Multiplying Polynomials

Mary Ann Villanueva
Mary Ann VillanuevaTeacher à Philippines
Multiplying Polynomials
Prepared by:
Ms. Mary Ann R. Villanueva
What are Polynomials?
POLYNOMIALS
 It's an expression of variables and constants combined
using addition, subtraction, multiplication, and division.
What if we want to
multiply two polynomials
together?
There are three techniques you can
use for multiplying polynomials.
1. Distributive Property
2. FOIL
3. Box Method
1. Multiply. (2x + 3)(5x + 8)
Using the distributive property,
multiply
2x(5x + 8) + 3(5x + 8).
10x2 + 16x + 15x + 24
Combine like terms.
10x2 + 31x + 24
A shortcut of the distributive
property is called the FOIL
method.
The FOIL method is ONLY
used when you multiply 2
binomials. It is an acronym and
tells you which terms to
multiply.
2. Use the FOIL method to multiply
the following binomials:
(y + 3)(y + 7).
(y + 3)(y + 7).
F tells you to multiply the
FIRST terms of each binomial
y2
(y + 3)(y + 7)
y2 + 7y
O tells you to multiply the
OUTER terms of each binomial.
(y + 3)(y + 7).
y2 + 7y + 3y
I tells you to multiply the
INNER terms of each binomial
(y + 3)(y + 7).
L tells you to multiply the
LAST terms of each binomial.
y2 + 7y + 3y + 21
Combine like terms.
y2 + 10y + 21
Remember, FOIL reminds you
to multiply the:
First terms
Outer terms
Inner terms
Last terms
3. The third method is the Box
Method.
Here’s how you do it.
Multiply (3x – 5)(5x + 2)
Draw a box. Write a
polynomial on the top
and side of a box. It
does not matter which
goes where.
This will be modeled in
the next problem along
with FOIL.
3. Multiply (3x - 5)(5x + 2)
First terms:
Outer terms:
Inner terms:
Last terms:
15x2
+6x
-25x
-10
15x2
-10
-25x
+6xCombine like terms.
15x2 - 19x – 10
Multiply (7p - 2)(3p - 4)
First terms:
Outer terms:
Inner terms:
Last terms:
21p2
-28p
-6p
+8 21p2
+8-28p
-6p
Combine like terms.
21p2 – 34p + 8
Try This
Multiply (y + 4)(y – 3)
a. y2 + y – 12
b. y2 – y – 12
c. y2 + 7y – 12
d. y2 – 7y – 12
e. y2 + y + 12
f. y2 – y + 12
g. y2 + 7y + 12
h. y2 – 7y + 12
Try This
Multiply (y + 4)(y – 3)
a. y2 + y – 12
b. y2 – y – 12
c. y2 + 7y – 12
d. y2 – 7y – 12
e. y2 + y + 12
f. y2 – y + 12
g. y2 + 7y + 12
h. y2 – 7y + 12
Multiply (2a – 3b)(2a + 4b)
a. 4a2 + 14ab – 12b2
b. 4a2 – 14ab – 12b2
c. 4a2 + 8ab – 6ba – 12b2
d. 4a2 + 2ab – 12b2
e. 4a2 – 2ab – 12b2
Multiply (2a – 3b)(2a + 4b)
a. 4a2 + 14ab – 12b2
b. 4a2 – 14ab – 12b2
c. 4a2 + 8ab – 6ba – 12b2
d. 4a2 + 2ab – 12b2
e. 4a2 – 2ab – 12b2
Multiply (2x - 5)(x2 - 5x + 4)
You cannot use FOIL because
they are not BOTH binomials.
You must use the distributive
property.
SOLUTION
(distributive property)
2x(x2 - 5x + 4) - 5(x2 - 5x + 4)
2x3 - 10x2 + 8x - 5x2 + 25x - 20
Group and combine like terms.
2x3 - 10x2 - 5x2 + 8x + 25x - 20
2x3 - 15x2 + 33x - 20
SOLUTION
(Box Method)
2x3 -10x2
+8x
-5x2 +25x - 20
Combine like terms
2x3
-20
-10x2
-5x2
+25x
+8x
FINAL ANSWER
2x3 – 15x2 + 33x - 20
ACTIVITY
Multiply
1. (x² + 3x – 2)(2x² – x + 4)
2. (x + a) (x + b)
3. (ax +b) (cx + d)
4. (x + 6) (x + 7)
THANK
YOU!!

