertuis
Axiom 1: There exists a function L(x,x,t) that describes the state
of a physical system
Short summary of the 1st chapter of Landau,Lifshitz Course of Theoretical Physics
Euler
Lagrange
The Least Action Principle
Hamilton,
Legendre,
Maupertuis
Axiom 1: There exists a function L(x,x,t) that describes the state
of a physical system
position
Euler
Lagrange
The Least Action Principle
Hamilton,
Legendre,
Maupertuis
Axiom 1: There exists a function L(x,x,t) that describes the state
of a physical system
position
speed
Euler
Lagrange
The Least Action Principle
Hamilton,
Legendre,
Maupertuis
Axiom 1: There exists a function L(x,x,t) that describes the state
of a physical system
position
speed
time
Euler
Lagrange
∫t1
t2
L(x,x,t) dt
The Least Action Principle
Hamilton,
Legendre,
Maupertuis
Axiom 1: There exists a function L(x,x,t) that describes the state
of a physical system
Axiom 2: The movement (time
evolution) of the physical system
minimizes the following integral
∫t1
t2
L(x,x,t) dt
The Least Action Principle
Axiom 1: There exists a function L(x,x,t) that describes the state
of a physical system
Axiom 2: The movement (time
evolution) of the physical system
minimizes the following integral
∫t1
t2
L(x,x,t) dt
The Least Action Principle
Axiom 1: There exists a function L(x,x,t) that describes the state
of a physical system
Axiom 2: The movement (time
evolution) of the physical system
minimizes the following integral
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
t=0
t=1
∫t1
t2
L(x,x,t) dt
The Least Action Principle
Axiom 1: There exists L
Axiom 2: The movement minimizes
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
x’
t’ =
x+vt
t
∫t1
t2
L(x,x,t) dt
The Least Action Principle
Axiom 1: There exists L
Axiom 2: The movement minimizes
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
x’
t’ =
x+vt
t
Theorem 2:
∂L
∂x
x - L = cte
∫t1
t2
L(x,x,t) dt
The Least Action Principle
Axiom 1: There exists L
Axiom 2: The movement minimizes
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
x’
t’ =
x+vt
t
Theorem 2:
∂L
∂x
x - L = cte
Homogeneity of time →
Preservation of energy
∫t1
t2
L(x,x,t) dt
The Least Action Principle
Axiom 1: There exists L
Axiom 2: The movement minimizes
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
x’
t’ =
x+vt
t
Theorem 2:
∂L
∂x
x - L = cte
Homogeneity of time →
Preservation of energy
Homogeneity of space →
Preservation of momentum
∫t1
t2
L(x,x,t) dt
The Least Action Principle
Axiom 1: There exists L
Axiom 2: The movement minimizes
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
x’
t’ =
x+vt
t
Theorem 2:
∂L
∂x
x - L = cte
Homogeneity of time →
Preservation of energy
Homogeneity of space →
Preservation of momentum
Isotropy of space →
Preservation of angular momentum
∫t1
t2
L(x,x,t) dt
The Least Action Principle
Axiom 1: There exists L
Axiom 2: The movement minimizes
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
x’
t’ =
x+vt
t
Theorem 2:
∂L
∂x
x - L = cte
Homogeneity of time →
Preservation of energy
Homogeneity of space →
Preservation of momentum
Isotropy of space →
Preservation of angular momentum
Preserved quantities
“Integrals of Motion”
Noether’s theorem
The Least Action Principle
Axiom 1: There exists L
Axiom 2: The movement minimizes ∫ L
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
x’
t’ =
x+vt
t
Theorem 2:
∂L
∂x
x - L = cte
Homogeneity of time →
Preservation of energy
Homogeneity of space →
Preservation of momentum
Isotropy of space →
Preservation of angular momentum
Free particle:
Theorem 3: v = cte (Newton’s law I)
The Least Action Principle
Axiom 1: There exists L
Axiom 2: The movement minimizes ∫ L
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
x’
t’ =
x+vt
t
Theorem 2:
∂L
∂x
x - L = cte
Homogeneity of time →
Preservation of energy
Homogeneity of space →
Preservation of momentum
Isotropy of space →
Preservation of angular momentum
Free particle:
Theorem 3: v = cte (Newton’s law I)
Expression of the Lagrangian:
L = ½ m v2
The Least Action Principle
Axiom 1: There exists L
Axiom 2: The movement minimizes ∫ L
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
x’
t’ =
x+vt
t
Theorem 2:
∂L
∂x
x - L = cte
Homogeneity of time →
Preservation of energy
Homogeneity of space →
Preservation of momentum
Isotropy of space →
Preservation of angular momentum
Free particle:
Theorem 3: v = cte (Newton’s law I)
Expression of the Lagrangian:
L = ½ m v2
Expression of the Energy:
E = ½ m v2
The Least Action Principle
Axiom 1: There exists L
Axiom 2: The movement minimizes ∫ L
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
x’
t’ =
x+vt
t
Particle in a field:
Expression of the Lagrangian:
L = ½ m v2 – U(x)
Free particle:
Theorem 3: v = cte (Newton’s law I)
Expression of the Lagrangian:
L = ½ m v2
Expression of the Energy:
E = ½ m v2
The Least Action Principle
Axiom 1: There exists L
Axiom 2: The movement minimizes ∫ L
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
x’
t’ =
x+vt
t
Particle in a field:
Expression of the Lagrangian:
L = ½ m v2 – U(x)
Expression of the Energy:
E = ½ m v2 + U(x)
Free particle:
Theorem 3: v = cte (Newton’s law I)
Expression of the Lagrangian:
L = ½ m v2
Expression of the Energy:
E = ½ m v2
The Least Action Principle
Axiom 1: There exists L
Axiom 2: The movement minimizes ∫ L
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
x’
t’ =
x+vt
t
Particle in a field:
Expression of the Lagrangian:
L = ½ m v2 – U(x)
Expression of the Energy:
E = ½ m v2 + U(x)
Theorem 4:
mx = - U (Newton’s law II)
Free particle:
Theorem 3: v = cte (Newton’s law I)
Expression of the Lagrangian:
L = ½ m v2
Expression of the Energy:
E = ½ m v2
Axiom 1: There exists L
Axiom 2: The movement minimizes ∫ L
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. Lorentz change of
frame
x’
t’ =
(x-vt) x γ
(t – vx/c2) x γ
γ = 1 / √ ( 1 – v2 / c2)
The Least Action Principle
(relativistic setting – just for fun…)
The Least Action Principle
(relativistic setting – just for fun…)
Axiom 1: There exists L
Axiom 2: The movement minimizes ∫ L
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. Lorentz change of
frame
x’
t’ =
(x-vt) x γ
(t – vx/c2) x γ
γ = 1 / √ ( 1 – v2 / c2)
Theorem 5:
E = ½ γ m v2 + mc2
The Least Action Principle
(quantum physics setting – just for fun…)
?
T
Fluids – Benamou Brenier
ρ1 ρ2
?
T
Fluids – Benamou Brenier
Minimize
A(ρ,v) =
∫t1
t2
(t2-t1)
∫Ω
ρ(x,t) ||v(t,x)||2
dxdt
s.t. ρ(t1,.) = ρ1 ; ρ(t2,.) = ρ2 ; d ρ
dt
= - div(ρv)
ρ1 ρ2
?
T
Fluids – Benamou Brenier
∫t1
t2
(t2-t1)
∫Ω
ρ(x,t) ||v(t,x)||2
dxdt
s.t. ρ(t1,.) = ρ1 ; ρ(t2,.) = ρ2 ; d ρ
dt
= - div(ρv)
ρ1 ρ2
Minimize C(T) =
∫Ω
|| x – T(x) ||2 dx
s.t. T is measure-preserving
ρ1(x)
Minimize
A(ρ,v) =
Le schéma [Mérigot-Gallouet]
Applications en graphisme: [De Goes et.al] (power particles)
Part. 4 Optimal Transport – Fluids
Part. 4 Optimal Transport – Fluids
Let’s code it !
Part. 4 Optimal Transport – Fluids
Part. 4 Optimal Transport – Fluids
Part. 4 Optimal Transport – Fluids
Part. 4 To infinity and beyond…
René Descartes - 1663
Vortices in “ether” ?
Part. 4 To infinity and beyond
The Data: #1: the Cosmic Microwave Background
COBE 1992Part. 4 To infinity and beyond…
WMAP 2003
2006
2008
2010
Part. 4 To infinity and beyond…
The Data: #1 the Cosmic Microwave Background
Part. 4 To infinity and beyond…
The Data: #2 redshift acquisition surveys
Part. 4 To infinity and beyond…
The Data: #2 redshift acquisition surveys
Part. 4 To infinity and beyond…
The Data: #2 redshift acquisition surveys
The millenium simulation project, Max Planck Institute fur Astrophysik
pc/h : parsec (= 3.2 années lumières)Part. 4 To infinity and beyond…
Part. 4 To infinity and beyond…
The universal swimming pool
Coop. with MOKAPLAN & Institut d’Astrophysique de Paris & Observatoire de Paris
Time = Now
Early Universe Reconstruction
Coop. with MOKAPLAN & Institut d’Astrophysique de Paris & Observatoire de Paris
. . . . .
Early Universe Reconstruction
Coop. with MOKAPLAN & Institut d’Astrophysique de Paris & Observatoire de Paris
Time = BigBang
(- 13.7 billion Y)
Early Universe Reconstruction
Coop. with MOKAPLAN & Institut d’Astrophysique de Paris & Observatoire de Paris
“Time-warped” map of the
universe
Early Universe Reconstruction
Coop. with MOKAPLAN & Institut d’Astrophysique de Paris & Observatoire de Paris
Cosmic Microware Background:
“Fossil light” emitted 380 000 Y after BigBang
and measured now
“Time-warped” map of the
universe
Early Universe Reconstruction
Coop. with MOKAPLAN & Institut d’Astrophysique de Paris & Observatoire de Paris
Cosmic Microware Background:
“Fossil light” emitted 380 000 Y after BigBang
and measured now
Do they match ?
“Time-warped” map of the
universe
Early Universe Reconstruction
Conclusions
Open Questions
References
Online resources
Conclusions – Open questions
* Connections with physics, Legendre transform and entropy ?
[Cuturi & Peyré] – regularized discrete optimal transport – why does it work ?
Hint 1: Minimum action principle subject to conservation laws
Hint 2: Entropy = dual of temperature ; Legendre = Fourier[(+,*) → (Max,+)]…
* More continuous numerical algorithms ?
[Benamou & Brenier] fluid dynamics point of view – very elegant, but 4D problem !!
FEM-type adaptive discretization of the subdifferential (graph of T) ?
* Can we characterize OT in other semi-discrete settings ?
measures supported on unions of spheres
piecewise linear densities
* Connections with computational geometry ?
Singularity set [Figalli] = set of points where T is discontinuous
Looks like a “mutual power diagram”, anisotropic Voronoi diagrams
Conclusions - References
A Multiscale Approach to Optimal Transport,
Quentin Mérigot, Computer Graphics Forum, 2011
Variational Principles for Minkowski Type Problems, Discrete Optimal Transport,
and Discrete Monge-Ampere Equations
Xianfeng Gu, Feng Luo, Jian Sun, S.-T. Yau, ArXiv 2013
Minkowski-type theorems and least-squares clustering
AHA! (Aurenhammer, Hoffmann, and Aronov), SIAM J. on math. ana. 1998
Topics on Optimal Transportation, 2003
Optimal Transport Old and New, 2008
Cédric Villani
Conclusions - References
Polar factorization and monotone rearrangement of vector-valued functions
Yann Brenier, Comm. On Pure and Applied Mathematics, June 1991
A computational fluid mechanics solution of the Monge-Kantorovich mass transfer
problem, J.-D. Benamou, Y. Brenier, Numer. Math. 84 (2000), pp. 375-393
Pogorelov, Alexandrov – Gradient maps, Minkovsky problem (older than AHA
paper, some overlap, in slightly different context, formalism used by Gu & Yau)
Rockafeller – Convex optimization – Theorem to switch inf(sup()) – sup(inf())
with convex functions (used to justify Kantorovich duality)
Filippo Santambrogio – Optimal Transport for Applied Mathematician,
Calculus of Variations, PDEs and Modeling – Jan 15, 2015
Gabriel Peyré, Marco Cuturi, Computational Optimal Transport, 2018
Online resources
All the sourcecode/documentation available from:
http://alice.loria.fr/software/geogram
Demo: www.loria.fr/~levy/GLUP/vorpaview
* L., A numerical algorithm
for semi-discrete L2 OT in 3D,
ESAIM Math. Modeling
and Analysis, 2015
* L. and E. Schwindt,
Notions of OT and how to
implement them on a computer,
Computer and Graphics, 2018.
J. Lévy – 1936-2018 - To you Dad, I miss you so much.
Bonus Slides
The Isoperimetric Inequality
The isoperimetric inequality
For a given volume,
ball is the shape that minimizes border area
∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: Given f: IRn → IR sufficiently regular
Explanation in [Dario Cordero Erauquin] course notes
The isoperimetric inequality
∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: Given f: IRn → IR sufficiently regular
Explanation in [Dario Cordero Erauquin] course notes
The isoperimetric inequality
∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: Given f: IRn → IR sufficiently regular
Explanation in [Dario Cordero Erauquin] course notes
The isoperimetric inequality
∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: Given f: IRn → IR sufficiently regular
Consider a compact set Ω such that Vol(Ω) = Vol(B2
3)
and f = the indicatrix function of Ω
The isoperimetric inequality
∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: Given f: IRn → IR sufficiently regular
Consider a compact set Ω such that Vol(Ω) = Vol(B2
3)
and f = the indicatrix function of Ω
Vol(∂Ω) ≥ n Vol(B2
3)1/3 Vol(B2
3)2/3
The isoperimetric inequality
∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: Given f: IRn → IR sufficiently regular
Consider a compact set Ω such that Vol(Ω) = Vol(B2
3)
and f = the indicatrix function of Ω
Vol(∂Ω) ≥ n Vol(B2
3)1/3 Vol(B2
3)2/3
Vol(∂Ω) ≥ 4 π = Vol(∂B2
3)
The isoperimetric inequality
∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: a proof with OT [Gromov]
The isoperimetric inequality
∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: a proof with OT [Gromov]
We suppose w.l.o.g. that ∫f n/(n-1) = 1
The isoperimetric inequality
∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: a proof with OT [Gromov]
There exists an optimal transport T = gradΨ between
f n/(n-1)(x)dx and 1B2
n/Vol(B2
n)dx
We suppose w.l.o.g. that ∫f n/(n-1) = 1
The isoperimetric inequality
∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: a proof with OT [Gromov]
There exists an optimal transport T = gradΨ between
f n/(n-1)(x)dx and 1B2
n/Vol(B2
n)dx
We suppose w.l.o.g. that ∫f n/(n-1) = 1
Monge-Ampère equation: Vol(B2
n) fn/(n-1)(x) = det Hess Ψ
The isoperimetric inequality
∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: a proof with OT [Gromov]
There exists an optimal transport T = gradΨ between
f n/(n-1)(x)dx and 1B2
n/Vol(B2
n)dx
We suppose w.l.o.g. that ∫f n/(n-1) = 1
Monge-Ampère equation: Vol(B2
n) fn/(n-1)(x) = det Hess Ψ
Arithmetico-geometric ineq: det (H) 1/n ≤ trace(H)/n if H positive
The isoperimetric inequality
∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: a proof with OT [Gromov]
There exists an optimal transport T = gradΨ between
f n/(n-1)(x)dx and 1B2
n/Vol(B2
n)dx
We suppose w.l.o.g. that ∫f n/(n-1) = 1
Monge-Ampère equation: Vol(B2
n) fn/(n-1)(x) = det Hess Ψ
Arithmetico-geometric ineq: det (H) 1/n ≤ trace(H)/n if H positive
det (Hess Ψ) 1/n ≤ trace(Hess Ψ)/n
The isoperimetric inequality
∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: a proof with OT [Gromov]
There exists an optimal transport T = gradΨ between
f n/(n-1)(x)dx and 1B2
n/Vol(B2
n)dx
We suppose w.l.o.g. that ∫f n/(n-1) = 1
Monge-Ampère equation: Vol(B2
n) fn/(n-1)(x) = det Hess Ψ
Arithmetico-geometric ineq: det (H) 1/n ≤ trace(H)/n if H positive
det (Hess Ψ) 1/n ≤ trace(Hess Ψ)/n
det (Hess Ψ) 1/n ≤ ∆ Ψ / n
The isoperimetric inequality
∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: a proof with OT [Gromov]
We suppose w.l.o.g. that ∫f n/(n-1) = 1
det (Hess Ψ) 1/n ≤ (∆ Ψ)/n
Monge-Ampère equation:
Vol(B2
n) fn/(n-1)(x) = det Hess Ψ
The isoperimetric inequality
∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: a proof with OT [Gromov]
We suppose w.l.o.g. that ∫f n/(n-1) = 1
Vol(B2
n) = Vol(B2
n) ∫f n/(n-1)
= ∫f Vol(B2
n) f 1/(n-1)
det (Hess Ψ) 1/n ≤ (∆ Ψ)/n
Monge-Ampère equation:
Vol(B2
n) fn/(n-1)(x) = det Hess Ψ
The isoperimetric inequality
∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: a proof with OT [Gromov]
We suppose w.l.o.g. that ∫f n/(n-1) = 1
Vol(B2
n) = Vol(B2
n) ∫f n/(n-1)
= ∫f Vol(B2
n) f 1/(n-1)
≤ 1/n ∫ f ∆ Ψ
det (Hess Ψ) 1/n ≤ (∆ Ψ)/n
Monge-Ampère equation:
Vol(B2
n) fn/(n-1)(x) = det Hess Ψ
The isoperimetric inequality
∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: a proof with OT [Gromov]
We suppose w.l.o.g. that ∫f n/(n-1) = 1
Vol(B2
n) = Vol(B2
n) ∫f n/(n-1)
= ∫f Vol(B2
n) f 1/(n-1)
≤ 1/n ∫ f ∆ Ψ
∫f ∆ Ψ = - ∫ grad f . grad Ψ
det (Hess Ψ) 1/n ≤ (∆ Ψ)/n
Monge-Ampère equation:
Vol(B2
n) fn/(n-1)(x) = det Hess Ψ
The isoperimetric inequality
∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: a proof with OT [Gromov]
We suppose w.l.o.g. that ∫f n/(n-1) = 1
Vol(B2
n) = Vol(B2
n) ∫f n/(n-1)
= ∫f Vol(B2
n) f 1/(n-1)
≤ 1/n ∫ f ∆ Ψ
∫f ∆ Ψ = - ∫ grad f . grad Ψ ≤ ∫ | grad f | (T = grad Ψ Є B2
n )
det (Hess Ψ) 1/n ≤ (∆ Ψ)/n
Monge-Ampère equation:
Vol(B2
n) fn/(n-1)(x) = det Hess Ψ
The isoperimetric inequality
∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: a proof with OT [Gromov]
We suppose w.l.o.g. that ∫f n/(n-1) = 1
Vol(B2
n) = Vol(B2
n) ∫f n/(n-1)
= ∫f Vol(B2
n) f 1/(n-1)
≤ 1/n ∫ f ∆ Ψ
∫f ∆ Ψ = - ∫ grad f . grad Ψ ≤ ∫ | grad f | (T = grad Ψ Є B2
n )
∫ | grad f | ≥ n Vol(B2
n)1/n
■
det (Hess Ψ) 1/n ≤ (∆ Ψ)/n
Monge-Ampère equation:
Vol(B2
n) fn/(n-1)(x) = det Hess Ψ
The isoperimetric inequality
Bonus Slides
Plotting the potential & optics
The [AHA] paper summary:
• The optimal weights minimize a convex function
• The gradient and Hessian of this convex function is easy to compute
Note: the weight w(s) correspond to the Kantorovich potential ψ(x)
(solves a “discrete Monge-Ampere” equation)
The algorithm:
Summary:
The algorithm computes the weights wi such that the power cells associated with
the Diracs correspond to the preimages of the Diracs.
μ ν
Plotting the potential, “optics”
The [AHA] paper summary:
• The optimal weights minimize a convex function
• The gradient and Hessian of this convex function is easy to compute
Note: the weight w(s) correspond to the Kantorovich potential ψ(x)
(solves a “discrete Monge-Ampere” equation)
The algorithm:
Summary:
The algorithm computes the weights wi such that the power cells associated with
the Diracs correspond to the preimages of the Diracs.
μ ν
Plotting the potential, “optics”
The [AHA] paper summary:
• The optimal weights minimize a convex function
• The gradient and Hessian of this convex function is easy to compute
Note: the weight w(s) correspond to the Kantorovich potential ψ(x)
(solves a “discrete Monge-Ampere” equation)
The algorithm:
Summary:
The algorithm computes the weights wi such that the power cells associated with
the Diracs correspond to the preimages of the Diracs.
μ ν
Plotting the potential, “optics”
The [AHA] paper summary:
• The optimal weights minimize a convex function
• The gradient and Hessian of this convex function is easy to compute
Note: the weight w(s) correspond to the Kantorovich potential ψ(x)
(solves a “discrete Monge-Ampere” equation)
The algorithm:
Summary:
The algorithm computes the weights wi such that the power cells associated with
the Diracs correspond to the preimages of the Diracs.
μ ν
Plotting the potential, “optics”
The [AHA] paper summary:
• The optimal weights minimize a convex function
• The gradient and Hessian of this convex function is easy to compute
Note: the weight w(s) correspond to the Kantorovich potential ψ(x)
(solves a “discrete Monge-Ampere” equation)
The algorithm:
Summary:
The algorithm computes the weights wi such that the power cells associated with
the Diracs correspond to the preimages of the Diracs.
μ ν
Plotting the potential, “optics”
Plotting the potential, “optics”
Plotting the potential, “optics”
Plotting the potential, “optics”
Plotting the potential, “optics”
Plotting the potential, “optics”
Plotting the potential, “optics”
hi
Plotting the potential, “optics”
Plotting the potential, “optics”
Plotting the potential, “optics”
Plotting the potential, “optics”
Plotting the potential, “optics”
Plotting the potential, “optics”
Numerical Experiment: A disk becomes two disks
Plotting the potential, “optics”
End Of Line.

