SlideShare une entreprise Scribd logo
1  sur  24
Ocean Thermal Energy
Conversion
Content
1. Introduction to OTEC
2. How OTEC Works
3. OTEC Plant Design & Location
4. OTEC Application
5. Benefit of OTEC
6. Potential and Market of OTEC
Introduction
• Ocean Thermal Energy Conversion (OTEC) is a process
which utilizes the heat energy stored in the tropical
ocean.
• OTEC utilizes the difference in temperature between
warm surface seawater and cold deep seawater to
produce electricity.
• Because the oceans are continually heated by the sun
and cover nearly 70% of the Earth's surface, this
temperature difference contains a vast amount of solar
energy which could potentially be tapped for human use.
Basic Principal
• OTEC is Manifestation of solar energy
• Top layers of ocean receive solar heating
• Bottom layers receive water from polar
regions
• OTEC Uses the vertical temperature gradient
in the ocean as a heat sink/source
• OTEC system is based on the Rankine Cycle
Main Component
• Evaporators
• Condensers
• Turbines
• Working fluid
• Cold-water pipe
Oceans
surface
waters acts
as heat
source
and the cold
w a t e r a t
1,000 meters
2. Fluid pump pressurizes and
pushes working fluid to evaporator
1. Power input to
pumps to start
process
3. Heat addition from
the hot-water source
used to evaporate the
working fluid within
the heat exchanger
(Evaporator)
EVAPORATOR
CONDENSER
WARM SURFACE
WATER 28 C
4. Expanding vapor drive
the turbine, and electricity
is created by a generator
5. Heat
extraction from
cold-water sink to
condense the
working fluid in
the condenser.
TURBINE
GENERATOR
COLD DEEP
WATER
5 C
WORKING FLUID
(LIKE AMMONIA)
How OTEC Works
• The warm surface ocean water is pumped to the
evaporator, which transfers heat to the working fluid
• Working fluid is turning into a high-pressure vapor.
• The turbine generator spins as the vapor rushes through
it.
• In the low-pressure condenser, the vapor is cooled by the
nearly freezing water brought up from the ocean depths.
• After condensing, the working fluid is sent back to the
boiler to be reused and to repeat the cycle.
Electricity production
• 3 basic OTEC system designs have been
demonstrated to generate electricity:
– Closed cycle
– Open cycle
– Hybrid Cycle
OTEC Application
• Ocean thermal energy conversion (OTEC) systems have many
applications or uses.
• OTEC can be used to :
– generate electricity,
– desalinate water,
– support deep-water mariculture,
– provide refrigeration and air-conditioning
– mineral extraction.
• These complementary products make OTEC systems attractive to
industry and island communities even if the price of oil remains low
• OTEC can also be used to produce methanol, ammonia, hydrogen,
aluminum, chlorine, and other chemicals.
OTEC Application
Deep-Water-Supported
Mariculture
• Deep-drawn seawater from an OTEC plant is cold, rich in nutrients,
relatively free of pathogens, and available in large quantity.
• It is an excellent medium for growing phytoplankton and
microalgae, which in turn support a variety of commercially valuable
fish and shellfish.
• The large, constant flow of water pumped from an OTEC plant will
reduce disease and contamination in the ponds; marine life,
therefore, can be grown in high densities.
• In addition, deep-drawn cold water can be mixed with warm surface
water, allowing local communities to culture a broad variety of
species.
Desalinated Water
• Desalinated water can be produced in open- or hybrid-
cycle plants using surface condensers.
• In a surface condenser, the spent steam is condensed by
indirect contact with the cold seawater.
• This condensate is relatively free of impurities and can
be collected and sold to local communities where natural
freshwater supplies for agriculture or drinking are
limited.
Refrigeration and Air-Conditioning
• The cold [5°C (41ºF)] seawater made available
by an OTEC system creates an opportunity to
provide large amounts of cooling to operations
that are related to or close to the plant.
