SlideShare une entreprise Scribd logo
1  sur  44
Wireless Industrial
Applications
Sponsored by:
Related information regarding the webcast:
• Download slides: http://www.controleng.com/index.php?id=7279
• Take the CEU Exam:
http://www.controleng.com/index.php?id=7285
• For more information on Advantech: http://www.advantech.com
• For more information on Moxa: http://www.moxa.com
• For more information on another Control Engineering webcast
visit http://www.controleng.com/media-library/webcasts.html
RCEP standards
Control Engineering has met the standards and
requirements of the Registered Continuing
Education Program. Credit earned on
completion of this program will be reported to
RCEP at RCEP.net. A certificate of
completion will be issued to each participant.
As such, it does not include content that may
be deemed or construed to be an approval or
endorsement by RCEP.
Purpose and learning objectives
• Overview of industrial wireless technologies (ISA100, HART
Wireless, WiFi, WiMax), including economics and how to
develop a new engineering mindset
• Engineering decision criteria, including essential requirements
and desired requirements
• Need for a long-term wireless strategy
• Specifications downfalls when evaluating radio aspects
• Rapid prototyping of wireless sensors in an industrial
environment
• Define best practices to RF design in complex/harsh RF (radio
frequency) environments, such as manufacturing/ industrial/
power generation facilities
• Review real examples of wireless sensor deployments in
industrial environments for workforce efficiency and condition-
based monitoring.
Speakers
Moderator: Mark T. Hoske, Content
Manager, Control Engineering, CFE Media, covering
industrial wireless and, among other topics, since
1994.
Stephen Muenstermann, RoviSys Building Technologies, DC market manager
- Lead wireless field solutions for a major automation company for North America and the
global interface for all industrial wireless infrastructure.
- More than 10 years of experience in industrial applications, radio frequency and
communications military intelligence, industrial instrumentation and commercial wireless
- Conducted more than 300 seminars on industrial wireless technology.
Damon Brady, section manager, SAIC Energy, Environment & Infrastructure
More than 15 years of technical and managerial experience in network communications and
critical infrastructure services, with 10 years leading network design, implementation, and
integration processes for utility, energy, public safety, and Smart Grid clients.
Douglas Bowers, senior project manager, SAIC Energy, Environment & Infrastructure
More than 15 years of experience in system integration for communication and network
systems, identifying requirements, writing specifications, design, testing, and
delivery, including rapid prototyping and development of sensor systems for industrial
environments.
RF & Wireless Technology
Simplifying the Beast!
By: Stephen Muenstermann, RoviSys
Objectives
Learning objectives are to understand:
• Overview of industrial wireless technology, including
economics and how to develop a new engineering
mindset
• ISA-100, HART Wireless, WiFi, WiMax, proprietary
• Engineering decision criteria, including essential
requirements and desired requirements
• Need for a long-term wireless strategy
• Specifications and downfalls when evaluating radio
aspects of the technology
What do we know?
• Wireless will happen (or has happened) at
your facility!
• Wireless creates some level of fear
• We can access a wealth of information today
through wireless
• There is power in using wireless
• It is not an engineering norm to use wireless
in an industrial environment
• Not in typical FEL practice
FEL = front end loading
Today
• The cloud has created forced adoption; it cannot be
ignored.
– Scalability
– Design and set-up immediately
– Proof of concept with minimal infrastructure cost
– Plant floor security is rock solid
– Great economic advantage
– Huge savings a reality
• Brownfield apps carry biggest gains
• Regulatory wins huge
• Inventory management
• LDAR
• SCADA (supervisory control and
data acquisition)
Whose standard is best?
• 802.11 a, b, g, and n
• 802.15.4 (ZigBee®)
• ISA® 100.11a
• HART Wireless
• 802.16 (WiMax®)
• Proprietary
• Coexistence?
ZigBee is a registered trademark of Zigbee Alliance in the U.S. and/or other countries. ISA is a registered trademark
of the International Society of Automation in the U.S. and/or other countries. WiMax is a registered trademark of
WiMax Forum in the U.S. and/or other countries.
Evaluation criteria
• Do wireless! But, have a strategy.
• DIY? (Do it yourself?)
– Things to consider
– Shortcuts can cost
– Vendor claims will hurt
• Outsource?
– Evaluation process
– Background
– RF or IT – Big difference
• Success in connectivity can only derive if RF works
RF = radio frequency IT = information technology
Evaluation criteria
• Do wireless! But, have a strategy.
• Building a managed radio frequency (RF)
network – How would you do wired?
• Control your cloud
• Wireless FEED (front-end engineering
design)
• Build for scalability
• Integration is easy – Learn RF’s simple
tribulations
Need for strategy
Sensor network
ISA®, HART and
proprietary
Handheld
HMI/remote worker
SCADA/HMI/BMS/EPMS
Security/regulatory
Safety
HMI = BMS = EPMS =
ISA is a registered
trademark of the
International Society of
Automation in the U.S.
and/or other countries.
Other reasoning strategy planning
• Don’t leave design to ad-hoc measures
• Current security issues likely exist
– Business-level over plant floor
• Managing RF/noise environment
• RF and antenna management
• Appoint a wireless manager
lead/leader
RF = radio frequency
Specifications and shortfalls
simple observations to learn
• Communication – antenna and RF
• Near field and robbing BW
• Hops – rings and understanding mesh
• Organized process – Is it self-healing?
• Spectrum analysis tools
• Coexistence with everything and noise floor
• Simple security/HR problems
• LOS – line of site – true meaning
• ISA® symbols to live by:
RF = radio frequency HR = Human Resources BW =
ISA is a registered trademark of the International Society
of Automation in the U.S. and/or other countries.
Communication – antenna and RF
D
Near field
RF = radio frequency
Directional = greater distance
Yagi and parabolic typical
Communication – antenna and RF
D
RF = radio frequency
Problems:
• Antenna signal warping due to metal proximity
• All antennas at same frequency mounted at same level
• Crowding near field, which means receiver sensitivity breaks
down, data loss/overlap
Near field and
coexistence
potential
mounting
issues
Near field and coexistence
potential mounting issues
Problems:
• Busy tower
• Antennas are properly staggered
• Directional antennas aimed to not
cross paths
Rings of mesh!
CR
1
2
3
4
5
Every hop results in a 50%
drop in packet delivery. Mesh
design strength is only as solid
as its design.
Beware of the vendor that
says, “Just throw in another
repeater.” You may get the
data, but with what issues?
Within your four rings, it is
possible to have hundreds of
sensors, depending on
architecture.
Mesh has different meanings
• Not all mesh networks are self-healing
– Does it require a master controller?
– Can the nodes/routers act as gateways?
– How many routes will it list internally?
– Does it require integration to organize mesh?
• Is the mesh only radio sets or sensors?
• Can end-points mesh?
• Where does redundancy end?
– Any single point of failure?
Spectrum analysis tools
900 MHz
2.4GHz/5GHz
ISM bandsWall
Attenuating source
ISM = industrial, scientific, and medical
Coexistence-noise floor
• Every transmitter adds to the noise floor
• Most industrial wireless networks will coexist
• Microwave ovens, CCTV, other; proximity is key
CCTV =
closed-
circuit
television
Security – HR issues
Real security
• Authentication
• Encryption
• Deterministic
• FHSS
• Anti-collision
• Notification
Attacks
• Extremely expensive
• Highly sophisticated
• No real impact if successful
Real insecurity - easy
Chain-link fence tossed into substation
FHSS = frequency hopping spread spectrum
LOS/Fresnel zone
LOS = line of sight
Spectrum analysis/Line of RF site
900 MHz
2.4 GHz/5 GHz
ISM bands
Wall
Attenuating sourceISM = industrial, scientific, and medical
Summary of objectives
• Overview of industrial wireless
technology, including economics and how to
