SlideShare une entreprise Scribd logo
1  sur  60
Under the guidance of
Dr. Arun Kumar
Alternate Hydro Energy
Centre
IIT Roorkee
1
Presented by
GURDEEP SINGH
OUTLINE
2
Problem of sediment in SHP
Desilting basins
Need of Performance Evaluation of Desilting basins
Objective of Study
Methodology Adopted
Analysis and Evaluation
Results
Conclusion
Literature Review
References
Problem of sediment in SHP Plants
 Sedimentation problem in Hydropower starts from headwork’s to power
house. Each and every Structure intact with water is susceptible and vulnerable
due to sediment laden water.
 This problem is more serious in Himalayan region where good potential of
SHP exist.
 In the case of run-of-river, a relatively small dam or a barrage is built across a
mountain stream to divert the river water into the intake which in turn feeds
the power house through a water conductor system. Due to the large quantities
of sediment likely to be transported by the rivers. This will leads to various
problems:-
1. The diversion dam/barrage may get silted up to the crest within short period of
construction.
2. Thus large quantity of sediment may enter the intake and decrease in the
discharge carrying capacity of the water conductor system.
3. Cause damage to the tunnel lining,
4. Erode the turbine blades and auxiliaries
3
Effects on civil structures
Sediment deposited in lined channel Sediment deposited in tailrace channel
of hydropower plant
Sediment deposited near
diversion weir
4
Sediment erosion at Pelton
turbine needle
Sediment erosion at Pelton
turbine
Eroded guide vanes
Erosion(At Runner) at pressure
side of blade
Effects of
Erosion on
various
components of
Turbine
5
DESILTING BASIN
Desilting basins are constructed close to the intake to trap incoming sediment
before leading to water conductor system/turbine.
Removal of sediment in desilting basins is done by reducing the velocity of
flow through them and remove settled sediment under gravity or mechanical
or manually.
There are two types of desilting basin mainly used for SHP sites in India are :-
i. Settling basin
ii. Vortex settling basin
6
Design parameters for settling basin
7
1. Size of sediment load to be removed
2. Settling basin dimensions
3. Velocity in chamber basin
4. Flushing discharge
5. Trap Efficiency
6. Sediment removal techniques
8
1. Basin diameter d, and basin height H;
2. Flushing discharge, Qo or flushing pipe diameter, d0
3. Depth of flow in the basin;
4. Radial slope of basin floor, Sc (horizontal to one vertical)
5.Basin depth at periphery, h2
6. length of overflow weir, Li, and
7. Modelling criteria to ascertain the performance of the designed VSB with the aid
of a physical model
Design parameters for vortex settling basin
Need for performance evaluation
9
1. Settling basin are being designed oftenaly by Indian shp designer on basis of
limited data on sediment due to its poor availability on account of not using
skilled persons which are not available easily.
2. It has been observed that often desilting basins are inefficient for silt
removal. The silt removal arrangement are poor, resulting in frequent
choking. This result frequent forced outrage of plant.
Thus performance of these desilting basin are evaluated to make aware to plant
owner sediment impact and loss of generation
10
Desilting tank in himanchal
pradesh 3MW SHP project
Desilting tank in Uttrakhand
5MW SHP project
Objective of study
11
The objective of this work :-
1.To evaluate the performance of existing desilting devices.
2.To study the impact of sediment on turbine runner
corresponding to desilting basin efficiency
Methodology Adopted
12
1. Reviewed various desilting devices deployed for small hydro
power plants.
2. Identified the projects for data collection covering high and
medium head in different location.
3. Prepared a questionnaire, approach the project owner for data and
visit the site. Data covering the type of desilting devices,
dimension ,number of chamber provided and flushing arrangement
and impact of sediment on turbine and other components.
4. Collected sediment(inflow and flushed out) from different SHP
sites by undertaking site visits.
5. Sieve analysis of sample collected.
6. Evaluation is done by :-
1. Comparing the relation/charts of efficiency of desilting
basin given by different author’s with observed efficiency.
2. Impact of sediment on turbine runner.
Site visit details
13
Location Visit duration
Sites located in Chamba and Kangra District visited
(Tarila shp station, Tarila-II shp station, Upper awa shp, Baner-III shp,
Sahu shp station, Iku-II shp, Upper khauli shp, Drinidhar shp station,
Bhuri singh power house, Khauli shp station, Gaj shp)
Nov 17-29,2012
Sites located in Kullu and Mandi District visited
(Jirah shp station, Aleo shp station, Baragan shp station, Sarbari shp ,
Brahmaganga shp station, Patkari shp station, Gurahan shp station
Jan 25- Feb 5,2013
HPPCL design office,Sunder nagar,HP May 22- 26,2013
14
Sr.
no
Name of station Name of
stream
Installed
capacity(
MW)
Type of
Turbine
Head
(m)
Discha
rge
(cume
c)
Inlet
channel
width(m)
Desilting basin dimensions(m) no.
of
outl
et
Flushing
conduit(
mm)
U/S
Transi
tion
Leng
th
Wi
dth
Depth D/S
Transi
tion
1 TARILA
Tareila
nallah 2X2.5 Francis 184 6.00 2.0 10.4 54.7 7.5 4.5 7.8 1 600Ø
2 TARILA-II
Tareila
nallah 2X2.5 Francis 133 6.10 2.0 5.0 36.0 8.5 3.1 5.0 1 600Ø
3 BANER-III Baner khad 2X2.5 Pelton 302 2.70 1.8 7.5 30.0 5.0 2.5 1 500x500
4 IKU-II Iku khad 2X2.5 Pelton 362 3.96 1.8 7.7 52.0 5.0 2.5 4.0 1 500x500
5 UPPER KHAULI
Khauli
Khad 2X2.5 Pelton 430 2.34 1.8 8.0 51.5 4.5 4.1 4.0 1 500x500
6 DRINIDHAR
Brahl
Khad, 2X2.5 Pelton 249 3.10 1.8 10.5 45.0 5.0 2.5 5.0 1 500x500
7 ALEO MANALI
Allain
stream 2X1.5 Pelton 290 1.60 1Ø 25.0 5.0 2.0 5 300Ø
8 BARAGOAN
Sanjoin
nallah 1X1.9 Francis 170 4.25 2.3 18.0 62.0 6.0 3.0 1 1000Ø
9 SARBARI
Sarbari
khad 2X2.25 Pelton 202 4.50 43.9 9.4 4.1 4 300Ø
10 JIRAH
Jirah
Nallah, 2X2 Pelton 348 1.31 1.2Ø 9.5 30.0 5.0 6.0 3 800Ø
11 TOSS Toss nallah 2x5 Pelton 186 4.32 45.0 7.0 3.0
12
BRAHMAGANG
A
Bharamgan
a 2X2.5 Pelton 230 3.15 1.6Ø 20.6 40.0 7.0 3.0 6.0 1 500Ø
13 GURAHAN
Gurahan
Khud 1X1.5 Pelton 216 1.10 1.2 4.5 40.0 3.0 1.0 4.5 1 300Ø
14 PATKARI
Bakhli
khad 2X8 Pelton 375 5.83 3.5 10.0 54.0 7.0 3.5 3 500Ø
15
Sr
.n
o
Name of
station
Name of
stream
Installe
d
capacity
(MW)
Type of
Turbin
e
Head
(m)
Disc
harg
e
(cum
ec)
Inlet
cha
nnel
widt
h(m
)
Desilting basin
dimensions(m)
slope(
1V:H)
no.
of
outl
et
Flushin
g
conduit
(mm)
Diameter Depth
15 GAJ Gaj & Leond 3x3.5 Pelton 213 6.93 3.4 17 2.05 01:10 1 600Ø
16 KHAULI Khauli Khad 2x6 Pelton 475 3.19 2.4 12 2.00 01:10 1 450Ø
17
BHURI
SINGH Sal nallah 0.45 Francis 13.72 5.14 3.4 17 2.15 01:10 1 600Ø
Vortex settling basin sites
16
1 2
11
10
12
9
7
14
13
8
6
4
5
16
15
17
17
D-tank Baragran shp station(1x1.9MW) D-tank Drinidhar shp station (2x2.5MW)
D-tank Sarbari shp station (2x2.25MW)D-tank Jirah shp station (2x2.0MW)
18
D-tank Tarila-II shp station (2x2.5MW) D-tank Tosh mhp station (2x5 MW)
D-tank Upper khauli shp station (2x2.5 MW) D-tank Tarila shp station (2x2.5MW)
19
Vortex Settling Basin
D-tank Khauli shp station(2x6 MW) D-tank Bhuri singh power house(450 kW)
D-tank Gaj shp station(3x3.5 MW)
Efficiency evaluation of desilting basin
20
I. Efficiency of settling basin and vortex settling basin first computed by
relation /charts given by various authors and then compared with observed
efficiency.
II. Observed efficiency of desilting basins calculated by comparing the GSD
curve at inlet and flushing oulet.
III.Relation and charts used for efficiency evaluation of settling and vortex
basin are:-
settling basin:-
a. Camp Dobbins curve
b. Garde method
c. GSD curves (At inlet and flushing outlet)
vortex settling basin:-
a. T.C Paul relation
b. M.Ather relation
c. GSD curves (At inlet and flushing outlet)
Efficiency evaluation of settling basin
1. The minimum size of particle to be removed is selected.
2. Then with help of Hunter Rouse curve fall velocity(Vs) of the selected square
quartz particle at particular temperature is obtained. The Hunter Rouse curve
of fall velocity(Vs) .
3. Parameters comprising of flow velocity, settling velocity, length and depth of
basin calculated. The following parameters are:-
(a) Settling velocity x depth of tank(1/6)
Flow velocity x regosity coefficient x √g
(b) Settling velocity x length
Flow velocity x Depth of tank
21
I. Camp-Dobbins curve
Hunter Rouse curve Fall velocity of quartz
sphere in water and air
22
Sediment removal Efficiency of settling basin
by Camp-Dobbins
23
24
II.Garde method
Relationship developed by Grade to find the sediment removal efficiency of settling basin
give by:-
where ηo is the limiting efficiency obtained for a given w/u* at large values of
L/D and k is a coefficient.
25
Efficiency evaluation of vortex settling basin
I. Paul’s relation
The Efficiency computation relation given by T.C Paul et al. is :-
Where P is Efficiency in (%),
Dt = Diameter of tank
Sc = slope adopted at all project sites (10H : 1V)
Vs is settling velocity of particle
W is vertically upward velocity(W=(4Qs/πDt2
).
Qs= overflow Discharge(Qi-Qo)
Qi= Inlet discharge
Qo= Flushing discharge
26
II.Ather’s relation
The efficiency computed method given by M. Ather relation is as follows:-
Where Qi =Discharge in the inlet channel ;
Qu =Discharge flushed out through the under flow
ω = Fall velocity of sediment;
d = Sediment size;
hp =Depth of flow at periphery of the chamber;
Zh
=Elevation difference between inlet and outlet channel beds at their junctions
