1. Mathématiques - Informatique
Bruno Lévy
ALICE Géométrie & Lumière
CENTRE INRIA Nancy Grand-Est
Symposium on Geometry Processing – Paris – 2018
Course on Numerical Optimal Transport – Bruno Lévy
2. Part. 1. Goals and Motivations
Part. 2. Introduction to Optimal Transport
Part. 3. Semi-Discrete Optimal Transport
Part. 4. Applications in Computational Physics
OVERVIEW
5. Part. 1 Optimal Transport
Goal #1: “Understanding”
What I can’t create
I don’t understand
Richard Feynman
6. Part. 1 Optimal Transport
Goal #1: “Understanding”
Jos Stam,
Stable Fluids, 1999
The art of fluid sim.
Understand fluids
Explain
Program
7. Part. 1 Optimal Transport
Goal #1: “Understanding”
I wrote code
8. Part. 1 Optimal Transport
Goal #1: “Understanding”
Your mission statement:
1. Understand the stuff
2. Explain it in simple terms
Be a good teacher, to others and to yourself
Know what you know and what you don’t know
Try to know what you don’t know
3. Program it
9. Part. 1 Optimal Transport
Measuring distances between functions
10. Part. 1 Optimal Transport
Measuring distances between functions
11. Part. 1 Optimal Transport
Measuring distances between functions
12. Part. 1 Optimal Transport
Measuring distances between function
26. Part. 1 Optimal Transport
Gaspard Monge – geometry and light
ANR TOMMI Workshop
27. Cédric Villani
Optimal Transport Old & New
Topics on Optimal Transport
Yann Brenier
The polar factorization theorem
(Brenier Transport)
Part. 1 Optimal Transport
Monge-Brenier-Villani, the french connection
28. Part. 1 Optimal Transport
[Castro, Merigot, Thibert 2014]
Optimal transport
geometry and light
[Caffarelli, Kochengin, and Oliker 1999]
30. Part. 1 Optimal Transport
Optimal transport - geometry and light
[Chwartzburg, Testuz, Tagliasacchi, Pauly, SIGGRAPH 2014]
31. Part. 1. Motivations
Discretization of functionals involving the Monge-Ampère operator,
Benamou, Carlier, Mérigot, Oudet
arXiv:1408.4536
The variational formulation of the Fokker-Planck equation
Jordan, Kinderlehrer and Otto
SIAM J. on Mathematical Analysis
Geostrophic current
32. Part. 1 Optimal Transport
How to “morph” a shape into another one of same mass
while minimizing the “effort” ?
?
T
33. Part. 1 Optimal Transport
How to “morph” a shape into another one of same mass
while minimizing the “effort” ?
?
T
The “effort” of the best T defines a distance between the shapes
34. Part. 1 Optimal Transport
How to “morph” a shape into another one
while preserving mass and minimizing the effort ?
?
T
36. Part. 1 Optimal Transport
How to “morph” a shape into another one
while preserving mass and minimizing the effort ?
?
T
“minimum action principle”
37. Part. 1 Optimal Transport
How to “morph” a shape into another one
while preserving mass and minimizing the effort ?
?
T
“minimum action principle”“conservation law”
38. Part. 1 Optimal Transport
“minimum action principle subject to conservation law”
OT=
Yann Brenier:
“Each time the Laplace operator is used in a PDE,
it can be replaced with the Monge-Ampère operator”
39. Part. 1 Optimal Transport
“minimum action principle subject to conservation law”
OT=
Yann Brenier:
“Each time the Laplace operator is used in a PDE,
it can be replaced with the Monge-Ampère operator”
New ways of simulating physics with a computer
40. Part. 1 Optimal Transport
“minimum action principle subject to conservation law”
OT=
Yann Brenier:
“Each time the Laplace operator is used in a PDE,
it can be replaced with the Monge-Ampère operator”
New ways of simulating physics with a computer
Fast Fourier Transform
41. Part. 1 Optimal Transport
“minimum action principle subject to conservation law”
OT=
Yann Brenier:
“Each time the Laplace operator is used in a PDE,
it can be replaced with the Monge-Ampère operator”
New ways of simulating physics with a computer
Fast Fourier Transform Fast OT algo. ???
43. Part. 2 Optimal Transport – Monge’s problem
(X;μ) (Y;ν)
Two measures μ, ν such that ∫dμ(x) = ∫dν(x)
X Y
44. Part. 2 Optimal Transport – Monge’s problem
A map T is a transport map between μ and ν if
μ(T-1(B)) = ν(B) for any Borel subset B of Y
(X;μ) (Y;ν)
(Borel subset = subset that can be measured)
45. Part. 2 Optimal Transport – Monge’s problem
A map T is a transport map between μ and ν if
μ(T-1(B)) = ν(B) for any Borel subset B of Y
B
(X;μ) (Y;ν)
46. Part. 2 Optimal Transport – Monge’s problem
A map T is a transport map between μ and ν if
μ(T-1(B)) = ν(B) for any Borel subset B of Y
B
T-1(B)
(X;μ) (Y;ν)
47. Part. 2 Optimal Transport – Monge’s problem
A map T is a transport map between μ and ν if
μ(T-1(B)) = ν(B) for any Borel subset B of Y
Notation: if T is a transport map between μ and ν
then one writes ν = T#μ (ν is the pushforward of μ)
(X;μ) (Y;ν)
48. Part. 2 Optimal Transport – Monge’s problem
Monge’s problem:
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
(X;μ) (Y;ν)
49. Part. 2 Optimal Transport – Monge’s problem
Monge’s problem:
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
• Difficult to study
• If μ has an atom (isolated Dirac),
it can only be mapped to another Dirac
(T needs to be a map)
50. Part. 2 Optimal Transport – Monge’s problem
Monge’s problem:
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
Transport from a measure concentrated on L1 onto another one concentrated on L2 and L3
51. Part. 2 Optimal Transport – Monge’s problem
Monge’s problem:
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
Transport from a measure concentrated on L1 onto another one concentrated on L2 and L3
52. Part. 2 Optimal Transport – Monge’s problem
Monge’s problem:
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
Transport from a measure concentrated on L1 onto another one concentrated on L2 and L3
53. Part. 2 Optimal Transport – Monge’s problem
Monge’s problem:
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
Transport from a measure concentrated on L1 onto another one concentrated on L2 and L3
The infimum is never realized by a map, need for a relaxation
54. Part. 2 Optimal Transport – Kantorovich
Monge’s problem:
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
Kantorovich’s problem (1942):
Find a measure γ defined on X x Y
such that ∫x in X dγ(x,y) = dν(y)
and ∫y in Y dγ(x,y) = dμ(x)
that minimizes ∫∫X x Y || x – y ||2 dγ(x,y)
55. Part. 2 Optimal Transport – Kantorovich
Monge’s problem:
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
Kantorovich’s problem:
Find a measure γ defined on X x Y
such that ∫x in X dγ(x,y) = dν(y)
and ∫y in Y dγ(x,y) = dμ(x)
that minimizes ∫∫X x Y || x – y ||2 dγ(x,y)
“γ(x,y)” :
How much sand goes from x to y
56. Part. 2 Optimal Transport – Kantorovich
Monge’s problem:
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
Kantorovich’s problem:
Find a measure γ defined on X x Y
such that ∫x in X dγ(x,y) = dν(y)
and ∫y in Y dγ(x,y) = dμ(x)
that minimizes ∫∫X x Y || x – y ||2 dγ(x,y)
Everything that is
transported from x sums to “μ(x)”
57. Part. 2 Optimal Transport – Kantorovich
Monge’s problem:
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
Kantorovich’s problem:
Find a measure γ defined on X x Y
such that ∫x in X dγ(x,y) = dν(y)
and ∫y in Y dγ(x,y) = dμ(x)
that minimizes ∫∫X x Y || x – y ||2 dγ(x,y)
Everything that is
transported to y sums to “ν(y)”
58. Part. 2 Optimal Transport – Kantorovich
Transport plan – example 1/4 : translation of a segment
59. Part. 2 Optimal Transport – Kantorovich
Transport plan – example 1/4 : translation of a segment
60. Part. 2 Optimal Transport – Kantorovich
Transport plan – example 2/4 : spitting a segment
69. Part. 2 Optimal Transport – Duality
Duality is easier to understand with a discrete version
Then we’ll go back to the continuous setting.
70. Part. 2 Optimal Transport – Duality
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
71. Part. 2 Optimal Transport – Duality
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
γ =
γ11
γ12
…
γ1n
γ22
…
γ2n
…
…
γmn
Є IRmn
72. Part. 2 Optimal Transport – Duality
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
γ =
γ11
γ12
…
γ1n
γ22
…
γ2n
…
…
γmn
c =
c11
c12
…
c1n
c22
…
c2n
…
…
cmn
Є IRmnЄ IRmn
73. Part. 2 Optimal Transport – Duality
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
γ =
γ11
γ12
…
γ1n
γ22
…
γ2n
…
…
γmn
c =
c11
c12
…
c1n
c22
…
c2n
…
…
cmn
cij = || xi – yj ||2
Є IRmnЄ IRmn
74. Part. 2 Optimal Transport – Duality
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
γ =
γ11
γ12
…
γ1n
γ22
…
γ2n
…
…
γmn
c =
c11
c12
…
c1n
c22
…
c2n
…
…
cmn
cij = || xi – yj ||2
mn X m
Є IRmnЄ IRmn
75. Part. 2 Optimal Transport – Duality
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
γ =
γ11
γ12
…
γ1n
γ22
…
γ2n
…
…
γmn
c =
c11
c12
…
c1n
c22
…
c2n
…
…
cmn
cij = || xi – yj ||2
mn X n
mn X m
Є IRmnЄ IRmn
76. Part. 2 Optimal Transport – Duality
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
γ =
γ11
γ12
…
γ1n
γ22
…
γ2n
…
…
γmn
c =
c11
c12
…
c1n
c22
…
c2n
…
…
cmn
Є IRmnЄ IRmn
mn X n
mn X m
77. Part. 2 Optimal Transport – Duality
Consider L(φ,ψ) = <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v>
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
< u, v > denotes the dot product between u and v
78. Part. 2 Optimal Transport – Duality
Consider L(φ,ψ) = <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v>
Remark: Sup[ L(φ,ψ) ] = < c, γ> if P1 γ = u and P2 γ = v
φ Є IRm
ψ Є IRn
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
79. Part. 2 Optimal Transport – Duality
Consider L(φ,ψ) = <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v>
Remark: Sup[ L(φ,ψ) ] = < c, γ> if P1 γ = u and P2 γ = v
φ Є IRm
ψ Є IRn
= +∞ otherwise
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
80. Part. 2 Optimal Transport – Duality
Consider L(φ,ψ) = <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v>
Remark: Sup[ L(φ,ψ) ] = < c, γ> if P1 γ = u and P2 γ = v
φ Є IRm
ψ Є IRn
= +∞ otherwise
Consider now: Inf [ Sup[ L(φ,ψ) ] ]
φ Є IRm
ψ Є IRn
γ ≥ 0
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
81. Part. 2 Optimal Transport – Duality
Consider L(φ,ψ) = <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v>
Remark: Sup[ L(φ,ψ) ] = < c, γ> if P1 γ = u and P2 γ = v
φ Є IRm
ψ Є IRn
= +∞ otherwise
Consider now: Inf [ Sup[ L(φ,ψ) ] ] = Inf [ < c, γ> ]
φ Є IRm
ψ Є IRn
γ ≥ 0 γ ≥ 0
P1 γ = u
P2 γ = v
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
82. Part. 2 Optimal Transport – Duality
Consider L(φ,ψ) = <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v>
Remark: Sup[ L(φ,ψ) ] = < c, γ> if P1 γ = u and P2 γ = v
φ Є IRm
ψ Є IRn
= +∞ otherwise
Consider now: Inf [ Sup[ L(φ,ψ) ] ] = Inf [ < c, γ> ] (DMK)
φ Є IRm
ψ Є IRn
γ ≥ 0 γ ≥ 0
P1 γ = u
P2 γ = v
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
83. Part. 2 Optimal Transport – Duality
φ Є IRm
ψ Є IRn
γ ≥ 0
Inf [ Sup[ <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v> ] ]
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
85. Part. 2 Optimal Transport – Duality
φ Є IRm
ψ Є IRn
γ ≥ 0
Inf [ Sup[ <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v> ] ]
φ Є IRm
ψ Є IRn
γ ≥ 0
Sup[ Inf[ <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v> ] ]
φ Є IRm
ψ Є IRn
γ ≥ 0
Sup[ Inf[ < γ,c-P1