Contenu connexe

Tendances

Object classification using CNN & VGG16 Model (Keras and Tensorflow)
Object classification using CNN & VGG16 Model (Keras and Tensorflow) Object classification using CNN & VGG16 Model (Keras and Tensorflow)
Object classification using CNN & VGG16 Model (Keras and Tensorflow) Lalit Jain
 
クラシックな機械学習の入門  8. クラスタリング
クラシックな機械学習の入門  8. クラスタリングクラシックな機械学習の入門  8. クラスタリング
クラシックな機械学習の入門  8. クラスタリングHiroshi Nakagawa
 
An Introduction to Optimal Transport
An Introduction to Optimal TransportAn Introduction to Optimal Transport
An Introduction to Optimal TransportGabriel Peyré
 
2015年12月PRMU研究会 対応点探索のための特徴量表現
2015年12月PRMU研究会 対応点探索のための特徴量表現2015年12月PRMU研究会 対応点探索のための特徴量表現
2015年12月PRMU研究会 対応点探索のための特徴量表現Mitsuru Ambai
 
Intelligent Image Enhancement and Restoration - From Prior Driven Model to Ad...
Intelligent Image Enhancement and Restoration - From Prior Driven Model to Ad...Intelligent Image Enhancement and Restoration - From Prior Driven Model to Ad...
Intelligent Image Enhancement and Restoration - From Prior Driven Model to Ad...Wanjin Yu
 
Tutorial: Image Generation and Image-to-Image Translation using GAN
Tutorial: Image Generation and Image-to-Image Translation using GANTutorial: Image Generation and Image-to-Image Translation using GAN
Tutorial: Image Generation and Image-to-Image Translation using GANWuhyun Rico Shin
 
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1hirokazutanaka
 
Matrix and Tensor Tools for Computer Vision
Matrix and Tensor Tools for Computer VisionMatrix and Tensor Tools for Computer Vision
Matrix and Tensor Tools for Computer VisionActiveEon
 
Feature pyramid networks for object detection
Feature pyramid networks for object detection Feature pyramid networks for object detection
Feature pyramid networks for object detection heedaeKwon
 
All about that pooling
All about that poolingAll about that pooling
All about that poolingDong Heon Cho
 
Rでコンジョイント分析
Rでコンジョイント分析Rでコンジョイント分析
Rでコンジョイント分析osamu morimoto
 
Dimensionality reduction with UMAP
Dimensionality reduction with UMAPDimensionality reduction with UMAP
Dimensionality reduction with UMAPJakub Bartczuk
 
Optic flow estimation with deep learning
Optic flow estimation with deep learningOptic flow estimation with deep learning
Optic flow estimation with deep learningYu Huang
 
3次元レジストレーション(PCLデモとコード付き)
3次元レジストレーション(PCLデモとコード付き)3次元レジストレーション(PCLデモとコード付き)
3次元レジストレーション(PCLデモとコード付き)Toru Tamaki
 
Introduction to compressive sensing
Introduction to compressive sensingIntroduction to compressive sensing
Introduction to compressive sensingAhmed Nasser Agag
 
はじめての機械学習
はじめての機械学習はじめての機械学習
はじめての機械学習Taiji Suzuki
 
Aide à la Décision Multicritère
Aide à la Décision MulticritèreAide à la Décision Multicritère
Aide à la Décision MulticritèreAbdelaadimKHRISS
 
行列計算を利用したデータ解析技術
行列計算を利用したデータ解析技術行列計算を利用したデータ解析技術
行列計算を利用したデータ解析技術Yoshihiro Mizoguchi
 

Tendances (20)

Object classification using CNN & VGG16 Model (Keras and Tensorflow)
Object classification using CNN & VGG16 Model (Keras and Tensorflow) Object classification using CNN & VGG16 Model (Keras and Tensorflow)
Object classification using CNN & VGG16 Model (Keras and Tensorflow)
 
クラシックな機械学習の入門  8. クラスタリング
クラシックな機械学習の入門  8. クラスタリングクラシックな機械学習の入門  8. クラスタリング
クラシックな機械学習の入門  8. クラスタリング
 
An Introduction to Optimal Transport
An Introduction to Optimal TransportAn Introduction to Optimal Transport
An Introduction to Optimal Transport
 
20191019 sinkhorn
20191019 sinkhorn20191019 sinkhorn
20191019 sinkhorn
 
2015年12月PRMU研究会 対応点探索のための特徴量表現
2015年12月PRMU研究会 対応点探索のための特徴量表現2015年12月PRMU研究会 対応点探索のための特徴量表現
2015年12月PRMU研究会 対応点探索のための特徴量表現
 
Intelligent Image Enhancement and Restoration - From Prior Driven Model to Ad...
Intelligent Image Enhancement and Restoration - From Prior Driven Model to Ad...Intelligent Image Enhancement and Restoration - From Prior Driven Model to Ad...
Intelligent Image Enhancement and Restoration - From Prior Driven Model to Ad...
 