with the vortex chamber,
RT
=Radius of the vortex chamber,
g = Gravitational acceleration,
v = Kinematic viscosity and
K =Coefficient
Qw= Qu+k(Qi-Qu)
Grain size Distribution
27
With the help of this distribution ,percentages of various size of soil grain in a
given dry soil sample can be find out.
Sieve analysis
The soil sample is separated in to two fraction by sieving through 4.75mm sieve.
 The fraction retained on this sieve (+4.75 mm) is called gravel fraction which is
subjected to coarse sieve analysis.a set of sieve sizes 80mm, 20mm 10mm and 4.75mm
is used for further gravel fraction.
The material passing through 4.75mm (-4.75mm) is subjected to fine sieve
analysis.the set of I.S. sieves for fine sieve analysis consist of 2mm, 1mm, 600μ, 425μ,
212μ, 150μ,75 μ sieves.
Procedure
28
A suitable sieve size for the aggregate should be selected and placed in order of
decreasing size, from top to bottom, in a mechanical sieve shaker.
 A pan should be placed underneath the nest of sieves to collect the aggregate that
passes through the smallest. The entire nest is then agitated (10 -15 min), and the
material whose diameter is smaller than the mesh opening pass through the sieves.
 After the aggregate reaches the pan, the amount of material retained in each sieve
is then weighed.
Results
The results are presented in a graph of percent passing versus the sieve size. On
the graph the sieve size scale is logarithmic.
To find the percent of aggregate passing through each sieve, first find the percent
retained in each sieve.
To do so, the following equation is used,
29
The cumulative percent passing of the aggregate is found by subtracting
the percent retained from 100%.
%Cumulative Passing = 100% - %Cumulative Retained.
Sieves used in grain size distribution
Experiment Set-up for Sieve analysis
Efficiency computed by comparing the GSD curves :-
30
31
32
Vortex settling basin GSD curve
33
ANALYSIS AND EVALUATION
Performance of desilting basin are evaluated by :-
1.Comparing the results computed from different methods
2.Effect of desilting basin efficiency on turbine runner
34
size of particles in (mm) 0.15mm 0.2 mm 0.25 mm 0.5 mm 1 mm
Site location
Efficien
cy from
Camp
Dobbin
s curve
Efficie
ncy
from
Garde
metho
d
Oserv
ed site
efficie
ncy
Efficien
cy from
Camp
Dobbin
s curve
Efficien
cy from
Garde
metho
d
Oserv
ed
site
efficie
ncy
Efficien
cy from
Camp
Dobbin
s curve
Efficie
ncy
from
Garde
metho
d
Oserv
ed site
efficie
ncy
Efficien
cy from
Camp
Dobbin
s curve
Efficie
ncy
from
Garde
metho
d
Oserv
ed site
efficie
ncy
Efficien
cy from
Camp
Dobbin
s curve
Efficie
ncy
from
Garde
meth
od
Oserv
ed site
efficie
ncy
TARILA SHP
STATION,TARILA 100% 85% 30% 100% 95% 33% 100% 95% 41% 100% 95% 46% 100% 95% 75%
TARILA-II SHP
STATION,TARTILA 75% 37% 63% 97% 94% 60% 100% 94% 58% 100% 94% 58% 100% 94% 67%
BANER-III SHP,BANER 78% 37% 33% 98% 94% 41% 100% 94% 56% 100% 94% 78% 100% 94% 91%
IKU-II SHP 88% 23% 30% 99% 69% 29% 100% 99% 38% 100% 99% 58% 100% 99% 85%
UPPER KHAULI SHP,KHAULI 98% 95% 58% 100% 95% 69% 100% 95% 74% 100% 95% 89% 100% 95% 90%
DRINIDHAR SHP
STATION,DRNIDHAR 95% 31% 0% 100% 95% 0% 100% 99% 25% 100% 99% 44% 100% 99% 82%
ALEO SHP STATION,MANALI 95% 86% 14% 100% 95% 36% 100% 95% 67% 100% 95% 100% 100% 95% 100%
BARAGRAN shp
station,baragran 97% 48% 50% 100% 99% 56% 100% 99% 60% 100% 99% 53% 100% 99% 61%
SARBARI SHP ,SARBARI 98% 93% 71% 100% 93% 60% 100% 93% 38% 100% 93% 47% 100% 93% 74%
JIRAH SHP STATION,TOSH 100% 70% 50% 100% 70% 50% 100% 70% 57% 100% 70% 92% 100% 70% 97%
TOSH MHP STATION,TOSH 92% 60% 4% 100% 97% 5% 100% 97% 8% 100% 97% 34% 100% 97% 79%
BRAHMAGANGA SHP
STATION,MANIKARAN 98% 94% 90% 100% 96% 88% 100% 96% 89% 100% 96% 100% 100% 96% 100%
GURAHAN SHP STATION 97% 19% 38% 100% 43% 36% 100% 76% 36% 100% 100% 57% 100% 100% 80%
PATKARI SHP
STATION,PATIKARI 90% 43% 22% 100% 97% 21% 100% 98% 22% 100% 98% 51% 100% 98% 82%
Computation efficiency of settling basins
35
Efficiency of settling basin evaluated by
different methods
37
38
Variation of efficiency of settling basin w.r.t paricle size(mm)
39
Name of
site 0.15 0.2 0.25 0.3 0.5 1
Effici
ency
from
Paul
relati
on
Effici
ency
from
Ather
relati
on
Obse
rved
site
efficie
ncy
Effici
ency
from
Paul
relati
on
Effici
ency
from
Ather
relati
on
Obse
rved
site
efficie
ncy
Effici
ency
from
Paul
relati
on
Effici
ency
from
Ather
relati
on
Obse
rved
site
efficie
ncy
Effici
ency
from
Paul
relati
on
Effici
ency
from
Ather
relati
on
Obse
rved
site
efficie
ncy
Effici
ency
from
Paul
relati
on
Effici
ency
from
Ather
relati
on
Obse
rved
site
effici
ency
Effici
ency
from
Paul
relati
on
Effic
iency
from
Athe
r
relat
ion
Obse
rved
site
efficie
ncy
Bhuri
singh
SHP 75% 98% 91% 84% 98% 93% 91% 98% 92% 97% 98% 100%113% 98% 100%141%99% 100%
Gaj SHP 82% 98% 80% 92% 98% 81%100% 98% 75%106% 98% 82%123% 98% 97%155%99% 100%
Khauli
SHP 82% 98% 12% 92% 98% 100% 98% 50%106% 98% 67%124% 98% 86%155%99% 94%
Computation efficiency of vortex settling basins
40
Efficiency of vortex settling basin evaluated
by different methods
41
Variation of efficiency of settling basin w.r.t particle size(mm)
Impact of turbine runner
42
Factors influencing erosion -
Silt characteristics
I.Size and Shape of Particles
II.Hardness of Particles
III. Concentration
Resistance of turbine Material,
Net Head on turbines
Velocity of water carrying silt
HEAD (M) MAXIMUM SIZE OF PARTICLES
100 – 200 0.60 mm to 1.00 mm
200 – 300 0.50 mm to 0.60 mm
300 - 500 0.30 mm to 0.50 mm
> 500 0.10 mm to 0.30 mm
Erosive Wear on turbine
43
To calculate erosive wear on turbine following relation to be used:-
For Pelton Turbine:-
Where,
‘S’ silt particle size (m).
‘t’, operating hour (h)
‘V’ velocity of flow (m/s) =0.47x0.98x√(2gh)
‘W’ normalized wear (g/g) per unit discharge (m3
/s)
For Francis Turbine:-
Where
W = erosion rate in kg/h,
V = velocity of particle in m/s = 0.4x√(2gh)
d = particle size in meter,
C = silt concentration in g/liter, and
K, β, γ and ψ is equal to 0.98, 1.1, 0.8 and 0.85 respectively.
( M.K.Padhy & R.P. Saini, 2008)
(B.K.Gandhi et. al,1999)
Continue…
44
Erosive wear at different sites due to particle size(0.2mm-1mm) have
concentration 3000 ppm during the monsoon season in north region of India
( from July to September,t ime=24x90 =2160 hours) calculated.
45
Wt loss in kg for particle size
Head
range(m)
Sr.no Name of site Capacity
(MW)
Type of
turbine
Design
dischar
ge(cum
ec)
Head(m) Velocit
y(m/sec
)
0.2mm 0.25mm 0.3mm 0.5mm 1mm
100-200
1 Tarila-ii shp station,tartila 2 x 2.5 Francis 2.26 133 20.43 0.065 0.078 0.090 0.135 0.236
2
Baragran shp
station,baragran 1x1.9 Francis 1.5 170 23.10 0.074 0.089 0.103 0.155 0.270
3 Tarila shp station,tarila 2 x 2.5 Francis 1.589 184 24.03 0.078 0.093 0.108 0.162 0.282
4 Tosh mhp station,tosh 2 x 5 Pelton 3.2 186 27.82 0.094 0.095 0.096 0.099 0.103
200-300
5 Sarbari shp ,sarbari 2 x 2.25 Pelton 1.373 202 29.00 0.047 0.048 0.048 0.050 0.052
6 Gaj shp,dharamshala 3 X3.5 Pelton 3.1 213 29.78 0.118 0.119 0.121 0.124 0.129
7
Brahmaganga shp
station,manikaran 2 x 2.5 Pelton 2.52 230 30.94 0.111 0.112 0.113 0.117 0.121
8 Gurahan shp station 1 x 1.5 Pelton 0.83 215.5 29.95 0.032 0.033 0.033 0.034 0.035
9
Drinidhar shp
station,drnidhar 2 x 2.5 Pelton 1.49 249 32.19 0.076 0.077 0.078 0.080 0.083
10 Aleo shp station,manali 2 x 1.5 Pelton 0.63 290 34.74 0.043 0.044 0.044 0.045 0.047
300-500
11 Baner-iii shp,baner 2 x 2.5 Pelton 1.19 302 35.45 0.088 0.089 0.090 0.092 0.096
12 Iku-ii shp 2 x 2.5 Pelton 1.69 362 38.82 0.176 0.178 0.180 0.185 0.192
13
Patkari shp
station,patikari 2 x 8 Pelton 5.83 374.5 39.48 0.646 0.654 0.661 0.681 0.708
14 Upper khauli shp,khauli 2 x 2.5 Pelton 0.834 430 42.31 0.120 0.122 0.123 0.127 0.132
15 Khauli shp station,khauli 2 x 6 Pelton 1.525 475 44.47 0.265 0.269 0.271 0.279 0.291
46
location Site Type of turbine Head(m) Head range Efficiency(%) of settling basin
computed from G.S.D curves w.r.t size
of particles (mm)
Remarks
0.15 0.3 0.5 1 Regarding efficiency Effect on turbine
TARILA-II FRANCIS 133
100 to 200
63 57 58 67
Inefficient in removing
particle size upto 1mm Susceptible to erosion
BARAGOAN FRANCIS 170 50 56 53 61
Inefficient in removing
particle size upto 1mm Susceptible to erosion
TARILA FRANCIS 184 30 42 46 75
Inefficient in removing
particle size upto 1mm Susceptible to erosion
TOSH PELTON 186 4 6 34 79
Inefficient in removing
particle size upto 1mm Susceptible to erosion
SARBARI PELTON 202
200 to 300
71 33 47 74
Inefficient in removing
particle size upto 0.5mm Susceptible to erosion
GURAHAN PELTON 216 38 42 57 80
Inefficient in removing
particle size upto 0.5mm Susceptible to erosion
BRAHMAGANGA PELTON 230 90 92 100 100
efficient in removing
particle size upto 0.5mm
Not susceptible to
erosion
DRINIDHAR PELTON 249 0 20 44 82
Inefficient in removing
particle size upto 0.5mm Susceptible to erosion
ALEO PELTON 290 14 92 100 100
efficient in removing
particle size upto 0.5mm
Not susceptible to
erosion
BANER-III PELTON 302
300 to 500
33 76 78 91
Inefficient in removing
particle size upto 0.3mm Susceptible to erosion
JIRAH PELTON 348 50 83 92 97
efficient in removing
particle size upto 0.3mm
Not susceptible to
erosion
IKU-II PELTON 362 30 40 58 85
Inefficient in removing
particle size upto 0.3mm Susceptible to erosion
PATKARI SHP PELTON 375 22 29 51 82
Inefficient in removing
particle size upto 0.3mm Susceptible to erosion
UPPER KHAULI PELTON 430 58 81 89 90
efficient in removing
particle size upto 0.3mm
Not susceptible to
erosion
47
Site
location
 