t φ – P2
t ψ > + <φ,u> + <ψ, v> ] ]
Exchange Inf Sup
Expand/Reorder/Collect
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
86. Part. 2 Optimal Transport – Duality
φ Є IRm
ψ Є IRn
γ ≥ 0
Inf [ Sup[ <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v> ] ]
φ Є IRm
ψ Є IRn
γ ≥ 0
Sup[ Inf[ <c, γ> - <φ, P1 γ - u> - <ψ, P2 γ - v> ] ]
φ Є IRm
ψ Є IRn
γ ≥ 0
Sup[ Inf[ < γ,c-P1
t φ – P2
t ψ > + <φ,u> + <ψ, v> ] ]
Exchange Inf Sup
Expand/Reorder/Collect
Interpret
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
87. Part. 2 Optimal Transport – Duality
φ Є IRm
ψ Є IRn
γ ≥ 0
Sup[ Inf[ < γ,c-P1
t φ – P2
t ψ > + <φ,u> + <ψ, v> ] ]
Interpret
Sup[ <φ,u> + <ψ, v> ]
φ Є IRm
ψ Є IRn
P1
t φ + P2
t ψ ≤ c
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
(DDMK)
88. Part. 2 Optimal Transport – Duality
φ Є IRm
ψ Є IRn
γ ≥ 0
Sup[ Inf[ < γ,c-P1
t φ – P2
t ψ > + <φ,u> + <ψ, v> ] ]
Interpret
Sup[ <φ,u> + <ψ, v> ]
φ Є IRm
ψ Є IRn
P1
t φ + P2
t ψ ≤ c
φi + ψj ≤ cij (i,j)
A
(DMK):
Min <c, γ>
P1 γ = u
s.t. P2 γ = v
γ ≥ 0
(DDMK)
89. Part. 2 Optimal Transport – Kantorovich dual
Kantorovich’s problem:
Find a measure γ defined on X x Y
such that ∫x in X dγ(x,y) = dμ(x)
and ∫y in Y dγ(x,y) = dν(x)
that minimizes ∫∫X x Y || x – y ||2 dγ(x,y)
Dual formulation of Kantorovich’s problem (Continuous):
Find two functions φ in L1(μ) and ψ in L1(ν)
Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2
that maximize ∫X φdμ + ∫Y ψdν
90. Part. 2 Optimal Transport – Kantorovich dual
Kantorovich’s problem:
Find a measure γ defined on X x Y
such that ∫x in X dγ(x,y) = dμ(x)
and ∫y in Y dγ(x,y) = dν(x)
that minimizes ∫∫X x Y || x – y ||2 dγ(x,y)
Dual formulation of Kantorovich’s problem:
Find two functions φ in L1(μ) and ψ in L1(ν)
Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2
that maximize ∫X φdμ + ∫Y ψdν
Your point of view:
Try to minimize transport cost
91. Part. 2 Optimal Transport – Kantorovich dual
Kantorovich’s problem:
Find a measure γ defined on X x Y
such that ∫x in X dγ(x,y) = dμ(x)
and ∫y in Y dγ(x,y) = dν(x)
that minimizes ∫∫X x Y || x – y ||2 dγ(x,y)
Dual formulation of Kantorovich’s problem:
Find two functions φ in L1(μ) and ψ in L1(ν)
Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2
that maximize ∫X φdμ + ∫Y ψdν
Point of view of a “transport company”:
Try to maximize transport price
Your point of view:
Try to minimize transport cost
92. Part. 2 Optimal Transport – Kantorovich dual
Kantorovich’s problem:
Find a measure γ defined on X x Y
such that ∫x in X dγ(x,y) = dμ(x)
and ∫y in Y dγ(x,y) = dν(x)
that minimizes ∫∫X x Y || x – y ||2 dγ(x,y)
Dual formulation of Kantorovich’s problem:
Find two functions φ in L1(μ) and ψ in L1(ν)
Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2
that maximize ∫X φ(x)dμ + ∫Y ψ(y)dν
What they charge for loading at x
Your point of view:
Try to minimize transport cost
93. Part. 2 Optimal Transport – Kantorovich dual
Kantorovich’s problem:
Find a measure γ defined on X x Y
such that ∫x in X dγ(x,y) = dμ(x)
and ∫y in Y dγ(x,y) = dν(x)
that minimizes ∫∫X x Y || x – y ||2 dγ(x,y)
Dual formulation of Kantorovich’s problem:
Find two functions φ in L1(μ) and ψ in L1(ν)
Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2
that maximize ∫X φ(x)dμ + ∫Y ψ(y)dν
What they charge for loading at x What they charge for unloading at y
Your point of view:
Try to minimize transport cost
94. Part. 2 Optimal Transport – Kantorovich dual
Kantorovich’s problem:
Find a measure γ defined on X x Y
such that ∫x in X dγ(x,y) = dμ(x)
and ∫y in Y dγ(x,y) = dν(x)
that minimizes ∫∫X x Y || x – y ||2 dγ(x,y)
Dual formulation of Kantorovich’s problem:
Find two functions φ in L1(μ) and ψ in L1(ν)
Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2
that maximize ∫X φ(x)dμ + ∫Y ψ(y)dν
What they charge for loading at x What they charge for unloading at y
Price (loading + unloading) cannot
be greater than transport cost
(else you do the job yourself)
Your point of view:
Try to minimize transport cost
95. Part. 2 Optimal Transport – c-conjugate functions
Dual formulation of Kantorovich’s problem:
Find two functions φ in L1(μ) and ψ in L1(ν)
Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2
that maximize ∫X φ(x)dμ + ∫Y ψ(y)dν
96. Part. 2 Optimal Transport – c-conjugate functions
Dual formulation of Kantorovich’s problem:
Find two functions φ in L1(μ) and ψ in L1(ν)
Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2
that maximize ∫X φ(x)dμ + ∫Y ψ(y)dν
If we got two functions φ and ψ that satisfy the constraint
Then it is possible to obtain a better solution by replacing ψ with φc defined by:
For all y, φc(y) = inf x in X ½|| x – y ||2 - φ(y)
97. Part. 2 Optimal Transport – c-conjugate functions
Dual formulation of Kantorovich’s problem:
Find two functions φ in L1(μ) and ψ in L1(ν)
Such that for all x,y, φ(x) + ψ(y) ≤ ½|| x – y ||2
that maximize ∫X φ(x)dμ + ∫Y ψ(y)dν
If we got two functions φ and ψ that satisfy the constraint
Then it is possible to obtain a better solution by replacing ψ with φc defined by:
For all y, φc(y) = inf x in X ½|| x – y ||2 - φ(y)
• φc is called the c-conjugate function of φ
• If there is a function φ such that ψ = φc then ψ is said to be c-concave
• If ψ is c-concave, then ψ cc = ψ
98. Part. 2 Optimal Transport – c-conjugate functions
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
99. Part. 2 Optimal Transport – c-conjugate functions
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
ψ is called a “Kantorovich potential”
100. Part. 2 Optimal Transport – c-subdifferential
What about our initial problem ?
