SlideShare une entreprise Scribd logo
1  sur  30
VECTOR SPACES
LINEAR COMBINATION
DEFINITION:
A vector v is called a linear combination of vectors
𝑣1, 𝑣2, … … . . , 𝑣 𝑛if there exist scalars 𝑘1, 𝑘2, … … … , 𝑘 𝑛 such that,
𝑣= 𝑘1 𝑣1+𝑘2 𝑣2+……+𝑘 𝑛 𝑣 𝑛
For an example, Type equation here.a vector (a,b)Є𝑅2
is a linear
combination of (1,0)and (0,1) as it can be expressed as
(a,b)=a(1,0)+b(0,1).
WORKING RULES :
To check weather a vector 𝑣 is a linear combination of
vectors 𝑣1, 𝑣2, … … . . , 𝑣 𝑛, we have the following method:
Suppose that 𝑣= 𝑘1 𝑣1+𝑘2 𝑣2+……+𝑘 𝑛 𝑣 𝑛 .
Compare the corresponding components to get a linear
system in 𝑘1, 𝑘2, … … … , 𝑘 𝑛.
Solve the linear system by the usual methods(Gauss
elimination or Gauss Jordan elimination.)
If the system is consistent, then v is a linear
combination of 𝑣1, 𝑣2, … … . . , 𝑣 𝑛. If the system is
inconsistent ,then v is not a linear combination of
𝑣1, 𝑣2, … … . . , 𝑣 𝑛.
EXAMPLES
 Example 1:
Check whether the vector v = (2,1,3) is a linear
combination of 𝑣1 = (1,0,1) and 𝑣2 = −1,2,4 .
 Suppose that v = 𝑘1 𝑣1 + 𝑘2 𝑣2. This is
(2,1,3) = 𝑘1(1,0,1) + 𝑘2(-1,2,4)
(2,1,3) = (𝑘1 − 𝑘2, 2𝑘2, 𝑘1+4𝑘2).
 Comparing the corresponding components,
𝑘1 - 𝑘2 = 2 , 2𝑘1 = 1 , 𝑘1 + 4𝑘2 = 3
 The augmented matrix for the system is
1 −1 2
0 2 1
1 4 3
 Applying the operation 𝑅3→𝑅3 − 𝑅1 , we obtain
1 −1 2
0 2 1
0 5 1
 Applying the operation 𝑅2 →(1 2)𝑅2, we obtain
1 −1 2
0 1 1
2
0 5 1
 Applying the operation 𝑅3 → 𝑅3 - 5𝑅2, we obtain
1 −1 2
0 1 1
2
0 0 −3
2
 From the last row of the above matrix, we get 0 =
−3
2
, which is not possible. Thus the system is
inconsistent and hence v is not a linear
combination of 𝑣1 and 𝑣2.
 Example 2
Express the polynomial p(x) = -9-7x-15𝑥2
as a
linear combination of 𝑝1(x) = 2 + x + 4𝑥2
, 𝑝2(x) = 1
– x + 3𝑥2
, 𝑝3(x) = 3 + 2x + 5𝑥2
.
 Suppose that p(x) = 𝑘1 𝑝1(x) + 𝑘2 𝑝2(x) + 𝑘3 𝑝3(x).
-9 – 7x -15𝑥2
= 𝑘1(2+x+4𝑥2
) + 𝑘2(1-x+3𝑥2
) +
𝑘3(3+2x+5𝑥2
)
-9 – 7x -15𝑥2
= (2𝑘1+𝑘2+3𝑘3) + (𝑘1 − 𝑘2+2𝑘3)x
+ (4𝑘1+3𝑘2+5𝑘3)𝑥2
 Equating the corresponding coefficients of 1,x and
𝑥2
on both sides, we get
2𝑘1 + 𝑘2 + 3𝑘3 = -9
𝑘1 - 𝑘2 + 2𝑘3 = -7
4𝑘1 + 3𝑘2 + 5𝑘3 = -15
 The augmented matrix of the system is