develop a new engineering mindset
• ISA-100, HART
Wireless, WiFi, WiMax, proprietary
• Engineering decision criteria, including essential
requirements and desired requirements
• Need for a long-term wireless strategy
• Specifications and downfalls when evaluating
radio aspects of the technology
Wireless
Monitoring, Sensing
By: Damon Brady, SAIC
Douglas Bowers, SAIC
Objectives
• Educate viewer on rapid prototyping of wireless
sensors in an industrial environment.
• Define best practices to radio frequency (RF)
design in complex/harsh RF environments such as
manufacturing/industrial/power generation
facilities.
• Review real examples of wireless sensor
deployments in industrial environments for
workforce efficiency and condition-based
monitoring.
• Enterprise cyber security assessments,
design, and remediation
• Critical infrastructure IT network design
and build (IP voice and data,
fiber/copper cable plant)
• Wireless networking
• Control systems hands-on experience
• Infrastructure design, implementation
and operations
Wireless and mobility – field and plant (IT) services
• Real-time data and predictive
analytics
• Comprehensive technology support
• Location-based services for people
and assets
• Asset management and optimization
• Application support (work
management, asset management,
scheduling)
32
IP = Internet Protocol
Wireless and mobility –Wireless design practice
Business challenge: To design wireless connectivity for
multiple domestic nuclear power plants. Including power
block and turbine facilities (radioactive areas).
Approach
• Senior-level engineering teams with proper
credentialing for passive and active surveys to each
location
• Develop advanced computer-based modeling of each
facility in order to develop highly accurate radio
frequency (RF) model and drive final design and bill of
materials
• Retain RF engineers for installation process oversight
• Perform commissioning, testing and validation
Results
• This approach will deliver highly accurate
designs, reducing materials costs and need for design
modification after installation,
• Allows for delivery of new, advanced applications into
all areas of facility, increasing safely and efficiency
• Lower dose for install crews (less time in radioactive
environments). It gets done faster …
33
Wireless infrastructure deployment
Design development process
• Discovery activity
• Requirements verification
• Engineering analysis (RF allowability, etc.)
• Analysis of drawings
• Site walkdown (challenge briefings, etc.)
• Onsite wireless surveys
• Passive survey: RF data collection, spectrum analysis, building
composition analysis, outdoor features/topology noted. Deliverable:
preliminary design
• Active survey: Validation exercise for our preliminary AP placements.
Measure actual signal performance. Deliverable:
final design
• Wireless modeling and network design
• Final bill of materials (equipment specifications and
unit counts)
• Design team:
• Range of skills (systems/RF/network engineering)
34
RF = radio frequency AP = Access Point
35
The critical infrastructure problem
• Critical infrastructures have unique monitoring needs that are not being
met.
– Old: expensive to instrument, monitor and maintain – accidents
happen
– New: generate an unmanageable “firehose” of uncorrelated data
• Compliance requirements are reactionary and constantly evolving
• The market is flooded with fragmented point solution offerings
• Industry lacks a “systems approach” solution to the market
• Results from failure to monitor and act
– Accidents
– Shutdowns
– Cyberattack
These are not perceived problems – they are happening today and
are a matter of national and international importance.
• Problem – legacy, aging equipment may be “un-instrumented,” and data acquisition on
performance and maintenance may be natively impossible. Being able to retrofit adhoc
instrumentation and communicate to gather data and metrics would allow better operational
monitoring and maintenance planning and reduce downtime
• Solution – technology and approach – development of ad-hoc (off- the-shelf) modules for
sensor types (humid, temperature, vibration, pressure, magnetic) to allow rapid deployment
of communicating sensors to gather data
• Advantages, benefits and efficiencies – allows ad-hoc, short-term, or emergency
surveillance of problem devices. Allows a modular approach to wireless sensor measurement
in an aging plant environment without large-scale digital equipment upgrades
Ad-hoc instrumentation and metering
The availability of a pervasive wireless network within the plant allows
the deployment of extremely low-cost sensors and meters for tactical
or short-term operational needs. A „ ”bug-like” approach for the
deployment of multi-sensor devices, specific for operation‟s needs is
used. For example, suspect faulty motor or pump gets a
camera, vibration sensor, Hall-effect monitor attached to the housing.
In the new world, the sensor takes three minutes to assemble the
modules in the “plant shop,” and one minute to provision on the
network.
• Wireless acts as a common enabling technology
• How
Provides ubiquitous communications
capabilities
Cross-operational value and utility
Common IP access using standards with robust
cybersecurity
Reduces lead-time and costs associated with
wired cabling
Wireless plant communications
Provides the communications foundation to address many of the challenges
of facility process transformation
Innovation areas of focus
• Goal: Develop innovative technology solutions to achieve strategic
goals.
• Guiding principles
– Enabling
– Modular
– Scalable and replicable
– Standards-based … generally
– Financially viable
• Focus areas
– Operations/workflow efficiency
– Radiation protection and safety
– Regulatory compliance
Critical infrastructure integrity monitoring
reference architecture
P2P/PMP = Point to Point/Point to Multipoint ULP = Ultra Link Processing XML =
Extensible Markup Language S/A = Situational Awareness MOM = Manager of
Managers PCN = Process Control Network
ERP is enterprise resource planning software
®
ERP
Connecting
software
Emergency planning zone radiation monitoring
• Key business drivers
– Support real-time emergency decision making
– Extend emergency planning zone (EPZ) monitoring
area to 50 miles
– Provide low-cost situational awareness
• Innovative approach
– Developed long-life battery-powered sensors
– Benefit from unique RF communications technology
– Deliver data via SQL plus XML stream
– XML standard equals reduced software integration to PDS
• Return on investment targets
– Reduce regulatory compliance costs
– Increase planning accuracy – resource targeting
– Low-cost insurance and customer service benefit
• Status
– Pilot phase successful, very strong business case identified
– Have been asked to field a complete system at second facility
PDS = Plant Display Software SQL = Search and Query
Language XML = Extensible Markup Language
Wireless micro vibrational sensor
• Key business drivers
– Preventive/predictive maintenance of critical components through
• Vibration analysis
• Condition monitoring
• Machine health
• Independent monitoring and diagnostics
• Safety shutoff sensing
• Innovative approach
– Enable independent data capture outside of traditional SCADA systems
– Significantly reduce cost to allow monitoring of a larger sample of components
– Leverage ORW to reduce overall infrastructure costs
• Battery life, form factor, etc.
• Reduce number of access points (APs), network infrastructure
• Significantly increase number of sensor sets able to communicate across unlicensed
bandwidth
• Return on investment targets
– Enable dose optimization, achieve/exceed ALARA targets
– Reduced worker time in plant through automation of equipment monitoring function
– Shift from predictive to condition-based maintenance
ORW = On ramp wireless ALARA = As low as reasonably achievable (radiation exposure levels)
Today’s Webcast Sponsors
Question and answer session
Ask a panelist a question by entering your question in
the “Question & Answer” box and clicking submit.
Mark T. Hoske, webcast moderator, content manager, Control
Engineering
Stephen Muenstermann, RoviSys Building Technologies, DC
market manager
www.rovisysbt.com
Damon Brady, section manager, SAIC
Douglas Bowers, senior project manager, SAIC
www.saic.com/EEandI
Wireless Industrial
Applications
Sponsored by:

Contenu connexe

En vedette

The Building Blocks of Manufacturing Excellence
The Building Blocks of Manufacturing ExcellenceThe Building Blocks of Manufacturing Excellence
The Building Blocks of Manufacturing ExcellenceControlEng
 
중국에서 스타트업하는 육하원칙 꿀팁 유채원
중국에서 스타트업하는 육하원칙 꿀팁 유채원중국에서 스타트업하는 육하원칙 꿀팁 유채원
중국에서 스타트업하는 육하원칙 꿀팁 유채원Eva Yoo
 
Creating an Integrated Marketing Campaign for Impact and Results
Creating an Integrated Marketing Campaign for Impact and ResultsCreating an Integrated Marketing Campaign for Impact and Results
Creating an Integrated Marketing Campaign for Impact and ResultsControlEng
 
Presentation ferrari
Presentation ferrariPresentation ferrari
Presentation ferrariling_tum
 
Industrial Automation and Modern Connectivity
Industrial Automation and Modern ConnectivityIndustrial Automation and Modern Connectivity
Industrial Automation and Modern ConnectivityControlEng
 
Integrating the Marketing and Engineering Points of View in Marketing Communi...
Integrating the Marketing and Engineering Points of View in Marketing Communi...Integrating the Marketing and Engineering Points of View in Marketing Communi...
Integrating the Marketing and Engineering Points of View in Marketing Communi...ControlEng
 
Were we Just Hacked? Applying Digital Forensic Techniques for your Industrial...
Were we Just Hacked? Applying Digital Forensic Techniques for your Industrial...Were we Just Hacked? Applying Digital Forensic Techniques for your Industrial...
Were we Just Hacked? Applying Digital Forensic Techniques for your Industrial...ControlEng
 
Social Media in the B-to-B World, Part 2
Social Media in the B-to-B World, Part 2Social Media in the B-to-B World, Part 2
Social Media in the B-to-B World, Part 2ControlEng
 
Marketing New Product Introductions in Mobility & SaaS: Ideation to Marketing...
Marketing New Product Introductions in Mobility & SaaS: Ideation to Marketing...Marketing New Product Introductions in Mobility & SaaS: Ideation to Marketing...
Marketing New Product Introductions in Mobility & SaaS: Ideation to Marketing...ControlEng
 
How to Run a Successful Integrated Marketing Program
How to Run a Successful Integrated Marketing ProgramHow to Run a Successful Integrated Marketing Program
How to Run a Successful Integrated Marketing ProgramControlEng
 
Industrial Branding: The Lost Art in the Industrial Marketplace
Industrial Branding: The Lost Art in the Industrial MarketplaceIndustrial Branding: The Lost Art in the Industrial Marketplace
Industrial Branding: The Lost Art in the Industrial MarketplaceControlEng
 
중국 오투오 서비스 현황 및 트렌드 유채원 O2O Service Trend In China
중국 오투오 서비스 현황 및 트렌드 유채원 O2O Service Trend In China중국 오투오 서비스 현황 및 트렌드 유채원 O2O Service Trend In China
중국 오투오 서비스 현황 및 트렌드 유채원 O2O Service Trend In ChinaEva Yoo
 
Selecting and Working with a Systems Integrator
Selecting and Working with a Systems IntegratorSelecting and Working with a Systems Integrator
Selecting and Working with a Systems IntegratorControlEng
 

En vedette (15)

Musik fighters i
Musik fighters iMusik fighters i
Musik fighters i
 
The Building Blocks of Manufacturing Excellence
The Building Blocks of Manufacturing ExcellenceThe Building Blocks of Manufacturing Excellence
The Building Blocks of Manufacturing Excellence
 
중국에서 스타트업하는 육하원칙 꿀팁 유채원
중국에서 스타트업하는 육하원칙 꿀팁 유채원중국에서 스타트업하는 육하원칙 꿀팁 유채원
중국에서 스타트업하는 육하원칙 꿀팁 유채원
 
Creating an Integrated Marketing Campaign for Impact and Results
Creating an Integrated Marketing Campaign for Impact and ResultsCreating an Integrated Marketing Campaign for Impact and Results
Creating an Integrated Marketing Campaign for Impact and Results
 
Presentation ferrari
Presentation ferrariPresentation ferrari
Presentation ferrari
 
Industrial Automation and Modern Connectivity
Industrial Automation and Modern ConnectivityIndustrial Automation and Modern Connectivity
Industrial Automation and Modern Connectivity
 
Integrating the Marketing and Engineering Points of View in Marketing Communi...
Integrating the Marketing and Engineering Points of View in Marketing Communi...Integrating the Marketing and Engineering Points of View in Marketing Communi...
Integrating the Marketing and Engineering Points of View in Marketing Communi...
 