ψ is called a “Kantorovich potential”
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
101. Part. 2 Optimal Transport – c-subdifferential
What about our initial problem ? (i.e., this is T() that we want to find …)
ψ is called a “Kantorovich potential”
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
103. Part. 2 Optimal Transport – c-subdifferential
Proof: see OTON, chap. 10.
104. Part. 2 Optimal Transport – c-subdifferential
Proof: see OTON, chap. 10.
Heuristic argument (at the beginning of the same chapter):
105. Part. 2 Optimal Transport – c-subdifferential
Proof: see OTON, chap. 10.
Heuristic argument (at the beginning of the same chapter):
106. Part. 2 Optimal Transport – c-subdifferential
Proof: see OTON, chap. 10.
Heuristic argument (at the beginning of the same chapter):
107. Part. 2 Optimal Transport – c-subdifferential
Proof: see OTON, chap. 10.
Heuristic argument (at the beginning of the same chapter):
108. Part. 2 Optimal Transport – c-subdifferential
Proof: see OTON, chap. 10.
Heuristic argument (at the beginning of the same chapter):
109. Part. 2 Optimal Transport – c-subdifferential
Proof: see OTON, chap. 10.
Heuristic argument (at the beginning of the same chapter):
110. Part. 2 Optimal Transport – c-subdifferential
Proof: see OTON, chap. 10.
Heuristic argument (at the beginning of the same chapter):
w
111. Part. 2 Optimal Transport – c-subdifferential
Proof: see OTON, chap. 10.
Heuristic argument (at the beginning of the same chapter):
-w
112. Part. 2 Optimal Transport – c-subdifferential
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
113. Part. 2 Optimal Transport – c-subdifferential
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
{
grad ψ(x) with ψ(x) := (½ x2- ψ(x))
114. Part. 2 Optimal Transport – convexity
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
{
grad ψ(x) with ψ(x) := (½ x2- ψ(x))
ψ is convex
115. Part. 2 Optimal Transport – convexity
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
{
grad ψ(x) with ψ(x) := (½ x2- ψ(x))
ψ is convex
116. Part. 2 Optimal Transport – convexity
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
{
grad ψ(x) with ψ(x) := (½ x2- ψ(x))
ψ is convex
117. Part. 2 Optimal Transport – no collision
If T(.) exists, then
T(x) = x – grad ψ(x) = grad (½ x2- ψ(x) )
{grad ψ (x)
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
ψ is convex
Two transported particles cannot “collide”
118. Part. 2 Optimal Transport – no collision
If T(.) exists, then
T(x) = x – grad ψ(x) = grad (½ x2- ψ(x) )
{grad ψ (x)
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
ψ is convex
Two transported particles cannot “collide”
119. Part. 2 Optimal Transport – no collision
If T(.) exists, then
T(x) = x – grad ψ(x) = grad (½ x2- ψ(x) )
{grad ψ (x)
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
ψ is convex
Two transported particles cannot “collide”
120. Part. 2 Optimal Transport – Monge-Ampere
What about our initial problem ? If T(.) exists, then one can show that:
T(x) = x – grad ψ(x) = grad (½ x2- ψ(x) )
{
for all borel set A, ∫A dμ = ∫T(A) (|JT|) dν (change of variable)
Jacobian of T (1st order derivatives)
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
grad ψ(x) with ψ(x) := (½ x2- ψ(x))
121. Part. 2 Optimal Transport – Monge-Ampere
What about our initial problem ? If T(.) exists, then one can show that:
T(x) = x – grad ψ(x) = grad (½ x2- ψ(x) )
{
for all borel set A, ∫A dμ = ∫T(A) (|JT|) dν = ∫T(A) (H ψ ) dν
Det. of the Hessian of ψ (2nd order derivatives)
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
grad ψ(x) with ψ(x) := (½ x2- ψ(x))
122. Part. 2 Optimal Transport – Monge-Ampere
What about our initial problem ?
T(x) = x – grad ψ(x) = grad (½ x2- ψ(x) )
{
When μ and ν have a density u and v, (H ψ(x)). v(grad ψ(x)) = u(x)
Monge-Ampère
equation
for all borel set A, ∫A dμ = ∫T(A) (|JT|) dν = ∫T(A) (H ψ ) dν
Dual formulation of Kantorovich’s problem:
Find a c-concave function ψ
that maximizes ∫X ψ(x)dμ + ∫Y ψc(y)dν
{grad ψ(x) with ψ(x) := (½ x2- ψ(x))
123. Part. 2 Optimal Transport – summary
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
124. Part. 2 Optimal Transport – summary
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
After several rewrites and under some conditions….
(Kantorovich formulation, dual, c-convex functions)
125. Part. 2 Optimal Transport – summary
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
After several rewrites and under some conditions….
(Kantorovich formulation, dual, c-convex functions)
Monge-Ampère equation
(When μ and ν have a density u and v resp.)
Solve (H ψ(x)). v(grad ψ(x)) = u(x)
126. Part. 2 Optimal Transport – summary
Find a transport map T that minimizes C(T) = ∫X || x – T(x) ||2 dμ(x)
After several rewrites and under some conditions….
(Kantorovich formulation, dual, c-convex functions)
Brenier, Mc Cann, Trudinger: The optimal transport map is then given by:
T(x) = grad ψ(x)
Solve (H ψ(x)). v(grad ψ(x)) = u(x) Monge-Ampère equation
(When μ and ν have a density u and v resp.)