2 1 3 − 9
1 −1 2 − 7
4 3 5 − 15
 Applying 𝑅1↔𝑅2, we get
1 −1 2 − 7
2 1 3 − 9
4 3 5 − 15
 Applying 𝑅2→ 𝑅2-2𝑅1 and 𝑅3→ 𝑅3-4𝑅1,we get
1 −1 2 − 7
0 3 −1 5
0 7 −3 13
 Applying 𝑅2 → (1
3
) 𝑅2, we get
1 −1 2 − 7
0 1 − 1
3
5
3
0 7 −3 13
Applying 𝑅3→ 𝑅3-7𝑅2, we get
1 −1 2 − 7
0 1 −
1
3
5
3
0 0 −
2
3
4
3
Applying 𝑅3→(−
3
2
) 𝑅3, we get
1 −1 2 − 7
0 1 −
1
3
5
3
0 0 1 − 2
Which is row echelon form. The system
corresponding to the last matrix is
𝑘1-𝑘2+2𝑘3= -7
𝑘2- 1
3
𝑘3 =5
3
𝑘3 = -2
Using back substituting, we get
𝑘1=-2, 𝑘2=1, 𝑘3=-2
Hence
P(x)=-2𝑝1(𝑥)+𝑝2(𝑥)-2𝑝3 𝑥 .
Example :3
Check weather the vector v=(0,4,5)is a linear
combination of 𝑣1=(0,-2,2) and 𝑣2=(1,3,-1) ?
Solution :
Suppose that 𝑣=𝑘1 𝑣1+𝑘2 𝑣2
that is (0,4,5)=𝑘1(0,-2,2)+𝑘1(1,3,-1)
(0,4,5)=(𝑘2, -2𝑘1+3𝑘2,2𝑘1-𝑘2)
Comparing the corresponding components. We
obtain
𝑘2=0…….1
-2𝑘1+3𝑘2=4…….2
2𝑘1-𝑘2=5……..3
Here 𝑘2=0 so solve the equation 2 and 3 we get
𝑘1=-2 and 𝑘1=5
2
so which is not
possible so 𝑣is not linear combination.
SPAN
DEFINITION:
Let S= 𝑣1, 𝑣2, … … . . , 𝑣 𝑛 be a set of vectors in a vector space
V. Then the set of all linear combinations of the vectors in S is
called the space spanned by
𝑣1, 𝑣2, … … . . , 𝑣 𝑛. If we denote this set by W then we say
that 𝑣1, 𝑣2, … … . . , 𝑣 𝑛 span W. symbolically,
W=span(S) or W=span 𝑣1, 𝑣2, … … . . , 𝑣 𝑛 .
LINEAR
DEPENDENCE&INDEPENDENCE
DEFINITION:
The vectors 𝑣1, 𝑣2, … … . . , 𝑣 𝑛 are said to be linear dependent
if there exist scalars 𝑘1, 𝑘2, … … … , 𝑘 𝑛,not all zero such that
𝑘1 𝑣1+𝑘2 𝑣2+……+𝑘 𝑛 𝑣 𝑛 =0
And linearly independent if,
𝑘1 𝑣1+𝑘2 𝑣2+……+𝑘 𝑛 𝑣 𝑛 =0 => 𝑘1=𝑘2=……..=𝑘 𝑛=0.
THEOREMS:
1)Let S= 𝑣1, 𝑣2, … … . . , 𝑣 𝑛 be a set of n vectors. Then S is
linearly dependent if and only if one of the vectors in S can be
expressed as a linear combination of the other vectors in S.
2) A set of two vectors is linearly dependent if and only if
one vector is a scalar multiple of the other.
.
3)A set containing zero vector is linearly dependent.
4)If 𝑣1, 𝑣2, … … . . , 𝑣 𝑘 are vectors in 𝑅 𝑛
and k>n , then the
vectors are linearly dependent
WRONSKIAN
Let 𝑓1(𝑥) , 𝑓2(𝑥),… 𝑓𝑛(𝑥) be n-1 times
continuously differentiable function of the
interval (-∞,∞). Then
 W 𝑥 =
𝑓1(𝑥) 𝑓2 𝑥 … . . 𝑓𝑛(𝑥)
𝑓′1(𝑥) 𝑓′
2
𝑥 … … 𝑓′ 𝑛(𝑥)
.
.
.
𝑓
(𝑛−1)
1
.
.
.
𝑓
(𝑛−1)
2
.
.
.
𝑓
(𝑛−1)