1 sur 26

Recommandé

Multiplying polynomials par
Multiplying polynomialsMultiplying polynomials
Multiplying polynomialsswartzje
1.8K vues18 diapositives
Dividing Polynomials Slide Share par
Dividing Polynomials Slide ShareDividing Polynomials Slide Share
Dividing Polynomials Slide ShareKristen T
12.2K vues13 diapositives
Multiplying polynomials par
Multiplying polynomialsMultiplying polynomials
Multiplying polynomialscvaughn911
7.8K vues42 diapositives
Multiplying polynomials par
Multiplying polynomialsMultiplying polynomials
Multiplying polynomialschrystal_brinson
9.9K vues18 diapositives
Rational expressions ppt par
Rational expressions pptRational expressions ppt
Rational expressions pptDoreen Mhizha
4.6K vues30 diapositives
Combining Algebra Like Terms par
Combining Algebra Like TermsCombining Algebra Like Terms
Combining Algebra Like TermsPassy World
32.2K vues19 diapositives

Contenu connexe

Tendances

Distributive Property par
Distributive Property Distributive Property
Distributive Property Passy World
4.6K vues18 diapositives
7.8.-SPECIAL-PRODUCTS.ppt par
7.8.-SPECIAL-PRODUCTS.ppt7.8.-SPECIAL-PRODUCTS.ppt
7.8.-SPECIAL-PRODUCTS.pptElmabethDelaCruz1
515 vues23 diapositives
Factoring Perfect Square Trinomial par
Factoring Perfect Square TrinomialFactoring Perfect Square Trinomial
Factoring Perfect Square TrinomialDhenz Lorenzo
15.8K vues14 diapositives
Slope of a Line par
Slope of a LineSlope of a Line
Slope of a Linekaren wagoner
8.2K vues23 diapositives
Division Of Polynomials par
Division Of PolynomialsDivision Of Polynomials
Division Of PolynomialsMid Michigan Community College
29.8K vues12 diapositives
Evaluating algebraic expressions with substitution (answers) par
Evaluating algebraic expressions with substitution (answers)Evaluating algebraic expressions with substitution (answers)
Evaluating algebraic expressions with substitution (answers)cindywhitebcms
1.6K vues8 diapositives

Tendances(20)

Distributive Property par Passy World
Distributive Property Distributive Property
Distributive Property
Passy World4.6K vues
Factoring Perfect Square Trinomial par Dhenz Lorenzo
Factoring Perfect Square TrinomialFactoring Perfect Square Trinomial
Factoring Perfect Square Trinomial
Dhenz Lorenzo15.8K vues
Evaluating algebraic expressions with substitution (answers) par cindywhitebcms
Evaluating algebraic expressions with substitution (answers)Evaluating algebraic expressions with substitution (answers)
Evaluating algebraic expressions with substitution (answers)
cindywhitebcms1.6K vues
Add/Subtracting Polynomials par swartzje
Add/Subtracting PolynomialsAdd/Subtracting Polynomials
Add/Subtracting Polynomials
swartzje996 vues
Simplifying algebraic expressions par manswag123
Simplifying algebraic expressionsSimplifying algebraic expressions
Simplifying algebraic expressions
manswag1236.5K vues
Introduction To Equations par gemmabean
Introduction To EquationsIntroduction To Equations
Introduction To Equations
gemmabean3.9K vues
Equation of a circle par vhughes5
Equation of a circleEquation of a circle
Equation of a circle
vhughes511.3K vues
Addition and subtraction of rational expression par MartinGeraldine
Addition and subtraction of rational expressionAddition and subtraction of rational expression
Addition and subtraction of rational expression
MartinGeraldine561 vues
Algebra PPT par sri_3007
Algebra PPTAlgebra PPT
Algebra PPT
sri_30071.2K vues
Adding and subtracting rational expressions par Dawn Adams2
Adding and subtracting rational expressionsAdding and subtracting rational expressions
Adding and subtracting rational expressions
Dawn Adams23.3K vues
The rules of indices par Yu Kok Hui
The rules of indicesThe rules of indices
The rules of indices
Yu Kok Hui5.3K vues
Index Notation par alphamaths
Index NotationIndex Notation
Index Notation
alphamaths20.7K vues