Were we Just Hacked? Applying Digital Forensic Techniques for your Industrial...
Were we Just Hacked? Applying Digital Forensic Techniques for your Industrial...Were we Just Hacked? Applying Digital Forensic Techniques for your Industrial...
Were we Just Hacked? Applying Digital Forensic Techniques for your Industrial...
 
Social Media in the B-to-B World, Part 2
Social Media in the B-to-B World, Part 2Social Media in the B-to-B World, Part 2
Social Media in the B-to-B World, Part 2
 
Marketing New Product Introductions in Mobility & SaaS: Ideation to Marketing...
Marketing New Product Introductions in Mobility & SaaS: Ideation to Marketing...Marketing New Product Introductions in Mobility & SaaS: Ideation to Marketing...
Marketing New Product Introductions in Mobility & SaaS: Ideation to Marketing...
 
How to Run a Successful Integrated Marketing Program
How to Run a Successful Integrated Marketing ProgramHow to Run a Successful Integrated Marketing Program
How to Run a Successful Integrated Marketing Program
 
Industrial Branding: The Lost Art in the Industrial Marketplace
Industrial Branding: The Lost Art in the Industrial MarketplaceIndustrial Branding: The Lost Art in the Industrial Marketplace
Industrial Branding: The Lost Art in the Industrial Marketplace
 
Cdd main
Cdd mainCdd main
Cdd main
 
중국 오투오 서비스 현황 및 트렌드 유채원 O2O Service Trend In China
중국 오투오 서비스 현황 및 트렌드 유채원 O2O Service Trend In China중국 오투오 서비스 현황 및 트렌드 유채원 O2O Service Trend In China
중국 오투오 서비스 현황 및 트렌드 유채원 O2O Service Trend In China
 
Selecting and Working with a Systems Integrator
Selecting and Working with a Systems IntegratorSelecting and Working with a Systems Integrator
Selecting and Working with a Systems Integrator
 

Plus de ControlEng

Digital Manufacturing and Design Innovation Institute
Digital Manufacturing and Design Innovation InstituteDigital Manufacturing and Design Innovation Institute
Digital Manufacturing and Design Innovation InstituteControlEng
 
Wireless for Stationary Applications
Wireless for Stationary ApplicationsWireless for Stationary Applications
Wireless for Stationary ApplicationsControlEng
 
Engineers: A Day in the Life
Engineers: A Day in the LifeEngineers: A Day in the Life
Engineers: A Day in the LifeControlEng
 
Industrial Ethernet, Part 2: Case Studies
Industrial Ethernet,Part 2: Case StudiesIndustrial Ethernet,Part 2: Case Studies
Industrial Ethernet, Part 2: Case StudiesControlEng
 
Industrial Ethernet, Part 1: Technologies
Industrial Ethernet, Part 1: TechnologiesIndustrial Ethernet, Part 1: Technologies
Industrial Ethernet, Part 1: TechnologiesControlEng
 
Create Marketing Engineers Love
Create Marketing Engineers LoveCreate Marketing Engineers Love
Create Marketing Engineers LoveControlEng
 

Plus de ControlEng (6)

Digital Manufacturing and Design Innovation Institute
Digital Manufacturing and Design Innovation InstituteDigital Manufacturing and Design Innovation Institute
Digital Manufacturing and Design Innovation Institute
 
Wireless for Stationary Applications
Wireless for Stationary ApplicationsWireless for Stationary Applications
Wireless for Stationary Applications
 
Engineers: A Day in the Life
Engineers: A Day in the LifeEngineers: A Day in the Life
Engineers: A Day in the Life
 
Industrial Ethernet, Part 2: Case Studies
Industrial Ethernet,Part 2: Case StudiesIndustrial Ethernet,Part 2: Case Studies
Industrial Ethernet, Part 2: Case Studies
 
Industrial Ethernet, Part 1: Technologies
Industrial Ethernet, Part 1: TechnologiesIndustrial Ethernet, Part 1: Technologies
Industrial Ethernet, Part 1: Technologies
 
Create Marketing Engineers Love
Create Marketing Engineers LoveCreate Marketing Engineers Love
Create Marketing Engineers Love
 

Dernier

Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docxPoojaSen20
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701bronxfugly43
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxdhanalakshmis0310
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 

Dernier (20)

Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptx
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 