Type of
turbine
Head
(m)
Head
rang
e(m)
Efficiency(%) of
settling basin computed
from G.S.D curves w.r.t
size of particles (mm)
Remarks
0.15 0.3 0.5 1
Regarding
efficiency
Effect on
turbine
BHURI 
SINGH FRANCIS  13.75 <100 91 100 100 100
efficient in 
removing 
particle size upto 
1mm
Not susceptible 
to erosion
GAJ PELTON 213
100-
200 80 82 97 100
efficient in 
removing 
particle size upto 
0.5mm
Not susceptible 
to erosion
KHAULI PELTON 475
300-
500 12 67 86 94
Inefficient in
removing
particle size
upto 0.3mm
Susceptible to
erosion
48
Economic evaluation of desilting basin
The project taken for the economic study of desilting basin is Upper khauli SHP 
situated in Kangra, Himanchal Pradesh. The features of project as follows:-
Design discharge = 2.3cumec(including flushing discharge)
Head                  = 430m
Capacity            = 2x2.5 MW
Type of turbine =  Horizontal pelton
Comparative features of Desilting basins
Inlet Discharge (cumec) 2.3 2.3
Basin Dimensions(m) 51.5(L) x 4.5(B) x 6(D) 9m(dia) x 2.55m(D)
Volume of Basin(m3
) 1390.5 162
Flushing Discharge(cumec) 0.58 0.23
Water Available for power
generation(cumec) 1.73 2.07
Cost of Basin(Millon of Rs.) 4.5 0.93
Power generation(kW) 5000 6025
Settling Efficiency(%) 95 98
49
Economic analysis
Difference saving in construction cost = 4.5-0.92                          = Rs3.58 Millon
Assuming life of project 35 years and internal rate of return (IRR) as 8%
Annual equivalent saving = Rs. 3.58x105
 x(1.0835
 x0.08 )/( 1.0835
 – 1)
                                                                                                 =Rs. 0.31 Millon/ year
Annual Power saving assuming 60% generation = (6024.99 -5000)x8760x0.60
                                                                                                         =  5.2 million units
Net increase in saving due to increase in power assuming rate Rs. 3/kWh =5.2x3 
                                                                                                                        = 15.6 Millon
Thus total saving per year if vortex settling basin is adopted instead of settling basin 
= 0.31+15.6
= 15.91 Millon
50
Settling basin
.
Designed  settling  basin  at  the  selected  sites  are  sufficient  to  tap  the  particles  less  than 
0.5mm in spite of that, these settling basin showing less efficiency this may due to:-
Inadequate design flushing arrangement.
Turbulence in water, causes the sediment in suspension.
Transitions are not designed properly.
These settling basin mostly designed for intermittent flushing, but timely flushing are not  
    done  due  to  this  flushing  arrangement  get  chocked  frequently  causes  decrease  in 
efficiency  of these basins.
.
Vortex settling basin
The observed efficiency of vortex settling basin is very close to designed efficiency for all 
particle Further these basin required less volume of water to flush the sediment and proves 
to  be  economical  desilting  device  specially  for  removal  of  particle  size  0.1mm-  0.2mm 
cause sediment erosion on hydro mechanical components. 
RESULTS
51
Comparative study of settling basin and vortex settling basin shows that vortex 
settling basin is efficient and economical desilting device as compared to settling 
basin  for small hydropower sites having advantages:-
Land area required for sedimentation is less.
Require lower flushing.
Cost of construction is about one fourth of settling basin cost.
Hydraulic efficiency as compared to settling basin is high.
In vortex settling basin water may diverted directly to power channel during    
lean  season  when  water  is  almost  free  of  sediments.  This  is  important  in  cold 
region where settling basin freeze due to lower vicinity and causes the shutting 
down of machines.   
CONCLUSIONS
Author Title of Paper Objective Results
Develay 
et al. 
(1996) 
Desilting basin of 
Dul Hasti hydro 
electric project
To trap a high percentage of the 
coarser particles generally made of 
quartz
The trapping efficiency increases with the sediment 
concentration.
Raju, et 
al. (1999) 
Sediment Removal 
Efficiency of 
Settling Basins
To find a new relationship for 
sediment settling basin for non-
cohesive sediments
It was also found that Continuous flushing of the 
basin improves the sediment removal efficiency of 
settling basins. 
Weerakoo
n et al. 
(2007) 
Effect of the 
Entrance Zone on 
the Trapping 
Efficiency of
Desilting Tanks in 
Run-of-River 
Hydropower Plants
To find effect of the entrance zone 
on the sand trapping efficiency of 
the desilting tanks 
The sand trapping efficiency was found to vary 
from 50% to 85% with the reduction of expansion 
angle from 30o to 10o.The trapping efficiency of the 
tank increases with the reduction of the expansion 
angle of the entrance zone in the desilting tanks, 
the optimum expansion angle was found to be 
about 10 deg.
Shah et 
al. (2008) 
Transitions For 
Desilting Basin 
With Open Channel 
Flow
To study the effect of Transitions 
For Desilting Basin With Open 
Channel Flow
The hydraulic model studies by providing a simple 
hump and a central divide wall
Literature Review
Efficiency of Desilting Basin
Efficiency of Settling Basin
52
Author Title of Paper Objective Results
Alired D. 
Mashauri 
(1983) 
Removal of sediment 
particles
By vortex basin
discussed the hydraulic 
performance of vortex-type 
settling basins both, with 
horizontal and sloping floor 
settling efficiency η , and amount of water through 
orifice arc given for both versions - horizontal 
floor and sloping floor showed a respectable 
performance 
Paul et al 
(1991)
Vortex Settling 
Basin Design 
Consideration
vortex settling basin design for 
extraction of sediment smaller 
than 0.5 when a diaphragm and a 
deflector were incorporated in 
the inlet canal and basin, 
respectively
Diameter of the flushing pipe and flushing 
discharge depend on the grade of sediment 
transported by the inlet canal
Athar et al 
(2002) 
Sediment Removal 
Efficiency of Vortex 
Chamber Type
Sediment Extractor
Studied the sediment removal 
efficiency of vortex chamber 
type sediment extractors. 
a new relationship was developed for 
determination of the sediment removal efficiency 
of the vortex chamber type sediment extractors. 
Nguyen 
Quang 
Troung 
(2010) 
Effect of deflector 
on removal 
efficiency of a deep-
depth vortex 
chamber sediment 
extractor
To study effect of deflector in 
circular basin
The experimental results also indicate that the 
values of η  was considerably stable and reach the 
maximum value for the case of three deflectors.
Naser et al. 
(2011) 
Improvement the 
Trap Efficiency of 
Vortex Chamber for 
Exclusion of
Suspended Sediment 
in Diverted Water
To improve trap efficiency of 
vortex sediment settling basin. 
It was found that the best location for the deflector 
is between the inlet channel and the outlet 
overflow weir, when the inlet channel is located 
under the overflow weir increases the trap 
efficiency and the hydraulic efficiency
Efficiency of vortex type of settling basin
53
Author Title of Paper Objective Results
Thapa et al. 
(2005) 
Problems of Nepalese 
hydropower projects 
due to suspended 
sediments.
To study effect of type mineral of 
sediment on turbines.
It was found that higher amount of quartz content gives 
higher erosion rate and the percentage of quartz, shape 
of the particles also has influence in erosion rate.
Bajracharya 
et al.(2008) 
Sand erosion of 
Pelton turbine 
nozzles and buckets.
To find effect of sediments on pelton 
turbine.
It was found that High quartz content and increase 
sediment load during monsoon along with the small 
particle size are the major cause for the severe erosion 
of turbine parts.
Padhy et al.
(2009) 
Effect of size and 
concentration of silt 
particles on erosion 
of Pelton turbine 
buckets
To study effect of concentration and 
size of silt on erosion of pelton turbine.
The erosive wear rate increases with an increase in the 
silt concentration irrespective of the silt size.
Prasad et al. 
(2010) 
Sediment Erosion in 
Hydraulic Turbine 
Using Rotating Disc 
Apparatus
To find relation between erosion and 
run time.
From this study, erosion (weight loss) was found 
directly proportional with sediment size and also erosion 
was found directly proportional with run time.
Hari Prasad 
Neopane 
(2010) 
Sediment Erosion in 
Hydro Turbines
To find sediment erosion effects on 
hdro turbines
It was found that erosion is strongly depended on the 
shape of the particle.
Poudel et al. 
(2012) 
Sediment impact on 
turbine material case 
study of Modi river
To find out the impact of sediment on 
turbine material.
The sediments in course of rolling down from upstream 
to downstream its shape and size changes and have less 
eroding property than one found in upstream of the 
river.
Padhy et al. 
(2012) 
Effect of shape of silt 
particles on erosive 
wear of pelton 
turbine bucket
To investigate effect of shape of silt 
particles on erosive wear of pelton 
turbine bucket.
It has been concluded that the sharp particles have more 
eroding capacity than the rounded shaped particles.
Characteristics of sediments
54
SILT EROSION ON TURBINE
B.S. 
Mann 
(2000) 
High-energy particle 
impact wear 
resistance of hard 
coatings and their 
application in hydro 
turbines
To study, hard coatings such as hard 
chrome plating, plasma nitriding, D-
gun spraying and boronising were 
studied for high-energy impact wear 
resistance
It was found that Borided T410 steel appears to be an 
excellent erosion resistance shield to combat high-
energy particle impact wear. It can provide an 
appropriate solution to the hydropower stations 
severely affected due to silt.
Padhy et 
al. (2008) 
A review on silt 
erosion in hydro 
turbines
Survey various aspects related to silt 
erosion in hydro turbines, different 
causes for the declined performance 
and efficiency of the hydro turbines
It was found that Silt erosion in hydro turbines cannot 
be avoided completely, but can be reduced to an 
economically acceptable level
Peter 
Joachim 
Gogstad 
(2012) 
Hydraulic design of 
Francis turbine 
exposed to sediment 
erosion
To carried out new hydraulic design 
of runner and guide vanes of existing 
francis turbine at La Higeura power 
plant where velocity component were 
reduced.
The best way of reduce erosion will therefore be 
coating of all wet surfaces.
Thapa et 
al. (2012) 
Empirical modeling 
of sediment erosion 
in Francis turbine
To dentify an appropriate erosion 
model for Francis turbine
It has been found that sediment data from the site can 
be analyzed to predict the damage in Francis runner 
due to erosion
Thapa et 
al. (2012)
Current research in 
hydraulic turbines 
for handling 
sediments
To create and optimize the design of 
Francis runners.
 It was also observed that optimization of hydraulic 
design of blade profile alone can reduce sediment 
erosion more than 30%
Design parameters of turbine
Author Title of Paper Objective Results
55
Research paper
56
Gurdeep  singh,  Arun  kumar,  “A Review of Desilting Basins Used in Small
Hydropower Plants”, International  journal  of  emerging  technology  and 
advanced  engineering,  ISSN  2250-2459,  ISO  9001:2008  certified  journal, 
Volume 3, Issue 5, May 2013 pp 440-444. (published)
Gurdeep singh, Arun kumar “Performance evaluation of desilting  basin used in 
small hydropower projects” (in process)
57
REFERENCES
1. Guidelines for Development of Small Hydro Electric Scheme, CEA (1982).
2.  International course on”Small Hydropower Development”, Feb 2004 by AHEC,IITR
3. “Water Borne Sediments :Problems And Their Solutions”, by  H.L.Uppal,FNA ICAR scientist and B.D Sharma 
ICAR Research Fellow, Punjab Agriculture University,Ludhiana 28 January,1975.
4. “Design Manual For Canal Sediment Extractors “Vol-1 Main text HR Wallingford Ltd August 1993.
5. Badrinath H.S and Bhardwaj S.D “Vortex Desilting Tanks For Sediment Exclusion For small Hydro Projects” 
.Proceedings design of hydraulic structures Dept of civil engg. UOR, Roorkee pp 283-291 (1994).
6. Garde R. J,Ranga Raju K. G.  and A. W. R. Sujudi “Design of settling basins” Journal of Hydraulic Research, vol 
28:1, 81-91 (1990).
7. Sumer B. M. “Design Of Settling Basins” Journal of Hydraulic Research, 29:1, 136-143. (1991).
8. Develay  D,Binquet  J,  Divatia  and  Venkatesha  C.  R  “Desilting  Basin  System  Of  The  Dul  Hastihydroelectric 
Project” Journal Of Hydraulic Engineering october 1996 pp 565-572.
9. Vittal N and Raghav M.S “Design Of Single-Chamber Settling Basins” Journal Of Hydraulic Engineering / May 
1997/ pp 469-471.
10.Ranga Raju K.G, Kothyari U.C, Srivastav S, and Saxena M “Sediment Removal Efficiency Of Settling Basins” 
Journal Of Irrigation And Drainage Engineering / September/October pp 308-314.
11.Janssen R.H.A.  “Analysis and Design of Sediment Basins” The Institution of Engineers, Australia 8th National 
Conference on Hydraulics in Water Engineering ANA Hotel Gold Coast, Australia 13-16 July 2004
12.Weerakoon  S. B.  and Rathnayake  U. S“Effect of  the Entrance Zone on the Trapping Efficiency of Desilting 
Tanks in Run-of-River Hydropower Plants” International Conference on Small Hydropower - Hydro Sri Lanka, 
22-24 October 2007 pp 1-6.
58
13. Shah C. M,Verma M. K, and Deolalikar P. B “Transitions For Desilting Basin With Open Channel Flow” ISH journal of 
hydraulic engineering. Vol. 14. 2008. NO. I pp 117 to 125.
14. Alired D. Mashauri “Removal Of Sediment Particlesby Vortex Basin” Aqua Fennica 13: 27-33.(1983).
15. Paul T. C, Sayal S.K, SakhujaV.S, and Dhillon G.S “Vortex-Settling Basin Design Considerations” J. Hydraul. Eng. 
1991.117:172-189.
16. Athar M, Kothyari U.C and Garde R.J  “Studies On Vortex Chamber Type Sediment Extractor” ISH Journal of Hydraulic 
Engineering, vol 8:, 1-16 (2002).
17. Truong N.Q “Effect Of Deflectors On Removal Efficiency of A Deep- Depth Vortex Chamber Sediment Extractor” 
HCMUT – 26-28/10/2011 pp 1-6.
18. Niknia, Naser , Keshavarzi, Reza A, Hosseinipour, E. Zia “Improvement the Trap Efficiency of Vortex Chamber for 
Exclusion of Suspended Sediment in Diverted Water” World Environmental and Water Resources Congress 
2011,Bearing Knowledge for Sustainability ASCE 2011 pp 4124-4134.
19. Padhy MK and Saini RP. A review on silt erosion in hydro turbines. Renewable and  Sustainable Energy Reviews 
2008;12:1974e87.
20. Peter Joachim Gogstad “Hydraulic design of Francis turbine exposed to sediment erosion”  Mater thesis, Department of 
Energy and Process Engineering,NTNU Jan 2012.
21. Thapa BS, Thapa B, Dahlhaug OG. “Empirical  modelling of sediment erosion in Francis  turbines”. Journal of Energy 
2012.
22. Thapa BS, Gjosater K, Eltvik M, Dahlhaug OG, Bhola Thapa  “Effects of Turbine Design Parameters on Sediment 
Erosion of Francis Runner”.
23. Mann BS “High-energy particle impact wear resistance of hard coatings and their application in hydro turbines”   
www.elsevier.com/locate/wear   2000. 140–146.
59
24. Hari Prasad Neopane ( March 2010) “Sediment Erosion in Hydro Turbines” PhD thesis Norwegian University of Science 
and Technology, Faculty of Engineering Science and Technology.
25. Padhy MK and Saini RP. “Effect of size and concentration of  silt particles on erosion of  Pelton turbine buckets”. Energy 
2009;34(10):1477e83.
26. Padhy MK, That oi DK and Acharya AK “Effect of shape of silt particles on erosive wear of pelton turbine bucket” IEEE-
International Conference On Advances In Engineering, Science And Management (ICAESM -2012) March 30, 31, 2012 pp 
19-24.
27. Bajracharya TR, Acharya B, Joshi CB, Saini RP, Dahlhaug OG. “Sand erosion of Pelton turbine nozzles and buckets: a case 
study of Chilime hydropower plant”. Wear 2008;264:177e84.
28. Thapa B, Shrestha R, Dhakal P, Thapa BS. “Problems of Nepalese hydropower projects due to suspended sediments”. 
Journal of Aquatic Ecosystem Health and Management; 2005.
29. Padhy MK and Saini RP “Study of silt erosion mechanism in Pelton turbine buckets” Energy 39 (2012) 286-293.
30. Padhy MK and Saini RP. “A review on silt erosion in hydro turbines” Renewable and Sustainable Energy Reviews 12 
(2008) 1974–1987.
31. Padhy MK and Saini RP “Study of silt erosion on performance of a Pelton turbine. Energy “ (2011) 141-147.
32. Gandhi B K, Singh S N, Seshadri V. “Study of the parametric dependence of erosion wear for the parallel flow of solid–
liquid mixtures”. Tribol Int 1999; 32:275–82
33. Sharma S.K “Sediment Management in Himalayan rivers” Hydro Vision 2006,  pp1-12
60