• The cold seawater delivered to an OTEC plant
can be used in chilled-water coils to provide air-
conditioning for buildings.
Benefit of OTEC
• No fuel burned , carbon di oxide emission - less than 1%
of fossil fuel plant : has significant potential to provide
clean, cost-effective electricity for the future
• Nutrient rich cold water promotes mariculture
• Produces desalinated water for industrial, agricultural,
and residential uses.
• Cold water for air conditioning
• Fishing - Cold water, drawn from the depths, is nutrient-
rich and can significantly increase fishing yields
• Fresh water production (1 MW plant -> 4500 m3)
Disadvantage
• An OTEC facility requires a substantial initial capital outlay
• OTEC has not been demonstrated at full scale over a prolonged
period with integrated power, mariculture, fresh-water, and chill-
water production.
• OTEC is only feasible at relatively isolated sites (deep tropical
oceans); from such sites, the power and marine products must be
transported to market.
• OTEC is ecologically controversial--at least untested--in large scale
and over a long period.
OTEC Application
• Ocean thermal energy conversion (OTEC) systems have many
applications or uses.
• OTEC can be used to :
– generate electricity,
– desalinate water,
– support deep-water mariculture,
– provide refrigeration and air-conditioning
– mineral extraction.
• These complementary products make OTEC systems attractive to
industry and island communities even if the price of oil remains low
• OTEC can also be used to produce methanol, ammonia, hydrogen,
aluminum, chlorine, and other chemicals.
OTEC Application
Deep-Water-Supported
Mariculture
• Deep-drawn seawater from an OTEC plant is cold, rich in nutrients,
relatively free of pathogens, and available in large quantity.
• It is an excellent medium for growing phytoplankton and
microalgae, which in turn support a variety of commercially valuable
fish and shellfish.
• The large, constant flow of water pumped from an OTEC plant will
reduce disease and contamination in the ponds; marine life,
therefore, can be grown in high densities.
• In addition, deep-drawn cold water can be mixed with warm surface
water, allowing local communities to culture a broad variety of
species.
Desalinated Water
• Desalinated water can be produced in open- or hybrid-
cycle plants using surface condensers.
• In a surface condenser, the spent steam is condensed by
indirect contact with the cold seawater.
• This condensate is relatively free of impurities and can
be collected and sold to local communities where natural
freshwater supplies for agriculture or drinking are
limited.
Refrigeration and Air-Conditioning
• The cold [5°C (41ºF)] seawater made available
by an OTEC system creates an opportunity to
provide large amounts of cooling to operations
that are related to or close to the plant.
• The cold seawater delivered to an OTEC plant
can be used in chilled-water coils to provide air-
conditioning for buildings.
Benefit of OTEC
• No fuel burned , carbon di oxide emission - less than 1%
of fossil fuel plant : has significant potential to provide
clean, cost-effective electricity for the future
• Nutrient rich cold water promotes mariculture
• Produces desalinated water for industrial, agricultural,
and residential uses.
• Cold water for air conditioning
• Fishing - Cold water, drawn from the depths, is nutrient-
rich and can significantly increase fishing yields
• Fresh water production (1 MW plant -> 4500 m3)
Disadvantage
• An OTEC facility requires a substantial initial capital outlay
• OTEC has not been demonstrated at full scale over a prolonged
period with integrated power, mariculture, fresh-water, and chill-
water production.
• OTEC is only feasible at relatively isolated sites (deep tropical
oceans); from such sites, the power and marine products must be
transported to market.
• OTEC is ecologically controversial--at least untested--in large scale
and over a long period.
OTEC_OE_2023.pptx