En vedette

Unit 3 polynomials par
Unit 3 polynomialsUnit 3 polynomials
Unit 3 polynomialsGenny Phillips
2.4K vues11 diapositives
Elements of Fiction par
Elements of FictionElements of Fiction
Elements of Fictionlalacanteach
8.7K vues11 diapositives
Notes 12.1 identifying, adding & subtracting polynomials par
Notes 12.1   identifying, adding & subtracting polynomialsNotes 12.1   identifying, adding & subtracting polynomials
Notes 12.1 identifying, adding & subtracting polynomialsLori Rapp
1.5K vues82 diapositives
Sleeves, skirts, pants par
Sleeves, skirts, pantsSleeves, skirts, pants
Sleeves, skirts, pantshyunjooim
2.3K vues28 diapositives
Multiplying Polynomials I par
Multiplying Polynomials IMultiplying Polynomials I
Multiplying Polynomials IIris
4.5K vues15 diapositives
Types of pleats par
Types of pleatsTypes of pleats
Types of pleatssuniltalekar1
16K vues38 diapositives

En vedette(19)

Notes 12.1 identifying, adding & subtracting polynomials par Lori Rapp
Notes 12.1   identifying, adding & subtracting polynomialsNotes 12.1   identifying, adding & subtracting polynomials
Notes 12.1 identifying, adding & subtracting polynomials
Lori Rapp1.5K vues
Sleeves, skirts, pants par hyunjooim
Sleeves, skirts, pantsSleeves, skirts, pants
Sleeves, skirts, pants
hyunjooim2.3K vues
Multiplying Polynomials I par Iris
Multiplying Polynomials IMultiplying Polynomials I
Multiplying Polynomials I
Iris4.5K vues
Elements Of Fiction par tranceking
Elements Of FictionElements Of Fiction
Elements Of Fiction
tranceking22.4K vues
Fiction power point par jesstuck86
Fiction power pointFiction power point
Fiction power point
jesstuck8640.5K vues
Introduction To Humanities boa par raileeanne
Introduction To Humanities boaIntroduction To Humanities boa
Introduction To Humanities boa
raileeanne94.8K vues
Elements of Drama par Eric Cabrera
Elements of DramaElements of Drama
Elements of Drama
Eric Cabrera227.2K vues
Elements of drama par Lina Ell
Elements of dramaElements of drama
Elements of drama
Lina Ell127.7K vues
Basic Elements of Poetry par MaineSamson
Basic Elements of PoetryBasic Elements of Poetry
Basic Elements of Poetry
MaineSamson424.9K vues
Types and Elements of Poetry par Jackyline TL
Types and Elements of  PoetryTypes and Elements of  Poetry
Types and Elements of Poetry
Jackyline TL131.1K vues
Poetry PowerPoint par mary spata
Poetry PowerPointPoetry PowerPoint
Poetry PowerPoint
mary spata198.4K vues

Similaire à Multiplying Polynomials

Lesson 7-7FOILPPT.ppt par
Lesson 7-7FOILPPT.pptLesson 7-7FOILPPT.ppt
Lesson 7-7FOILPPT.pptmikeebio1
7 vues18 diapositives
multiplicació polinomis amb FOIL par
multiplicació polinomis amb FOILmultiplicació polinomis amb FOIL
multiplicació polinomis amb FOILeixarc
344 vues18 diapositives
Foil par
FoilFoil
Foillothomas
658 vues18 diapositives
Algebra unit 8.8 par
Algebra unit 8.8Algebra unit 8.8
Algebra unit 8.8Mark Ryder
1.4K vues24 diapositives
Polynomials par
PolynomialsPolynomials
PolynomialsVer Louie Gautani
24.7K vues33 diapositives
Polynomial operations (1) par
Polynomial operations (1)Polynomial operations (1)
Polynomial operations (1)swartzje
5.6K vues42 diapositives

Similaire à Multiplying Polynomials(20)

Lesson 7-7FOILPPT.ppt par mikeebio1
Lesson 7-7FOILPPT.pptLesson 7-7FOILPPT.ppt
Lesson 7-7FOILPPT.ppt
mikeebio17 vues
multiplicació polinomis amb FOIL par eixarc
multiplicació polinomis amb FOILmultiplicació polinomis amb FOIL
multiplicació polinomis amb FOIL
eixarc344 vues
Algebra unit 8.8 par Mark Ryder
Algebra unit 8.8Algebra unit 8.8
Algebra unit 8.8
Mark Ryder1.4K vues
Polynomial operations (1) par swartzje
Polynomial operations (1)Polynomial operations (1)
Polynomial operations (1)
swartzje5.6K vues
Lecture 03 special products and factoring par Hazel Joy Chong
Lecture 03 special products and factoringLecture 03 special products and factoring
Lecture 03 special products and factoring
Hazel Joy Chong20.8K vues
Review of multiplying polynomials par dlaughter
Review of multiplying polynomialsReview of multiplying polynomials
Review of multiplying polynomials
dlaughter847 vues
Int Math 2 Section 9-1 par Jimbo Lamb
Int Math 2 Section 9-1Int Math 2 Section 9-1
Int Math 2 Section 9-1
Jimbo Lamb352 vues
Integrated Math 2 Section 9-1 par Jimbo Lamb
Integrated Math 2 Section 9-1Integrated Math 2 Section 9-1
Integrated Math 2 Section 9-1
Jimbo Lamb646 vues
Factorising for 3um par mathssng3
Factorising for 3umFactorising for 3um
Factorising for 3um
mathssng31K vues
Factoring and Box Method par swartzje
Factoring and Box MethodFactoring and Box Method
Factoring and Box Method
swartzje28.1K vues
Math AB Chapter 8 Polynomials par mcarls
Math AB Chapter 8 PolynomialsMath AB Chapter 8 Polynomials
Math AB Chapter 8 Polynomials
mcarls623 vues