Contenu connexe

Tendances

14 desilting tank-plan & section details
14 desilting tank-plan & section details14 desilting tank-plan & section details
14 desilting tank-plan & section details
Nikhil Jaipurkar
 

Tendances (20)

Intake structures in wwwe
Intake structures in wwweIntake structures in wwwe
Intake structures in wwwe
 
14 desilting tank-plan & section details
14 desilting tank-plan & section details14 desilting tank-plan & section details
14 desilting tank-plan & section details
 
energy dissipator in hydraulic structure
energy dissipator  in  hydraulic structure energy dissipator  in  hydraulic structure
energy dissipator in hydraulic structure
 
Ppt of design of dams
Ppt of design of damsPpt of design of dams
Ppt of design of dams
 
Canal regulation works. m4pptx
Canal regulation works. m4pptxCanal regulation works. m4pptx
Canal regulation works. m4pptx
 
Spillways, Spillway capacity, flood routing through spillways, different type...
Spillways, Spillway capacity, flood routing through spillways, different type...Spillways, Spillway capacity, flood routing through spillways, different type...
Spillways, Spillway capacity, flood routing through spillways, different type...
 
Canal design
Canal designCanal design
Canal design
 
Dams
DamsDams
Dams
 
hydro power energy water conveyance system
hydro power energy water conveyance system   hydro power energy water conveyance system
hydro power energy water conveyance system
 
Design of Hydraulic Structures
Design of Hydraulic StructuresDesign of Hydraulic Structures
Design of Hydraulic Structures
 
Classification of weis new
Classification of weis newClassification of weis new
Classification of weis new
 
050218 chapter 7 spillways and energy dissipators
050218 chapter 7 spillways and energy dissipators050218 chapter 7 spillways and energy dissipators
050218 chapter 7 spillways and energy dissipators
 
Diversion headworks
Diversion headworksDiversion headworks
Diversion headworks
 
Chapter 4 embankment dams
Chapter 4 embankment damsChapter 4 embankment dams
Chapter 4 embankment dams
 
02 Types of Intake Structures
02 Types of Intake Structures02 Types of Intake Structures
02 Types of Intake Structures
 
River engineering
River engineeringRiver engineering
River engineering
 
Canal
CanalCanal
Canal
 
L3 -Intake Structures.ppt
L3 -Intake Structures.pptL3 -Intake Structures.ppt
L3 -Intake Structures.ppt
 
Force acting on gravity dam
Force acting on gravity damForce acting on gravity dam
Force acting on gravity dam
 
Diversion Headworks
Diversion HeadworksDiversion Headworks
Diversion Headworks
 

En vedette

2.2 gl for-hydaulic_design_of_shp_project
2.2 gl for-hydaulic_design_of_shp_project2.2 gl for-hydaulic_design_of_shp_project
2.2 gl for-hydaulic_design_of_shp_project
Saddam Mussie
 
2.2 gl for-hydaulic_design_of_shp_project
2.2 gl for-hydaulic_design_of_shp_project2.2 gl for-hydaulic_design_of_shp_project
2.2 gl for-hydaulic_design_of_shp_project
Souhail Zraoura
 
Hydropower Assessment finalDraft 20Feb-5
Hydropower Assessment finalDraft 20Feb-5Hydropower Assessment finalDraft 20Feb-5
Hydropower Assessment finalDraft 20Feb-5
Izhar Hunzai
 
Hydropower presentasi
Hydropower presentasiHydropower presentasi
Hydropower presentasi
Reza Putra
 

En vedette (20)

2.2 gl for-hydaulic_design_of_shp_project
2.2 gl for-hydaulic_design_of_shp_project2.2 gl for-hydaulic_design_of_shp_project
2.2 gl for-hydaulic_design_of_shp_project
 
2.2 gl for-hydaulic_design_of_shp_project
2.2 gl for-hydaulic_design_of_shp_project2.2 gl for-hydaulic_design_of_shp_project
2.2 gl for-hydaulic_design_of_shp_project
 
Irrigation Channels
Irrigation ChannelsIrrigation Channels
Irrigation Channels
 
Hydropower Assessment finalDraft 20Feb-5
Hydropower Assessment finalDraft 20Feb-5Hydropower Assessment finalDraft 20Feb-5
Hydropower Assessment finalDraft 20Feb-5
 