137. Part. 3 Optimal Transport – semi-discrete
G(ψ) =∑j ∫Lag ψ(yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj
Sup
ψ Є ψc
(DMK)
Where: Lag ψ(yj) = { x | || x – yj ||2 – ψ(yj) < || x – yj ||2 - ψ(yj’) } for all j’ ≠ j
138. Part. 3 Optimal Transport – semi-discrete
G(ψ) =∑j ∫Lag ψ(yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj
Sup
ψ Є ψc
(DMK)
Where: Lag ψ(yj) = { x | || x – yj ||2 – ψ(yj) < || x – yj ||2 - ψ(yj’) } for all j’ ≠ j
Laguerre diagram of the yj’s
(with the L2 cost || x – y ||2 used here, Power diagram)
139. Part. 3 Optimal Transport – semi-discrete
G(ψ) =∑j ∫Lag ψ(yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj
Sup
ψ Є ψc
(DMK)
Where: Lag ψ(yj) = { x | || x – yj ||2 – ψ(yj) < || x – yj ||2 - ψ(yj’) } for all j’ ≠ j
Laguerre diagram of the yj’s
(with the L2 cost || x – y ||2 used here, Power diagram)
Weight of yj in the power diagram
140. Part. 3 Optimal Transport – semi-discrete
G(ψ) =∑j ∫Lag ψ(yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj
Sup
ψ Є ψc
(DMK)
Where: Lag ψ(yj) = { x | || x – yj ||2 – ψ(yj) < || x – yj ||2 - ψ(yj’) } for all j’ ≠ j
Laguerre diagram of the yj’s
(with the L2 cost || x – y ||2 used here, Power diagram)
Weight of yj in the power diagram
ψ is determined by the
weight vector [ψ(y1) ψ(y2) … ψ(ym)]
144. Part. 3 Optimal Transport
Theorem: (direct consequence of MK duality
alternative proof in [Aurenhammer, Hoffmann, Aronov 98] ):
Given a measure μ with density, a set of points (yj), a set of positive coefficients vj
such that ∑ vj = ∫ dμ(x), it is possible to find the weights W = [ψ(y1) ψ(y2) … ψ(ym)]
such that the map TS
W is the unique optimal transport map
between μ and ν = ∑ vj δ(yj)
145. Part. 3 Optimal Transport
Theorem: (direct consequence of MK duality
alternative proof in [Aurenhammer, Hoffmann, Aronov 98] ):
Given a measure μ with density, a set of points (yj), a set of positive coefficients vj
such that ∑ vj = ∫ dμ(x), it is possible to find the weights W = [ψ(y1) ψ(y2) … ψ(ym)]
such that the map TS
W is the unique optimal transport map
between μ and ν = ∑ vj δ(yj)
Proof: G(ψ) =∑j ∫Lag ψ(yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj
Is a concave function of the weight vector [ψ(y1) ψ(y2) … ψ(ym)]
146. Part. 3 Optimal Transport
Theorem: (direct consequence of MK duality
alternative proof in [Aurenhammer, Hoffmann, Aronov 98] ):
Given a measure μ with density, a set of points (yj), a set of positive coefficients vj
such that ∑ vj = ∫ dμ(x), it is possible to find the weights W = [ψ(y1) ψ(y2) … ψ(ym)]
such that the map TS
W is the unique optimal transport map
between μ and ν = ∑ vj δ(yj)
Proof: G(ψ) =∑j ∫Lag ψ(yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj
Is a concave function of the weight vector [ψ(y1) ψ(y2) … ψ(ym)]
147. Part. 3 Optimal Transport – the AHA paper
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
The (unknown) weights W = [ψ(y1) ψ(y2) … ψ(ym)]
148. Part. 3 Optimal Transport – the AHA paper
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
T : an arbitrary but fixed assignment.
149. Part. 3 Optimal Transport – the AHA paper
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
T : an arbitrary but fixed assignment.
150. Part. 3 Optimal Transport – the AHA paper
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
T : an arbitrary but fixed assignment.
151. Part. 3 Optimal Transport – the AHA paper
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
T : an arbitrary but fixed assignment.
152. Part. 3 Optimal Transport – the AHA paper
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
W
fT(W)
fT(W)
153. Part. 3 Optimal Transport – the AHA paper
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
W
fT(W)
fT(W)
154. Part. 3 Optimal Transport – the AHA paper
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
fT(W) is linear in W
fT(W)
W
fT(W)
Fixed T
155. Part. 3 Optimal Transport – the AHA paper
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
fT(W) is linear in W
f TW
(W) : defined by Laguerre diagram
fT(W)
fixed W
W
156. Part. 3 Optimal Transport – the AHA paper
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
fT(W) is linear in W
f TW
(W) = minT fT(W)
fT(W)
fixed W
W
157. Part. 3 Optimal Transport – the AHA paper
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
fT(W) is linear in W
f: W → f TW
(W) is concave !!