Contenu connexe

Similaire à OTEC_OE_2023.pptx

OTEC (Ocean Thermal Energy Conversion)
OTEC (Ocean Thermal Energy Conversion)OTEC (Ocean Thermal Energy Conversion)
OTEC (Ocean Thermal Energy Conversion)Ashish Bandewar
 
OTEC_Seminar_Presentation_Siku_Sahu.docx
OTEC_Seminar_Presentation_Siku_Sahu.docxOTEC_Seminar_Presentation_Siku_Sahu.docx
OTEC_Seminar_Presentation_Siku_Sahu.docxsurjyakantsahoo123
 
OCEAN THERMAL ENERGY CONVERSION
OCEAN THERMAL ENERGY CONVERSION OCEAN THERMAL ENERGY CONVERSION
OCEAN THERMAL ENERGY CONVERSION Snehanshu Das
 
0cean and thermal energy for electrical power generation.ppt
0cean and thermal energy for electrical power generation.ppt0cean and thermal energy for electrical power generation.ppt
0cean and thermal energy for electrical power generation.pptdivakarrvl
 
Ocean themal energy conversion
Ocean themal energy conversionOcean themal energy conversion
Ocean themal energy conversionMNNIT ALLAHABAD
 
Ocean Thermal Energy Conversion Systems
Ocean Thermal Energy Conversion SystemsOcean Thermal Energy Conversion Systems
Ocean Thermal Energy Conversion SystemsNaveen Kumar
 
Harnessing the Power of Ocean Thermal Energy Conversion (2).pptx
Harnessing the Power of Ocean Thermal Energy Conversion (2).pptxHarnessing the Power of Ocean Thermal Energy Conversion (2).pptx
Harnessing the Power of Ocean Thermal Energy Conversion (2).pptxSuvamSankarKar
 
mech Ocean Thermal Energy ppt.pptx
mech Ocean Thermal Energy ppt.pptxmech Ocean Thermal Energy ppt.pptx
mech Ocean Thermal Energy ppt.pptxabi9952265040
 
Ocean thermal energy (1).pptx
Ocean thermal energy (1).pptxOcean thermal energy (1).pptx
Ocean thermal energy (1).pptxtheonionrouter
 
ocean thermal energy conversion(OTEC)
ocean thermal energy conversion(OTEC)ocean thermal energy conversion(OTEC)
ocean thermal energy conversion(OTEC)Shyam sivan
 
APznzabXTws9ka__VoakulmseSH9VVr4BtLsaQNHJHpcEv9OlHmib22U1EqQNEnZAJCHZYfFlrdsL...
APznzabXTws9ka__VoakulmseSH9VVr4BtLsaQNHJHpcEv9OlHmib22U1EqQNEnZAJCHZYfFlrdsL...APznzabXTws9ka__VoakulmseSH9VVr4BtLsaQNHJHpcEv9OlHmib22U1EqQNEnZAJCHZYfFlrdsL...
APznzabXTws9ka__VoakulmseSH9VVr4BtLsaQNHJHpcEv9OlHmib22U1EqQNEnZAJCHZYfFlrdsL...theonionrouter
 
Hybrid OTEC power plant presentation
Hybrid OTEC power plant presentationHybrid OTEC power plant presentation
Hybrid OTEC power plant presentationAlok Prakash Singh
 
ocean thermal energy conversion
ocean thermal energy conversionocean thermal energy conversion
ocean thermal energy conversionAmitabh Awdhiya
 

Similaire à OTEC_OE_2023.pptx (20)

OTEC (Ocean Thermal Energy Conversion)
OTEC (Ocean Thermal Energy Conversion)OTEC (Ocean Thermal Energy Conversion)
OTEC (Ocean Thermal Energy Conversion)
 
OTEC_Seminar_Presentation_Siku_Sahu.docx
OTEC_Seminar_Presentation_Siku_Sahu.docxOTEC_Seminar_Presentation_Siku_Sahu.docx
OTEC_Seminar_Presentation_Siku_Sahu.docx
 
ocean.pdf
ocean.pdfocean.pdf
ocean.pdf
 
OCEAN THERMAL ENERGY CONVERSION
OCEAN THERMAL ENERGY CONVERSION OCEAN THERMAL ENERGY CONVERSION
OCEAN THERMAL ENERGY CONVERSION
 
0cean and thermal energy for electrical power generation.ppt
0cean and thermal energy for electrical power generation.ppt0cean and thermal energy for electrical power generation.ppt
0cean and thermal energy for electrical power generation.ppt
 
Ocean Thermal Energy conversion
Ocean Thermal Energy conversionOcean Thermal Energy conversion
Ocean Thermal Energy conversion
 
Ocean themal energy conversion
Ocean themal energy conversionOcean themal energy conversion
Ocean themal energy conversion
 