Tutorial: Image Generation and Image-to-Image Translation using GAN
Tutorial: Image Generation and Image-to-Image Translation using GANTutorial: Image Generation and Image-to-Image Translation using GAN
Tutorial: Image Generation and Image-to-Image Translation using GAN
 
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
東京都市大学 データ解析入門 4 スパース性と圧縮センシング1
 
Matrix and Tensor Tools for Computer Vision
Matrix and Tensor Tools for Computer VisionMatrix and Tensor Tools for Computer Vision
Matrix and Tensor Tools for Computer Vision
 
Feature pyramid networks for object detection
Feature pyramid networks for object detection Feature pyramid networks for object detection
Feature pyramid networks for object detection
 
劣微分
劣微分劣微分
劣微分
 
All about that pooling
All about that poolingAll about that pooling
All about that pooling
 
Rでコンジョイント分析
Rでコンジョイント分析Rでコンジョイント分析
Rでコンジョイント分析
 
Dimensionality reduction with UMAP
Dimensionality reduction with UMAPDimensionality reduction with UMAP
Dimensionality reduction with UMAP
 
Optic flow estimation with deep learning
Optic flow estimation with deep learningOptic flow estimation with deep learning
Optic flow estimation with deep learning
 
3次元レジストレーション(PCLデモとコード付き)
3次元レジストレーション(PCLデモとコード付き)3次元レジストレーション(PCLデモとコード付き)
3次元レジストレーション(PCLデモとコード付き)
 
Introduction to compressive sensing
Introduction to compressive sensingIntroduction to compressive sensing
Introduction to compressive sensing
 
はじめての機械学習
はじめての機械学習はじめての機械学習
はじめての機械学習
 
Aide à la Décision Multicritère
Aide à la Décision MulticritèreAide à la Décision Multicritère
Aide à la Décision Multicritère
 
行列計算を利用したデータ解析技術
行列計算を利用したデータ解析技術行列計算を利用したデータ解析技術
行列計算を利用したデータ解析技術
 

Similaire à Course on Optimal Transport

Optimal Transport for a Computer Programmer's Point of View
Optimal Transport for a Computer Programmer's Point of ViewOptimal Transport for a Computer Programmer's Point of View
Optimal Transport for a Computer Programmer's Point of ViewBruno Levy
 
A comparative study of initial basic feasible solution methods
A comparative study of initial basic feasible solution methodsA comparative study of initial basic feasible solution methods
A comparative study of initial basic feasible solution methodsAlexander Decker
 
A comparative study of initial basic feasible solution methods
A comparative study of initial basic feasible solution methodsA comparative study of initial basic feasible solution methods
A comparative study of initial basic feasible solution methodsAlexander Decker
 
“An Alternate Approach to Find an Optimal Solution of a Transportation Problem.”
“An Alternate Approach to Find an Optimal Solution of a Transportation Problem.”“An Alternate Approach to Find an Optimal Solution of a Transportation Problem.”
“An Alternate Approach to Find an Optimal Solution of a Transportation Problem.”IOSRJM
 
Helgaun's algorithm for the TSP
Helgaun's algorithm for the TSPHelgaun's algorithm for the TSP
Helgaun's algorithm for the TSPKaal Nath
 
A New Approach to Solve Initial Basic Feasible Solution for the Transportatio...
A New Approach to Solve Initial Basic Feasible Solution for the Transportatio...A New Approach to Solve Initial Basic Feasible Solution for the Transportatio...
A New Approach to Solve Initial Basic Feasible Solution for the Transportatio...Dr. Amarjeet Singh
 
A Minimum Spanning Tree Approach of Solving a Transportation Problem
A Minimum Spanning Tree Approach of Solving a Transportation ProblemA Minimum Spanning Tree Approach of Solving a Transportation Problem
A Minimum Spanning Tree Approach of Solving a Transportation Probleminventionjournals
 
Solving Age-old Transportation Problems by Nonlinear Programming methods
Solving Age-old Transportation Problems by Nonlinear Programming methodsSolving Age-old Transportation Problems by Nonlinear Programming methods
Solving Age-old Transportation Problems by Nonlinear Programming methodsIOSR Journals
 
New Method for Finding an Optimal Solution of Generalized Fuzzy Transportatio...
New Method for Finding an Optimal Solution of Generalized Fuzzy Transportatio...New Method for Finding an Optimal Solution of Generalized Fuzzy Transportatio...
New Method for Finding an Optimal Solution of Generalized Fuzzy Transportatio...BRNSS Publication Hub
 
An Efficient Alternative Approach To Solve A Transportation Problem
An Efficient Alternative Approach To Solve A Transportation ProblemAn Efficient Alternative Approach To Solve A Transportation Problem
An Efficient Alternative Approach To Solve A Transportation ProblemWendy Hager
 
(PBL) Transportation Prblm.pdf
(PBL) Transportation Prblm.pdf(PBL) Transportation Prblm.pdf
(PBL) Transportation Prblm.pdfAkashKatiyar22
 
Iaetsd ones method for finding an optimal
Iaetsd ones method for finding an optimalIaetsd ones method for finding an optimal
Iaetsd ones method for finding an optimalIaetsd Iaetsd
 
Transportation Problem In Linear Programming
Transportation Problem In Linear ProgrammingTransportation Problem In Linear Programming
Transportation Problem In Linear ProgrammingMirza Tanzida
 
Traveling Salesman Problem in Distributed Environment
Traveling Salesman Problem in Distributed EnvironmentTraveling Salesman Problem in Distributed Environment
Traveling Salesman Problem in Distributed Environmentcsandit
 
TRAVELING SALESMAN PROBLEM IN DISTRIBUTED ENVIRONMENT
TRAVELING SALESMAN PROBLEM IN DISTRIBUTED ENVIRONMENTTRAVELING SALESMAN PROBLEM IN DISTRIBUTED ENVIRONMENT
TRAVELING SALESMAN PROBLEM IN DISTRIBUTED ENVIRONMENTcscpconf
 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integrationtutorcircle1
 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integrationtutorcircle1
 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integrationtutorcircle1
 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integrationtutorcircle1
 

Similaire à Course on Optimal Transport (20)

Optimal Transport for a Computer Programmer's Point of View
Optimal Transport for a Computer Programmer's Point of ViewOptimal Transport for a Computer Programmer's Point of View
Optimal Transport for a Computer Programmer's Point of View
 
A comparative study of initial basic feasible solution methods
A comparative study of initial basic feasible solution methodsA comparative study of initial basic feasible solution methods
A comparative study of initial basic feasible solution methods
 
A comparative study of initial basic feasible solution methods
A comparative study of initial basic feasible solution methodsA comparative study of initial basic feasible solution methods
A comparative study of initial basic feasible solution methods
 
“An Alternate Approach to Find an Optimal Solution of a Transportation Problem.”
“An Alternate Approach to Find an Optimal Solution of a Transportation Problem.”“An Alternate Approach to Find an Optimal Solution of a Transportation Problem.”
“An Alternate Approach to Find an Optimal Solution of a Transportation Problem.”
 
Helgaun's algorithm for the TSP
Helgaun's algorithm for the TSPHelgaun's algorithm for the TSP
Helgaun's algorithm for the TSP
 
A New Approach to Solve Initial Basic Feasible Solution for the Transportatio...
A New Approach to Solve Initial Basic Feasible Solution for the Transportatio...A New Approach to Solve Initial Basic Feasible Solution for the Transportatio...
A New Approach to Solve Initial Basic Feasible Solution for the Transportatio...
 
A Minimum Spanning Tree Approach of Solving a Transportation Problem
A Minimum Spanning Tree Approach of Solving a Transportation ProblemA Minimum Spanning Tree Approach of Solving a Transportation Problem
A Minimum Spanning Tree Approach of Solving a Transportation Problem
 
05_AJMS_255_20.pdf
05_AJMS_255_20.pdf05_AJMS_255_20.pdf
05_AJMS_255_20.pdf
 
Solving Age-old Transportation Problems by Nonlinear Programming methods
Solving Age-old Transportation Problems by Nonlinear Programming methodsSolving Age-old Transportation Problems by Nonlinear Programming methods
Solving Age-old Transportation Problems by Nonlinear Programming methods
 
New Method for Finding an Optimal Solution of Generalized Fuzzy Transportatio...
New Method for Finding an Optimal Solution of Generalized Fuzzy Transportatio...New Method for Finding an Optimal Solution of Generalized Fuzzy Transportatio...
New Method for Finding an Optimal Solution of Generalized Fuzzy Transportatio...
 
An Efficient Alternative Approach To Solve A Transportation Problem
An Efficient Alternative Approach To Solve A Transportation ProblemAn Efficient Alternative Approach To Solve A Transportation Problem
An Efficient Alternative Approach To Solve A Transportation Problem
 
(PBL) Transportation Prblm.pdf
(PBL) Transportation Prblm.pdf(PBL) Transportation Prblm.pdf
(PBL) Transportation Prblm.pdf
 
Iaetsd ones method for finding an optimal
Iaetsd ones method for finding an optimalIaetsd ones method for finding an optimal
Iaetsd ones method for finding an optimal
 
Transportation Problem In Linear Programming
Transportation Problem In Linear ProgrammingTransportation Problem In Linear Programming
Transportation Problem In Linear Programming
 
Traveling Salesman Problem in Distributed Environment
Traveling Salesman Problem in Distributed EnvironmentTraveling Salesman Problem in Distributed Environment
Traveling Salesman Problem in Distributed Environment
 
TRAVELING SALESMAN PROBLEM IN DISTRIBUTED ENVIRONMENT
TRAVELING SALESMAN PROBLEM IN DISTRIBUTED ENVIRONMENTTRAVELING SALESMAN PROBLEM IN DISTRIBUTED ENVIRONMENT
TRAVELING SALESMAN PROBLEM IN DISTRIBUTED ENVIRONMENT
 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
 

Plus de Bruno Levy

On Mesh Intersection: exact computation and efficiency
On Mesh Intersection: exact computation and efficiencyOn Mesh Intersection: exact computation and efficiency
On Mesh Intersection: exact computation and efficiencyBruno Levy
 
Brenier-Monge-Ampère gravity
Brenier-Monge-Ampère gravityBrenier-Monge-Ampère gravity
Brenier-Monge-Ampère gravityBruno Levy
 
SGP 2023 graduate school - A quick journey into geometry processing
SGP 2023 graduate school - A quick journey into geometry processingSGP 2023 graduate school - A quick journey into geometry processing
SGP 2023 graduate school - A quick journey into geometry processingBruno Levy
 
03_spectral_computing.pdf
03_spectral_computing.pdf03_spectral_computing.pdf
03_spectral_computing.pdfBruno Levy
 
04_spectral_applications.pdf
04_spectral_applications.pdf04_spectral_applications.pdf
04_spectral_applications.pdfBruno Levy
 
Meshing for computer graphics
Meshing for computer graphicsMeshing for computer graphics
Meshing for computer graphicsBruno Levy
 
Centroidal Voronoi Tessellations for Graphs (Eurographics 2012)
Centroidal Voronoi Tessellations for Graphs (Eurographics 2012)Centroidal Voronoi Tessellations for Graphs (Eurographics 2012)
Centroidal Voronoi Tessellations for Graphs (Eurographics 2012)Bruno Levy
 
CGI2018 keynote - fluids simulation
CGI2018 keynote - fluids simulationCGI2018 keynote - fluids simulation
CGI2018 keynote - fluids simulationBruno Levy
 
The joy of computer graphics programming
The joy of computer graphics programmingThe joy of computer graphics programming
The joy of computer graphics programmingBruno Levy
 
Simuler la physique avec un ordinateur
Simuler la physique avec un ordinateurSimuler la physique avec un ordinateur
Simuler la physique avec un ordinateurBruno Levy
 

Plus de Bruno Levy (12)

On Mesh Intersection: exact computation and efficiency
On Mesh Intersection: exact computation and efficiencyOn Mesh Intersection: exact computation and efficiency
On Mesh Intersection: exact computation and efficiency
 
Brenier-Monge-Ampère gravity
Brenier-Monge-Ampère gravityBrenier-Monge-Ampère gravity
Brenier-Monge-Ampère gravity
 
SGP 2023 graduate school - A quick journey into geometry processing
SGP 2023 graduate school - A quick journey into geometry processingSGP 2023 graduate school - A quick journey into geometry processing
SGP 2023 graduate school - A quick journey into geometry processing
 
03_spectral_computing.pdf
03_spectral_computing.pdf03_spectral_computing.pdf
03_spectral_computing.pdf
 
04_spectral_applications.pdf
04_spectral_applications.pdf04_spectral_applications.pdf
04_spectral_applications.pdf
 
Meshing for computer graphics
Meshing for computer graphicsMeshing for computer graphics
Meshing for computer graphics
 
Centroidal Voronoi Tessellations for Graphs (Eurographics 2012)
Centroidal Voronoi Tessellations for Graphs (Eurographics 2012)Centroidal Voronoi Tessellations for Graphs (Eurographics 2012)
Centroidal Voronoi Tessellations for Graphs (Eurographics 2012)
 
CGI2018 keynote - fluids simulation
CGI2018 keynote - fluids simulationCGI2018 keynote - fluids simulation
CGI2018 keynote - fluids simulation
 
Igrv2017
Igrv2017Igrv2017
Igrv2017
 
The joy of computer graphics programming
The joy of computer graphics programmingThe joy of computer graphics programming
The joy of computer graphics programming
 
Voronoy Story
Voronoy StoryVoronoy Story
Voronoy Story
 
Simuler la physique avec un ordinateur
Simuler la physique avec un ordinateurSimuler la physique avec un ordinateur
Simuler la physique avec un ordinateur
 

Dernier

Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxSilpa
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Silpa
 
Grade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsGrade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsOrtegaSyrineMay
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxDiariAli
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfSumit Kumar yadav
 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body Areesha Ahmad
 
Genetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditionsGenetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditionsbassianu17
 
300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptxryanrooker
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxseri bangash
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxSilpa
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...Monika Rani
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Silpa
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .Poonam Aher Patil
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY1301aanya
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIADr. TATHAGAT KHOBRAGADE
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxRenuJangid3
 
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry Areesha Ahmad
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptxSilpa
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Silpa
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxMohamedFarag457087
 

Dernier (20)

Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptx
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
 
Grade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsGrade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its Functions
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
 
Genetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditionsGenetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditions
 