Wireless Industrial Applications

  • 2. Related information regarding the webcast: • Download slides: http://www.controleng.com/index.php?id=7279 • Take the CEU Exam: http://www.controleng.com/index.php?id=7285 • For more information on Advantech: http://www.advantech.com • For more information on Moxa: http://www.moxa.com • For more information on another Control Engineering webcast visit http://www.controleng.com/media-library/webcasts.html
  • 3. RCEP standards Control Engineering has met the standards and requirements of the Registered Continuing Education Program. Credit earned on completion of this program will be reported to RCEP at RCEP.net. A certificate of completion will be issued to each participant. As such, it does not include content that may be deemed or construed to be an approval or endorsement by RCEP.
  • 4. Purpose and learning objectives • Overview of industrial wireless technologies (ISA100, HART Wireless, WiFi, WiMax), including economics and how to develop a new engineering mindset • Engineering decision criteria, including essential requirements and desired requirements • Need for a long-term wireless strategy • Specifications downfalls when evaluating radio aspects • Rapid prototyping of wireless sensors in an industrial environment • Define best practices to RF design in complex/harsh RF (radio frequency) environments, such as manufacturing/ industrial/ power generation facilities • Review real examples of wireless sensor deployments in industrial environments for workforce efficiency and condition- based monitoring.
  • 5. Speakers Moderator: Mark T. Hoske, Content Manager, Control Engineering, CFE Media, covering industrial wireless and, among other topics, since 1994. Stephen Muenstermann, RoviSys Building Technologies, DC market manager - Lead wireless field solutions for a major automation company for North America and the global interface for all industrial wireless infrastructure. - More than 10 years of experience in industrial applications, radio frequency and communications military intelligence, industrial instrumentation and commercial wireless - Conducted more than 300 seminars on industrial wireless technology. Damon Brady, section manager, SAIC Energy, Environment & Infrastructure More than 15 years of technical and managerial experience in network communications and critical infrastructure services, with 10 years leading network design, implementation, and integration processes for utility, energy, public safety, and Smart Grid clients. Douglas Bowers, senior project manager, SAIC Energy, Environment & Infrastructure More than 15 years of experience in system integration for communication and network systems, identifying requirements, writing specifications, design, testing, and delivery, including rapid prototyping and development of sensor systems for industrial environments.
  • 6.
  • 7.
  • 8. RF & Wireless Technology Simplifying the Beast! By: Stephen Muenstermann, RoviSys
  • 9. Objectives Learning objectives are to understand: • Overview of industrial wireless technology, including economics and how to develop a new engineering mindset • ISA-100, HART Wireless, WiFi, WiMax, proprietary • Engineering decision criteria, including essential requirements and desired requirements • Need for a long-term wireless strategy • Specifications and downfalls when evaluating radio aspects of the technology
  • 10. What do we know? • Wireless will happen (or has happened) at your facility! • Wireless creates some level of fear • We can access a wealth of information today through wireless • There is power in using wireless • It is not an engineering norm to use wireless in an industrial environment • Not in typical FEL practice FEL = front end loading
  • 11. Today • The cloud has created forced adoption; it cannot be ignored. – Scalability – Design and set-up immediately – Proof of concept with minimal infrastructure cost – Plant floor security is rock solid – Great economic advantage – Huge savings a reality • Brownfield apps carry biggest gains • Regulatory wins huge • Inventory management • LDAR • SCADA (supervisory control and data acquisition)
  • 12. Whose standard is best? • 802.11 a, b, g, and n • 802.15.4 (ZigBee®) • ISA® 100.11a • HART Wireless • 802.16 (WiMax®) • Proprietary • Coexistence? ZigBee is a registered trademark of Zigbee Alliance in the U.S. and/or other countries. ISA is a registered trademark of the International Society of Automation in the U.S. and/or other countries. WiMax is a registered trademark of WiMax Forum in the U.S. and/or other countries.
  • 13. Evaluation criteria • Do wireless! But, have a strategy. • DIY? (Do it yourself?) – Things to consider – Shortcuts can cost – Vendor claims will hurt • Outsource? – Evaluation process – Background – RF or IT – Big difference • Success in connectivity can only derive if RF works RF = radio frequency IT = information technology
  • 14. Evaluation criteria • Do wireless! But, have a strategy. • Building a managed radio frequency (RF) network – How would you do wired? • Control your cloud • Wireless FEED (front-end engineering design) • Build for scalability • Integration is easy – Learn RF’s simple tribulations
  • 15. Need for strategy Sensor network ISA®, HART and proprietary Handheld HMI/remote worker SCADA/HMI/BMS/EPMS Security/regulatory Safety HMI = BMS = EPMS = ISA is a registered trademark of the International Society of Automation in the U.S. and/or other countries.
  • 16. Other reasoning strategy planning • Don’t leave design to ad-hoc measures • Current security issues likely exist – Business-level over plant floor • Managing RF/noise environment • RF and antenna management • Appoint a wireless manager lead/leader RF = radio frequency
  • 17. Specifications and shortfalls simple observations to learn • Communication – antenna and RF • Near field and robbing BW • Hops – rings and understanding mesh • Organized process – Is it self-healing? • Spectrum analysis tools • Coexistence with everything and noise floor • Simple security/HR problems • LOS – line of site – true meaning • ISA® symbols to live by: RF = radio frequency HR = Human Resources BW = ISA is a registered trademark of the International Society of Automation in the U.S. and/or other countries.
  • 18. Communication – antenna and RF D Near field RF = radio frequency
  • 19. Directional = greater distance Yagi and parabolic typical Communication – antenna and RF D RF = radio frequency
  • 20. Problems: • Antenna signal warping due to metal proximity • All antennas at same frequency mounted at same level • Crowding near field, which means receiver sensitivity breaks down, data loss/overlap Near field and coexistence potential mounting issues
  • 21. Near field and coexistence potential mounting issues Problems: • Busy tower • Antennas are properly staggered • Directional antennas aimed to not cross paths
  • 22. Rings of mesh! CR 1 2 3 4 5 Every hop results in a 50% drop in packet delivery. Mesh design strength is only as solid as its design. Beware of the vendor that says, “Just throw in another repeater.” You may get the data, but with what issues? Within your four rings, it is possible to have hundreds of sensors, depending on architecture.
  • 23. Mesh has different meanings • Not all mesh networks are self-healing – Does it require a master controller? – Can the nodes/routers act as gateways? – How many routes will it list internally? – Does it require integration to organize mesh? • Is the mesh only radio sets or sensors? • Can end-points mesh? • Where does redundancy end? – Any single point of failure?
  • 24. Spectrum analysis tools 900 MHz 2.4GHz/5GHz ISM bandsWall Attenuating source ISM = industrial, scientific, and medical
  • 25. Coexistence-noise floor • Every transmitter adds to the noise floor • Most industrial wireless networks will coexist • Microwave ovens, CCTV, other; proximity is key CCTV = closed- circuit television
  • 26. Security – HR issues Real security • Authentication • Encryption • Deterministic • FHSS • Anti-collision • Notification Attacks • Extremely expensive • Highly sophisticated • No real impact if successful Real insecurity - easy Chain-link fence tossed into substation FHSS = frequency hopping spread spectrum
  • 27. LOS/Fresnel zone LOS = line of sight
  • 28. Spectrum analysis/Line of RF site 900 MHz 2.4 GHz/5 GHz ISM bands Wall Attenuating sourceISM = industrial, scientific, and medical