OTEC.pptx
 OTEC.pptx OTEC.pptx
OTEC.pptx
 
OTEC new
OTEC newOTEC new
OTEC new
 
Ocean Thermal Energy Conversion Systems
Ocean Thermal Energy Conversion SystemsOcean Thermal Energy Conversion Systems
Ocean Thermal Energy Conversion Systems
 
Otec
OtecOtec
Otec
 
Harnessing the Power of Ocean Thermal Energy Conversion (2).pptx
Harnessing the Power of Ocean Thermal Energy Conversion (2).pptxHarnessing the Power of Ocean Thermal Energy Conversion (2).pptx
Harnessing the Power of Ocean Thermal Energy Conversion (2).pptx
 
mech Ocean Thermal Energy ppt.pptx
mech Ocean Thermal Energy ppt.pptxmech Ocean Thermal Energy ppt.pptx
mech Ocean Thermal Energy ppt.pptx
 
Ocean power
Ocean powerOcean power
Ocean power
 
Ocean thermal energy (1).pptx
Ocean thermal energy (1).pptxOcean thermal energy (1).pptx
Ocean thermal energy (1).pptx
 
ocean thermal energy conversion(OTEC)
ocean thermal energy conversion(OTEC)ocean thermal energy conversion(OTEC)
ocean thermal energy conversion(OTEC)
 
APznzabXTws9ka__VoakulmseSH9VVr4BtLsaQNHJHpcEv9OlHmib22U1EqQNEnZAJCHZYfFlrdsL...
APznzabXTws9ka__VoakulmseSH9VVr4BtLsaQNHJHpcEv9OlHmib22U1EqQNEnZAJCHZYfFlrdsL...APznzabXTws9ka__VoakulmseSH9VVr4BtLsaQNHJHpcEv9OlHmib22U1EqQNEnZAJCHZYfFlrdsL...
APznzabXTws9ka__VoakulmseSH9VVr4BtLsaQNHJHpcEv9OlHmib22U1EqQNEnZAJCHZYfFlrdsL...
 
Ocean thermal energy.pptx
Ocean thermal energy.pptxOcean thermal energy.pptx
Ocean thermal energy.pptx
 
Hybrid OTEC power plant presentation
Hybrid OTEC power plant presentationHybrid OTEC power plant presentation
Hybrid OTEC power plant presentation
 
ocean thermal energy conversion
ocean thermal energy conversionocean thermal energy conversion
ocean thermal energy conversion
 

Plus de Namyashah1

Biomass PPT_OE.ppt
Biomass PPT_OE.pptBiomass PPT_OE.ppt
Biomass PPT_OE.pptNamyashah1
 
BEIRUT EXPLOSION FINALE PPTX.pptx
BEIRUT EXPLOSION FINALE PPTX.pptxBEIRUT EXPLOSION FINALE PPTX.pptx
BEIRUT EXPLOSION FINALE PPTX.pptxNamyashah1
 
Quality Standards & Business Excellence Models.ppt
Quality Standards & Business Excellence Models.pptQuality Standards & Business Excellence Models.ppt
Quality Standards & Business Excellence Models.pptNamyashah1
 
Quality Function Deployment.ppt
Quality Function Deployment.pptQuality Function Deployment.ppt
Quality Function Deployment.pptNamyashah1
 
Quality Function Deployment.ppt
Quality Function Deployment.pptQuality Function Deployment.ppt
Quality Function Deployment.pptNamyashah1
 
Quality Standards & Business Excellence Models.ppt
Quality Standards & Business Excellence Models.pptQuality Standards & Business Excellence Models.ppt
Quality Standards & Business Excellence Models.pptNamyashah1
 
buses-scc.pptx
buses-scc.pptxbuses-scc.pptx
buses-scc.pptxNamyashah1
 

Plus de Namyashah1 (7)

Biomass PPT_OE.ppt
Biomass PPT_OE.pptBiomass PPT_OE.ppt
Biomass PPT_OE.ppt
 
BEIRUT EXPLOSION FINALE PPTX.pptx
BEIRUT EXPLOSION FINALE PPTX.pptxBEIRUT EXPLOSION FINALE PPTX.pptx
BEIRUT EXPLOSION FINALE PPTX.pptx
 