300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptx
 
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 

Course on Optimal Transport

  • 1. Mathématiques - Informatique Bruno Lévy ALICE Géométrie & Lumière CENTRE INRIA Nancy Grand-Est Symposium on Geometry Processing – Paris – 2018 Course on Numerical Optimal Transport – Bruno Lévy
  • 2. Part. 1. Goals and Motivations Part. 2. Introduction to Optimal Transport Part. 3. Semi-Discrete Optimal Transport Part. 4. Applications in Computational Physics OVERVIEW
  • 4. Part. 1 Optimal Transport Goal #1: “Understanding”
  • 5. Part. 1 Optimal Transport Goal #1: “Understanding” What I can’t create I don’t understand Richard Feynman
  • 6. Part. 1 Optimal Transport Goal #1: “Understanding” Jos Stam, Stable Fluids, 1999 The art of fluid sim. Understand fluids Explain Program
  • 7. Part. 1 Optimal Transport Goal #1: “Understanding” I wrote code
  • 8. Part. 1 Optimal Transport Goal #1: “Understanding” Your mission statement: 1. Understand the stuff 2. Explain it in simple terms Be a good teacher, to others and to yourself Know what you know and what you don’t know Try to know what you don’t know 3. Program it
  • 9. Part. 1 Optimal Transport Measuring distances between functions
  • 10. Part. 1 Optimal Transport Measuring distances between functions
  • 11. Part. 1 Optimal Transport Measuring distances between functions
  • 12. Part. 1 Optimal Transport Measuring distances between function
  • 13. Part. 1 Optimal Transport Interpolating functions
  • 14. Part. 1 Optimal Transport Interpolating functions
  • 15. Part. 1 Optimal Transport Interpolating functions
  • 16. Part. 1 Optimal Transport Interpolating functions
  • 17. Part. 1 Optimal Transport Interpolating functions
  • 18. Part. 1 Optimal Transport Interpolating functions
  • 19. Part. 1 Optimal Transport Interpolating functions
  • 20. Part. 1 Optimal Transport Interpolating functions
  • 21. Part. 1 Optimal Transport Interpolating functions
  • 22. Part. 1 Optimal Transport Interpolating functions
  • 23. Part. 1 Optimal Transport Interpolating functions
  • 24. Part. 1 Optimal Transport Interpolating functions
  • 25. Part. 1 Optimal Transport Gaspard Monge - 1784
  • 26. Part. 1 Optimal Transport Gaspard Monge – geometry and light ANR TOMMI Workshop
  • 27. Cédric Villani Optimal Transport Old & New Topics on Optimal Transport Yann Brenier The polar factorization theorem (Brenier Transport) Part. 1 Optimal Transport Monge-Brenier-Villani, the french connection
  • 28. Part. 1 Optimal Transport [Castro, Merigot, Thibert 2014] Optimal transport geometry and light [Caffarelli, Kochengin, and Oliker 1999]
  • 29. Part. 1 Optimal Transport – Image Processing Barycenters / mixing textures Video-style transfer, A.I., “data sciences” [Nicolas Bonneel, Julien Rabin, Gabriel Peyŕe, Hanspeter Pfister] [Nicolas Bonneel, Kalyan Sunkavalli, Sylvain Paris, Hanspeter Pfister] [Marco Cuturi, Gabriel Peyré]
  • 30. Part. 1 Optimal Transport Optimal transport - geometry and light [Chwartzburg, Testuz, Tagliasacchi, Pauly, SIGGRAPH 2014]
  • 31. Part. 1. Motivations Discretization of functionals involving the Monge-Ampère operator, Benamou, Carlier, Mérigot, Oudet arXiv:1408.4536 The variational formulation of the Fokker-Planck equation Jordan, Kinderlehrer and Otto SIAM J. on Mathematical Analysis Geostrophic current
  • 32. Part. 1 Optimal Transport How to “morph” a shape into another one of same mass while minimizing the “effort” ? ? T
  • 33. Part. 1 Optimal Transport How to “morph” a shape into another one of same mass while minimizing the “effort” ? ? T The “effort” of the best T defines a distance between the shapes
  • 34. Part. 1 Optimal Transport How to “morph” a shape into another one while preserving mass and minimizing the effort ? ? T
  • 35. Part. 1 Optimal Transport
  • 36. Part. 1 Optimal Transport How to “morph” a shape into another one while preserving mass and minimizing the effort ? ? T “minimum action principle”
  • 37. Part. 1 Optimal Transport How to “morph” a shape into another one while preserving mass and minimizing the effort ? ? T “minimum action principle”“conservation law”
  • 38. Part. 1 Optimal Transport “minimum action principle subject to conservation law” OT= Yann Brenier: “Each time the Laplace operator is used in a PDE, it can be replaced with the Monge-Ampère operator”
  • 39. Part. 1 Optimal Transport “minimum action principle subject to conservation law” OT= Yann Brenier: “Each time the Laplace operator is used in a PDE, it can be replaced with the Monge-Ampère operator” New ways of simulating physics with a computer
  • 40. Part. 1 Optimal Transport “minimum action principle subject to conservation law” OT= Yann Brenier: “Each time the Laplace operator is used in a PDE, it can be replaced with the Monge-Ampère operator” New ways of simulating physics with a computer Fast Fourier Transform
  • 41. Part. 1 Optimal Transport “minimum action principle subject to conservation law” OT= Yann Brenier: “Each time the Laplace operator is used in a PDE, it can be replaced with the Monge-Ampère operator” New ways of simulating physics with a computer Fast Fourier Transform Fast OT algo. ???
  • 43. Part. 2 Optimal Transport – Monge’s problem (X;μ) (Y;ν) Two measures μ, ν such that ∫dμ(x) = ∫dν(x) X Y
  • 44. Part. 2 Optimal Transport – Monge’s problem A map T is a transport map between μ and ν if μ(T-1(B)) = ν(B) for any Borel subset B of Y (X;μ) (Y;ν) (Borel subset = subset that can be measured)
  • 45. Part. 2 Optimal Transport – Monge’s problem A map T is a transport map between μ and ν if μ(T-1(B)) = ν(B) for any Borel subset B of Y B (X;μ) (Y;ν)
  • 46. Part. 2 Optimal Transport – Monge’s problem A map T is a transport map between μ and ν if μ(T-1(B)) = ν(B) for any Borel subset B of Y B T-1(B) (X;μ) (Y;ν)
  • 47. Part. 2 Optimal Transport – Monge’s problem A map T is a transport map between μ and ν if μ(T-1(B)) = ν(B) for any Borel subset B of Y Notation: if T is a transport map between μ and ν then one writes ν = T#μ (ν is the pushforward of μ) (X;μ) (Y;ν)
  • 48. Part. 2 Optimal Transport – Monge’s problem Monge’s problem: Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x) (X;μ) (Y;ν)
  • 49. Part. 2 Optimal Transport – Monge’s problem Monge’s problem: Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x) • Difficult to study • If μ has an atom (isolated Dirac), it can only be mapped to another Dirac (T needs to be a map)
  • 50. Part. 2 Optimal Transport – Monge’s problem Monge’s problem: Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x) Transport from a measure concentrated on L1 onto another one concentrated on L2 and L3
  • 51. Part. 2 Optimal Transport – Monge’s problem Monge’s problem: Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x) Transport from a measure concentrated on L1 onto another one concentrated on L2 and L3
  • 52. Part. 2 Optimal Transport – Monge’s problem Monge’s problem: Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x) Transport from a measure concentrated on L1 onto another one concentrated on L2 and L3
  • 53. Part. 2 Optimal Transport – Monge’s problem Monge’s problem: Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x) Transport from a measure concentrated on L1 onto another one concentrated on L2 and L3 The infimum is never realized by a map, need for a relaxation
  • 54. Part. 2 Optimal Transport – Kantorovich Monge’s problem: Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x) Kantorovich’s problem (1942): Find a measure γ defined on X x Y such that ∫x in X dγ(x,y) = dν(y) and ∫y in Y dγ(x,y) = dμ(x) that minimizes ∫∫X x Y || x – y ||2 dγ(x,y)
  • 55. Part. 2 Optimal Transport – Kantorovich Monge’s problem: Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x) Kantorovich’s problem: Find a measure γ defined on X x Y such that ∫x in X dγ(x,y) = dν(y) and ∫y in Y dγ(x,y) = dμ(x) that minimizes ∫∫X x Y || x – y ||2 dγ(x,y) “γ(x,y)” : How much sand goes from x to y
  • 56. Part. 2 Optimal Transport – Kantorovich Monge’s problem: Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x) Kantorovich’s problem: Find a measure γ defined on X x Y such that ∫x in X dγ(x,y) = dν(y) and ∫y in Y dγ(x,y) = dμ(x) that minimizes ∫∫X x Y || x – y ||2 dγ(x,y) Everything that is transported from x sums to “μ(x)”
  • 57. Part. 2 Optimal Transport – Kantorovich Monge’s problem: Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x) Kantorovich’s problem: Find a measure γ defined on X x Y such that ∫x in X dγ(x,y) = dν(y) and ∫y in Y dγ(x,y) = dμ(x) that minimizes ∫∫X x Y || x – y ||2 dγ(x,y) Everything that is transported to y sums to “ν(y)”
  • 58. Part. 2 Optimal Transport – Kantorovich Transport plan – example 1/4 : translation of a segment
  • 59. Part. 2 Optimal Transport – Kantorovich Transport plan – example 1/4 : translation of a segment
  • 60. Part. 2 Optimal Transport – Kantorovich Transport plan – example 2/4 : spitting a segment
  • 61. Part. 2 Optimal Transport – Kantorovich
  • 62. Part. 2 Optimal Transport – Kantorovich
  • 63. Part. 2 Optimal Transport – Kantorovich
  • 64. Part. 2 Optimal Transport – Kantorovich Transport plan – example 3/4 : splitting a Dirac into two Diracs
  • 65. Part. 2 Optimal Transport – Kantorovich Transport plan – example 3/4 : splitting a Dirac into two Diracs (No transport map)
  • 66. Part. 2 Optimal Transport – Kantorovich Transport plan – example 4/4 : splitting a Dirac into two segments
  • 67. Part. 2 Optimal Transport – Kantorovich Transport plan – example 4/4 : splitting a Dirac into two segments (No transport map)
  • 68. Part. 2 Optimal Transport – Duality
  • 69. Part. 2 Optimal Transport – Duality Duality is easier to understand with a discrete version Then we’ll go back to the continuous setting.
  • 70. Part. 2 Optimal Transport – Duality (DMK): Min <c, γ> P1 γ = u s.t. P2 γ = v γ ≥ 0
  • 71. Part. 2 Optimal Transport – Duality (DMK): Min <c, γ> P1 γ = u s.t. P2 γ = v γ ≥ 0 γ = γ11 γ12 … γ1n γ22 … γ2n … … γmn Є IRmn
  • 72. Part. 2 Optimal Transport – Duality (DMK): Min <c, γ> P1 γ = u s.t. P2 γ = v γ ≥ 0 γ = γ11 γ12 … γ1n γ22 … γ2n … … γmn c = c11 c12 … c1n c22 … c2n … … cmn Є IRmnЄ IRmn
  • 73. Part. 2 Optimal Transport – Duality (DMK): Min <c, γ> P1 γ = u s.t. P2 γ = v γ ≥ 0 γ = γ11 γ12 … γ1n γ22 … γ2n … … γmn c = c11 c12 … c1n c22 … c2n … … cmn cij = || xi – yj ||2 Є IRmnЄ IRmn
  • 74. Part. 2 Optimal Transport – Duality (DMK): Min <c, γ> P1 γ = u s.t. P2 γ = v γ ≥ 0 γ = γ11 γ12 … γ1n γ22 … γ2n … … γmn c = c11 c12 … c1n c22 … c2n … … cmn cij = || xi – yj ||2 mn X m Є IRmnЄ IRmn
  • 75. Part. 2 Optimal Transport – Duality (DMK): Min <c, γ> P1 γ = u s.t. P2 γ = v γ ≥ 0 γ = γ11 γ12 … γ1n γ22 … γ2n … … γmn c = c11 c12 … c1n c22 … c2n … … cmn cij = || xi – yj ||2 mn X n mn X m Є IRmnЄ IRmn
  • 76. Part. 2 Optimal Transport – Duality (DMK): Min <c, γ> P1 γ = u s.t. P2 γ = v γ ≥ 0 γ = γ11 γ12 … γ1n γ22 … γ2n … … γmn c = c11 c12 … c1n c22 … c2n … … cmn Є IRmnЄ IRmn mn X n mn X m
  • 77. Part. 2 Optimal Transport – Duality Consider L(φ,ψ) = <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v> (DMK): Min <c, γ> P1 γ = u s.t. P2 γ = v γ ≥ 0 < u, v > denotes the dot product between u and v
  • 78. Part. 2 Optimal Transport – Duality Consider L(φ,ψ) = <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v> Remark: Sup[ L(φ,ψ) ] = < c, γ> if P1 γ = u and P2 γ = v φ Є IRm ψ Є IRn (DMK): Min <c, γ> P1 γ = u s.t. P2 γ = v γ ≥ 0