𝑛
Is called the Wronskian of the functions
𝑓1(𝑥) , 𝑓2(𝑥),… 𝑓𝑛(𝑥).
LINEAR INDEPENDENCE OF
FUCTION:
Let 𝑓1 x , 𝑓2 𝑥 , … … … , 𝑓𝑛 𝑥 be n-1 times continuously
differentiable functions on the interval (−∞, ∞).If the
wronskian of these function is nonzero for at least one point
in this interval , then these functions are linearly independent
in 𝐶(𝑛−1)
(−∞, ∞).
EXAMPLES
 Examples : 1
Let 𝑣1=(1,-1,0), 𝑣2=(0,1,-1) and 𝑣3=(0,0,1) be element in 𝑅3
.
Show that the set of vector {𝑣1, 𝑣2, 𝑣3} is linearly independent.
 Solution : We consider the vector equation
𝑘1 𝑣1+ 𝑘 𝑣2 + 𝑘 𝑣3 = 0
substituting for 𝑣1, 𝑣2, 𝑣3, we obtain
𝑘1(1,-1,0) + 𝑘2(0,1,-1) + 𝑘3(0,0,1)=0
(𝑘1,-𝑘1+𝑘2,-𝑘2+𝑘3)=0
Comparing we obtain
𝑘1=0, -𝑘1+𝑘2=0 and -𝑘2+𝑘3=0
The solution of these equation is 𝑘1=𝑘2=𝑘3=0.
Therefore , the given set of vectors is lineary
independent.
 Alternative
det(𝑣1,𝑣2,𝑣3)=
1 0 0
−1 1 0
0 −1 1
= 1 ≠ 0.
Therefore , the given vectors is linearly
independent.
Example : 2
Let 𝑣1=(1,-1,0), 𝑣2=(0,1,-1), 𝑣3=(0,2,1) and 𝑣4=(1,0,3) be
element of 𝑅3. Show that the set of vector {𝑣1, 𝑣2, 𝑣3, 𝑣4} is
linearly dependent.
Solution : The given set of element will be dependent if
there exists scalar 𝑘1, 𝑘2, 𝑘3, 𝑘4 not all zero, such that
𝑘1 𝑣1+ 𝑘2 𝑣2+ 𝑘3 𝑣3+ 𝑘4 𝑣4=0
Substituting for 𝑣1, 𝑣2, 𝑣3, 𝑣4 and comparing, we obtain
𝑘1+ 𝑘4=0, -𝑘1+ 𝑘2+2 𝑘3=0,- 𝑘2+ 𝑘3+3 𝑘4=0
The solution of this equation is
𝑘1=- 𝑘4, 𝑘2=
5𝑘4
3
, 𝑘3=−
4𝑘4
3
, 𝑘4 arbitrary.
Substituting equation (1) and cancelling 𝑘4, we
obtain
- 𝑣1+
5
3
𝑣2-
4
3
𝑣3+ 𝑣4=0
Hence there exist scalar not all zero, such that
(1) is satisfied. Therefore, the set of vector is
linearly dependent.
Example : 3
Check whether the set S={𝑥 +4𝑥2
,3+6𝑥+2𝑥2
,2+10𝑥-4𝑥2
}
is linearly independent 𝑃2.
Solution : Let 𝑃1(𝑥 )=2-𝑥 +4𝑥2
𝑃2(𝑥 )=3+6𝑥 +2𝑥2
𝑃3 (𝑥 )=2+10𝑥 -4𝑥2
Now, we know that
𝑘1 𝑃1(𝑥)+ 𝑘2 𝑃2(𝑥)+……..+ 𝑘 𝑛 𝑃𝑛(𝑥)=0
 𝑘1(2-𝑥 +4𝑥2
)+𝑘2(3+6𝑥 +2𝑥2
)+𝑘3(2+10𝑥 -4𝑥2
)=0+0𝑥 +0𝑥2
(2𝑘1+3𝑘2+2𝑘3) +(-𝑘1+6𝑘2+10𝑘3) 𝑥 +(4𝑘1+2𝑘2-4𝑘3) 𝑥2 = 0+0𝑥 +0𝑥2
Equating the corresponding coefficient of 𝑥2, 𝑥 ,1 on both the sides,
we get
2𝑘1+3𝑘2+2𝑘3=0
-𝑘1+6𝑘2+10𝑘3=0
4𝑘1+2𝑘2-4𝑘3=0
The coefficient of the matrix of the system
A=
2 3 2
−1 6 10
4 2 −4
det(A)=2(-24-20)-3(4-40)+2(-2-24)
= -88+108-52=-32≠0
Hence , the 𝑃1(𝑥 ), 𝑃2(𝑥 ) and 𝑃3(𝑥 ) is linearly
independent.