  • 29. Summary of objectives • Overview of industrial wireless technology, including economics and how to develop a new engineering mindset • ISA-100, HART Wireless, WiFi, WiMax, proprietary • Engineering decision criteria, including essential requirements and desired requirements • Need for a long-term wireless strategy • Specifications and downfalls when evaluating radio aspects of the technology
  • 30. Wireless Monitoring, Sensing By: Damon Brady, SAIC Douglas Bowers, SAIC
  • 31. Objectives • Educate viewer on rapid prototyping of wireless sensors in an industrial environment. • Define best practices to radio frequency (RF) design in complex/harsh RF environments such as manufacturing/industrial/power generation facilities. • Review real examples of wireless sensor deployments in industrial environments for workforce efficiency and condition-based monitoring.
  • 32. • Enterprise cyber security assessments, design, and remediation • Critical infrastructure IT network design and build (IP voice and data, fiber/copper cable plant) • Wireless networking • Control systems hands-on experience • Infrastructure design, implementation and operations Wireless and mobility – field and plant (IT) services • Real-time data and predictive analytics • Comprehensive technology support • Location-based services for people and assets • Asset management and optimization • Application support (work management, asset management, scheduling) 32 IP = Internet Protocol
  • 33. Wireless and mobility –Wireless design practice Business challenge: To design wireless connectivity for multiple domestic nuclear power plants. Including power block and turbine facilities (radioactive areas). Approach • Senior-level engineering teams with proper credentialing for passive and active surveys to each location • Develop advanced computer-based modeling of each facility in order to develop highly accurate radio frequency (RF) model and drive final design and bill of materials • Retain RF engineers for installation process oversight • Perform commissioning, testing and validation Results • This approach will deliver highly accurate designs, reducing materials costs and need for design modification after installation, • Allows for delivery of new, advanced applications into all areas of facility, increasing safely and efficiency • Lower dose for install crews (less time in radioactive environments). It gets done faster … 33
  • 34. Wireless infrastructure deployment Design development process • Discovery activity • Requirements verification • Engineering analysis (RF allowability, etc.) • Analysis of drawings • Site walkdown (challenge briefings, etc.) • Onsite wireless surveys • Passive survey: RF data collection, spectrum analysis, building composition analysis, outdoor features/topology noted. Deliverable: preliminary design • Active survey: Validation exercise for our preliminary AP placements. Measure actual signal performance. Deliverable: final design • Wireless modeling and network design • Final bill of materials (equipment specifications and unit counts) • Design team: • Range of skills (systems/RF/network engineering) 34 RF = radio frequency AP = Access Point
  • 35. 35 The critical infrastructure problem • Critical infrastructures have unique monitoring needs that are not being met. – Old: expensive to instrument, monitor and maintain – accidents happen – New: generate an unmanageable “firehose” of uncorrelated data • Compliance requirements are reactionary and constantly evolving • The market is flooded with fragmented point solution offerings • Industry lacks a “systems approach” solution to the market • Results from failure to monitor and act – Accidents – Shutdowns – Cyberattack These are not perceived problems – they are happening today and are a matter of national and international importance.
  • 36. • Problem – legacy, aging equipment may be “un-instrumented,” and data acquisition on performance and maintenance may be natively impossible. Being able to retrofit adhoc instrumentation and communicate to gather data and metrics would allow better operational monitoring and maintenance planning and reduce downtime • Solution – technology and approach – development of ad-hoc (off- the-shelf) modules for sensor types (humid, temperature, vibration, pressure, magnetic) to allow rapid deployment of communicating sensors to gather data • Advantages, benefits and efficiencies – allows ad-hoc, short-term, or emergency surveillance of problem devices. Allows a modular approach to wireless sensor measurement in an aging plant environment without large-scale digital equipment upgrades Ad-hoc instrumentation and metering The availability of a pervasive wireless network within the plant allows the deployment of extremely low-cost sensors and meters for tactical or short-term operational needs. A „ ”bug-like” approach for the deployment of multi-sensor devices, specific for operation‟s needs is used. For example, suspect faulty motor or pump gets a camera, vibration sensor, Hall-effect monitor attached to the housing. In the new world, the sensor takes three minutes to assemble the modules in the “plant shop,” and one minute to provision on the network.
  • 37. • Wireless acts as a common enabling technology • How Provides ubiquitous communications capabilities Cross-operational value and utility Common IP access using standards with robust cybersecurity Reduces lead-time and costs associated with wired cabling Wireless plant communications Provides the communications foundation to address many of the challenges of facility process transformation
  • 38. Innovation areas of focus • Goal: Develop innovative technology solutions to achieve strategic goals. • Guiding principles – Enabling – Modular – Scalable and replicable – Standards-based … generally – Financially viable • Focus areas – Operations/workflow efficiency – Radiation protection and safety – Regulatory compliance
  • 39. Critical infrastructure integrity monitoring reference architecture P2P/PMP = Point to Point/Point to Multipoint ULP = Ultra Link Processing XML = Extensible Markup Language S/A = Situational Awareness MOM = Manager of Managers PCN = Process Control Network ERP is enterprise resource planning software ® ERP Connecting software
  • 40. Emergency planning zone radiation monitoring • Key business drivers – Support real-time emergency decision making – Extend emergency planning zone (EPZ) monitoring area to 50 miles – Provide low-cost situational awareness • Innovative approach – Developed long-life battery-powered sensors – Benefit from unique RF communications technology – Deliver data via SQL plus XML stream – XML standard equals reduced software integration to PDS • Return on investment targets – Reduce regulatory compliance costs – Increase planning accuracy – resource targeting – Low-cost insurance and customer service benefit • Status – Pilot phase successful, very strong business case identified – Have been asked to field a complete system at second facility PDS = Plant Display Software SQL = Search and Query Language XML = Extensible Markup Language
  • 41. Wireless micro vibrational sensor • Key business drivers – Preventive/predictive maintenance of critical components through • Vibration analysis • Condition monitoring • Machine health • Independent monitoring and diagnostics • Safety shutoff sensing • Innovative approach – Enable independent data capture outside of traditional SCADA systems – Significantly reduce cost to allow monitoring of a larger sample of components – Leverage ORW to reduce overall infrastructure costs • Battery life, form factor, etc. • Reduce number of access points (APs), network infrastructure • Significantly increase number of sensor sets able to communicate across unlicensed bandwidth • Return on investment targets – Enable dose optimization, achieve/exceed ALARA targets – Reduced worker time in plant through automation of equipment monitoring function – Shift from predictive to condition-based maintenance ORW = On ramp wireless ALARA = As low as reasonably achievable (radiation exposure levels)
  • 43. Question and answer session Ask a panelist a question by entering your question in the “Question & Answer” box and clicking submit. Mark T. Hoske, webcast moderator, content manager, Control Engineering Stephen Muenstermann, RoviSys Building Technologies, DC market manager www.rovisysbt.com Damon Brady, section manager, SAIC Douglas Bowers, senior project manager, SAIC www.saic.com/EEandI