  • 79. Part. 2 Optimal Transport – Duality Consider L(φ,ψ) = <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v> Remark: Sup[ L(φ,ψ) ] = < c, γ> if P1 γ = u and P2 γ = v φ Є IRm ψ Є IRn = +∞ otherwise (DMK): Min <c, γ> P1 γ = u s.t. P2 γ = v γ ≥ 0
  • 80. Part. 2 Optimal Transport – Duality Consider L(φ,ψ) = <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v> Remark: Sup[ L(φ,ψ) ] = < c, γ> if P1 γ = u and P2 γ = v φ Є IRm ψ Є IRn = +∞ otherwise Consider now: Inf [ Sup[ L(φ,ψ) ] ] φ Є IRm ψ Є IRn γ ≥ 0 (DMK): Min <c, γ> P1 γ = u s.t. P2 γ = v γ ≥ 0
  • 81. Part. 2 Optimal Transport – Duality Consider L(φ,ψ) = <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v> Remark: Sup[ L(φ,ψ) ] = < c, γ> if P1 γ = u and P2 γ = v φ Є IRm ψ Є IRn = +∞ otherwise Consider now: Inf [ Sup[ L(φ,ψ) ] ] = Inf [ < c, γ> ] φ Є IRm ψ Є IRn γ ≥ 0 γ ≥ 0 P1 γ = u P2 γ = v (DMK): Min <c, γ> P1 γ = u s.t. P2 γ = v γ ≥ 0
  • 82. Part. 2 Optimal Transport – Duality Consider L(φ,ψ) = <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v> Remark: Sup[ L(φ,ψ) ] = < c, γ> if P1 γ = u and P2 γ = v φ Є IRm ψ Є IRn = +∞ otherwise Consider now: Inf [ Sup[ L(φ,ψ) ] ] = Inf [ < c, γ> ] (DMK) φ Є IRm ψ Є IRn γ ≥ 0 γ ≥ 0 P1 γ = u P2 γ = v (DMK): Min <c, γ> P1 γ = u s.t. P2 γ = v γ ≥ 0
  • 83. Part. 2 Optimal Transport – Duality φ Є IRm ψ Є IRn γ ≥ 0 Inf [ Sup[ <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v> ] ] (DMK): Min <c, γ> P1 γ = u s.t. P2 γ = v γ ≥ 0
  • 84. Part. 2 Optimal Transport – Duality φ Є IRm ψ Є IRn γ ≥ 0 Inf [ Sup[ <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v> ] ] φ Є IRm ψ Є IRn γ ≥ 0 Sup[ Inf[ <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v> ] ] Exchange Inf Sup (DMK): Min <c, γ> P1 γ = u s.t. P2 γ = v γ ≥ 0
  • 85. Part. 2 Optimal Transport – Duality φ Є IRm ψ Є IRn γ ≥ 0 Inf [ Sup[ <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v> ] ] φ Є IRm ψ Є IRn γ ≥ 0 Sup[ Inf[ <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v> ] ] φ Є IRm ψ Є IRn γ ≥ 0 Sup[ Inf[ < γ,c-P1 t φ – P2 t ψ > + <φ,u> + <ψ, v> ] ] Exchange Inf Sup Expand/Reorder/Collect (DMK): Min <c, γ> P1 γ = u s.t. P2 γ = v γ ≥ 0
  • 86. Part. 2 Optimal Transport – Duality φ Є IRm ψ Є IRn γ ≥ 0 Inf [ Sup[ <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v> ] ] φ Є IRm ψ Є IRn γ ≥ 0 Sup[ Inf[ <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v> ] ] φ Є IRm ψ Є IRn γ ≥ 0 Sup[ Inf[ < γ,c-P1 t φ – P2 t ψ > + <φ,u> + <ψ, v> ] ] Exchange Inf Sup Expand/Reorder/Collect Interpret (DMK): Min <c, γ> P1 γ = u s.t. P2 γ = v γ ≥ 0
  • 87. Part. 2 Optimal Transport – Duality φ Є IRm ψ Є IRn γ ≥ 0 Sup[ Inf[ < γ,c-P1 t φ – P2 t ψ > + <φ,u> + <ψ, v> ] ] Interpret Sup[ <φ,u> + <ψ, v> ] φ Є IRm ψ Є IRn P1 t φ + P2 t ψ ≤ c (DMK): Min <c, γ> P1 γ = u s.t. P2 γ = v γ ≥ 0 (DDMK)
  • 88. Part. 2 Optimal Transport – Duality φ Є IRm ψ Є IRn γ ≥ 0 Sup[ Inf[ < γ,c-P1 t φ – P2 t ψ > + <φ,u> + <ψ, v> ] ] Interpret Sup[ <φ,u> + <ψ, v> ] φ Є IRm ψ Є IRn P1 t φ + P2 t ψ ≤ c φi + ψj ≤ cij (i,j) A (DMK): Min <c, γ> P1 γ = u s.t. P2 γ = v γ ≥ 0 (DDMK)
  • 89. Part. 2 Optimal Transport – Kantorovich dual Kantorovich’s problem: Find a measure γ defined on X x Y such that ∫x in X dγ(x,y) = dμ(x) and ∫y in Y dγ(x,y) = dν(x) that minimizes ∫∫X x Y || x – y ||2 dγ(x,y) Dual formulation of Kantorovich’s problem (Continuous): Find two functions φ in L1(μ) and ψ in L1(ν) Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2 that maximize ∫X φdμ + ∫Y ψdν
  • 90. Part. 2 Optimal Transport – Kantorovich dual Kantorovich’s problem: Find a measure γ defined on X x Y such that ∫x in X dγ(x,y) = dμ(x) and ∫y in Y dγ(x,y) = dν(x) that minimizes ∫∫X x Y || x – y ||2 dγ(x,y) Dual formulation of Kantorovich’s problem: Find two functions φ in L1(μ) and ψ in L1(ν) Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2 that maximize ∫X φdμ + ∫Y ψdν Your point of view: Try to minimize transport cost
  • 91. Part. 2 Optimal Transport – Kantorovich dual Kantorovich’s problem: Find a measure γ defined on X x Y such that ∫x in X dγ(x,y) = dμ(x) and ∫y in Y dγ(x,y) = dν(x) that minimizes ∫∫X x Y || x – y ||2 dγ(x,y) Dual formulation of Kantorovich’s problem: Find two functions φ in L1(μ) and ψ in L1(ν) Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2 that maximize ∫X φdμ + ∫Y ψdν Point of view of a “transport company”: Try to maximize transport price Your point of view: Try to minimize transport cost
  • 92. Part. 2 Optimal Transport – Kantorovich dual Kantorovich’s problem: Find a measure γ defined on X x Y such that ∫x in X dγ(x,y) = dμ(x) and ∫y in Y dγ(x,y) = dν(x) that minimizes ∫∫X x Y || x – y ||2 dγ(x,y) Dual formulation of Kantorovich’s problem: Find two functions φ in L1(μ) and ψ in L1(ν) Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2 that maximize ∫X φ(x)dμ + ∫Y ψ(y)dν What they charge for loading at x Your point of view: Try to minimize transport cost
  • 93. Part. 2 Optimal Transport – Kantorovich dual Kantorovich’s problem: Find a measure γ defined on X x Y such that ∫x in X dγ(x,y) = dμ(x) and ∫y in Y dγ(x,y) = dν(x) that minimizes ∫∫X x Y || x – y ||2 dγ(x,y) Dual formulation of Kantorovich’s problem: Find two functions φ in L1(μ) and ψ in L1(ν) Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2 that maximize ∫X φ(x)dμ + ∫Y ψ(y)dν What they charge for loading at x What they charge for unloading at y Your point of view: Try to minimize transport cost
  • 94. Part. 2 Optimal Transport – Kantorovich dual Kantorovich’s problem: Find a measure γ defined on X x Y such that ∫x in X dγ(x,y) = dμ(x) and ∫y in Y dγ(x,y) = dν(x) that minimizes ∫∫X x Y || x – y ||2 dγ(x,y) Dual formulation of Kantorovich’s problem: Find two functions φ in L1(μ) and ψ in L1(ν) Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2 that maximize ∫X φ(x)dμ + ∫Y ψ(y)dν What they charge for loading at x What they charge for unloading at y Price (loading + unloading) cannot be greater than transport cost (else you do the job yourself) Your point of view: Try to minimize transport cost
  • 95. Part. 2 Optimal Transport – c-conjugate functions Dual formulation of Kantorovich’s problem: Find two functions φ in L1(μ) and ψ in L1(ν) Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2 that maximize ∫X φ(x)dμ + ∫Y ψ(y)dν
  • 96. Part. 2 Optimal Transport – c-conjugate functions Dual formulation of Kantorovich’s problem: Find two functions φ in L1(μ) and ψ in L1(ν) Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2 that maximize ∫X φ(x)dμ + ∫Y ψ(y)dν If we got two functions φ and ψ that satisfy the constraint Then it is possible to obtain a better solution by replacing ψ with φc defined by: For all y, φc(y) = inf x in X ½|| x – y ||2 - φ(y)
  • 97. Part. 2 Optimal Transport – c-conjugate functions Dual formulation of Kantorovich’s problem: Find two functions φ in L1(μ) and ψ in L1(ν) Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2 that maximize ∫X φ(x)dμ + ∫Y ψ(y)dν If we got two functions φ and ψ that satisfy the constraint Then it is possible to obtain a better solution by replacing ψ with φc defined by: For all y, φc(y) = inf x in X ½|| x – y ||2 - φ(y) • φc is called the c-conjugate function of φ • If there is a function φ such that ψ = φc then ψ is said to be c-concave • If ψ is c-concave, then ψ cc = ψ
  • 98. Part. 2 Optimal Transport – c-conjugate functions Dual formulation of Kantorovich’s problem: Find a c-concave function ψ that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
  • 99. Part. 2 Optimal Transport – c-conjugate functions Dual formulation of Kantorovich’s problem: Find a c-concave function ψ that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν ψ is called a “Kantorovich potential”
  • 100. Part. 2 Optimal Transport – c-subdifferential What about our initial problem ? ψ is called a “Kantorovich potential” Dual formulation of Kantorovich’s problem: Find a c-concave function ψ that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
  • 101. Part. 2 Optimal Transport – c-subdifferential What about our initial problem ? (i.e., this is T() that we want to find …) ψ is called a “Kantorovich potential” Dual formulation of Kantorovich’s problem: Find a c-concave function ψ that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
  • 102. Part. 2 Optimal Transport – c-subdifferential
  • 103. Part. 2 Optimal Transport – c-subdifferential Proof: see OTON, chap. 10.
  • 104. Part. 2 Optimal Transport – c-subdifferential Proof: see OTON, chap. 10. Heuristic argument (at the beginning of the same chapter):
  • 105. Part. 2 Optimal Transport – c-subdifferential Proof: see OTON, chap. 10. Heuristic argument (at the beginning of the same chapter):
  • 106. Part. 2 Optimal Transport – c-subdifferential Proof: see OTON, chap. 10. Heuristic argument (at the beginning of the same chapter):
  • 107. Part. 2 Optimal Transport – c-subdifferential Proof: see OTON, chap. 10. Heuristic argument (at the beginning of the same chapter):
  • 108. Part. 2 Optimal Transport – c-subdifferential Proof: see OTON, chap. 10. Heuristic argument (at the beginning of the same chapter):
  • 109. Part. 2 Optimal Transport – c-subdifferential Proof: see OTON, chap. 10. Heuristic argument (at the beginning of the same chapter):
  • 110. Part. 2 Optimal Transport – c-subdifferential Proof: see OTON, chap. 10. Heuristic argument (at the beginning of the same chapter): w
  • 111. Part. 2 Optimal Transport – c-subdifferential Proof: see OTON, chap. 10. Heuristic argument (at the beginning of the same chapter): -w
  • 112. Part. 2 Optimal Transport – c-subdifferential Dual formulation of Kantorovich’s problem: Find a c-concave function ψ that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
  • 113. Part. 2 Optimal Transport – c-subdifferential Dual formulation of Kantorovich’s problem: Find a c-concave function ψ that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν { grad ψ(x) with ψ(x) := (½ x2- ψ(x))
  • 114. Part. 2 Optimal Transport – convexity Dual formulation of Kantorovich’s problem: Find a c-concave function ψ that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν { grad ψ(x) with ψ(x) := (½ x2- ψ(x)) ψ is convex
  • 115. Part. 2 Optimal Transport – convexity Dual formulation of Kantorovich’s problem: Find a c-concave function ψ that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν { grad ψ(x) with ψ(x) := (½ x2- ψ(x)) ψ is convex
  • 116. Part. 2 Optimal Transport – convexity Dual formulation of Kantorovich’s problem: Find a c-concave function ψ that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν { grad ψ(x) with ψ(x) := (½ x2- ψ(x)) ψ is convex
  • 117. Part. 2 Optimal Transport – no collision If T(.) exists, then T(x) = x – grad ψ(x) = grad (½ x2- ψ(x) ) {grad ψ (x) Dual formulation of Kantorovich’s problem: Find a c-concave function ψ that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν ψ is convex Two transported particles cannot “collide”
  • 118. Part. 2 Optimal Transport – no collision If T(.) exists, then T(x) = x – grad ψ(x) = grad (½ x2- ψ(x) ) {grad ψ (x) Dual formulation of Kantorovich’s problem: Find a c-concave function ψ that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν ψ is convex Two transported particles cannot “collide”
  • 119. Part. 2 Optimal Transport – no collision If T(.) exists, then T(x) = x – grad ψ(x) = grad (½ x2- ψ(x) ) {grad ψ (x) Dual formulation of Kantorovich’s problem: Find a c-concave function ψ that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν ψ is convex Two transported particles cannot “collide”