Quality Standards & Business Excellence Models.ppt
Quality Standards & Business Excellence Models.pptQuality Standards & Business Excellence Models.ppt
Quality Standards & Business Excellence Models.ppt
 
Quality Function Deployment.ppt
Quality Function Deployment.pptQuality Function Deployment.ppt
Quality Function Deployment.ppt
 
Quality Function Deployment.ppt
Quality Function Deployment.pptQuality Function Deployment.ppt
Quality Function Deployment.ppt
 
Quality Standards & Business Excellence Models.ppt
Quality Standards & Business Excellence Models.pptQuality Standards & Business Excellence Models.ppt
Quality Standards & Business Excellence Models.ppt
 
buses-scc.pptx
buses-scc.pptxbuses-scc.pptx
buses-scc.pptx
 

Dernier

psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docxPoojaSen20
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 

Dernier (20)

psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 

OTEC_OE_2023.pptx

  • 2. Content 1. Introduction to OTEC 2. How OTEC Works 3. OTEC Plant Design & Location 4. OTEC Application 5. Benefit of OTEC 6. Potential and Market of OTEC
  • 3. Introduction • Ocean Thermal Energy Conversion (OTEC) is a process which utilizes the heat energy stored in the tropical ocean. • OTEC utilizes the difference in temperature between warm surface seawater and cold deep seawater to produce electricity. • Because the oceans are continually heated by the sun and cover nearly 70% of the Earth's surface, this temperature difference contains a vast amount of solar energy which could potentially be tapped for human use.
  • 4. Basic Principal • OTEC is Manifestation of solar energy • Top layers of ocean receive solar heating • Bottom layers receive water from polar regions • OTEC Uses the vertical temperature gradient in the ocean as a heat sink/source • OTEC system is based on the Rankine Cycle
  • 5. Main Component • Evaporators • Condensers • Turbines • Working fluid • Cold-water pipe
  • 6. Oceans surface waters acts as heat source and the cold w a t e r a t 1,000 meters
  • 7. 2. Fluid pump pressurizes and pushes working fluid to evaporator 1. Power input to pumps to start process 3. Heat addition from the hot-water source used to evaporate the working fluid within the heat exchanger (Evaporator) EVAPORATOR CONDENSER WARM SURFACE WATER 28 C 4. Expanding vapor drive the turbine, and electricity is created by a generator 5. Heat extraction from cold-water sink to condense the working fluid in the condenser. TURBINE GENERATOR COLD DEEP WATER 5 C WORKING FLUID (LIKE AMMONIA)
  • 8. How OTEC Works • The warm surface ocean water is pumped to the evaporator, which transfers heat to the working fluid • Working fluid is turning into a high-pressure vapor. • The turbine generator spins as the vapor rushes through it. • In the low-pressure condenser, the vapor is cooled by the nearly freezing water brought up from the ocean depths. • After condensing, the working fluid is sent back to the boiler to be reused and to repeat the cycle.
  • 9. Electricity production • 3 basic OTEC system designs have been demonstrated to generate electricity: – Closed cycle – Open cycle – Hybrid Cycle
  • 10. OTEC Application • Ocean thermal energy conversion (OTEC) systems have many applications or uses. • OTEC can be used to : – generate electricity, – desalinate water, – support deep-water mariculture, – provide refrigeration and air-conditioning – mineral extraction. • These complementary products make OTEC systems attractive to industry and island communities even if the price of oil remains low • OTEC can also be used to produce methanol, ammonia, hydrogen, aluminum, chlorine, and other chemicals.
  • 12. Deep-Water-Supported Mariculture • Deep-drawn seawater from an OTEC plant is cold, rich in nutrients, relatively free of pathogens, and available in large quantity. • It is an excellent medium for growing phytoplankton and microalgae, which in turn support a variety of commercially valuable fish and shellfish. • The large, constant flow of water pumped from an OTEC plant will reduce disease and contamination in the ponds; marine life, therefore, can be grown in high densities. • In addition, deep-drawn cold water can be mixed with warm surface water, allowing local communities to culture a broad variety of species.