CleanTech in the Czech Republic
CleanTech in the Czech RepublicCleanTech in the Czech Republic
CleanTech in the Czech Republic
 
Hydropower presentasi
Hydropower presentasiHydropower presentasi
Hydropower presentasi
 
17 forebay plan
17 forebay plan17 forebay plan
17 forebay plan
 
Sample drawings (dpr)
Sample drawings (dpr)Sample drawings (dpr)
Sample drawings (dpr)
 
Base plate heavy steel structure
Base plate heavy steel structureBase plate heavy steel structure
Base plate heavy steel structure
 
7 plan of trench weir
7 plan of trench weir7 plan of trench weir
7 plan of trench weir
 
Water Desalination Idea
Water Desalination IdeaWater Desalination Idea
Water Desalination Idea
 
Rids
RidsRids
Rids
 
Modi Khola Hydropower Field Report
Modi Khola Hydropower Field ReportModi Khola Hydropower Field Report
Modi Khola Hydropower Field Report
 
Distillation
DistillationDistillation
Distillation
 
Dialysis lecture 3
Dialysis lecture 3Dialysis lecture 3
Dialysis lecture 3
 
SCG Report on Himurja SHP Tender 2014
SCG Report on Himurja SHP Tender 2014SCG Report on Himurja SHP Tender 2014
SCG Report on Himurja SHP Tender 2014
 
Solid phase extraction & cold vapor atomic absorption spectrometry
Solid phase extraction & cold vapor atomic absorption spectrometrySolid phase extraction & cold vapor atomic absorption spectrometry
Solid phase extraction & cold vapor atomic absorption spectrometry
 
Sediment transport
Sediment transportSediment transport
Sediment transport
 
3.1 turbine and governing
3.1 turbine and governing3.1 turbine and governing
3.1 turbine and governing
 
SEDIMENTATION
SEDIMENTATIONSEDIMENTATION
SEDIMENTATION
 

Similaire à performance evaluation of desilting devices

Similaire à performance evaluation of desilting devices (20)

Cb31516522
Cb31516522Cb31516522
Cb31516522
 
Thesis new
Thesis newThesis new
Thesis new
 
Construction of PCC Parapet
Construction of PCC Parapet Construction of PCC Parapet
Construction of PCC Parapet
 
Mech CE6461 FMM lab_manual
Mech CE6461 FMM lab_manualMech CE6461 FMM lab_manual
Mech CE6461 FMM lab_manual
 
IRJET- Design of Energy Dissipator for Khadakwasla Dam to Control the Vel...
IRJET-  	  Design of Energy Dissipator for Khadakwasla Dam to Control the Vel...IRJET-  	  Design of Energy Dissipator for Khadakwasla Dam to Control the Vel...
IRJET- Design of Energy Dissipator for Khadakwasla Dam to Control the Vel...
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
“HYDRAULIC AND HYDROLOGICAL IMPACT ON BRIDGE”
“HYDRAULIC AND HYDROLOGICAL IMPACT ON BRIDGE”“HYDRAULIC AND HYDROLOGICAL IMPACT ON BRIDGE”
“HYDRAULIC AND HYDROLOGICAL IMPACT ON BRIDGE”
 
Design and implementation of micro hydro turbine for power generation and its...
Design and implementation of micro hydro turbine for power generation and its...Design and implementation of micro hydro turbine for power generation and its...
Design and implementation of micro hydro turbine for power generation and its...
 
Dam Break Analysis of Peringalkuthu Dam, Thrissur Using HEC-RAS
Dam Break Analysis of Peringalkuthu Dam, Thrissur Using HEC-RASDam Break Analysis of Peringalkuthu Dam, Thrissur Using HEC-RAS
Dam Break Analysis of Peringalkuthu Dam, Thrissur Using HEC-RAS
 
Trabajo final Hcanal ejercicios resueltos
Trabajo final Hcanal ejercicios resueltosTrabajo final Hcanal ejercicios resueltos
Trabajo final Hcanal ejercicios resueltos
 
Vocational training report NHPC TANAKPUR Uttarakhand
Vocational training report NHPC TANAKPUR UttarakhandVocational training report NHPC TANAKPUR Uttarakhand
Vocational training report NHPC TANAKPUR Uttarakhand
 
Qt464972qm
Qt464972qmQt464972qm
Qt464972qm
 
IRJET-Design and Fabrication Of Gutters
IRJET-Design and Fabrication Of GuttersIRJET-Design and Fabrication Of Gutters
IRJET-Design and Fabrication Of Gutters
 
Use of hydraulic phenomena in enhancement of dissolved oxygen concentration
Use of hydraulic phenomena in enhancement of dissolved oxygen concentrationUse of hydraulic phenomena in enhancement of dissolved oxygen concentration
Use of hydraulic phenomena in enhancement of dissolved oxygen concentration
 
Development of prototype turbine model for ultra-low head hydro power potenti...
Development of prototype turbine model for ultra-low head hydro power potenti...Development of prototype turbine model for ultra-low head hydro power potenti...
Development of prototype turbine model for ultra-low head hydro power potenti...
 
C012611420
C012611420C012611420
C012611420
 
Procedure for conducting pumping tests
Procedure for conducting pumping testsProcedure for conducting pumping tests
Procedure for conducting pumping tests
 
Performance Study of Tube Settlers Module
Performance Study of Tube Settlers ModulePerformance Study of Tube Settlers Module
Performance Study of Tube Settlers Module
 
Final report cive 540 1
Final report cive 540 1Final report cive 540 1
Final report cive 540 1
 
Design and development of pico micro hydro system by using house hold water s...
Design and development of pico micro hydro system by using house hold water s...Design and development of pico micro hydro system by using house hold water s...
Design and development of pico micro hydro system by using house hold water s...
 