  • 120. Part. 2 Optimal Transport – Monge-Ampere What about our initial problem ? If T(.) exists, then one can show that: T(x) = x – grad ψ(x) = grad (½ x2- ψ(x) ) { for all borel set A, ∫A dμ = ∫T(A) (|JT|) dν (change of variable) Jacobian of T (1st order derivatives) Dual formulation of Kantorovich’s problem: Find a c-concave function ψ that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν grad ψ(x) with ψ(x) := (½ x2- ψ(x))
  • 121. Part. 2 Optimal Transport – Monge-Ampere What about our initial problem ? If T(.) exists, then one can show that: T(x) = x – grad ψ(x) = grad (½ x2- ψ(x) ) { for all borel set A, ∫A dμ = ∫T(A) (|JT|) dν = ∫T(A) (H ψ ) dν Det. of the Hessian of ψ (2nd order derivatives) Dual formulation of Kantorovich’s problem: Find a c-concave function ψ that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν grad ψ(x) with ψ(x) := (½ x2- ψ(x))
  • 122. Part. 2 Optimal Transport – Monge-Ampere What about our initial problem ? T(x) = x – grad ψ(x) = grad (½ x2- ψ(x) ) { When μ and ν have a density u and v, (H ψ(x)). v(grad ψ(x)) = u(x) Monge-Ampère equation for all borel set A, ∫A dμ = ∫T(A) (|JT|) dν = ∫T(A) (H ψ ) dν Dual formulation of Kantorovich’s problem: Find a c-concave function ψ that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν {grad ψ(x) with ψ(x) := (½ x2- ψ(x))
  • 123. Part. 2 Optimal Transport – summary Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
  • 124. Part. 2 Optimal Transport – summary Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x) After several rewrites and under some conditions…. (Kantorovich formulation, dual, c-convex functions)
  • 125. Part. 2 Optimal Transport – summary Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x) After several rewrites and under some conditions…. (Kantorovich formulation, dual, c-convex functions) Monge-Ampère equation (When μ and ν have a density u and v resp.) Solve (H ψ(x)). v(grad ψ(x)) = u(x)
  • 126. Part. 2 Optimal Transport – summary Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x) After several rewrites and under some conditions…. (Kantorovich formulation, dual, c-convex functions) Brenier, Mc Cann, Trudinger: The optimal transport map is then given by: T(x) = grad ψ(x) Solve (H ψ(x)). v(grad ψ(x)) = u(x) Monge-Ampère equation (When μ and ν have a density u and v resp.)
  • 128. Part. 3 Optimal Transport – how to program ? Continuous (X;μ) (Y;ν)
  • 129. Part. 3 Optimal Transport – how to program ? Continuous Semi-discrete (X;μ) (Y;ν)
  • 130. Part. 3 Optimal Transport – how to program ? Continuous Semi-discrete Discrete (X;μ) (Y;ν)
  • 131. Part. 3 Optimal Transport – how to program ? Continuous Semi-discrete Discrete (X;μ) (Y;ν)
  • 132. Part. 3 Optimal Transport – semi-discrete ∫X ψc (x)dμ + ∫Y ψ(y)dν Sup ψ Є ψc (DMK) (X;μ) (Y;ν)
  • 133. Part. 3 Optimal Transport – semi-discrete (X;μ) (Y;ν) ∑j ψ(yj) vj ∫X ψc (x)dμ + ∫Y ψ(y)dν Sup ψ Є ψc (DMK)
  • 134. Part. 3 Optimal Transport – semi-discrete ∫X ψc (x)dμ + ∫Y ψ(y)dν Sup ψ Є ψc (DMK) ∑j ψ(yj) vj
  • 135. Part. 3 Optimal Transport – semi-discrete ∫X ψc (x)dμ + ∫Y ψ(y)dν Sup ψ Є ψc (DMK) ∫X inf yj ЄY [ || x – yj ||2 - ψ(yj) ] dμ ∑j ψ(yj) vj
  • 136. Part. 3 Optimal Transport – semi-discrete ∫X ψc (x)dμ + ∫Y ψ(y)dν Sup ψ Є ψc (DMK) ∑j ∫Lagψ(yj) || x – yj ||2 - ψ(yj) dμ ∫X inf yj ЄY [ || x – yj ||2 - ψ(yj) ] dμ ∑j ψ(yj) vj
  • 137. Part. 3 Optimal Transport – semi-discrete G(ψ) =∑j ∫Lag ψ(yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj Sup ψ Є ψc (DMK) Where: Lag ψ(yj) = { x | || x – yj ||2 – ψ(yj) < || x – yj ||2 - ψ(yj’) } for all j’ ≠ j
  • 138. Part. 3 Optimal Transport – semi-discrete G(ψ) =∑j ∫Lag ψ(yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj Sup ψ Є ψc (DMK) Where: Lag ψ(yj) = { x | || x – yj ||2 – ψ(yj) < || x – yj ||2 - ψ(yj’) } for all j’ ≠ j Laguerre diagram of the yj’s (with the L2 cost || x – y ||2 used here, Power diagram)
  • 139. Part. 3 Optimal Transport – semi-discrete G(ψ) =∑j ∫Lag ψ(yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj Sup ψ Є ψc (DMK) Where: Lag ψ(yj) = { x | || x – yj ||2 – ψ(yj) < || x – yj ||2 - ψ(yj’) } for all j’ ≠ j Laguerre diagram of the yj’s (with the L2 cost || x – y ||2 used here, Power diagram) Weight of yj in the power diagram
  • 140. Part. 3 Optimal Transport – semi-discrete G(ψ) =∑j ∫Lag ψ(yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj Sup ψ Є ψc (DMK) Where: Lag ψ(yj) = { x | || x – yj ||2 – ψ(yj) < || x – yj ||2 - ψ(yj’) } for all j’ ≠ j Laguerre diagram of the yj’s (with the L2 cost || x – y ||2 used here, Power diagram) Weight of yj in the power diagram ψ is determined by the weight vector [ψ(y1) ψ(y2) … ψ(ym)]
  • 141. Voronoi diagram: Vor(xi) = { x | d2(x,xi) < d2(x,xj) } Part. 3 Power Diagrams
  • 142. Power diagram: Pow(xi) = { x | d2(x,xi) – ψi < d2(x,xj) – ψj } Voronoi diagram: Vor(xi) = { x | d2(x,xi) < d2(x,xj) } Part. 3 Power Diagrams
  • 143. Part. 3 Power Diagrams
  • 144. Part. 3 Optimal Transport Theorem: (direct consequence of MK duality alternative proof in [Aurenhammer, Hoffmann, Aronov 98] ): Given a measure μ with density, a set of points (yj), a set of positive coefficients vj such that ∑ vj = ∫ dμ(x), it is possible to find the weights W = [ψ(y1) ψ(y2) … ψ(ym)] such that the map TS W is the unique optimal transport map between μ and ν = ∑ vj δ(yj)
  • 145. Part. 3 Optimal Transport Theorem: (direct consequence of MK duality alternative proof in [Aurenhammer, Hoffmann, Aronov 98] ): Given a measure μ with density, a set of points (yj), a set of positive coefficients vj such that ∑ vj = ∫ dμ(x), it is possible to find the weights W = [ψ(y1) ψ(y2) … ψ(ym)] such that the map TS W is the unique optimal transport map between μ and ν = ∑ vj δ(yj) Proof: G(ψ) =∑j ∫Lag ψ(yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj Is a concave function of the weight vector [ψ(y1) ψ(y2) … ψ(ym)]
  • 146. Part. 3 Optimal Transport Theorem: (direct consequence of MK duality alternative proof in [Aurenhammer, Hoffmann, Aronov 98] ): Given a measure μ with density, a set of points (yj), a set of positive coefficients vj such that ∑ vj = ∫ dμ(x), it is possible to find the weights W = [ψ(y1) ψ(y2) … ψ(ym)] such that the map TS W is the unique optimal transport map between μ and ν = ∑ vj δ(yj) Proof: G(ψ) =∑j ∫Lag ψ(yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj Is a concave function of the weight vector [ψ(y1) ψ(y2) … ψ(ym)]
  • 147. Part. 3 Optimal Transport – the AHA paper Idea of the proof Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x) The (unknown) weights W = [ψ(y1) ψ(y2) … ψ(ym)]
  • 148. Part. 3 Optimal Transport – the AHA paper Idea of the proof Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x) T : an arbitrary but fixed assignment.
  • 149. Part. 3 Optimal Transport – the AHA paper Idea of the proof Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x) T : an arbitrary but fixed assignment.
  • 150. Part. 3 Optimal Transport – the AHA paper Idea of the proof Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x) T : an arbitrary but fixed assignment.
  • 151. Part. 3 Optimal Transport – the AHA paper Idea of the proof Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x) T : an arbitrary but fixed assignment.
  • 152. Part. 3 Optimal Transport – the AHA paper Idea of the proof Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x) W fT(W) fT(W)
  • 153. Part. 3 Optimal Transport – the AHA paper Idea of the proof Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x) W fT(W) fT(W)
  • 154. Part. 3 Optimal Transport – the AHA paper Idea of the proof Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x) fT(W) is linear in W fT(W) W fT(W) Fixed T
  • 155. Part. 3 Optimal Transport – the AHA paper Idea of the proof Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x) fT(W) is linear in W f TW (W) : defined by Laguerre diagram fT(W) fixed W W
  • 156. Part. 3 Optimal Transport – the AHA paper Idea of the proof Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x) fT(W) is linear in W f TW (W) = minT fT(W) fT(W) fixed W W
  • 157. Part. 3 Optimal Transport – the AHA paper Idea of the proof Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x) fT(W) is linear in W f: W → f TW (W) is concave !! (because its graph is the lower enveloppe of linear functions) fT(W) W fT(W) f TW (W) = minT fT(W)
  • 158. Part. 3 Optimal Transport – the AHA paper Idea of the proof Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x) fT(W) is linear in W f: W → f TW (W) is concave (because its graph is the lower enveloppe of linear functions) fT(W) W fT(W) f TW (W) = minT fT(W) Consider g(W) = f TW (W) + ∑vj ψj
  • 159. Part. 3 Optimal Transport – the AHA paper fT(W) W fT(W) f TW (W) = minT fT(W) Consider g(W) = f TW (W) + ∑vj ψj vj -∫Lag ψ (yj) dμ(x) and g is concave.∂ g / ∂ ψ j = Idea of the proof Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x) fT(W) is linear in W f: W → f TW (W) is concave (because its graph is the lower enveloppe of linear functions)
  • 160. Part. 3 Optimal Transport – the algorithm Semi-discrete OT Summary: ∫X ψc (x)dμ + ∫Y ψ(y)dν Sup ψ Є ψc (DMK) G(ψ) =
  • 161. Part. 3 Optimal Transport – the algorithm Semi-discrete OT Summary: G(ψ) = g(W) =∑j ∫Lag ψ (yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj is concave ∫X ψc (x)dμ + ∫Y ψ(y)dν Sup ψ Є ψc (DMK) G(ψ) =
  • 162. Part. 3 Optimal Transport – the algorithm Semi-discrete OT Summary: G(ψ) = g(W) =∑j ∫Lag ψ (yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj is concave vj -∫Lag(yj)dμ(x) (= 0 at the maximum)∂ G / ∂ ψ j = ∫X ψc (x)dμ + ∫Y ψ(y)dν Sup ψ Є ψc (DMK) G(ψ) =
  • 163. Part. 3 Optimal Transport – the algorithm Semi-discrete OT Summary: G(ψ) = g(W) =∑j ∫Lag ψ (yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj is concave vj -∫Lag(yj)dμ(x) (= 0 at the maximum)∂ G / ∂ ψ j = ∫X ψc (x)dμ + ∫Y ψ(y)dν Sup ψ Є ψc (DMK) G(ψ) = Desired mass at yj Mass transported to yj
  • 164. Part. 3 Optimal Transport – the Hessian vj -∫Lag(yj)dμ(x)∂ G / ∂ ψ j =
  • 165. Part. 3 Optimal Transport – the Hessian vj -∫Lag(yj)dμ(x)∂ G / ∂ ψ j = ∂ 2 G / ∂ ψ i ψ j = - ∂ / ∂ ψ j ∫Lag(yj)dμ(x)
  • 166. Part. 3 Optimal Transport – the Hessian vj -∫Lag(yj)dμ(x)∂ G / ∂ ψ j = ∂ 2 G / ∂ ψ i ψ j = - ∂ / ∂ ψ j ∫Lag(yj)dμ(x) yi yj
  • 167. Part. 3 Optimal Transport – the Hessian vj -∫Lag(yj)dμ(x)∂ G / ∂ ψ j = ∂ 2 G / ∂ ψ i ψ j = - ∂ / ∂ ψ j ∫Lag(yj)dμ(x) yi yj ψ j ψ j + δψ j
  • 168. Part. 3 Optimal Transport – the Hessian vj -∫Lag(yj)dμ(x)∂ G / ∂ ψ j = ∂ 2 G / ∂ ψ i ψ j = - ∂ / ∂ ψ j ∫Lag(yj)dμ(x) yi yj ψ j ψ j + δψ j Reynold’s thm: ∂ / ∂ ψ j ∫Lag(yj)dμ(x) = ∫∂ Lag(yj) v.n dμ(x)
  • 169. Part. 3 Optimal Transport – the Hessian yi yj Reynold’s thm: ∂ / ∂ ψ j ∫Lag(yj)dμ(x) = ∫∂ Lag(yj) v.n dμ(x) fij(x) = 0
  • 170. Part. 3 Optimal Transport – the Hessian yi yj Reynold’s thm: ∂ / ∂ ψ j ∫Lag(yj)dμ(x) = ∫∂ Lag(yj) v.n dμ(x) fij(x) = 0 c(x,yi) - c(x,yj) + ψ j - ψ i = 0
  • 171. Part. 3 the Hessian yi yj Reynold’s thm: ∂ / ∂ ψ j ∫Lag(yj)dμ(x) = ∫∂ Lag(yj) v.n dμ(x) fij(x) = 0 c(x,yi) - c(x,yj) + ψ j - ψ i = 0 δx δψ j dfij = gradx(c(x,yi) - c(x,yj))dx + dψ j n
  • 172. Part. 3 the Hessian yi yj Reynold’s thm: ∂ / ∂ ψ j ∫Lag(yj)dμ(x) = ∫∂ Lag(yj) v.n dμ(x) fij(x) = 0 c(x,yi) - c(x,yj) + ψ j - ψ i = 0 δx δψ j dfij = gradx(c(x,yi) - c(x,yj))dx + dψ j n δx = δh n = δh gradx fij(x) / || gradx fij(x)||
  • 173. Part. 3 the Hessian yi yj Reynold’s thm: ∂ / ∂ ψ j ∫Lag(yj)dμ(x) = ∫∂ Lag(yj) v.n dμ(x) fij(x) = 0 c(x,yi) - c(x,yj) + ψ j - ψ i = 0 δx δψ j dfij = gradx(c(x,yi) - c(x,yj))dx + dψ j n δx = δh n = δh gradx fij(x) / || gradx fij(x)|| δh