Contenu connexe

Tendances

One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...Lossian Barbosa Bacelar Miranda
 
Finite difference method
Finite difference methodFinite difference method
Finite difference methodDivyansh Verma
 
Families of curves
Families of curvesFamilies of curves
Families of curvesTarun Gehlot
 
UMA MESMA SOLUÇÃO PARA MUITAS EQUAÇÕES DIFERENCIAIS PARCIAIS LINEARES DE ORDE...
UMA MESMA SOLUÇÃO PARA MUITAS EQUAÇÕES DIFERENCIAIS PARCIAIS LINEARES DE ORDE...UMA MESMA SOLUÇÃO PARA MUITAS EQUAÇÕES DIFERENCIAIS PARCIAIS LINEARES DE ORDE...
UMA MESMA SOLUÇÃO PARA MUITAS EQUAÇÕES DIFERENCIAIS PARCIAIS LINEARES DE ORDE...Lossian Barbosa Bacelar Miranda
 
Orthogonal trajectories
Orthogonal trajectoriesOrthogonal trajectories
Orthogonal trajectoriesAli Zar
 
3 capitulo-iii-matriz-asociada-sem-15-t-l-e
3 capitulo-iii-matriz-asociada-sem-15-t-l-e3 capitulo-iii-matriz-asociada-sem-15-t-l-e
3 capitulo-iii-matriz-asociada-sem-15-t-l-eFernandoDanielMamani1
 
Lecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equationsLecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equationsHazel Joy Chong
 
3 capitulo-iii-matriz-asociada-sem-11-t-l-a (1)
3 capitulo-iii-matriz-asociada-sem-11-t-l-a (1)3 capitulo-iii-matriz-asociada-sem-11-t-l-a (1)
3 capitulo-iii-matriz-asociada-sem-11-t-l-a (1)FernandoDanielMamani1
 
Complex Variable & Numerical Method
Complex Variable & Numerical MethodComplex Variable & Numerical Method
Complex Variable & Numerical MethodNeel Patel
 
Analisis Rill Tugas 3.5
Analisis Rill Tugas 3.5Analisis Rill Tugas 3.5
Analisis Rill Tugas 3.5Ayu Nitasari
 
INVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
INVERSION OF MATRIX BY GAUSS ELIMINATION METHODINVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
INVERSION OF MATRIX BY GAUSS ELIMINATION METHODreach2arkaELECTRICAL
 
numericai matmatic matlab uygulamalar ali abdullah
numericai matmatic  matlab  uygulamalar ali abdullahnumericai matmatic  matlab  uygulamalar ali abdullah
numericai matmatic matlab uygulamalar ali abdullahAli Abdullah
 
3 capitulo-iii-matriz-asociada-sem-14-t-l-d
3 capitulo-iii-matriz-asociada-sem-14-t-l-d3 capitulo-iii-matriz-asociada-sem-14-t-l-d
3 capitulo-iii-matriz-asociada-sem-14-t-l-dFernandoDanielMamani1
 
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets Vladimir Godovalov
 
Numarical values highlighted
Numarical values highlightedNumarical values highlighted
Numarical values highlightedAmanSaeed11
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-VEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-VRai University
 

Tendances (20)

Lecture 3
Lecture 3Lecture 3
Lecture 3
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
 
Finite difference method
Finite difference methodFinite difference method
Finite difference method
 
Families of curves
Families of curvesFamilies of curves
Families of curves
 
UMA MESMA SOLUÇÃO PARA MUITAS EQUAÇÕES DIFERENCIAIS PARCIAIS LINEARES DE ORDE...
UMA MESMA SOLUÇÃO PARA MUITAS EQUAÇÕES DIFERENCIAIS PARCIAIS LINEARES DE ORDE...UMA MESMA SOLUÇÃO PARA MUITAS EQUAÇÕES DIFERENCIAIS PARCIAIS LINEARES DE ORDE...
UMA MESMA SOLUÇÃO PARA MUITAS EQUAÇÕES DIFERENCIAIS PARCIAIS LINEARES DE ORDE...
 
Interpolation
InterpolationInterpolation
Interpolation
 
Orthogonal trajectories
Orthogonal trajectoriesOrthogonal trajectories
Orthogonal trajectories
 
3 capitulo-iii-matriz-asociada-sem-15-t-l-e
3 capitulo-iii-matriz-asociada-sem-15-t-l-e3 capitulo-iii-matriz-asociada-sem-15-t-l-e
3 capitulo-iii-matriz-asociada-sem-15-t-l-e
 
Lecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equationsLecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equations
 
3 capitulo-iii-matriz-asociada-sem-11-t-l-a (1)
3 capitulo-iii-matriz-asociada-sem-11-t-l-a (1)3 capitulo-iii-matriz-asociada-sem-11-t-l-a (1)
3 capitulo-iii-matriz-asociada-sem-11-t-l-a (1)
 
Complex Variable & Numerical Method
Complex Variable & Numerical MethodComplex Variable & Numerical Method
Complex Variable & Numerical Method
 
Power series
Power series Power series
Power series
 
Analisis Rill Tugas 3.5
Analisis Rill Tugas 3.5Analisis Rill Tugas 3.5
Analisis Rill Tugas 3.5
 
INVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
INVERSION OF MATRIX BY GAUSS ELIMINATION METHODINVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
INVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
 
numericai matmatic matlab uygulamalar ali abdullah
numericai matmatic  matlab  uygulamalar ali abdullahnumericai matmatic  matlab  uygulamalar ali abdullah
numericai matmatic matlab uygulamalar ali abdullah
 
MT102 Лекц 9
MT102 Лекц 9MT102 Лекц 9
MT102 Лекц 9
 
3 capitulo-iii-matriz-asociada-sem-14-t-l-d
3 capitulo-iii-matriz-asociada-sem-14-t-l-d3 capitulo-iii-matriz-asociada-sem-14-t-l-d
3 capitulo-iii-matriz-asociada-sem-14-t-l-d
 
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
 
Numarical values highlighted
Numarical values highlightedNumarical values highlighted
Numarical values highlighted
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-VEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
 

Similaire à Calculas

HK_Partial Differential Equations_Laplace equation.pdf
HK_Partial Differential Equations_Laplace equation.pdfHK_Partial Differential Equations_Laplace equation.pdf
HK_Partial Differential Equations_Laplace equation.pdfhappycocoman
 
Linear Combination of vectors, Span and dependency
Linear Combination of vectors, Span and dependencyLinear Combination of vectors, Span and dependency
Linear Combination of vectors, Span and dependencyLambitDontPosts
 
Lecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typedLecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typedcairo university
 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSRai University
 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSRai University
 
Solution of equations and eigenvalue problems
Solution of equations and eigenvalue problemsSolution of equations and eigenvalue problems
Solution of equations and eigenvalue problemsSanthanam Krishnan
 
Lecture 1.2 quadratic functions
Lecture 1.2 quadratic functionsLecture 1.2 quadratic functions
Lecture 1.2 quadratic functionsnarayana dash
 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mappinginventionjournals
 
Tutorial_3_Solution_.pdf
Tutorial_3_Solution_.pdfTutorial_3_Solution_.pdf
Tutorial_3_Solution_.pdfssuserfb9ae6
 
Interpolation In Numerical Methods.
 Interpolation In Numerical Methods. Interpolation In Numerical Methods.
Interpolation In Numerical Methods.Abu Kaisar
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfHebaEng
 
Sistempertidaksamaanduavariabel2122
Sistempertidaksamaanduavariabel2122Sistempertidaksamaanduavariabel2122
Sistempertidaksamaanduavariabel2122Franxisca Kurniawati
 
Generalised Statistical Convergence For Double Sequences
Generalised Statistical Convergence For Double SequencesGeneralised Statistical Convergence For Double Sequences
Generalised Statistical Convergence For Double SequencesIOSR Journals
 

Similaire à Calculas (20)

HK_Partial Differential Equations_Laplace equation.pdf
HK_Partial Differential Equations_Laplace equation.pdfHK_Partial Differential Equations_Laplace equation.pdf
HK_Partial Differential Equations_Laplace equation.pdf
 
Linear Combination of vectors, Span and dependency
Linear Combination of vectors, Span and dependencyLinear Combination of vectors, Span and dependency
Linear Combination of vectors, Span and dependency
 
.Chapter7&8.
.Chapter7&8..Chapter7&8.
.Chapter7&8.
 
Lecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typedLecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typed
 
lec19.ppt
lec19.pptlec19.ppt
lec19.ppt
 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
 
lec8.ppt
lec8.pptlec8.ppt
lec8.ppt
 
Solution of equations and eigenvalue problems
Solution of equations and eigenvalue problemsSolution of equations and eigenvalue problems
Solution of equations and eigenvalue problems
 
lec14.ppt
lec14.pptlec14.ppt
lec14.ppt
 
Lecture 1.2 quadratic functions
Lecture 1.2 quadratic functionsLecture 1.2 quadratic functions
Lecture 1.2 quadratic functions
 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
 
Tutorial_3_Solution_.pdf
Tutorial_3_Solution_.pdfTutorial_3_Solution_.pdf
Tutorial_3_Solution_.pdf
 
PRODUCT RULES
PRODUCT RULESPRODUCT RULES
PRODUCT RULES
 
Interpolation In Numerical Methods.
 Interpolation In Numerical Methods. Interpolation In Numerical Methods.
Interpolation In Numerical Methods.
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
 
Sistempertidaksamaanduavariabel2122
Sistempertidaksamaanduavariabel2122Sistempertidaksamaanduavariabel2122
Sistempertidaksamaanduavariabel2122
 