(because its graph is the lower
enveloppe of linear functions)
fT(W)
W
fT(W)
f TW
(W) = minT fT(W)
158. Part. 3 Optimal Transport – the AHA paper
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
fT(W) is linear in W
f: W → f TW
(W) is concave
(because its graph is the lower
enveloppe of linear functions)
fT(W)
W
fT(W)
f TW
(W) = minT fT(W)
Consider g(W) = f TW
(W) + ∑vj ψj
159. Part. 3 Optimal Transport – the AHA paper
fT(W)
W
fT(W)
f TW
(W) = minT fT(W)
Consider g(W) = f TW
(W) + ∑vj ψj
vj -∫Lag
ψ
(yj) dμ(x) and g is concave.∂ g / ∂ ψ j =
Idea of the proof
Consider the function fT(W) = ∫(|| x– T(x) ||2 – ψ(T(X)))dμ(x)
fT(W) is linear in W
f: W → f TW
(W) is concave
(because its graph is the lower
enveloppe of linear functions)
160. Part. 3 Optimal Transport – the algorithm
Semi-discrete OT Summary:
∫X ψc (x)dμ + ∫Y ψ(y)dν
Sup
ψ Є ψc
(DMK) G(ψ) =
161. Part. 3 Optimal Transport – the algorithm
Semi-discrete OT Summary:
G(ψ) = g(W) =∑j ∫Lag
ψ
(yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj is concave
∫X ψc (x)dμ + ∫Y ψ(y)dν
Sup
ψ Є ψc
(DMK) G(ψ) =
162. Part. 3 Optimal Transport – the algorithm
Semi-discrete OT Summary:
G(ψ) = g(W) =∑j ∫Lag
ψ
(yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj is concave
vj -∫Lag(yj)dμ(x) (= 0 at the maximum)∂ G / ∂ ψ j =
∫X ψc (x)dμ + ∫Y ψ(y)dν
Sup
ψ Є ψc
(DMK) G(ψ) =
163. Part. 3 Optimal Transport – the algorithm
Semi-discrete OT Summary:
G(ψ) = g(W) =∑j ∫Lag
ψ
(yj) || x – yj ||2 - ψ(yj) dμ + ∑j ψ(yj) vj is concave
vj -∫Lag(yj)dμ(x) (= 0 at the maximum)∂ G / ∂ ψ j =
∫X ψc (x)dμ + ∫Y ψ(y)dν
Sup
ψ Є ψc
(DMK) G(ψ) =
Desired mass at yj Mass transported to yj
164. Part. 3 Optimal Transport – the Hessian
vj -∫Lag(yj)dμ(x)∂ G / ∂ ψ j =
165. Part. 3 Optimal Transport – the Hessian
vj -∫Lag(yj)dμ(x)∂ G / ∂ ψ j =
∂
2
G / ∂ ψ i ψ j = - ∂ / ∂ ψ j ∫Lag(yj)dμ(x)
166. Part. 3 Optimal Transport – the Hessian
vj -∫Lag(yj)dμ(x)∂ G / ∂ ψ j =
∂
2
G / ∂ ψ i ψ j = - ∂ / ∂ ψ j ∫Lag(yj)dμ(x)
yi
yj
167. Part. 3 Optimal Transport – the Hessian
vj -∫Lag(yj)dμ(x)∂ G / ∂ ψ j =
∂
2
G / ∂ ψ i ψ j = - ∂ / ∂ ψ j ∫Lag(yj)dμ(x)
yi
yj
ψ j ψ j + δψ j
168. Part. 3 Optimal Transport – the Hessian
vj -∫Lag(yj)dμ(x)∂ G / ∂ ψ j =
∂
2
G / ∂ ψ i ψ j = - ∂ / ∂ ψ j ∫Lag(yj)dμ(x)
yi
yj
ψ j ψ j + δψ j
Reynold’s thm:
∂ / ∂ ψ j ∫Lag(yj)dμ(x) = ∫∂ Lag(yj) v.n dμ(x)
169. Part. 3 Optimal Transport – the Hessian
yi
yj
Reynold’s thm:
∂ / ∂ ψ j ∫Lag(yj)dμ(x) = ∫∂ Lag(yj) v.n dμ(x)
fij(x) = 0
170. Part. 3 Optimal Transport – the Hessian
yi
yj
Reynold’s thm:
∂ / ∂ ψ j ∫Lag(yj)dμ(x) = ∫∂ Lag(yj) v.n dμ(x)
fij(x) = 0
c(x,yi) - c(x,yj) + ψ j - ψ i = 0
176. Part. 3 the Hessian
∂
2
/ ∂ ψ i ∂ ψ j F = ∫Lag(yi) ∩ Lag(yj) -1/|| gradx c(x,yi) – gradx c(x,yj) ||dμ(x)
∂
2
/ ∂ ψ i
2 F = - ∑ ∂
2
/ ∂ ψ i ∂ ψ j
177. Part. 3 the Hessian
∂
2
/ ∂ ψ i ∂ ψ j F = ∫Lag(yi) ∩ Lag(yj) -1/|| gradx c(x,yi) – gradx c(x,yj) ||dμ(x)
∂
2
/ ∂ ψ i
2 F = - ∑ ∂
2
/ ∂ ψ i ∂ ψ j
c(x,y) = || x – y ||2
∂
2
/ ∂ ψ i ∂ ψ j F = ∫Lag(yi) ∩ Lag(yj) 1 / || xj – xi || dμ(x)
178. Part. 3 the Hessian
∂
2
/ ∂ ψ i ∂ ψ j F = ∫Lag(yi) ∩ Lag(yj) -1/|| gradx c(x,yi) – gradx c(x,yj) ||dμ(x)
∂
2
/ ∂ ψ i
2 F = - ∑ ∂
2
/ ∂ ψ i ∂ ψ j
c(x,y) = || x – y ||2
∂
2
/ ∂ ψ i ∂ ψ j F = ∫Lag(yi) ∩ Lag(yj) 1 / || xj – xi || dμ(x)
IP1 FEM Laplacian (not a big surprise)
179. Part. 3 Optimal Transport
Let’s program it !
Hierarchical algorithm [Mérigot]
Geometry, 3D [L], [L, Schwindt]
Damped Newton algorithm, [Kitagawa, Mérigot, Thibert]
181. Euler
Lagrange
The Least Action Principle
Hamilton,
Legendre,
Maupertuis
Axiom 1: There exists a function L(x,x,t) that describes the state
of a physical system
Short summary of the 1st chapter of Landau,Lifshitz Course of Theoretical Physics
182. Euler
Lagrange
The Least Action Principle
Hamilton,
Legendre,
Maupertuis
Axiom 1: There exists a function L(x,x,t) that describes the state
of a physical system
position
183. Euler
Lagrange
The Least Action Principle
Hamilton,
Legendre,
Maupertuis
Axiom 1: There exists a function L(x,x,t) that describes the state
of a physical system
position
speed
184. Euler
Lagrange
The Least Action Principle
Hamilton,
Legendre,
Maupertuis
Axiom 1: There exists a function L(x,x,t) that describes the state
of a physical system
position
speed
time
185. Euler
Lagrange
∫t1
t2
L(x,x,t) dt
The Least Action Principle
Hamilton,
Legendre,
Maupertuis
Axiom 1: There exists a function L(x,x,t) that describes the state
of a physical system
Axiom 2: The movement (time
evolution) of the physical system
minimizes the following integral
186. ∫t1
t2
L(x,x,t) dt
The Least Action Principle
Axiom 1: There exists a function L(x,x,t) that describes the state
of a physical system
Axiom 2: The movement (time
evolution) of the physical system
minimizes the following integral
187. ∫t1
t2
L(x,x,t) dt
The Least Action Principle
Axiom 1: There exists a function L(x,x,t) that describes the state
of a physical system
Axiom 2: The movement (time
evolution) of the physical system
minimizes the following integral
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
t=0
t=1
188. ∫t1
t2
L(x,x,t) dt
The Least Action Principle
Axiom 1: There exists L
Axiom 2: The movement minimizes
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
x’
t’ =
x+vt
t
189. ∫t1
t2
L(x,x,t) dt
The Least Action Principle
Axiom 1: There exists L
Axiom 2: The movement minimizes