  • 174. Part. 3 the Hessian yi yj Reynold’s thm: ∂ / ∂ ψ j ∫Lag(yj)dμ(x) = ∫∂ Lag(yj) v.n dμ(x) fij(x) = 0 c(x,yi) - c(x,yj) + ψ j - ψ i = 0 δx δψ j dfij = gradx(c(x,yi) - c(x,yj))dx + dψ j n δx = δh n = δh gradx fij(x) / || gradx fij(x)|| δh ∂ h / ∂ ψ j = -1/ || gradx c(x,yi) – gradx c(x,yj) ||
  • 175. Part. 3 the Hessian yi yj Reynold’s thm: ∂ / ∂ ψ j ∫Lag(yj)dμ(x) = ∫∂ Lag(yj) v.n dμ(x) fij(x) = 0 c(x,yi) - c(x,yj) + ψ j - ψ i = 0 δx δψ j dfij = gradx(c(x,yi) - c(x,yj))dx + dψ j n δx = δh n = δh gradx fij(x) / || gradx fij(x)|| δh ∂ h / ∂ ψ j = -1/ || gradx c(x,yi) – gradx c(x,yj) || ∂ / ∂ ψ j ∫Lag(yj)dμ(x) = ∫Lag(yi) ∩Lag(yj) -1/|| gradx c(x,yi) – gradx c(x,yj) ||dμ(x)
  • 176. Part. 3 the Hessian ∂ 2 / ∂ ψ i ∂ ψ j F = ∫Lag(yi) ∩ Lag(yj) -1/|| gradx c(x,yi) – gradx c(x,yj) ||dμ(x) ∂ 2 / ∂ ψ i 2 F = - ∑ ∂ 2 / ∂ ψ i ∂ ψ j
  • 177. Part. 3 the Hessian ∂ 2 / ∂ ψ i ∂ ψ j F = ∫Lag(yi) ∩ Lag(yj) -1/|| gradx c(x,yi) – gradx c(x,yj) ||dμ(x) ∂ 2 / ∂ ψ i 2 F = - ∑ ∂ 2 / ∂ ψ i ∂ ψ j c(x,y) = || x – y ||2 ∂ 2 / ∂ ψ i ∂ ψ j F = ∫Lag(yi) ∩ Lag(yj) 1 / || xj – xi || dμ(x)
  • 178. Part. 3 the Hessian ∂ 2 / ∂ ψ i ∂ ψ j F = ∫Lag(yi) ∩ Lag(yj) -1/|| gradx c(x,yi) – gradx c(x,yj) ||dμ(x) ∂ 2 / ∂ ψ i 2 F = - ∑ ∂ 2 / ∂ ψ i ∂ ψ j c(x,y) = || x – y ||2 ∂ 2 / ∂ ψ i ∂ ψ j F = ∫Lag(yi) ∩ Lag(yj) 1 / || xj – xi || dμ(x) IP1 FEM Laplacian (not a big surprise)
  • 179. Part. 3 Optimal Transport Let’s program it ! Hierarchical algorithm [Mérigot] Geometry, 3D [L], [L, Schwindt] Damped Newton algorithm, [Kitagawa, Mérigot, Thibert]
  • 180. Optimal Transport applications in computational physics 4
  • 181. Euler Lagrange The Least Action Principle Hamilton, Legendre, Maupertuis Axiom 1: There exists a function L(x,x,t) that describes the state of a physical system Short summary of the 1st chapter of Landau,Lifshitz Course of Theoretical Physics
  • 182. Euler Lagrange The Least Action Principle Hamilton, Legendre, Maupertuis Axiom 1: There exists a function L(x,x,t) that describes the state of a physical system position
  • 183. Euler Lagrange The Least Action Principle Hamilton, Legendre, Maupertuis Axiom 1: There exists a function L(x,x,t) that describes the state of a physical system position speed
  • 184. Euler Lagrange The Least Action Principle Hamilton, Legendre, Maupertuis Axiom 1: There exists a function L(x,x,t) that describes the state of a physical system position speed time
  • 185. Euler Lagrange ∫t1 t2 L(x,x,t) dt The Least Action Principle Hamilton, Legendre, Maupertuis Axiom 1: There exists a function L(x,x,t) that describes the state of a physical system Axiom 2: The movement (time evolution) of the physical system minimizes the following integral
  • 186. ∫t1 t2 L(x,x,t) dt The Least Action Principle Axiom 1: There exists a function L(x,x,t) that describes the state of a physical system Axiom 2: The movement (time evolution) of the physical system minimizes the following integral
  • 187. ∫t1 t2 L(x,x,t) dt The Least Action Principle Axiom 1: There exists a function L(x,x,t) that describes the state of a physical system Axiom 2: The movement (time evolution) of the physical system minimizes the following integral Theorem 1: (Lagrange equation): ∂L ∂x d dt ∂L ∂x = t=0 t=1
  • 188. ∫t1 t2 L(x,x,t) dt The Least Action Principle Axiom 1: There exists L Axiom 2: The movement minimizes Theorem 1: (Lagrange equation): ∂L ∂x d dt ∂L ∂x = Axiom 3: Invariance w.r.t. change of Gallileo frame + hom. + isotrop. : x’ t’ = x+vt t
  • 189. ∫t1 t2 L(x,x,t) dt The Least Action Principle Axiom 1: There exists L Axiom 2: The movement minimizes Theorem 1: (Lagrange equation): ∂L ∂x d dt ∂L ∂x = Axiom 3: Invariance w.r.t. change of Gallileo frame + hom. + isotrop. : x’ t’ = x+vt t Theorem 2: ∂L ∂x x - L = cte
  • 190. ∫t1 t2 L(x,x,t) dt The Least Action Principle Axiom 1: There exists L Axiom 2: The movement minimizes Theorem 1: (Lagrange equation): ∂L ∂x d dt ∂L ∂x = Axiom 3: Invariance w.r.t. change of Gallileo frame + hom. + isotrop. : x’ t’ = x+vt t Theorem 2: ∂L ∂x x - L = cte Homogeneity of time → Preservation of energy
  • 191. ∫t1 t2 L(x,x,t) dt The Least Action Principle Axiom 1: There exists L Axiom 2: The movement minimizes Theorem 1: (Lagrange equation): ∂L ∂x d dt ∂L ∂x = Axiom 3: Invariance w.r.t. change of Gallileo frame + hom. + isotrop. : x’ t’ = x+vt t Theorem 2: ∂L ∂x x - L = cte Homogeneity of time → Preservation of energy Homogeneity of space → Preservation of momentum
  • 192. ∫t1 t2 L(x,x,t) dt The Least Action Principle Axiom 1: There exists L Axiom 2: The movement minimizes Theorem 1: (Lagrange equation): ∂L ∂x d dt ∂L ∂x = Axiom 3: Invariance w.r.t. change of Gallileo frame + hom. + isotrop. : x’ t’ = x+vt t Theorem 2: ∂L ∂x x - L = cte Homogeneity of time → Preservation of energy Homogeneity of space → Preservation of momentum Isotropy of space → Preservation of angular momentum
  • 193. ∫t1 t2 L(x,x,t) dt The Least Action Principle Axiom 1: There exists L Axiom 2: The movement minimizes Theorem 1: (Lagrange equation): ∂L ∂x d dt ∂L ∂x = Axiom 3: Invariance w.r.t. change of Gallileo frame + hom. + isotrop. : x’ t’ = x+vt t Theorem 2: ∂L ∂x x - L = cte Homogeneity of time → Preservation of energy Homogeneity of space → Preservation of momentum Isotropy of space → Preservation of angular momentum Preserved quantities “Integrals of Motion” Noether’s theorem
  • 194. The Least Action Principle Axiom 1: There exists L Axiom 2: The movement minimizes ∫ L Theorem 1: (Lagrange equation): ∂L ∂x d dt ∂L ∂x = Axiom 3: Invariance w.r.t. change of Gallileo frame + hom. + isotrop. : x’ t’ = x+vt t Theorem 2: ∂L ∂x x - L = cte Homogeneity of time → Preservation of energy Homogeneity of space → Preservation of momentum Isotropy of space → Preservation of angular momentum Free particle: Theorem 3: v = cte (Newton’s law I)
  • 195. The Least Action Principle Axiom 1: There exists L Axiom 2: The movement minimizes ∫ L Theorem 1: (Lagrange equation): ∂L ∂x d dt ∂L ∂x = Axiom 3: Invariance w.r.t. change of Gallileo frame + hom. + isotrop. : x’ t’ = x+vt t Theorem 2: ∂L ∂x x - L = cte Homogeneity of time → Preservation of energy Homogeneity of space → Preservation of momentum Isotropy of space → Preservation of angular momentum Free particle: Theorem 3: v = cte (Newton’s law I) Expression of the Lagrangian: L = ½ m v2
  • 196. The Least Action Principle Axiom 1: There exists L Axiom 2: The movement minimizes ∫ L Theorem 1: (Lagrange equation): ∂L ∂x d dt ∂L ∂x = Axiom 3: Invariance w.r.t. change of Gallileo frame + hom. + isotrop. : x’ t’ = x+vt t Theorem 2: ∂L ∂x x - L = cte Homogeneity of time → Preservation of energy Homogeneity of space → Preservation of momentum Isotropy of space → Preservation of angular momentum Free particle: Theorem 3: v = cte (Newton’s law I) Expression of the Lagrangian: L = ½ m v2 Expression of the Energy: E = ½ m v2
  • 197. The Least Action Principle Axiom 1: There exists L Axiom 2: The movement minimizes ∫ L Theorem 1: (Lagrange equation): ∂L ∂x d dt ∂L ∂x = Axiom 3: Invariance w.r.t. change of Gallileo frame + hom. + isotrop. : x’ t’ = x+vt t Particle in a field: Expression of the Lagrangian: L = ½ m v2 – U(x) Free particle: Theorem 3: v = cte (Newton’s law I) Expression of the Lagrangian: L = ½ m v2 Expression of the Energy: E = ½ m v2
  • 198. The Least Action Principle Axiom 1: There exists L Axiom 2: The movement minimizes ∫ L Theorem 1: (Lagrange equation): ∂L ∂x d dt ∂L ∂x = Axiom 3: Invariance w.r.t. change of Gallileo frame + hom. + isotrop. : x’ t’ = x+vt t Particle in a field: Expression of the Lagrangian: L = ½ m v2 – U(x) Expression of the Energy: E = ½ m v2 + U(x) Free particle: Theorem 3: v = cte (Newton’s law I) Expression of the Lagrangian: L = ½ m v2 Expression of the Energy: E = ½ m v2
  • 199. The Least Action Principle Axiom 1: There exists L Axiom 2: The movement minimizes ∫ L Theorem 1: (Lagrange equation): ∂L ∂x d dt ∂L ∂x = Axiom 3: Invariance w.r.t. change of Gallileo frame + hom. + isotrop. : x’ t’ = x+vt t Particle in a field: Expression of the Lagrangian: L = ½ m v2 – U(x) Expression of the Energy: E = ½ m v2 + U(x) Theorem 4: mx = - U (Newton’s law II) Free particle: Theorem 3: v = cte (Newton’s law I) Expression of the Lagrangian: L = ½ m v2 Expression of the Energy: E = ½ m v2
  • 200. Axiom 1: There exists L Axiom 2: The movement minimizes ∫ L Theorem 1: (Lagrange equation): ∂L ∂x d dt ∂L ∂x = Axiom 3: Invariance w.r.t. Lorentz change of frame x’ t’ = (x-vt) x γ (t – vx/c2) x γ γ = 1 / √ ( 1 – v2 / c2) The Least Action Principle (relativistic setting – just for fun…)
  • 201. The Least Action Principle (relativistic setting – just for fun…) Axiom 1: There exists L Axiom 2: The movement minimizes ∫ L Theorem 1: (Lagrange equation): ∂L ∂x d dt ∂L ∂x = Axiom 3: Invariance w.r.t. Lorentz change of frame x’ t’ = (x-vt) x γ (t – vx/c2) x γ γ = 1 / √ ( 1 – v2 / c2) Theorem 5: E = ½ γ m v2 + mc2
  • 202. The Least Action Principle (quantum physics setting – just for fun…)
  • 203. ? T Fluids – Benamou Brenier ρ1 ρ2
  • 204. ? T Fluids – Benamou Brenier Minimize A(ρ,v) = ∫t1 t2 (t2-t1) ∫Ω ρ(x,t) ||v(t,x)||2 dxdt s.t. ρ(t1,.) = ρ1 ; ρ(t2,.) = ρ2 ; d ρ dt = - div(ρv) ρ1 ρ2
  • 205. ? T Fluids – Benamou Brenier ∫t1 t2 (t2-t1) ∫Ω ρ(x,t) ||v(t,x)||2 dxdt s.t. ρ(t1,.) = ρ1 ; ρ(t2,.) = ρ2 ; d ρ dt = - div(ρv) ρ1 ρ2 Minimize C(T) = ∫Ω || x – T(x) ||2 dx s.t. T is measure-preserving ρ1(x) Minimize A(ρ,v) =
  • 206. Le schéma [Mérigot-Gallouet] Applications en graphisme: [De Goes et.al] (power particles) Part. 4 Optimal Transport – Fluids
  • 207. Part. 4 Optimal Transport – Fluids Let’s code it !
  • 208. Part. 4 Optimal Transport – Fluids
  • 209. Part. 4 Optimal Transport – Fluids
  • 210. Part. 4 Optimal Transport – Fluids
  • 211. Part. 4 To infinity and beyond…
  • 212. René Descartes - 1663 Vortices in “ether” ? Part. 4 To infinity and beyond
  • 213. The Data: #1: the Cosmic Microwave Background COBE 1992Part. 4 To infinity and beyond…
  • 214. WMAP 2003 2006 2008 2010 Part. 4 To infinity and beyond… The Data: #1 the Cosmic Microwave Background
  • 215. Part. 4 To infinity and beyond… The Data: #2 redshift acquisition surveys
  • 216. Part. 4 To infinity and beyond… The Data: #2 redshift acquisition surveys
  • 217. Part. 4 To infinity and beyond… The Data: #2 redshift acquisition surveys
  • 218. The millenium simulation project, Max Planck Institute fur Astrophysik pc/h : parsec (= 3.2 années lumières)Part. 4 To infinity and beyond…
  • 219. Part. 4 To infinity and beyond… The universal swimming pool
  • 220. Coop. with MOKAPLAN & Institut d’Astrophysique de Paris & Observatoire de Paris Time = Now Early Universe Reconstruction
  • 221. Coop. with MOKAPLAN & Institut d’Astrophysique de Paris & Observatoire de Paris . . . . . Early Universe Reconstruction
  • 222. Coop. with MOKAPLAN & Institut d’Astrophysique de Paris & Observatoire de Paris Time = BigBang (- 13.7 billion Y) Early Universe Reconstruction
  • 223. Coop. with MOKAPLAN & Institut d’Astrophysique de Paris & Observatoire de Paris “Time-warped” map of the universe Early Universe Reconstruction
  • 224. Coop. with MOKAPLAN & Institut d’Astrophysique de Paris & Observatoire de Paris Cosmic Microware Background: “Fossil light” emitted 380 000 Y after BigBang and measured now “Time-warped” map of the universe Early Universe Reconstruction