Lecture 3 - Linear Regression
Lecture 3 - Linear RegressionLecture 3 - Linear Regression
Lecture 3 - Linear Regression
 
Generalised Statistical Convergence For Double Sequences
Generalised Statistical Convergence For Double SequencesGeneralised Statistical Convergence For Double Sequences
Generalised Statistical Convergence For Double Sequences
 
Simple Linear Regression
Simple Linear RegressionSimple Linear Regression
Simple Linear Regression
 

Dernier

How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdfssuserdda66b
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024Elizabeth Walsh
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsKarakKing
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the ClassroomPooky Knightsmith
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701bronxfugly43
 

Dernier (20)

How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 

Calculas

  • 3. DEFINITION: A vector v is called a linear combination of vectors 𝑣1, 𝑣2, … … . . , 𝑣 𝑛if there exist scalars 𝑘1, 𝑘2, … … … , 𝑘 𝑛 such that, 𝑣= 𝑘1 𝑣1+𝑘2 𝑣2+……+𝑘 𝑛 𝑣 𝑛 For an example, Type equation here.a vector (a,b)Є𝑅2 is a linear combination of (1,0)and (0,1) as it can be expressed as (a,b)=a(1,0)+b(0,1).
  • 4. WORKING RULES : To check weather a vector 𝑣 is a linear combination of vectors 𝑣1, 𝑣2, … … . . , 𝑣 𝑛, we have the following method: Suppose that 𝑣= 𝑘1 𝑣1+𝑘2 𝑣2+……+𝑘 𝑛 𝑣 𝑛 . Compare the corresponding components to get a linear system in 𝑘1, 𝑘2, … … … , 𝑘 𝑛.
  • 5. Solve the linear system by the usual methods(Gauss elimination or Gauss Jordan elimination.) If the system is consistent, then v is a linear combination of 𝑣1, 𝑣2, … … . . , 𝑣 𝑛. If the system is inconsistent ,then v is not a linear combination of 𝑣1, 𝑣2, … … . . , 𝑣 𝑛.
  • 6. EXAMPLES  Example 1: Check whether the vector v = (2,1,3) is a linear combination of 𝑣1 = (1,0,1) and 𝑣2 = −1,2,4 .  Suppose that v = 𝑘1 𝑣1 + 𝑘2 𝑣2. This is (2,1,3) = 𝑘1(1,0,1) + 𝑘2(-1,2,4) (2,1,3) = (𝑘1 − 𝑘2, 2𝑘2, 𝑘1+4𝑘2).  Comparing the corresponding components, 𝑘1 - 𝑘2 = 2 , 2𝑘1 = 1 , 𝑘1 + 4𝑘2 = 3
  • 7.  The augmented matrix for the system is 1 −1 2 0 2 1 1 4 3  Applying the operation 𝑅3→𝑅3 − 𝑅1 , we obtain 1 −1 2 0 2 1 0 5 1  Applying the operation 𝑅2 →(1 2)𝑅2, we obtain 1 −1 2 0 1 1 2 0 5 1
  • 8.  Applying the operation 𝑅3 → 𝑅3 - 5𝑅2, we obtain 1 −1 2 0 1 1 2 0 0 −3 2  From the last row of the above matrix, we get 0 = −3 2 , which is not possible. Thus the system is inconsistent and hence v is not a linear combination of 𝑣1 and 𝑣2.