Dernier

The Accursed House by Émile Gaboriau par
The Accursed House  by Émile GaboriauThe Accursed House  by Émile Gaboriau
The Accursed House by Émile GaboriauDivyaSheta
246 vues15 diapositives
REFERENCING, CITATION.pptx par
REFERENCING, CITATION.pptxREFERENCING, CITATION.pptx
REFERENCING, CITATION.pptxabhisrivastava11
39 vues26 diapositives
Education of marginalized and socially disadvantages segments.pptx par
Education of marginalized and socially disadvantages segments.pptxEducation of marginalized and socially disadvantages segments.pptx
Education of marginalized and socially disadvantages segments.pptxGarimaBhati5
40 vues36 diapositives
Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant... par
Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant...Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant...
Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant...Ms. Pooja Bhandare
194 vues45 diapositives
Monthly Information Session for MV Asterix (November) par
Monthly Information Session for MV Asterix (November)Monthly Information Session for MV Asterix (November)
Monthly Information Session for MV Asterix (November)Esquimalt MFRC
98 vues26 diapositives
UNIDAD 3 6º C.MEDIO.pptx par
UNIDAD 3 6º C.MEDIO.pptxUNIDAD 3 6º C.MEDIO.pptx
UNIDAD 3 6º C.MEDIO.pptxMarcosRodriguezUcedo
145 vues32 diapositives

Dernier(20)

The Accursed House by Émile Gaboriau par DivyaSheta
The Accursed House  by Émile GaboriauThe Accursed House  by Émile Gaboriau
The Accursed House by Émile Gaboriau
DivyaSheta246 vues
Education of marginalized and socially disadvantages segments.pptx par GarimaBhati5
Education of marginalized and socially disadvantages segments.pptxEducation of marginalized and socially disadvantages segments.pptx
Education of marginalized and socially disadvantages segments.pptx
GarimaBhati540 vues
Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant... par Ms. Pooja Bhandare
Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant...Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant...
Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant...
Monthly Information Session for MV Asterix (November) par Esquimalt MFRC
Monthly Information Session for MV Asterix (November)Monthly Information Session for MV Asterix (November)
Monthly Information Session for MV Asterix (November)
Esquimalt MFRC98 vues
Narration lesson plan par TARIQ KHAN
Narration lesson planNarration lesson plan
Narration lesson plan
TARIQ KHAN69 vues
EILO EXCURSION PROGRAMME 2023 par info33492
EILO EXCURSION PROGRAMME 2023EILO EXCURSION PROGRAMME 2023
EILO EXCURSION PROGRAMME 2023
info33492181 vues
Class 9 lesson plans par TARIQ KHAN
Class 9 lesson plansClass 9 lesson plans
Class 9 lesson plans
TARIQ KHAN68 vues
Career Building in AI - Technologies, Trends and Opportunities par WebStackAcademy
Career Building in AI - Technologies, Trends and OpportunitiesCareer Building in AI - Technologies, Trends and Opportunities
Career Building in AI - Technologies, Trends and Opportunities
WebStackAcademy41 vues
Creative Restart 2023: Atila Martins - Craft: A Necessity, Not a Choice par Taste
Creative Restart 2023: Atila Martins - Craft: A Necessity, Not a ChoiceCreative Restart 2023: Atila Martins - Craft: A Necessity, Not a Choice
Creative Restart 2023: Atila Martins - Craft: A Necessity, Not a Choice
Taste41 vues
NodeJS and ExpressJS.pdf par ArthyR3
NodeJS and ExpressJS.pdfNodeJS and ExpressJS.pdf
NodeJS and ExpressJS.pdf
ArthyR347 vues
Create a Structure in VBNet.pptx par Breach_P
Create a Structure in VBNet.pptxCreate a Structure in VBNet.pptx
Create a Structure in VBNet.pptx
Breach_P82 vues
Retail Store Scavenger Hunt.pptx par jmurphy154
Retail Store Scavenger Hunt.pptxRetail Store Scavenger Hunt.pptx
Retail Store Scavenger Hunt.pptx
jmurphy15452 vues