Notes de l'éditeur

  1. Hello, this is Mark Hoske, content manager with Control Engineering, part of CFE Media. Thanks for joining us for the next installment in the Control Engineering Webcast SeriesWireless industrial applicationsSponsored by Advantech and Moxa.
  2. To access the presentation slides, or to learn more about our sponsors, use the “links” option at the top of your screen. From this option, you can download the presentation, or visit our webcast sponsor, at any time. The Links tab also has information on how to get your certificate of completion. If you’re watching the presentation from the archive, you’ll see that the instructions are a little different. Simply click “Meeting Links” on your console.   There will be a Q&A session after the presentations. You can use the question box to type questions to speakers during their presentations and we’ll answer as many as possible later in the broadcast.  This webcast is being recorded, including the Q&A session. We’ll post the archive on the Control Engineering Website in a few days, and send you an email message with a link connecting directly to it. We are offering a professional development hour (PDH) for attending today’s event. Please fill out the evaluation form at the end of the event and once you click submit, you will be lead to a page where you can download your PDH certificate. If you are having technical problems with audio or the slides, click the Help button to bring up a list of system checks you should try before escalating to an online technician. If you need a technician, type a message into the question box and one will get to you as quickly as possible.
  3. Control Engineering has met the standards and requirements of the Registered Continuing Education Program. Credit earned on completion of this program will be reported to RCEP at RCEP.net. A certificate of completion will be available for each participant to download upon completion of an evaluation at the end of the presentation.As such, it does not include content that may be deemed or construed to be an approval or endorsement by RCEP.
  4. This Control Engineering webcastwill provide information about ...• Overview of industrial wireless technologies (ISA100, HART Wireless, WiFi, WiMax), including economics and how to develop a new engineering mindset• Engineering decision criteria, including essential requirements and desired requirements• Need for a long-term wireless strategy• Specifications downfalls when evaluating radio aspects of the technology• Rapid prototyping of wireless sensors in an industrial environment• Define best practices to RF design in complex/harsh RF (radio frequency) environments, such as manufacturing/industrial/power generation facilities• Review real examples of wireless sensor deployments in industrial environments for workforce efficiency and condition-based monitoring.
  5. Thank you to our expert presenters for this webcast ... -- Stephen Muenstermann, RoviSys Building Technologies, DC market manager, previously served as the leader of wireless field solutions for a major automation company for North America and the global interface for all industrial wireless infrastructure. He has more than 10 years of experience in industrial applications, after having begun with radio frequency and communications military intelligence overseas, continuing with industrial instrumentation and commercial wireless technologies. He has written white papers and articles on wireless security, regulatory issues resolved, enterprise wireless inventory management, remote SCADA, OSHA wireless safety, and data center BMS infrastructure management, among other topics. He has consulted with major refinery, oil and gas, pharmaceutical, mission critical infrastructure, ethanol, chemical, municipal and other industries in development of wireless strategies. He has conducted more than 300 seminars on industrial wireless technology. www.rovisysbt.com-- Damon Brady, section manager, SAIC Energy, Environment & Infrastructure, has more than 15 years of technical and managerial experience in network communications and critical infrastructure services, including 10 years of experience leading network design, implementation, and integration processes for utility, energy, and public safety clients. He has expertise in telecommunications voice and data network architectures, including fiber optics, wireless local area network, point-to-point, and point-to-multipoint wireless radio technology. Brady has significant experience developing wireless and wireline communications solutions that form the basis of core infrastructures connecting critical components in smart grid infrastructures.-- Douglas Bowers, senior project manager, SAIC Energy, Environment & Infrastructure, has more than 15 years of experience in system integration for communication and network systems. He specializes in working with clients to identify requirements and write specifications, then taking specifications and working with SAIC development teams from design through testing/delivery. The last several years have been spent in the rapid prototyping and development of new sensor systems for industrial environments with emphasis on nuclear generation and critical infrastructure, such as airports. www.saic.com/EEandI-- Moderator: Mark T. Hoske, webcast moderator, has been content manager for Control Engineering since 1994, and has authored or edited scores of articles relating to industrial wireless technologies. He’s written about automation technology topics since 1987.
  6. The cloud has created forced adoption into the technology. Those that do not conform will be left behind. (explain LDAR)
  7. When you boil it down there are numerous open protocol standards that you are dealing with today in the wired world. At the end of the day all these standards are digital. With anything that is a digital standard its format can be converted to any format. When comparing it to the wireless standards it is no different. All these standards can easily co-exist in the same world. Most WiMax – (Pay as you go, better throughput, long distance) Although the standards allow operation in any band from 2 to 66 GHz, mobile operation is best in the lower bands which are also the most crowded, and therefore most expensive
  8. To do it yourself would, or could be very dangerous. If you delivered a cobbled system then faith in reliability, security, and safety in the technology will always be questioned. It could also take months without a proper FEED wireless analysis to get the network to communicate and organize properly. However, if the system is implemented properly, it goes in very quickly, there are little to no hiccups. I compare it to my vehicles at home. As technology has grown over the years I have grown to understand that if the issue is beyond simple diagnosis, even with my PC software to discern issues and trouble codes, it is better for me to send it to the expert. The sophistication has grown beyond my breath of knowledge. And even though I have a solid understanding of the issue. To gain the proper result I am better to leave it in a trusted experts hands. And like your mechanic, when you outsource assure you have a trusted source. I am sure we have all experienced an agonizing bill on something that may not have even repaired the actual problem.
  9. Controlling your cloud is critical. You really need to know how your air space is being managed and how it will be used. I have seen many cobbled systems even to the point of aluminum foil being utilized as a RF enhancer. Just like the old rabbit ears on the television pre-HD signals.Wireless opens up a lot of new windows of opportunity. So while your plan may be limited in scope the design could offer future flexibility that would allow thousands of points in at a low investment for the information.
  10. This is only a small look into the network capabilities. Each area is critical. (Cover why)