  • 225. Coop. with MOKAPLAN & Institut d’Astrophysique de Paris & Observatoire de Paris Cosmic Microware Background: “Fossil light” emitted 380 000 Y after BigBang and measured now Do they match ? “Time-warped” map of the universe Early Universe Reconstruction
  • 227. Conclusions – Open questions * Connections with physics, Legendre transform and entropy ? [Cuturi & Peyré] – regularized discrete optimal transport – why does it work ? Hint 1: Minimum action principle subject to conservation laws Hint 2: Entropy = dual of temperature ; Legendre = Fourier[(+,*) → (Max,+)]… * More continuous numerical algorithms ? [Benamou & Brenier] fluid dynamics point of view – very elegant, but 4D problem !! FEM-type adaptive discretization of the subdifferential (graph of T) ? * Can we characterize OT in other semi-discrete settings ? measures supported on unions of spheres piecewise linear densities * Connections with computational geometry ? Singularity set [Figalli] = set of points where T is discontinuous Looks like a “mutual power diagram”, anisotropic Voronoi diagrams
  • 228. Conclusions - References A Multiscale Approach to Optimal Transport, Quentin Mérigot, Computer Graphics Forum, 2011 Variational Principles for Minkowski Type Problems, Discrete Optimal Transport, and Discrete Monge-Ampere Equations Xianfeng Gu, Feng Luo, Jian Sun, S.-T. Yau, ArXiv 2013 Minkowski-type theorems and least-squares clustering AHA! (Aurenhammer, Hoffmann, and Aronov), SIAM J. on math. ana. 1998 Topics on Optimal Transportation, 2003 Optimal Transport Old and New, 2008 Cédric Villani
  • 229. Conclusions - References Polar factorization and monotone rearrangement of vector-valued functions Yann Brenier, Comm. On Pure and Applied Mathematics, June 1991 A computational fluid mechanics solution of the Monge-Kantorovich mass transfer problem, J.-D. Benamou, Y. Brenier, Numer. Math. 84 (2000), pp. 375-393 Pogorelov, Alexandrov – Gradient maps, Minkovsky problem (older than AHA paper, some overlap, in slightly different context, formalism used by Gu & Yau) Rockafeller – Convex optimization – Theorem to switch inf(sup()) – sup(inf()) with convex functions (used to justify Kantorovich duality) Filippo Santambrogio – Optimal Transport for Applied Mathematician, Calculus of Variations, PDEs and Modeling – Jan 15, 2015 Gabriel Peyré, Marco Cuturi, Computational Optimal Transport, 2018
  • 230. Online resources All the sourcecode/documentation available from: http://alice.loria.fr/software/geogram Demo: www.loria.fr/~levy/GLUP/vorpaview * L., A numerical algorithm for semi-discrete L2 OT in 3D, ESAIM Math. Modeling and Analysis, 2015 * L. and E. Schwindt, Notions of OT and how to implement them on a computer, Computer and Graphics, 2018. J. Lévy – 1936-2018 - To you Dad, I miss you so much.
  • 232. The isoperimetric inequality For a given volume, ball is the shape that minimizes border area
  • 233. ∫| grad f | ≥ n Vol(B2 n)1/n (∫f n/(n-1))(n-1)/n L1 Sobolev inegality: Given f: IRn → IR sufficiently regular Explanation in [Dario Cordero Erauquin] course notes The isoperimetric inequality
  • 234. ∫| grad f | ≥ n Vol(B2 n)1/n (∫f n/(n-1))(n-1)/n L1 Sobolev inegality: Given f: IRn → IR sufficiently regular Explanation in [Dario Cordero Erauquin] course notes The isoperimetric inequality
  • 235. ∫| grad f | ≥ n Vol(B2 n)1/n (∫f n/(n-1))(n-1)/n L1 Sobolev inegality: Given f: IRn → IR sufficiently regular Explanation in [Dario Cordero Erauquin] course notes The isoperimetric inequality
  • 236. ∫| grad f | ≥ n Vol(B2 n)1/n (∫f n/(n-1))(n-1)/n L1 Sobolev inegality: Given f: IRn → IR sufficiently regular Consider a compact set Ω such that Vol(Ω) = Vol(B2 3) and f = the indicatrix function of Ω The isoperimetric inequality
  • 237. ∫| grad f | ≥ n Vol(B2 n)1/n (∫f n/(n-1))(n-1)/n L1 Sobolev inegality: Given f: IRn → IR sufficiently regular Consider a compact set Ω such that Vol(Ω) = Vol(B2 3) and f = the indicatrix function of Ω Vol(∂Ω) ≥ n Vol(B2 3)1/3 Vol(B2 3)2/3 The isoperimetric inequality
  • 238. ∫| grad f | ≥ n Vol(B2 n)1/n (∫f n/(n-1))(n-1)/n L1 Sobolev inegality: Given f: IRn → IR sufficiently regular Consider a compact set Ω such that Vol(Ω) = Vol(B2 3) and f = the indicatrix function of Ω Vol(∂Ω) ≥ n Vol(B2 3)1/3 Vol(B2 3)2/3 Vol(∂Ω) ≥ 4 π = Vol(∂B2 3) The isoperimetric inequality
  • 239. ∫| grad f | ≥ n Vol(B2 n)1/n (∫f n/(n-1))(n-1)/n L1 Sobolev inegality: a proof with OT [Gromov] The isoperimetric inequality
  • 240. ∫| grad f | ≥ n Vol(B2 n)1/n (∫f n/(n-1))(n-1)/n L1 Sobolev inegality: a proof with OT [Gromov] We suppose w.l.o.g. that ∫f n/(n-1) = 1 The isoperimetric inequality
  • 241. ∫| grad f | ≥ n Vol(B2 n)1/n (∫f n/(n-1))(n-1)/n L1 Sobolev inegality: a proof with OT [Gromov] There exists an optimal transport T = gradΨ between f n/(n-1)(x)dx and 1B2 n/Vol(B2 n)dx We suppose w.l.o.g. that ∫f n/(n-1) = 1 The isoperimetric inequality
  • 242. ∫| grad f | ≥ n Vol(B2 n)1/n (∫f n/(n-1))(n-1)/n L1 Sobolev inegality: a proof with OT [Gromov] There exists an optimal transport T = gradΨ between f n/(n-1)(x)dx and 1B2 n/Vol(B2 n)dx We suppose w.l.o.g. that ∫f n/(n-1) = 1 Monge-Ampère equation: Vol(B2 n) fn/(n-1)(x) = det Hess Ψ The isoperimetric inequality
  • 243. ∫| grad f | ≥ n Vol(B2 n)1/n (∫f n/(n-1))(n-1)/n L1 Sobolev inegality: a proof with OT [Gromov] There exists an optimal transport T = gradΨ between f n/(n-1)(x)dx and 1B2 n/Vol(B2 n)dx We suppose w.l.o.g. that ∫f n/(n-1) = 1 Monge-Ampère equation: Vol(B2 n) fn/(n-1)(x) = det Hess Ψ Arithmetico-geometric ineq: det (H) 1/n ≤ trace(H)/n if H positive The isoperimetric inequality
  • 244. ∫| grad f | ≥ n Vol(B2 n)1/n (∫f n/(n-1))(n-1)/n L1 Sobolev inegality: a proof with OT [Gromov] There exists an optimal transport T = gradΨ between f n/(n-1)(x)dx and 1B2 n/Vol(B2 n)dx We suppose w.l.o.g. that ∫f n/(n-1) = 1 Monge-Ampère equation: Vol(B2 n) fn/(n-1)(x) = det Hess Ψ Arithmetico-geometric ineq: det (H) 1/n ≤ trace(H)/n if H positive det (Hess Ψ) 1/n ≤ trace(Hess Ψ)/n The isoperimetric inequality
  • 245. ∫| grad f | ≥ n Vol(B2 n)1/n (∫f n/(n-1))(n-1)/n L1 Sobolev inegality: a proof with OT [Gromov] There exists an optimal transport T = gradΨ between f n/(n-1)(x)dx and 1B2 n/Vol(B2 n)dx We suppose w.l.o.g. that ∫f n/(n-1) = 1 Monge-Ampère equation: Vol(B2 n) fn/(n-1)(x) = det Hess Ψ Arithmetico-geometric ineq: det (H) 1/n ≤ trace(H)/n if H positive det (Hess Ψ) 1/n ≤ trace(Hess Ψ)/n det (Hess Ψ) 1/n ≤ ∆ Ψ / n The isoperimetric inequality
  • 246. ∫| grad f | ≥ n Vol(B2 n)1/n (∫f n/(n-1))(n-1)/n L1 Sobolev inegality: a proof with OT [Gromov] We suppose w.l.o.g. that ∫f n/(n-1) = 1 det (Hess Ψ) 1/n ≤ (∆ Ψ)/n Monge-Ampère equation: Vol(B2 n) fn/(n-1)(x) = det Hess Ψ The isoperimetric inequality
  • 247. ∫| grad f | ≥ n Vol(B2 n)1/n (∫f n/(n-1))(n-1)/n L1 Sobolev inegality: a proof with OT [Gromov] We suppose w.l.o.g. that ∫f n/(n-1) = 1 Vol(B2 n) = Vol(B2 n) ∫f n/(n-1) = ∫f Vol(B2 n) f 1/(n-1) det (Hess Ψ) 1/n ≤ (∆ Ψ)/n Monge-Ampère equation: Vol(B2 n) fn/(n-1)(x) = det Hess Ψ The isoperimetric inequality
  • 248. ∫| grad f | ≥ n Vol(B2 n)1/n (∫f n/(n-1))(n-1)/n L1 Sobolev inegality: a proof with OT [Gromov] We suppose w.l.o.g. that ∫f n/(n-1) = 1 Vol(B2 n) = Vol(B2 n) ∫f n/(n-1) = ∫f Vol(B2 n) f 1/(n-1) ≤ 1/n ∫ f ∆ Ψ det (Hess Ψ) 1/n ≤ (∆ Ψ)/n Monge-Ampère equation: Vol(B2 n) fn/(n-1)(x) = det Hess Ψ The isoperimetric inequality
  • 249. ∫| grad f | ≥ n Vol(B2 n)1/n (∫f n/(n-1))(n-1)/n L1 Sobolev inegality: a proof with OT [Gromov] We suppose w.l.o.g. that ∫f n/(n-1) = 1 Vol(B2 n) = Vol(B2 n) ∫f n/(n-1) = ∫f Vol(B2 n) f 1/(n-1) ≤ 1/n ∫ f ∆ Ψ ∫f ∆ Ψ = - ∫ grad f . grad Ψ det (Hess Ψ) 1/n ≤ (∆ Ψ)/n Monge-Ampère equation: Vol(B2 n) fn/(n-1)(x) = det Hess Ψ The isoperimetric inequality
  • 250. ∫| grad f | ≥ n Vol(B2 n)1/n (∫f n/(n-1))(n-1)/n L1 Sobolev inegality: a proof with OT [Gromov] We suppose w.l.o.g. that ∫f n/(n-1) = 1 Vol(B2 n) = Vol(B2 n) ∫f n/(n-1) = ∫f Vol(B2 n) f 1/(n-1) ≤ 1/n ∫ f ∆ Ψ ∫f ∆ Ψ = - ∫ grad f . grad Ψ ≤ ∫ | grad f | (T = grad Ψ Є B2 n ) det (Hess Ψ) 1/n ≤ (∆ Ψ)/n Monge-Ampère equation: Vol(B2 n) fn/(n-1)(x) = det Hess Ψ The isoperimetric inequality
  • 251. ∫| grad f | ≥ n Vol(B2 n)1/n (∫f n/(n-1))(n-1)/n L1 Sobolev inegality: a proof with OT [Gromov] We suppose w.l.o.g. that ∫f n/(n-1) = 1 Vol(B2 n) = Vol(B2 n) ∫f n/(n-1) = ∫f Vol(B2 n) f 1/(n-1) ≤ 1/n ∫ f ∆ Ψ ∫f ∆ Ψ = - ∫ grad f . grad Ψ ≤ ∫ | grad f | (T = grad Ψ Є B2 n ) ∫ | grad f | ≥ n Vol(B2 n)1/n ■ det (Hess Ψ) 1/n ≤ (∆ Ψ)/n Monge-Ampère equation: Vol(B2 n) fn/(n-1)(x) = det Hess Ψ The isoperimetric inequality
  • 252. Bonus Slides Plotting the potential & optics
  • 253. The [AHA] paper summary: • The optimal weights minimize a convex function • The gradient and Hessian of this convex function is easy to compute Note: the weight w(s) correspond to the Kantorovich potential ψ(x) (solves a “discrete Monge-Ampere” equation) The algorithm: Summary: The algorithm computes the weights wi such that the power cells associated with the Diracs correspond to the preimages of the Diracs. μ ν Plotting the potential, “optics”
  • 254. The [AHA] paper summary: • The optimal weights minimize a convex function • The gradient and Hessian of this convex function is easy to compute Note: the weight w(s) correspond to the Kantorovich potential ψ(x) (solves a “discrete Monge-Ampere” equation) The algorithm: Summary: The algorithm computes the weights wi such that the power cells associated with the Diracs correspond to the preimages of the Diracs. μ ν Plotting the potential, “optics”
  • 255. The [AHA] paper summary: • The optimal weights minimize a convex function • The gradient and Hessian of this convex function is easy to compute Note: the weight w(s) correspond to the Kantorovich potential ψ(x) (solves a “discrete Monge-Ampere” equation) The algorithm: Summary: The algorithm computes the weights wi such that the power cells associated with the Diracs correspond to the preimages of the Diracs. μ ν Plotting the potential, “optics”
  • 256. The [AHA] paper summary: • The optimal weights minimize a convex function • The gradient and Hessian of this convex function is easy to compute Note: the weight w(s) correspond to the Kantorovich potential ψ(x) (solves a “discrete Monge-Ampere” equation) The algorithm: Summary: The algorithm computes the weights wi such that the power cells associated with the Diracs correspond to the preimages of the Diracs. μ ν Plotting the potential, “optics”
  • 257. The [AHA] paper summary: • The optimal weights minimize a convex function • The gradient and Hessian of this convex function is easy to compute Note: the weight w(s) correspond to the Kantorovich potential ψ(x) (solves a “discrete Monge-Ampere” equation) The algorithm: Summary: The algorithm computes the weights wi such that the power cells associated with the Diracs correspond to the preimages of the Diracs. μ ν Plotting the potential, “optics”
  • 258. Plotting the potential, “optics”
  • 259. Plotting the potential, “optics”
  • 260. Plotting the potential, “optics”
  • 261. Plotting the potential, “optics”
  • 262. Plotting the potential, “optics”
  • 263. Plotting the potential, “optics”
  • 264. hi Plotting the potential, “optics”
  • 265. Plotting the potential, “optics”
  • 266. Plotting the potential, “optics”
  • 267. Plotting the potential, “optics”
  • 268. Plotting the potential, “optics”
  • 269. Plotting the potential, “optics”
  • 270. Numerical Experiment: A disk becomes two disks Plotting the potential, “optics”