  • 9.  Example 2 Express the polynomial p(x) = -9-7x-15𝑥2 as a linear combination of 𝑝1(x) = 2 + x + 4𝑥2 , 𝑝2(x) = 1 – x + 3𝑥2 , 𝑝3(x) = 3 + 2x + 5𝑥2 .  Suppose that p(x) = 𝑘1 𝑝1(x) + 𝑘2 𝑝2(x) + 𝑘3 𝑝3(x). -9 – 7x -15𝑥2 = 𝑘1(2+x+4𝑥2 ) + 𝑘2(1-x+3𝑥2 ) + 𝑘3(3+2x+5𝑥2 ) -9 – 7x -15𝑥2 = (2𝑘1+𝑘2+3𝑘3) + (𝑘1 − 𝑘2+2𝑘3)x + (4𝑘1+3𝑘2+5𝑘3)𝑥2
  • 10.  Equating the corresponding coefficients of 1,x and 𝑥2 on both sides, we get 2𝑘1 + 𝑘2 + 3𝑘3 = -9 𝑘1 - 𝑘2 + 2𝑘3 = -7 4𝑘1 + 3𝑘2 + 5𝑘3 = -15  The augmented matrix of the system is  2 1 3 − 9 1 −1 2 − 7 4 3 5 − 15
  • 11.  Applying 𝑅1↔𝑅2, we get 1 −1 2 − 7 2 1 3 − 9 4 3 5 − 15  Applying 𝑅2→ 𝑅2-2𝑅1 and 𝑅3→ 𝑅3-4𝑅1,we get 1 −1 2 − 7 0 3 −1 5 0 7 −3 13  Applying 𝑅2 → (1 3 ) 𝑅2, we get 1 −1 2 − 7 0 1 − 1 3 5 3 0 7 −3 13
  • 12. Applying 𝑅3→ 𝑅3-7𝑅2, we get 1 −1 2 − 7 0 1 − 1 3 5 3 0 0 − 2 3 4 3 Applying 𝑅3→(− 3 2 ) 𝑅3, we get 1 −1 2 − 7 0 1 − 1 3 5 3 0 0 1 − 2
  • 13. Which is row echelon form. The system corresponding to the last matrix is 𝑘1-𝑘2+2𝑘3= -7 𝑘2- 1 3 𝑘3 =5 3 𝑘3 = -2 Using back substituting, we get 𝑘1=-2, 𝑘2=1, 𝑘3=-2 Hence P(x)=-2𝑝1(𝑥)+𝑝2(𝑥)-2𝑝3 𝑥 .
  • 14. Example :3 Check weather the vector v=(0,4,5)is a linear combination of 𝑣1=(0,-2,2) and 𝑣2=(1,3,-1) ? Solution : Suppose that 𝑣=𝑘1 𝑣1+𝑘2 𝑣2 that is (0,4,5)=𝑘1(0,-2,2)+𝑘1(1,3,-1) (0,4,5)=(𝑘2, -2𝑘1+3𝑘2,2𝑘1-𝑘2) Comparing the corresponding components. We obtain
  • 15. 𝑘2=0…….1 -2𝑘1+3𝑘2=4…….2 2𝑘1-𝑘2=5……..3 Here 𝑘2=0 so solve the equation 2 and 3 we get 𝑘1=-2 and 𝑘1=5 2 so which is not possible so 𝑣is not linear combination.
  • 16. SPAN
  • 17. DEFINITION: Let S= 𝑣1, 𝑣2, … … . . , 𝑣 𝑛 be a set of vectors in a vector space V. Then the set of all linear combinations of the vectors in S is called the space spanned by 𝑣1, 𝑣2, … … . . , 𝑣 𝑛. If we denote this set by W then we say that 𝑣1, 𝑣2, … … . . , 𝑣 𝑛 span W. symbolically, W=span(S) or W=span 𝑣1, 𝑣2, … … . . , 𝑣 𝑛 .
  • 19. DEFINITION: The vectors 𝑣1, 𝑣2, … … . . , 𝑣 𝑛 are said to be linear dependent if there exist scalars 𝑘1, 𝑘2, … … … , 𝑘 𝑛,not all zero such that 𝑘1 𝑣1+𝑘2 𝑣2+……+𝑘 𝑛 𝑣 𝑛 =0 And linearly independent if, 𝑘1 𝑣1+𝑘2 𝑣2+……+𝑘 𝑛 𝑣 𝑛 =0 => 𝑘1=𝑘2=……..=𝑘 𝑛=0.
  • 20. THEOREMS: 1)Let S= 𝑣1, 𝑣2, … … . . , 𝑣 𝑛 be a set of n vectors. Then S is linearly dependent if and only if one of the vectors in S can be expressed as a linear combination of the other vectors in S. 2) A set of two vectors is linearly dependent if and only if one vector is a scalar multiple of the other. .
  • 21. 3)A set containing zero vector is linearly dependent. 4)If 𝑣1, 𝑣2, … … . . , 𝑣 𝑘 are vectors in 𝑅 𝑛 and k>n , then the vectors are linearly dependent