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
x’
t’ =
x+vt
t
Theorem 2:
∂L
∂x
x - L = cte
190. ∫t1
t2
L(x,x,t) dt
The Least Action Principle
Axiom 1: There exists L
Axiom 2: The movement minimizes
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
x’
t’ =
x+vt
t
Theorem 2:
∂L
∂x
x - L = cte
Homogeneity of time →
Preservation of energy
191. ∫t1
t2
L(x,x,t) dt
The Least Action Principle
Axiom 1: There exists L
Axiom 2: The movement minimizes
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
x’
t’ =
x+vt
t
Theorem 2:
∂L
∂x
x - L = cte
Homogeneity of time →
Preservation of energy
Homogeneity of space →
Preservation of momentum
192. ∫t1
t2
L(x,x,t) dt
The Least Action Principle
Axiom 1: There exists L
Axiom 2: The movement minimizes
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
x’
t’ =
x+vt
t
Theorem 2:
∂L
∂x
x - L = cte
Homogeneity of time →
Preservation of energy
Homogeneity of space →
Preservation of momentum
Isotropy of space →
Preservation of angular momentum
193. ∫t1
t2
L(x,x,t) dt
The Least Action Principle
Axiom 1: There exists L
Axiom 2: The movement minimizes
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
x’
t’ =
x+vt
t
Theorem 2:
∂L
∂x
x - L = cte
Homogeneity of time →
Preservation of energy
Homogeneity of space →
Preservation of momentum
Isotropy of space →
Preservation of angular momentum
Preserved quantities
“Integrals of Motion”
Noether’s theorem
194. The Least Action Principle
Axiom 1: There exists L
Axiom 2: The movement minimizes ∫ L
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
x’
t’ =
x+vt
t
Theorem 2:
∂L
∂x
x - L = cte
Homogeneity of time →
Preservation of energy
Homogeneity of space →
Preservation of momentum
Isotropy of space →
Preservation of angular momentum
Free particle:
Theorem 3: v = cte (Newton’s law I)
195. The Least Action Principle
Axiom 1: There exists L
Axiom 2: The movement minimizes ∫ L
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
x’
t’ =
x+vt
t
Theorem 2:
∂L
∂x
x - L = cte
Homogeneity of time →
Preservation of energy
Homogeneity of space →
Preservation of momentum
Isotropy of space →
Preservation of angular momentum
Free particle:
Theorem 3: v = cte (Newton’s law I)
Expression of the Lagrangian:
L = ½ m v2
196. The Least Action Principle
Axiom 1: There exists L
Axiom 2: The movement minimizes ∫ L
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
x’
t’ =
x+vt
t
Theorem 2:
∂L
∂x
x - L = cte
Homogeneity of time →
Preservation of energy
Homogeneity of space →
Preservation of momentum
Isotropy of space →
Preservation of angular momentum
Free particle:
Theorem 3: v = cte (Newton’s law I)
Expression of the Lagrangian:
L = ½ m v2
Expression of the Energy:
E = ½ m v2
197. The Least Action Principle
Axiom 1: There exists L
Axiom 2: The movement minimizes ∫ L
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
x’
t’ =
x+vt
t
Particle in a field:
Expression of the Lagrangian:
L = ½ m v2 – U(x)
Free particle:
Theorem 3: v = cte (Newton’s law I)
Expression of the Lagrangian:
L = ½ m v2
Expression of the Energy:
E = ½ m v2
198. The Least Action Principle
Axiom 1: There exists L
Axiom 2: The movement minimizes ∫ L
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
x’
t’ =
x+vt
t
Particle in a field:
Expression of the Lagrangian:
L = ½ m v2 – U(x)
Expression of the Energy:
E = ½ m v2 + U(x)
Free particle:
Theorem 3: v = cte (Newton’s law I)
Expression of the Lagrangian:
L = ½ m v2
Expression of the Energy:
E = ½ m v2
199. The Least Action Principle
Axiom 1: There exists L
Axiom 2: The movement minimizes ∫ L
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. change of
Gallileo frame + hom. + isotrop. :
x’
t’ =
x+vt
t
Particle in a field:
Expression of the Lagrangian:
L = ½ m v2 – U(x)
Expression of the Energy:
E = ½ m v2 + U(x)
Theorem 4:
mx = - U (Newton’s law II)
Free particle:
Theorem 3: v = cte (Newton’s law I)
Expression of the Lagrangian:
L = ½ m v2
Expression of the Energy:
E = ½ m v2
200. Axiom 1: There exists L
Axiom 2: The movement minimizes ∫ L
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. Lorentz change of
frame
x’
t’ =
(x-vt) x γ
(t – vx/c2) x γ
γ = 1 / √ ( 1 – v2 / c2)
The Least Action Principle
(relativistic setting – just for fun…)
201. The Least Action Principle
(relativistic setting – just for fun…)
Axiom 1: There exists L
Axiom 2: The movement minimizes ∫ L
Theorem 1: (Lagrange equation):
∂L
∂x
d
dt
∂L
∂x
=
Axiom 3:
Invariance w.r.t. Lorentz change of
frame
x’
t’ =
(x-vt) x γ
(t – vx/c2) x γ
γ = 1 / √ ( 1 – v2 / c2)
Theorem 5:
E = ½ γ m v2 + mc2
202. The Least Action Principle
(quantum physics setting – just for fun…)
215. Part. 4 To infinity and beyond…
The Data: #2 redshift acquisition surveys
216. Part. 4 To infinity and beyond…
The Data: #2 redshift acquisition surveys
217. Part. 4 To infinity and beyond…
The Data: #2 redshift acquisition surveys
218. The millenium simulation project, Max Planck Institute fur Astrophysik
pc/h : parsec (= 3.2 années lumières)Part. 4 To infinity and beyond…
219. Part. 4 To infinity and beyond…
The universal swimming pool
220. Coop. with MOKAPLAN & Institut d’Astrophysique de Paris & Observatoire de Paris
Time = Now
Early Universe Reconstruction
221. Coop. with MOKAPLAN & Institut d’Astrophysique de Paris & Observatoire de Paris
. . . . .