  • 13. Desalinated Water • Desalinated water can be produced in open- or hybrid- cycle plants using surface condensers. • In a surface condenser, the spent steam is condensed by indirect contact with the cold seawater. • This condensate is relatively free of impurities and can be collected and sold to local communities where natural freshwater supplies for agriculture or drinking are limited.
  • 14. Refrigeration and Air-Conditioning • The cold [5°C (41ºF)] seawater made available by an OTEC system creates an opportunity to provide large amounts of cooling to operations that are related to or close to the plant. • The cold seawater delivered to an OTEC plant can be used in chilled-water coils to provide air- conditioning for buildings.
  • 15. Benefit of OTEC • No fuel burned , carbon di oxide emission - less than 1% of fossil fuel plant : has significant potential to provide clean, cost-effective electricity for the future • Nutrient rich cold water promotes mariculture • Produces desalinated water for industrial, agricultural, and residential uses. • Cold water for air conditioning • Fishing - Cold water, drawn from the depths, is nutrient- rich and can significantly increase fishing yields • Fresh water production (1 MW plant -> 4500 m3)
  • 16. Disadvantage • An OTEC facility requires a substantial initial capital outlay • OTEC has not been demonstrated at full scale over a prolonged period with integrated power, mariculture, fresh-water, and chill- water production. • OTEC is only feasible at relatively isolated sites (deep tropical oceans); from such sites, the power and marine products must be transported to market. • OTEC is ecologically controversial--at least untested--in large scale and over a long period.
  • 17. OTEC Application • Ocean thermal energy conversion (OTEC) systems have many applications or uses. • OTEC can be used to : – generate electricity, – desalinate water, – support deep-water mariculture, – provide refrigeration and air-conditioning – mineral extraction. • These complementary products make OTEC systems attractive to industry and island communities even if the price of oil remains low • OTEC can also be used to produce methanol, ammonia, hydrogen, aluminum, chlorine, and other chemicals.
  • 19. Deep-Water-Supported Mariculture • Deep-drawn seawater from an OTEC plant is cold, rich in nutrients, relatively free of pathogens, and available in large quantity. • It is an excellent medium for growing phytoplankton and microalgae, which in turn support a variety of commercially valuable fish and shellfish. • The large, constant flow of water pumped from an OTEC plant will reduce disease and contamination in the ponds; marine life, therefore, can be grown in high densities. • In addition, deep-drawn cold water can be mixed with warm surface water, allowing local communities to culture a broad variety of species.
  • 20. Desalinated Water • Desalinated water can be produced in open- or hybrid- cycle plants using surface condensers. • In a surface condenser, the spent steam is condensed by indirect contact with the cold seawater. • This condensate is relatively free of impurities and can be collected and sold to local communities where natural freshwater supplies for agriculture or drinking are limited.
  • 21. Refrigeration and Air-Conditioning • The cold [5°C (41ºF)] seawater made available by an OTEC system creates an opportunity to provide large amounts of cooling to operations that are related to or close to the plant. • The cold seawater delivered to an OTEC plant can be used in chilled-water coils to provide air- conditioning for buildings.
  • 22. Benefit of OTEC • No fuel burned , carbon di oxide emission - less than 1% of fossil fuel plant : has significant potential to provide clean, cost-effective electricity for the future • Nutrient rich cold water promotes mariculture • Produces desalinated water for industrial, agricultural, and residential uses. • Cold water for air conditioning • Fishing - Cold water, drawn from the depths, is nutrient- rich and can significantly increase fishing yields • Fresh water production (1 MW plant -> 4500 m3)
  • 23. Disadvantage • An OTEC facility requires a substantial initial capital outlay • OTEC has not been demonstrated at full scale over a prolonged period with integrated power, mariculture, fresh-water, and chill- water production. • OTEC is only feasible at relatively isolated sites (deep tropical oceans); from such sites, the power and marine products must be transported to market. • OTEC is ecologically controversial--at least untested--in large scale and over a long period.