  • 22. WRONSKIAN Let 𝑓1(𝑥) , 𝑓2(𝑥),… 𝑓𝑛(𝑥) be n-1 times continuously differentiable function of the interval (-∞,∞). Then  W 𝑥 = 𝑓1(𝑥) 𝑓2 𝑥 … . . 𝑓𝑛(𝑥) 𝑓′1(𝑥) 𝑓′ 2 𝑥 … … 𝑓′ 𝑛(𝑥) . . . 𝑓 (𝑛−1) 1 . . . 𝑓 (𝑛−1) 2 . . . 𝑓 (𝑛−1) 𝑛 Is called the Wronskian of the functions 𝑓1(𝑥) , 𝑓2(𝑥),… 𝑓𝑛(𝑥).
  • 23. LINEAR INDEPENDENCE OF FUCTION: Let 𝑓1 x , 𝑓2 𝑥 , … … … , 𝑓𝑛 𝑥 be n-1 times continuously differentiable functions on the interval (−∞, ∞).If the wronskian of these function is nonzero for at least one point in this interval , then these functions are linearly independent in 𝐶(𝑛−1) (−∞, ∞).
  • 24. EXAMPLES  Examples : 1 Let 𝑣1=(1,-1,0), 𝑣2=(0,1,-1) and 𝑣3=(0,0,1) be element in 𝑅3 . Show that the set of vector {𝑣1, 𝑣2, 𝑣3} is linearly independent.  Solution : We consider the vector equation 𝑘1 𝑣1+ 𝑘 𝑣2 + 𝑘 𝑣3 = 0 substituting for 𝑣1, 𝑣2, 𝑣3, we obtain 𝑘1(1,-1,0) + 𝑘2(0,1,-1) + 𝑘3(0,0,1)=0 (𝑘1,-𝑘1+𝑘2,-𝑘2+𝑘3)=0
  • 25. Comparing we obtain 𝑘1=0, -𝑘1+𝑘2=0 and -𝑘2+𝑘3=0 The solution of these equation is 𝑘1=𝑘2=𝑘3=0. Therefore , the given set of vectors is lineary independent.  Alternative det(𝑣1,𝑣2,𝑣3)= 1 0 0 −1 1 0 0 −1 1 = 1 ≠ 0. Therefore , the given vectors is linearly independent.
  • 26. Example : 2 Let 𝑣1=(1,-1,0), 𝑣2=(0,1,-1), 𝑣3=(0,2,1) and 𝑣4=(1,0,3) be element of 𝑅3. Show that the set of vector {𝑣1, 𝑣2, 𝑣3, 𝑣4} is linearly dependent. Solution : The given set of element will be dependent if there exists scalar 𝑘1, 𝑘2, 𝑘3, 𝑘4 not all zero, such that 𝑘1 𝑣1+ 𝑘2 𝑣2+ 𝑘3 𝑣3+ 𝑘4 𝑣4=0 Substituting for 𝑣1, 𝑣2, 𝑣3, 𝑣4 and comparing, we obtain 𝑘1+ 𝑘4=0, -𝑘1+ 𝑘2+2 𝑘3=0,- 𝑘2+ 𝑘3+3 𝑘4=0
  • 27. The solution of this equation is 𝑘1=- 𝑘4, 𝑘2= 5𝑘4 3 , 𝑘3=− 4𝑘4 3 , 𝑘4 arbitrary. Substituting equation (1) and cancelling 𝑘4, we obtain - 𝑣1+ 5 3 𝑣2- 4 3 𝑣3+ 𝑣4=0 Hence there exist scalar not all zero, such that (1) is satisfied. Therefore, the set of vector is linearly dependent.
  • 28. Example : 3 Check whether the set S={𝑥 +4𝑥2 ,3+6𝑥+2𝑥2 ,2+10𝑥-4𝑥2 } is linearly independent 𝑃2. Solution : Let 𝑃1(𝑥 )=2-𝑥 +4𝑥2 𝑃2(𝑥 )=3+6𝑥 +2𝑥2 𝑃3 (𝑥 )=2+10𝑥 -4𝑥2 Now, we know that 𝑘1 𝑃1(𝑥)+ 𝑘2 𝑃2(𝑥)+……..+ 𝑘 𝑛 𝑃𝑛(𝑥)=0
  • 29.  𝑘1(2-𝑥 +4𝑥2 )+𝑘2(3+6𝑥 +2𝑥2 )+𝑘3(2+10𝑥 -4𝑥2 )=0+0𝑥 +0𝑥2 (2𝑘1+3𝑘2+2𝑘3) +(-𝑘1+6𝑘2+10𝑘3) 𝑥 +(4𝑘1+2𝑘2-4𝑘3) 𝑥2 = 0+0𝑥 +0𝑥2 Equating the corresponding coefficient of 𝑥2, 𝑥 ,1 on both the sides, we get 2𝑘1+3𝑘2+2𝑘3=0 -𝑘1+6𝑘2+10𝑘3=0 4𝑘1+2𝑘2-4𝑘3=0
  • 30. The coefficient of the matrix of the system A= 2 3 2 −1 6 10 4 2 −4 det(A)=2(-24-20)-3(4-40)+2(-2-24) = -88+108-52=-32≠0 Hence , the 𝑃1(𝑥 ), 𝑃2(𝑥 ) and 𝑃3(𝑥 ) is linearly independent.