Multiplying Polynomials

  • 2. What are Polynomials? POLYNOMIALS  It's an expression of variables and constants combined using addition, subtraction, multiplication, and division.
  • 3. What if we want to multiply two polynomials together?
  • 4. There are three techniques you can use for multiplying polynomials. 1. Distributive Property 2. FOIL 3. Box Method
  • 5. 1. Multiply. (2x + 3)(5x + 8) Using the distributive property, multiply 2x(5x + 8) + 3(5x + 8). 10x2 + 16x + 15x + 24 Combine like terms. 10x2 + 31x + 24
  • 6. A shortcut of the distributive property is called the FOIL method.
  • 7. The FOIL method is ONLY used when you multiply 2 binomials. It is an acronym and tells you which terms to multiply.
  • 8. 2. Use the FOIL method to multiply the following binomials: (y + 3)(y + 7). (y + 3)(y + 7). F tells you to multiply the FIRST terms of each binomial y2
  • 9. (y + 3)(y + 7) y2 + 7y O tells you to multiply the OUTER terms of each binomial.
  • 10. (y + 3)(y + 7). y2 + 7y + 3y I tells you to multiply the INNER terms of each binomial
  • 11. (y + 3)(y + 7). L tells you to multiply the LAST terms of each binomial. y2 + 7y + 3y + 21 Combine like terms. y2 + 10y + 21
  • 12. Remember, FOIL reminds you to multiply the: First terms Outer terms Inner terms Last terms
  • 13. 3. The third method is the Box Method. Here’s how you do it. Multiply (3x – 5)(5x + 2) Draw a box. Write a polynomial on the top and side of a box. It does not matter which goes where. This will be modeled in the next problem along with FOIL.
  • 14. 3. Multiply (3x - 5)(5x + 2) First terms: Outer terms: Inner terms: Last terms: 15x2 +6x -25x -10 15x2 -10 -25x +6xCombine like terms. 15x2 - 19x – 10
  • 15. Multiply (7p - 2)(3p - 4) First terms: Outer terms: Inner terms: Last terms: 21p2 -28p -6p +8 21p2 +8-28p -6p Combine like terms. 21p2 – 34p + 8
  • 16. Try This Multiply (y + 4)(y – 3) a. y2 + y – 12 b. y2 – y – 12 c. y2 + 7y – 12 d. y2 – 7y – 12 e. y2 + y + 12 f. y2 – y + 12 g. y2 + 7y + 12 h. y2 – 7y + 12
  • 17. Try This Multiply (y + 4)(y – 3) a. y2 + y – 12 b. y2 – y – 12 c. y2 + 7y – 12 d. y2 – 7y – 12 e. y2 + y + 12 f. y2 – y + 12 g. y2 + 7y + 12 h. y2 – 7y + 12
  • 18. Multiply (2a – 3b)(2a + 4b) a. 4a2 + 14ab – 12b2 b. 4a2 – 14ab – 12b2 c. 4a2 + 8ab – 6ba – 12b2 d. 4a2 + 2ab – 12b2 e. 4a2 – 2ab – 12b2
  • 19. Multiply (2a – 3b)(2a + 4b) a. 4a2 + 14ab – 12b2 b. 4a2 – 14ab – 12b2 c. 4a2 + 8ab – 6ba – 12b2 d. 4a2 + 2ab – 12b2 e. 4a2 – 2ab – 12b2
  • 20. Multiply (2x - 5)(x2 - 5x + 4) You cannot use FOIL because they are not BOTH binomials. You must use the distributive property.
  • 21. SOLUTION (distributive property) 2x(x2 - 5x + 4) - 5(x2 - 5x + 4) 2x3 - 10x2 + 8x - 5x2 + 25x - 20 Group and combine like terms. 2x3 - 10x2 - 5x2 + 8x + 25x - 20 2x3 - 15x2 + 33x - 20
  • 24. FINAL ANSWER 2x3 – 15x2 + 33x - 20
  • 25. ACTIVITY Multiply 1. (x² + 3x – 2)(2x² – x + 4) 2. (x + a) (x + b) 3. (ax +b) (cx + d) 4. (x + 6) (x + 7)