performance evaluation of desilting devices

  • 1. Under the guidance of Dr. Arun Kumar Alternate Hydro Energy Centre IIT Roorkee 1 Presented by GURDEEP SINGH
  • 2. OUTLINE 2 Problem of sediment in SHP Desilting basins Need of Performance Evaluation of Desilting basins Objective of Study Methodology Adopted Analysis and Evaluation Results Conclusion Literature Review References
  • 3. Problem of sediment in SHP Plants  Sedimentation problem in Hydropower starts from headwork’s to power house. Each and every Structure intact with water is susceptible and vulnerable due to sediment laden water.  This problem is more serious in Himalayan region where good potential of SHP exist.  In the case of run-of-river, a relatively small dam or a barrage is built across a mountain stream to divert the river water into the intake which in turn feeds the power house through a water conductor system. Due to the large quantities of sediment likely to be transported by the rivers. This will leads to various problems:- 1. The diversion dam/barrage may get silted up to the crest within short period of construction. 2. Thus large quantity of sediment may enter the intake and decrease in the discharge carrying capacity of the water conductor system. 3. Cause damage to the tunnel lining, 4. Erode the turbine blades and auxiliaries 3
  • 4. Effects on civil structures Sediment deposited in lined channel Sediment deposited in tailrace channel of hydropower plant Sediment deposited near diversion weir 4
  • 5. Sediment erosion at Pelton turbine needle Sediment erosion at Pelton turbine Eroded guide vanes Erosion(At Runner) at pressure side of blade Effects of Erosion on various components of Turbine 5
  • 6. DESILTING BASIN Desilting basins are constructed close to the intake to trap incoming sediment before leading to water conductor system/turbine. Removal of sediment in desilting basins is done by reducing the velocity of flow through them and remove settled sediment under gravity or mechanical or manually. There are two types of desilting basin mainly used for SHP sites in India are :- i. Settling basin ii. Vortex settling basin 6
  • 7. Design parameters for settling basin 7 1. Size of sediment load to be removed 2. Settling basin dimensions 3. Velocity in chamber basin 4. Flushing discharge 5. Trap Efficiency 6. Sediment removal techniques
  • 8. 8 1. Basin diameter d, and basin height H; 2. Flushing discharge, Qo or flushing pipe diameter, d0 3. Depth of flow in the basin; 4. Radial slope of basin floor, Sc (horizontal to one vertical) 5.Basin depth at periphery, h2 6. length of overflow weir, Li, and 7. Modelling criteria to ascertain the performance of the designed VSB with the aid of a physical model Design parameters for vortex settling basin
  • 9. Need for performance evaluation 9 1. Settling basin are being designed oftenaly by Indian shp designer on basis of limited data on sediment due to its poor availability on account of not using skilled persons which are not available easily. 2. It has been observed that often desilting basins are inefficient for silt removal. The silt removal arrangement are poor, resulting in frequent choking. This result frequent forced outrage of plant. Thus performance of these desilting basin are evaluated to make aware to plant owner sediment impact and loss of generation
  • 10. 10 Desilting tank in himanchal pradesh 3MW SHP project Desilting tank in Uttrakhand 5MW SHP project
  • 11. Objective of study 11 The objective of this work :- 1.To evaluate the performance of existing desilting devices. 2.To study the impact of sediment on turbine runner corresponding to desilting basin efficiency
  • 12. Methodology Adopted 12 1. Reviewed various desilting devices deployed for small hydro power plants. 2. Identified the projects for data collection covering high and medium head in different location. 3. Prepared a questionnaire, approach the project owner for data and visit the site. Data covering the type of desilting devices, dimension ,number of chamber provided and flushing arrangement and impact of sediment on turbine and other components. 4. Collected sediment(inflow and flushed out) from different SHP sites by undertaking site visits. 5. Sieve analysis of sample collected. 6. Evaluation is done by :- 1. Comparing the relation/charts of efficiency of desilting basin given by different author’s with observed efficiency. 2. Impact of sediment on turbine runner.
  • 13. Site visit details 13 Location Visit duration Sites located in Chamba and Kangra District visited (Tarila shp station, Tarila-II shp station, Upper awa shp, Baner-III shp, Sahu shp station, Iku-II shp, Upper khauli shp, Drinidhar shp station, Bhuri singh power house, Khauli shp station, Gaj shp) Nov 17-29,2012 Sites located in Kullu and Mandi District visited (Jirah shp station, Aleo shp station, Baragan shp station, Sarbari shp , Brahmaganga shp station, Patkari shp station, Gurahan shp station Jan 25- Feb 5,2013 HPPCL design office,Sunder nagar,HP May 22- 26,2013
  • 14. 14 Sr. no Name of station Name of stream Installed capacity( MW) Type of Turbine Head (m) Discha rge (cume c) Inlet channel width(m) Desilting basin dimensions(m) no. of outl et Flushing conduit( mm) U/S Transi tion Leng th Wi dth Depth D/S Transi tion 1 TARILA Tareila nallah 2X2.5 Francis 184 6.00 2.0 10.4 54.7 7.5 4.5 7.8 1 600Ø 2 TARILA-II Tareila nallah 2X2.5 Francis 133 6.10 2.0 5.0 36.0 8.5 3.1 5.0 1 600Ø 3 BANER-III Baner khad 2X2.5 Pelton 302 2.70 1.8 7.5 30.0 5.0 2.5 1 500x500 4 IKU-II Iku khad 2X2.5 Pelton 362 3.96 1.8 7.7 52.0 5.0 2.5 4.0 1 500x500 5 UPPER KHAULI Khauli Khad 2X2.5 Pelton 430 2.34 1.8 8.0 51.5 4.5 4.1 4.0 1 500x500 6 DRINIDHAR Brahl Khad, 2X2.5 Pelton 249 3.10 1.8 10.5 45.0 5.0 2.5 5.0 1 500x500 7 ALEO MANALI Allain stream 2X1.5 Pelton 290 1.60 1Ø 25.0 5.0 2.0 5 300Ø 8 BARAGOAN Sanjoin nallah 1X1.9 Francis 170 4.25 2.3 18.0 62.0 6.0 3.0 1 1000Ø 9 SARBARI Sarbari khad 2X2.25 Pelton 202 4.50 43.9 9.4 4.1 4 300Ø 10 JIRAH Jirah Nallah, 2X2 Pelton 348 1.31 1.2Ø 9.5 30.0 5.0 6.0 3 800Ø 11 TOSS Toss nallah 2x5 Pelton 186 4.32 45.0 7.0 3.0 12 BRAHMAGANG A Bharamgan a 2X2.5 Pelton 230 3.15 1.6Ø 20.6 40.0 7.0 3.0 6.0 1 500Ø 13 GURAHAN Gurahan Khud 1X1.5 Pelton 216 1.10 1.2 4.5 40.0 3.0 1.0 4.5 1 300Ø 14 PATKARI Bakhli khad 2X8 Pelton 375 5.83 3.5 10.0 54.0 7.0 3.5 3 500Ø
  • 15. 15 Sr .n o Name of station Name of stream Installe d capacity (MW) Type of Turbin e Head (m) Disc harg e (cum ec) Inlet cha nnel widt h(m ) Desilting basin dimensions(m) slope( 1V:H) no. of outl et Flushin g conduit (mm) Diameter Depth 15 GAJ Gaj & Leond 3x3.5 Pelton 213 6.93 3.4 17 2.05 01:10 1 600Ø 16 KHAULI Khauli Khad 2x6 Pelton 475 3.19 2.4 12 2.00 01:10 1 450Ø 17 BHURI SINGH Sal nallah 0.45 Francis 13.72 5.14 3.4 17 2.15 01:10 1 600Ø Vortex settling basin sites
  • 17. 17 D-tank Baragran shp station(1x1.9MW) D-tank Drinidhar shp station (2x2.5MW) D-tank Sarbari shp station (2x2.25MW)D-tank Jirah shp station (2x2.0MW)
  • 18. 18 D-tank Tarila-II shp station (2x2.5MW) D-tank Tosh mhp station (2x5 MW) D-tank Upper khauli shp station (2x2.5 MW) D-tank Tarila shp station (2x2.5MW)
  • 19. 19 Vortex Settling Basin D-tank Khauli shp station(2x6 MW) D-tank Bhuri singh power house(450 kW) D-tank Gaj shp station(3x3.5 MW)
  • 20. Efficiency evaluation of desilting basin 20 I. Efficiency of settling basin and vortex settling basin first computed by relation /charts given by various authors and then compared with observed efficiency. II. Observed efficiency of desilting basins calculated by comparing the GSD curve at inlet and flushing oulet. III.Relation and charts used for efficiency evaluation of settling and vortex basin are:- settling basin:- a. Camp Dobbins curve b. Garde method c. GSD curves (At inlet and flushing outlet) vortex settling basin:- a. T.C Paul relation b. M.Ather relation c. GSD curves (At inlet and flushing outlet)
  • 21. Efficiency evaluation of settling basin 1. The minimum size of particle to be removed is selected. 2. Then with help of Hunter Rouse curve fall velocity(Vs) of the selected square quartz particle at particular temperature is obtained. The Hunter Rouse curve of fall velocity(Vs) . 3. Parameters comprising of flow velocity, settling velocity, length and depth of basin calculated. The following parameters are:- (a) Settling velocity x depth of tank(1/6) Flow velocity x regosity coefficient x √g (b) Settling velocity x length Flow velocity x Depth of tank 21 I. Camp-Dobbins curve
  • 22. Hunter Rouse curve Fall velocity of quartz sphere in water and air 22
  • 23. Sediment removal Efficiency of settling basin by Camp-Dobbins 23
  • 24. 24 II.Garde method Relationship developed by Grade to find the sediment removal efficiency of settling basin give by:- where ηo is the limiting efficiency obtained for a given w/u* at large values of L/D and k is a coefficient.
  • 25. 25 Efficiency evaluation of vortex settling basin I. Paul’s relation The Efficiency computation relation given by T.C Paul et al. is :- Where P is Efficiency in (%), Dt = Diameter of tank Sc = slope adopted at all project sites (10H : 1V) Vs is settling velocity of particle W is vertically upward velocity(W=(4Qs/πDt2 ). Qs= overflow Discharge(Qi-Qo) Qi= Inlet discharge Qo= Flushing discharge
  • 26. 26 II.Ather’s relation The efficiency computed method given by M. Ather relation is as follows:- Where Qi =Discharge in the inlet channel ; Qu =Discharge flushed out through the under flow ω = Fall velocity of sediment; d = Sediment size; hp =Depth of flow at periphery of the chamber; Zh =Elevation difference between inlet and outlet channel beds at their junctions with the vortex chamber, RT =Radius of the vortex chamber, g = Gravitational acceleration, v = Kinematic viscosity and K =Coefficient Qw= Qu+k(Qi-Qu)
  • 27. Grain size Distribution 27 With the help of this distribution ,percentages of various size of soil grain in a given dry soil sample can be find out. Sieve analysis The soil sample is separated in to two fraction by sieving through 4.75mm sieve.  The fraction retained on this sieve (+4.75 mm) is called gravel fraction which is subjected to coarse sieve analysis.a set of sieve sizes 80mm, 20mm 10mm and 4.75mm is used for further gravel fraction. The material passing through 4.75mm (-4.75mm) is subjected to fine sieve analysis.the set of I.S. sieves for fine sieve analysis consist of 2mm, 1mm, 600μ, 425μ, 212μ, 150μ,75 μ sieves.
  • 28. Procedure 28 A suitable sieve size for the aggregate should be selected and placed in order of decreasing size, from top to bottom, in a mechanical sieve shaker.  A pan should be placed underneath the nest of sieves to collect the aggregate that passes through the smallest. The entire nest is then agitated (10 -15 min), and the material whose diameter is smaller than the mesh opening pass through the sieves.  After the aggregate reaches the pan, the amount of material retained in each sieve is then weighed. Results The results are presented in a graph of percent passing versus the sieve size. On the graph the sieve size scale is logarithmic. To find the percent of aggregate passing through each sieve, first find the percent retained in each sieve. To do so, the following equation is used,
  • 29. 29 The cumulative percent passing of the aggregate is found by subtracting the percent retained from 100%. %Cumulative Passing = 100% - %Cumulative Retained. Sieves used in grain size distribution Experiment Set-up for Sieve analysis Efficiency computed by comparing the GSD curves :-
  • 30. 30
  • 31. 31
  • 33. 33 ANALYSIS AND EVALUATION Performance of desilting basin are evaluated by :- 1.Comparing the results computed from different methods 2.Effect of desilting basin efficiency on turbine runner