  11. Ad-hoc solutions (designed for purpose) try and make you believe that they are the only answer and that you would not need other technologies like a wireless RF analysis. While these designs may work in areas that are completely unobstructed, no potential interferences, and proper mounting considerations, most vendors only analyze the IT or communication protocol connection. They do not worry about the RF connection because they can see on their PC that the network is linking. This leaves out huge potential issues related to interference, emitting RF warping, cross talk, multipathing and more. Beware of the ‘need no survey’ claims. All cell networks require design analysis.
  12. These observations are basic points you should consider when specifying a wireless network. Remember this technology is HOT and new to the market. You will have a lot of people that are selling equipment that do not understand the technology. It is not hard but like anything you must have a good knowledge base, use the right tools and document what you design. You are saving huge cost in the infrastructure installation, time to function, true information, 80% of what Fieldbus Foundation Delivers, and massive scalability. Do not shortcut your design documents.
  13. In a standard whip dipole antenna you get less distance but greater height In a high gain antenna your signal transmits further but is more pancaked as the signal rush is produced out of the base of the antennaThe green represents the ‘near field’
  14. A Yagi is the typical directional antenna. However a parabolic antenna offers a tighter focus and less RF splash on the back side of the signal.If you will note the yagi is much like a TV antenna. It does require aiming in proximity of the desired target. The parabolic requires even greater aiming.
  15. What does warping mean? If you are in a open field and you have a circle of people 100 feet in diameter around you and you yell loudly most people will be able to make out what you say.Now you have the people forming a semi-circle of equal distance around you but now your yelling into the wall. How well can the people hear you? Not well.Now look at the antennas all lined up in a row. Now imagine you are talking to a colleague across the room. Now a new person comes over and he is talking to his colleagues across the room while turned towards your ear. Two more join directly next to each other. Every time you add another device it is like adding another person in your crowd of people if they are too close and at the exact same level. However stagger them, provide mega phones, maybe foreign language as a mix and you can receive this signal/message. Now receiver sensitivity starts to plummet. How would your hearing stand up if you had someone yelling in your ear every day, all day?Data is loss as only a certain amount of the packets can be read. So the data slows to roughly 50% per device when you have near field overlap in a anti-collision designed format like 802.11 or other designed DSSS technologies.
  16. What does warping mean? If you are in a open field and you have a circle of people 100 feet in diameter around you and you yell loudly most people will be able to make out what you say.Now you have the people forming a semi-circle of equal distance around you but now your yelling into the wall. How well can the people hear you? Not well.Now look at the antennas all lined up in a row. Now imagine you are talking to a colleague across the room. Now a new person comes over and he is talking to his colleagues across the room while turned towards your ear. Two more join directly next to each other. Every time you add another device it is like adding another person in your crowd of people if they are too close and at the exact same level. However stagger them, provide mega phones, maybe foreign language as a mix and you can receive this signal/message. Now receiver sensitivity starts to plummet. How would your hearing stand up if you had someone yelling in your ear every day, all day?Data is loss as only a certain amount of the packets can be read. So the data slows to roughly 50% per device when you have near field overlap in a anti-collision designed format like 802.11 or other designed DSSS technologies.
  17. Spectrum analyzers can offer a lot of characteristic information about your RF environment. Even if you are not the designer of your RF environment it is a good low cost tool to use. In this situation it can show you if your signal will penetrate a wall with enough confidence to use as a access point location. As you can tell the micro-wave signal is more susceptible to attenuation over the lower frequency UHF signal.
  18. Line of Site takes numerous factors into consideration. Given a clean Fresnel zone (No obstructions) the LOS is as far as the limit of RF signal trand=smission and receiver sensitivity will permit.
  19. Spectrum analyzers can offer a lot of characteristic information about your RF environment. Even if you are not the designer of your RF environment it is a good low cost tool to use. In this situation it can show you if your signal will penetrate a wall with enough confidence to use as a access point location. As you can tell the micro-wave signal is more susceptible to attenuation over the lower frequency UHF signal.
  20. (After Steve finishes here...)Mark: Thanks, Steve. Now on to Damon and Doug, from SAIC.
  21. Graphics are examples Advanced modeling of PSEG facility, Hope Creek. Outdoor Coverage, Deliver Senior level wireless engineers with proper credentialingDefine and prioritize applications and ConOps, define throughput needs, which affects AP density, which affects backhaul, switching, power requirements, etc…Aggregate all drawing, conduct Passive Survey of facility, including Power Block import all data into modeling SW to generate preliminary design Return for Active survey to capture actual RF patterns from AP. We then utilize this data to fine tune design perimeters of final design.Work with Plant It and Engineer of record to formulate build package and iterative reviews during installation process And Finally commissioning, testing, tweaking of operational system.
  22. Critical Infrastructure Systems – Increasingly a complex blend of old and new systems (varying tolerances and management requirements).Old Infrastructure: Expensive to instrument, monitor and maintain – accidents happen (PG&E NG Explosion, San Onofre steam leak, Kinder-Morgan Pipeline ExplosionNew Infrastructure: Generates an unmanageable ‘firehose’ of data – SDG&E SA, PSEG HMI overload, SWN Water ManagementSystems approach - everything is a point solution, creating analysis paralysis and investment fear due to risk of obsolescence.
  23. Work Better, Faster, Cheaper. Hit the low hanging fruit, lay the groundwork for significant BPT
  24. So really – the integration approach is as simple as A + B + C = SUCCESS…We can do all this – we just haven’t, but the timing is right to do this now.
  25. So, really – the integration approach is as simple as A + B + C = SUCCESS…We can do all this – we just haven’t, but the timing is right to do this now.
  26. Thank you to today’s webcast sponsors; Advantech and Moxa
  27. This Control Engineering webcast covered • Overview of industrial wireless technologies (ISA100, HART Wireless, WiFi, WiMax), including economics and how to develop a new engineering mindset• Engineering decision criteria, including essential requirements and desired requirements• Need for a long-term wireless strategy• Specifications downfalls when evaluating radio aspects of the technology• Rapid prototyping of wireless sensors in an industrial environment• Define best practices to RF design in complex/harsh RF (radio frequency) environments, such as manufacturing/industrial/power generation facilities• Review real examples of wireless sensor deployments in industrial environments for workforce efficiency and condition-based monitoring. For those listening live, please continue to submit questions. We’ll move on to answering those now. Please take the survey that should appear on your screen at this time.And now, the first question... After Q&A: Thanks again to our experts and to our sponsors for this webcast, copyright 2013, CFE Media. For Control Engineering, this is Mark Hoske. Thank you.