Early Universe Reconstruction
222. Coop. with MOKAPLAN & Institut d’Astrophysique de Paris & Observatoire de Paris
Time = BigBang
(- 13.7 billion Y)
Early Universe Reconstruction
223. Coop. with MOKAPLAN & Institut d’Astrophysique de Paris & Observatoire de Paris
“Time-warped” map of the
universe
Early Universe Reconstruction
224. Coop. with MOKAPLAN & Institut d’Astrophysique de Paris & Observatoire de Paris
Cosmic Microware Background:
“Fossil light” emitted 380 000 Y after BigBang
and measured now
“Time-warped” map of the
universe
Early Universe Reconstruction
225. Coop. with MOKAPLAN & Institut d’Astrophysique de Paris & Observatoire de Paris
Cosmic Microware Background:
“Fossil light” emitted 380 000 Y after BigBang
and measured now
Do they match ?
“Time-warped” map of the
universe
Early Universe Reconstruction
227. Conclusions – Open questions
* Connections with physics, Legendre transform and entropy ?
[Cuturi & Peyré] – regularized discrete optimal transport – why does it work ?
Hint 1: Minimum action principle subject to conservation laws
Hint 2: Entropy = dual of temperature ; Legendre = Fourier[(+,*) → (Max,+)]…
* More continuous numerical algorithms ?
[Benamou & Brenier] fluid dynamics point of view – very elegant, but 4D problem !!
FEM-type adaptive discretization of the subdifferential (graph of T) ?
* Can we characterize OT in other semi-discrete settings ?
measures supported on unions of spheres
piecewise linear densities
* Connections with computational geometry ?
Singularity set [Figalli] = set of points where T is discontinuous
Looks like a “mutual power diagram”, anisotropic Voronoi diagrams
228. Conclusions - References
A Multiscale Approach to Optimal Transport,
Quentin Mérigot, Computer Graphics Forum, 2011
Variational Principles for Minkowski Type Problems, Discrete Optimal Transport,
and Discrete Monge-Ampere Equations
Xianfeng Gu, Feng Luo, Jian Sun, S.-T. Yau, ArXiv 2013
Minkowski-type theorems and least-squares clustering
AHA! (Aurenhammer, Hoffmann, and Aronov), SIAM J. on math. ana. 1998
Topics on Optimal Transportation, 2003
Optimal Transport Old and New, 2008
Cédric Villani
229. Conclusions - References
Polar factorization and monotone rearrangement of vector-valued functions
Yann Brenier, Comm. On Pure and Applied Mathematics, June 1991
A computational fluid mechanics solution of the Monge-Kantorovich mass transfer
problem, J.-D. Benamou, Y. Brenier, Numer. Math. 84 (2000), pp. 375-393
Pogorelov, Alexandrov – Gradient maps, Minkovsky problem (older than AHA
paper, some overlap, in slightly different context, formalism used by Gu & Yau)
Rockafeller – Convex optimization – Theorem to switch inf(sup()) – sup(inf())
with convex functions (used to justify Kantorovich duality)
Filippo Santambrogio – Optimal Transport for Applied Mathematician,
Calculus of Variations, PDEs and Modeling – Jan 15, 2015
Gabriel Peyré, Marco Cuturi, Computational Optimal Transport, 2018
230. Online resources
All the sourcecode/documentation available from:
http://alice.loria.fr/software/geogram
Demo: www.loria.fr/~levy/GLUP/vorpaview
* L., A numerical algorithm
for semi-discrete L2 OT in 3D,
ESAIM Math. Modeling
and Analysis, 2015
* L. and E. Schwindt,
Notions of OT and how to
implement them on a computer,
Computer and Graphics, 2018.
J. Lévy – 1936-2018 - To you Dad, I miss you so much.
233. ∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: Given f: IRn → IR sufficiently regular
Explanation in [Dario Cordero Erauquin] course notes
The isoperimetric inequality
234. ∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: Given f: IRn → IR sufficiently regular
Explanation in [Dario Cordero Erauquin] course notes
The isoperimetric inequality
235. ∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: Given f: IRn → IR sufficiently regular
Explanation in [Dario Cordero Erauquin] course notes
The isoperimetric inequality
236. ∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: Given f: IRn → IR sufficiently regular
Consider a compact set Ω such that Vol(Ω) = Vol(B2
3)
and f = the indicatrix function of Ω
The isoperimetric inequality
237. ∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: Given f: IRn → IR sufficiently regular
Consider a compact set Ω such that Vol(Ω) = Vol(B2
3)
and f = the indicatrix function of Ω
Vol(∂Ω) ≥ n Vol(B2
3)1/3 Vol(B2
3)2/3
The isoperimetric inequality
238. ∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: Given f: IRn → IR sufficiently regular
Consider a compact set Ω such that Vol(Ω) = Vol(B2
3)
and f = the indicatrix function of Ω
Vol(∂Ω) ≥ n Vol(B2
3)1/3 Vol(B2
3)2/3
Vol(∂Ω) ≥ 4 π = Vol(∂B2
3)
The isoperimetric inequality
239. ∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: a proof with OT [Gromov]
The isoperimetric inequality
240. ∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: a proof with OT [Gromov]
We suppose w.l.o.g. that ∫f n/(n-1) = 1
The isoperimetric inequality
241. ∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: a proof with OT [Gromov]
There exists an optimal transport T = gradΨ between
f n/(n-1)(x)dx and 1B2
n/Vol(B2
n)dx
We suppose w.l.o.g. that ∫f n/(n-1) = 1
The isoperimetric inequality
242. ∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: a proof with OT [Gromov]
There exists an optimal transport T = gradΨ between
f n/(n-1)(x)dx and 1B2
n/Vol(B2
n)dx
We suppose w.l.o.g. that ∫f n/(n-1) = 1
Monge-Ampère equation: Vol(B2
n) fn/(n-1)(x) = det Hess Ψ
The isoperimetric inequality
243. ∫| grad f | ≥ n Vol(B2
n)1/n (∫f n/(n-1))(n-1)/n
L1 Sobolev inegality: a proof with OT [Gromov]
There exists an optimal transport T = gradΨ between
f n/(n-1)(x)dx and 1B2
n/Vol(B2
n)dx
We suppose w.l.o.g. that ∫f n/(n-1) = 1
Monge-Ampère equation: Vol(B2
n) fn/(n-1)(x) = det Hess Ψ
Arithmetico-geometric ineq: det (H) 1/n ≤ trace(H)/n if H positive
The isoperimetric inequality