  • 34. 34 size of particles in (mm) 0.15mm 0.2 mm 0.25 mm 0.5 mm 1 mm Site location Efficien cy from Camp Dobbin s curve Efficie ncy from Garde metho d Oserv ed site efficie ncy Efficien cy from Camp Dobbin s curve Efficien cy from Garde metho d Oserv ed site efficie ncy Efficien cy from Camp Dobbin s curve Efficie ncy from Garde metho d Oserv ed site efficie ncy Efficien cy from Camp Dobbin s curve Efficie ncy from Garde metho d Oserv ed site efficie ncy Efficien cy from Camp Dobbin s curve Efficie ncy from Garde meth od Oserv ed site efficie ncy TARILA SHP STATION,TARILA 100% 85% 30% 100% 95% 33% 100% 95% 41% 100% 95% 46% 100% 95% 75% TARILA-II SHP STATION,TARTILA 75% 37% 63% 97% 94% 60% 100% 94% 58% 100% 94% 58% 100% 94% 67% BANER-III SHP,BANER 78% 37% 33% 98% 94% 41% 100% 94% 56% 100% 94% 78% 100% 94% 91% IKU-II SHP 88% 23% 30% 99% 69% 29% 100% 99% 38% 100% 99% 58% 100% 99% 85% UPPER KHAULI SHP,KHAULI 98% 95% 58% 100% 95% 69% 100% 95% 74% 100% 95% 89% 100% 95% 90% DRINIDHAR SHP STATION,DRNIDHAR 95% 31% 0% 100% 95% 0% 100% 99% 25% 100% 99% 44% 100% 99% 82% ALEO SHP STATION,MANALI 95% 86% 14% 100% 95% 36% 100% 95% 67% 100% 95% 100% 100% 95% 100% BARAGRAN shp station,baragran 97% 48% 50% 100% 99% 56% 100% 99% 60% 100% 99% 53% 100% 99% 61% SARBARI SHP ,SARBARI 98% 93% 71% 100% 93% 60% 100% 93% 38% 100% 93% 47% 100% 93% 74% JIRAH SHP STATION,TOSH 100% 70% 50% 100% 70% 50% 100% 70% 57% 100% 70% 92% 100% 70% 97% TOSH MHP STATION,TOSH 92% 60% 4% 100% 97% 5% 100% 97% 8% 100% 97% 34% 100% 97% 79% BRAHMAGANGA SHP STATION,MANIKARAN 98% 94% 90% 100% 96% 88% 100% 96% 89% 100% 96% 100% 100% 96% 100% GURAHAN SHP STATION 97% 19% 38% 100% 43% 36% 100% 76% 36% 100% 100% 57% 100% 100% 80% PATKARI SHP STATION,PATIKARI 90% 43% 22% 100% 97% 21% 100% 98% 22% 100% 98% 51% 100% 98% 82% Computation efficiency of settling basins
  • 35. 35 Efficiency of settling basin evaluated by different methods
  • 36.
  • 37. 37
  • 38. 38 Variation of efficiency of settling basin w.r.t paricle size(mm)
  • 39. 39 Name of site 0.15 0.2 0.25 0.3 0.5 1 Effici ency from Paul relati on Effici ency from Ather relati on Obse rved site efficie ncy Effici ency from Paul relati on Effici ency from Ather relati on Obse rved site efficie ncy Effici ency from Paul relati on Effici ency from Ather relati on Obse rved site efficie ncy Effici ency from Paul relati on Effici ency from Ather relati on Obse rved site efficie ncy Effici ency from Paul relati on Effici ency from Ather relati on Obse rved site effici ency Effici ency from Paul relati on Effic iency from Athe r relat ion Obse rved site efficie ncy Bhuri singh SHP 75% 98% 91% 84% 98% 93% 91% 98% 92% 97% 98% 100%113% 98% 100%141%99% 100% Gaj SHP 82% 98% 80% 92% 98% 81%100% 98% 75%106% 98% 82%123% 98% 97%155%99% 100% Khauli SHP 82% 98% 12% 92% 98% 100% 98% 50%106% 98% 67%124% 98% 86%155%99% 94% Computation efficiency of vortex settling basins
  • 40. 40 Efficiency of vortex settling basin evaluated by different methods
  • 41. 41 Variation of efficiency of settling basin w.r.t particle size(mm)
  • 42. Impact of turbine runner 42 Factors influencing erosion - Silt characteristics I.Size and Shape of Particles II.Hardness of Particles III. Concentration Resistance of turbine Material, Net Head on turbines Velocity of water carrying silt HEAD (M) MAXIMUM SIZE OF PARTICLES 100 – 200 0.60 mm to 1.00 mm 200 – 300 0.50 mm to 0.60 mm 300 - 500 0.30 mm to 0.50 mm > 500 0.10 mm to 0.30 mm
  • 43. Erosive Wear on turbine 43 To calculate erosive wear on turbine following relation to be used:- For Pelton Turbine:- Where, ‘S’ silt particle size (m). ‘t’, operating hour (h) ‘V’ velocity of flow (m/s) =0.47x0.98x√(2gh) ‘W’ normalized wear (g/g) per unit discharge (m3 /s) For Francis Turbine:- Where W = erosion rate in kg/h, V = velocity of particle in m/s = 0.4x√(2gh) d = particle size in meter, C = silt concentration in g/liter, and K, β, γ and ψ is equal to 0.98, 1.1, 0.8 and 0.85 respectively. ( M.K.Padhy & R.P. Saini, 2008) (B.K.Gandhi et. al,1999)
  • 44. Continue… 44 Erosive wear at different sites due to particle size(0.2mm-1mm) have concentration 3000 ppm during the monsoon season in north region of India ( from July to September,t ime=24x90 =2160 hours) calculated.
  • 45. 45 Wt loss in kg for particle size Head range(m) Sr.no Name of site Capacity (MW) Type of turbine Design dischar ge(cum ec) Head(m) Velocit y(m/sec ) 0.2mm 0.25mm 0.3mm 0.5mm 1mm 100-200 1 Tarila-ii shp station,tartila 2 x 2.5 Francis 2.26 133 20.43 0.065 0.078 0.090 0.135 0.236 2 Baragran shp station,baragran 1x1.9 Francis 1.5 170 23.10 0.074 0.089 0.103 0.155 0.270 3 Tarila shp station,tarila 2 x 2.5 Francis 1.589 184 24.03 0.078 0.093 0.108 0.162 0.282 4 Tosh mhp station,tosh 2 x 5 Pelton 3.2 186 27.82 0.094 0.095 0.096 0.099 0.103 200-300 5 Sarbari shp ,sarbari 2 x 2.25 Pelton 1.373 202 29.00 0.047 0.048 0.048 0.050 0.052 6 Gaj shp,dharamshala 3 X3.5 Pelton 3.1 213 29.78 0.118 0.119 0.121 0.124 0.129 7 Brahmaganga shp station,manikaran 2 x 2.5 Pelton 2.52 230 30.94 0.111 0.112 0.113 0.117 0.121 8 Gurahan shp station 1 x 1.5 Pelton 0.83 215.5 29.95 0.032 0.033 0.033 0.034 0.035 9 Drinidhar shp station,drnidhar 2 x 2.5 Pelton 1.49 249 32.19 0.076 0.077 0.078 0.080 0.083 10 Aleo shp station,manali 2 x 1.5 Pelton 0.63 290 34.74 0.043 0.044 0.044 0.045 0.047 300-500 11 Baner-iii shp,baner 2 x 2.5 Pelton 1.19 302 35.45 0.088 0.089 0.090 0.092 0.096 12 Iku-ii shp 2 x 2.5 Pelton 1.69 362 38.82 0.176 0.178 0.180 0.185 0.192 13 Patkari shp station,patikari 2 x 8 Pelton 5.83 374.5 39.48 0.646 0.654 0.661 0.681 0.708 14 Upper khauli shp,khauli 2 x 2.5 Pelton 0.834 430 42.31 0.120 0.122 0.123 0.127 0.132 15 Khauli shp station,khauli 2 x 6 Pelton 1.525 475 44.47 0.265 0.269 0.271 0.279 0.291
  • 46. 46 location Site Type of turbine Head(m) Head range Efficiency(%) of settling basin computed from G.S.D curves w.r.t size of particles (mm) Remarks 0.15 0.3 0.5 1 Regarding efficiency Effect on turbine TARILA-II FRANCIS 133 100 to 200 63 57 58 67 Inefficient in removing particle size upto 1mm Susceptible to erosion BARAGOAN FRANCIS 170 50 56 53 61 Inefficient in removing particle size upto 1mm Susceptible to erosion TARILA FRANCIS 184 30 42 46 75 Inefficient in removing particle size upto 1mm Susceptible to erosion TOSH PELTON 186 4 6 34 79 Inefficient in removing particle size upto 1mm Susceptible to erosion SARBARI PELTON 202 200 to 300 71 33 47 74 Inefficient in removing particle size upto 0.5mm Susceptible to erosion GURAHAN PELTON 216 38 42 57 80 Inefficient in removing particle size upto 0.5mm Susceptible to erosion BRAHMAGANGA PELTON 230 90 92 100 100 efficient in removing particle size upto 0.5mm Not susceptible to erosion DRINIDHAR PELTON 249 0 20 44 82 Inefficient in removing particle size upto 0.5mm Susceptible to erosion ALEO PELTON 290 14 92 100 100 efficient in removing particle size upto 0.5mm Not susceptible to erosion BANER-III PELTON 302 300 to 500 33 76 78 91 Inefficient in removing particle size upto 0.3mm Susceptible to erosion JIRAH PELTON 348 50 83 92 97 efficient in removing particle size upto 0.3mm Not susceptible to erosion IKU-II PELTON 362 30 40 58 85 Inefficient in removing particle size upto 0.3mm Susceptible to erosion PATKARI SHP PELTON 375 22 29 51 82 Inefficient in removing particle size upto 0.3mm Susceptible to erosion UPPER KHAULI PELTON 430 58 81 89 90 efficient in removing particle size upto 0.3mm Not susceptible to erosion
  • 47. 47 Site location   Type of turbine Head (m) Head rang e(m) Efficiency(%) of settling basin computed from G.S.D curves w.r.t size of particles (mm) Remarks 0.15 0.3 0.5 1 Regarding efficiency Effect on turbine BHURI  SINGH FRANCIS  13.75 <100 91 100 100 100 efficient in  removing  particle size upto  1mm Not susceptible  to erosion GAJ PELTON 213 100- 200 80 82 97 100 efficient in  removing  particle size upto  0.5mm Not susceptible  to erosion KHAULI PELTON 475 300- 500 12 67 86 94 Inefficient in removing particle size upto 0.3mm Susceptible to erosion
  • 48. 48 Economic evaluation of desilting basin The project taken for the economic study of desilting basin is Upper khauli SHP  situated in Kangra, Himanchal Pradesh. The features of project as follows:- Design discharge = 2.3cumec(including flushing discharge) Head                  = 430m Capacity            = 2x2.5 MW Type of turbine =  Horizontal pelton Comparative features of Desilting basins Inlet Discharge (cumec) 2.3 2.3 Basin Dimensions(m) 51.5(L) x 4.5(B) x 6(D) 9m(dia) x 2.55m(D) Volume of Basin(m3 ) 1390.5 162 Flushing Discharge(cumec) 0.58 0.23 Water Available for power generation(cumec) 1.73 2.07 Cost of Basin(Millon of Rs.) 4.5 0.93 Power generation(kW) 5000 6025 Settling Efficiency(%) 95 98
  • 49. 49 Economic analysis Difference saving in construction cost = 4.5-0.92                          = Rs3.58 Millon Assuming life of project 35 years and internal rate of return (IRR) as 8% Annual equivalent saving = Rs. 3.58x105  x(1.0835  x0.08 )/( 1.0835  – 1)                                                                                                  =Rs. 0.31 Millon/ year Annual Power saving assuming 60% generation = (6024.99 -5000)x8760x0.60                                                                                                          =  5.2 million units Net increase in saving due to increase in power assuming rate Rs. 3/kWh =5.2x3                                                                                                                          = 15.6 Millon Thus total saving per year if vortex settling basin is adopted instead of settling basin  = 0.31+15.6 = 15.91 Millon
  • 50. 50 Settling basin . Designed  settling  basin  at  the  selected  sites  are  sufficient  to  tap  the  particles  less  than  0.5mm in spite of that, these settling basin showing less efficiency this may due to:- Inadequate design flushing arrangement. Turbulence in water, causes the sediment in suspension. Transitions are not designed properly. These settling basin mostly designed for intermittent flushing, but timely flushing are not       done  due  to  this  flushing  arrangement  get  chocked  frequently  causes  decrease  in  efficiency  of these basins. . Vortex settling basin The observed efficiency of vortex settling basin is very close to designed efficiency for all  particle Further these basin required less volume of water to flush the sediment and proves  to  be  economical  desilting  device  specially  for  removal  of  particle  size  0.1mm-  0.2mm  cause sediment erosion on hydro mechanical components.  RESULTS
  • 51. 51 Comparative study of settling basin and vortex settling basin shows that vortex  settling basin is efficient and economical desilting device as compared to settling  basin  for small hydropower sites having advantages:- Land area required for sedimentation is less. Require lower flushing. Cost of construction is about one fourth of settling basin cost. Hydraulic efficiency as compared to settling basin is high. In vortex settling basin water may diverted directly to power channel during     lean  season  when  water  is  almost  free  of  sediments.  This  is  important  in  cold  region where settling basin freeze due to lower vicinity and causes the shutting  down of machines.    CONCLUSIONS
  • 52. Author Title of Paper Objective Results Develay  et al.  (1996)  Desilting basin of  Dul Hasti hydro  electric project To trap a high percentage of the  coarser particles generally made of  quartz The trapping efficiency increases with the sediment  concentration. Raju, et  al. (1999)  Sediment Removal  Efficiency of  Settling Basins To find a new relationship for  sediment settling basin for non- cohesive sediments It was also found that Continuous flushing of the  basin improves the sediment removal efficiency of  settling basins.  Weerakoo n et al.  (2007)  Effect of the  Entrance Zone on  the Trapping  Efficiency of Desilting Tanks in  Run-of-River  Hydropower Plants To find effect of the entrance zone  on the sand trapping efficiency of  the desilting tanks  The sand trapping efficiency was found to vary  from 50% to 85% with the reduction of expansion  angle from 30o to 10o.The trapping efficiency of the  tank increases with the reduction of the expansion  angle of the entrance zone in the desilting tanks,  the optimum expansion angle was found to be  about 10 deg. Shah et  al. (2008)  Transitions For  Desilting Basin  With Open Channel  Flow To study the effect of Transitions  For Desilting Basin With Open  Channel Flow The hydraulic model studies by providing a simple  hump and a central divide wall Literature Review Efficiency of Desilting Basin Efficiency of Settling Basin 52
  • 53. Author Title of Paper Objective Results Alired D.  Mashauri  (1983)  Removal of sediment  particles By vortex basin discussed the hydraulic  performance of vortex-type  settling basins both, with  horizontal and sloping floor  settling efficiency η , and amount of water through  orifice arc given for both versions - horizontal  floor and sloping floor showed a respectable  performance  Paul et al  (1991) Vortex Settling  Basin Design  Consideration vortex settling basin design for  extraction of sediment smaller  than 0.5 when a diaphragm and a  deflector were incorporated in  the inlet canal and basin,  respectively Diameter of the flushing pipe and flushing  discharge depend on the grade of sediment  transported by the inlet canal Athar et al  (2002)  Sediment Removal  Efficiency of Vortex  Chamber Type Sediment Extractor Studied the sediment removal  efficiency of vortex chamber  type sediment extractors.  a new relationship was developed for  determination of the sediment removal efficiency  of the vortex chamber type sediment extractors.  Nguyen  Quang  Troung  (2010)  Effect of deflector  on removal  efficiency of a deep- depth vortex  chamber sediment  extractor To study effect of deflector in  circular basin The experimental results also indicate that the  values of η  was considerably stable and reach the  maximum value for the case of three deflectors. Naser et al.  (2011)  Improvement the  Trap Efficiency of  Vortex Chamber for  Exclusion of Suspended Sediment  in Diverted Water To improve trap efficiency of  vortex sediment settling basin.  It was found that the best location for the deflector  is between the inlet channel and the outlet  overflow weir, when the inlet channel is located  under the overflow weir increases the trap  efficiency and the hydraulic efficiency Efficiency of vortex type of settling basin 53
  • 54. Author Title of Paper Objective Results Thapa et al.  (2005)  Problems of Nepalese  hydropower projects  due to suspended  sediments. To study effect of type mineral of  sediment on turbines. It was found that higher amount of quartz content gives  higher erosion rate and the percentage of quartz, shape  of the particles also has influence in erosion rate. Bajracharya  et al.(2008)  Sand erosion of  Pelton turbine  nozzles and buckets. To find effect of sediments on pelton  turbine. It was found that High quartz content and increase  sediment load during monsoon along with the small  particle size are the major cause for the severe erosion  of turbine parts. Padhy et al. (2009)  Effect of size and  concentration of silt  particles on erosion  of Pelton turbine  buckets To study effect of concentration and  size of silt on erosion of pelton turbine. The erosive wear rate increases with an increase in the  silt concentration irrespective of the silt size. Prasad et al.  (2010)  Sediment Erosion in  Hydraulic Turbine  Using Rotating Disc  Apparatus To find relation between erosion and  run time. From this study, erosion (weight loss) was found  directly proportional with sediment size and also erosion  was found directly proportional with run time. Hari Prasad  Neopane  (2010)  Sediment Erosion in  Hydro Turbines To find sediment erosion effects on  hdro turbines It was found that erosion is strongly depended on the  shape of the particle. Poudel et al.  (2012)  Sediment impact on  turbine material case  study of Modi river To find out the impact of sediment on  turbine material. The sediments in course of rolling down from upstream  to downstream its shape and size changes and have less  eroding property than one found in upstream of the  river. Padhy et al.  (2012)  Effect of shape of silt  particles on erosive  wear of pelton  turbine bucket To investigate effect of shape of silt  particles on erosive wear of pelton  turbine bucket. It has been concluded that the sharp particles have more  eroding capacity than the rounded shaped particles. Characteristics of sediments 54 SILT EROSION ON TURBINE
  • 55. B.S.  Mann  (2000)  High-energy particle  impact wear  resistance of hard  coatings and their  application in hydro  turbines To study, hard coatings such as hard  chrome plating, plasma nitriding, D- gun spraying and boronising were  studied for high-energy impact wear  resistance It was found that Borided T410 steel appears to be an  excellent erosion resistance shield to combat high- energy particle impact wear. It can provide an  appropriate solution to the hydropower stations  severely affected due to silt. Padhy et  al. (2008)  A review on silt  erosion in hydro  turbines Survey various aspects related to silt  erosion in hydro turbines, different  causes for the declined performance  and efficiency of the hydro turbines It was found that Silt erosion in hydro turbines cannot  be avoided completely, but can be reduced to an  economically acceptable level Peter  Joachim  Gogstad  (2012)  Hydraulic design of  Francis turbine  exposed to sediment  erosion To carried out new hydraulic design  of runner and guide vanes of existing  francis turbine at La Higeura power  plant where velocity component were  reduced. The best way of reduce erosion will therefore be  coating of all wet surfaces. Thapa et  al. (2012)  Empirical modeling  of sediment erosion  in Francis turbine To dentify an appropriate erosion  model for Francis turbine It has been found that sediment data from the site can  be analyzed to predict the damage in Francis runner  due to erosion Thapa et  al. (2012) Current research in  hydraulic turbines  for handling  sediments To create and optimize the design of  Francis runners.  It was also observed that optimization of hydraulic  design of blade profile alone can reduce sediment  erosion more than 30% Design parameters of turbine Author Title of Paper Objective Results 55
  • 56. Research paper 56 Gurdeep  singh,  Arun  kumar,  “A Review of Desilting Basins Used in Small Hydropower Plants”, International  journal  of  emerging  technology  and  advanced  engineering,  ISSN  2250-2459,  ISO  9001:2008  certified  journal,  Volume 3, Issue 5, May 2013 pp 440-444. (published) Gurdeep singh, Arun kumar “Performance evaluation of desilting  basin used in  small hydropower projects” (in process)
  • 57. 57 REFERENCES 1. Guidelines for Development of Small Hydro Electric Scheme, CEA (1982). 2.  International course on”Small Hydropower Development”, Feb 2004 by AHEC,IITR 3. “Water Borne Sediments :Problems And Their Solutions”, by  H.L.Uppal,FNA ICAR scientist and B.D Sharma  ICAR Research Fellow, Punjab Agriculture University,Ludhiana 28 January,1975. 4. “Design Manual For Canal Sediment Extractors “Vol-1 Main text HR Wallingford Ltd August 1993. 5. Badrinath H.S and Bhardwaj S.D “Vortex Desilting Tanks For Sediment Exclusion For small Hydro Projects”  .Proceedings design of hydraulic structures Dept of civil engg. UOR, Roorkee pp 283-291 (1994). 6. Garde R. J,Ranga Raju K. G.  and A. W. R. Sujudi “Design of settling basins” Journal of Hydraulic Research, vol  28:1, 81-91 (1990). 7. Sumer B. M. “Design Of Settling Basins” Journal of Hydraulic Research, 29:1, 136-143. (1991). 8. Develay  D,Binquet  J,  Divatia  and  Venkatesha  C.  R  “Desilting  Basin  System  Of  The  Dul  Hastihydroelectric  Project” Journal Of Hydraulic Engineering october 1996 pp 565-572. 9. Vittal N and Raghav M.S “Design Of Single-Chamber Settling Basins” Journal Of Hydraulic Engineering / May  1997/ pp 469-471. 10.Ranga Raju K.G, Kothyari U.C, Srivastav S, and Saxena M “Sediment Removal Efficiency Of Settling Basins”  Journal Of Irrigation And Drainage Engineering / September/October pp 308-314. 11.Janssen R.H.A.  “Analysis and Design of Sediment Basins” The Institution of Engineers, Australia 8th National  Conference on Hydraulics in Water Engineering ANA Hotel Gold Coast, Australia 13-16 July 2004 12.Weerakoon  S. B.  and Rathnayake  U. S“Effect of  the Entrance Zone on the Trapping Efficiency of Desilting  Tanks in Run-of-River Hydropower Plants” International Conference on Small Hydropower - Hydro Sri Lanka,  22-24 October 2007 pp 1-6.
  • 58. 58 13. Shah C. M,Verma M. K, and Deolalikar P. B “Transitions For Desilting Basin With Open Channel Flow” ISH journal of  hydraulic engineering. Vol. 14. 2008. NO. I pp 117 to 125. 14. Alired D. Mashauri “Removal Of Sediment Particlesby Vortex Basin” Aqua Fennica 13: 27-33.(1983). 15. Paul T. C, Sayal S.K, SakhujaV.S, and Dhillon G.S “Vortex-Settling Basin Design Considerations” J. Hydraul. Eng.  1991.117:172-189. 16. Athar M, Kothyari U.C and Garde R.J  “Studies On Vortex Chamber Type Sediment Extractor” ISH Journal of Hydraulic  Engineering, vol 8:, 1-16 (2002). 17. Truong N.Q “Effect Of Deflectors On Removal Efficiency of A Deep- Depth Vortex Chamber Sediment Extractor”  HCMUT – 26-28/10/2011 pp 1-6. 18. Niknia, Naser , Keshavarzi, Reza A, Hosseinipour, E. Zia “Improvement the Trap Efficiency of Vortex Chamber for  Exclusion of Suspended Sediment in Diverted Water” World Environmental and Water Resources Congress  2011,Bearing Knowledge for Sustainability ASCE 2011 pp 4124-4134. 19. Padhy MK and Saini RP. A review on silt erosion in hydro turbines. Renewable and  Sustainable Energy Reviews  2008;12:1974e87. 20. Peter Joachim Gogstad “Hydraulic design of Francis turbine exposed to sediment erosion”  Mater thesis, Department of  Energy and Process Engineering,NTNU Jan 2012. 21. Thapa BS, Thapa B, Dahlhaug OG. “Empirical  modelling of sediment erosion in Francis  turbines”. Journal of Energy  2012. 22. Thapa BS, Gjosater K, Eltvik M, Dahlhaug OG, Bhola Thapa  “Effects of Turbine Design Parameters on Sediment  Erosion of Francis Runner”. 23. Mann BS “High-energy particle impact wear resistance of hard coatings and their application in hydro turbines”    www.elsevier.com/locate/wear   2000. 140–146.
  • 59. 59 24. Hari Prasad Neopane ( March 2010) “Sediment Erosion in Hydro Turbines” PhD thesis Norwegian University of Science  and Technology, Faculty of Engineering Science and Technology. 25. Padhy MK and Saini RP. “Effect of size and concentration of  silt particles on erosion of  Pelton turbine buckets”. Energy  2009;34(10):1477e83. 26. Padhy MK, That oi DK and Acharya AK “Effect of shape of silt particles on erosive wear of pelton turbine bucket” IEEE- International Conference On Advances In Engineering, Science And Management (ICAESM -2012) March 30, 31, 2012 pp  19-24. 27. Bajracharya TR, Acharya B, Joshi CB, Saini RP, Dahlhaug OG. “Sand erosion of Pelton turbine nozzles and buckets: a case  study of Chilime hydropower plant”. Wear 2008;264:177e84. 28. Thapa B, Shrestha R, Dhakal P, Thapa BS. “Problems of Nepalese hydropower projects due to suspended sediments”.  Journal of Aquatic Ecosystem Health and Management; 2005. 29. Padhy MK and Saini RP “Study of silt erosion mechanism in Pelton turbine buckets” Energy 39 (2012) 286-293. 30. Padhy MK and Saini RP. “A review on silt erosion in hydro turbines” Renewable and Sustainable Energy Reviews 12  (2008) 1974–1987. 31. Padhy MK and Saini RP “Study of silt erosion on performance of a Pelton turbine. Energy “ (2011) 141-147. 32. Gandhi B K, Singh S N, Seshadri V. “Study of the parametric dependence of erosion wear for the parallel flow of solid– liquid mixtures”. Tribol Int 1999; 32:275–82 33. Sharma S.K “Sediment Management in Himalayan rivers” Hydro Vision 2006,  pp1-12
  • 60. 60