SlideShare une entreprise Scribd logo
1  sur  41
Special Techniques for Calculating Potential
3.1 Laplace’s Equation
3.2 The Method of Images
3.3 Separation of Variables
3.4 Multipole Expansion
3.1 Laplace’s Equation
3.1.1 Introduction
3.1.2 Laplace’s Equation in One Dimension
3.1.3 Laplace’s Equation in Two Dimensions
3.1.4 Laplace’s Equation in Three Dimensions
3.1.5 Boundary Conditions and Uniqueness
Theorems
3.1.6 Conducts and the Second Uniqueness
Theorem
3.1.1 Introduction
The primary task of electrostatics is to study the interaction
(force) of a given stationary charges.
since
this integrals can be difficult (unless there is symmetry)
we usually calculate
This integral is often too tough to handle analytically.
2
0
ˆ1 ( )
4
F q Etest
RE d
R
ρ τ
πε
=
= ∫
v v
v
ˆˆ ˆx y zE E x E y E z= + + +×××
v
0
1 1( )
4
V d
R
E V
ρ τ
πε
= ∫
= −∇
v
∴
Q
In differential form
Eq.(2.21): Poisson’s eq.
Laplace’s eq
or
The solutions of Laplace’s eq are called harmonic function.
3.1.1
2
0
V
ρ
ε
∇ = −
2
0V∇ =
2
2 2 2
2 2 2
1 10 ( )
0
i
k i i i
k
TV A
h q h q
V V V
x y z
∂ ∂= ∇ =
∂ ∂∏
∂ ∂ ∂
+ + =
∂ ∂ ∂
 to solve a differential eq. we need boundary conditions.
 In case of ρ = 0, Poisson’s eq. reduces to
3.1.2 Laplace’s Equation in One Dimension
2
2
0
d V
V mx b
dx
= ⇒ = +
m, b are to be determined by B.C.s
e.q.,
1. V(x) is the average of V(x + R) and V(x - R), for any R:
2. Laplace’s equation tolerates no local maxima or minima.
( 1) 4 1
5
( 5) 0 5
V x m
V x
V x b
= = = − 
⇒ ⇒ = − + 
= = = 
V=4 V=0
1 5 x
[ ]1
2
( ) ( ) ( )V x V x R V x R= + + −
Method of relaxation:
3.1.2 (2)
 A numerical method to solve Laplace equation.
 Starting V at the boundary and guess V on a grid of interior points.
Reassign each point with the average of its nearest neighbors.
Repeat this process till they converge.
3.1.2 (3)
The example of relaxation
n V(x=0)V(x=1)V(x=2)V(x=3)V(x=4)
0 4 0 0 0 0
1 4 2 0 0 0
2 4 2 1 0 0
3 4 1 0
4 4 0
5 4 0
6 4 0
7 4 0
8 4 0
9 4 0
10 4 0
4 3 2 1 0
3.1.3 Laplace’s Equation in Two Dimensions
A partial differential eq. :
There is no general solution. The solution will be given in 3.3.
We discuss certain general properties for now.
1. The value of V at a point (x, y) is the average of those around
the point.
2. V has no local maxima or minima; all
extreme occur at the boundaries.
3. The method of relaxation can be applied.
2 2
2 2
0
V V
x y
∂ ∂
+ =
∂ ∂
1( , )
2 circle
V x y Vdl
Rπ
= ∫Ñ
3.1.4 Laplace’s Equation in Three Dimensions
1. The value of V at point P is the average value of V
over a spherical surface of radius R centered at P:
The same for a collection of q by the superposition principle.
2. As a consequence, V can have no local maxima or minima;
the extreme values of V must occur at the boundaries.
3. The method of relaxation can be applied.
2
1( )
4 sphere
V p Vda
Rπ
= ∫Ñ
2 2 2
0
1 , 2 cos
4
q
V r R rR θ
πε
= = + −
r r
1
2 2 22
2
0
1 [ 2 cos ] sin
44
ave
q
V r R rR R d d
R
θ θ θ ϕ
πεπ
−
= + −∫
2 2
0
1 2 cos 04 2
q
r R rR
rR
πθ
πε
= + −
( ) ( ) at the center of the sphere
0 0
1 1
4 2 4
q q
r R r R V
rR rπε πε
 = + − − = = 
3.1.5 Boundary Conditions and Uniqueness Theorems
in 1D,
•
one end
Va
•
the other end
Vb
V is uniquely determined by its value at the boundary.
First uniqueness theorem :
the solution to Laplace’s equation in some region is uniquely
determined, if the value of V is specified on all their surfaces;
the outer boundary could be at infinity, where V is ordinarily taken
to be zero.
V mx b= +
3.1.5
Proof: Suppose V1 , V2 are solutions
at boundary at boundary.
V3 = 0 everywhere
hence V1 = V2 everywhere
2
1 0V∇ = 2
2 0V∇ = 1 2 ?V V=
3 1 2V V V= −
2 2 2
3 1 2 0V V V∇ = ∇ −∇ =
1 2 3 0V V V= ⇒ =
∴
Proof.
at boundary.
Corollary : The potential in some region is uniquely determined if
(a) the charge density throughout the region, and
(b) the value of V on all boundaries, are specified.
3.1.5
The first uniqueness theorem applies to regions with charge.
2
1
0
V
ρ
ε
∇ = − 2
2
0
V
ρ
ε
∇ = −
3 1 2V V V= −
2 2 2
3 1 2
0 0
0V V V
ρ ρ
ε ε
∇ = ∇ −∇ = − + =
3 1 2
3
0
0, . ., 1 2
V V V
V i e V V
= − =
∴ = =
3.1.6 Conductors and the Second Uniqueness Theorem
 Second uniqueness
theorem:
Proof:
Suppose both and are satisfied.
and
0
1
1E ε
ρ∇× =
v
0
1
2E ε
ρ∇× =
v
In a region containing conductors and filled
with a specified charge density ρ,
the electric field is uniquely determined if the
total charge on each conductor is given.
(The region as a whole can be bounded by
another conductor, or else unbounded.)
2E
v
1E
v
0 0
1 1
1 1 2 2,
ith conducting ith conducting
surface surface
i iE da Q E da Qε ε
× = × =∫ ∫
v vv v
Ñ Ñ
0 0
1 1
1 2,
outer bourndary outer bourndary
tot totE da Q E da Qε ε
× = × =∫ ∫
v vv v
Ñ Ñ
for V3 is a constant over each conducting surface
define
3.1.6
3 1 2E E E= −
v v v
0 0
3 1 2 1 2( ) 0E E E E E
ρ ρ
ε ε
∇× = ∇× − = ∇× −∇× = − =
rv v v v
3 1 2 0E da E da E da× = × − × =∫ ∫ ∫
v v vv v v
Ñ Ñ Ñ
2
3 3 3 3 3 3 3( ) ( ) ( )V E V E E V E∇× = ∇× + ∇ = −
v v v
2
3 3 3 3 3( )
volume surface
E d V E d V E daτ τ= − ∇× = − ×∫ ∫ ∫
v v v
Ñ
3 3 0
surface
V E da= − × =∫
v v
Ñ
3 1 20E E E∴ = =
v v v
i.e.,
3.2 The Method of Images
3.2.1 The Classical Image Problem
3.2.2 The Induced Surface Charge
3.2.3 Force and Energy
3.2.4 Other Image Problems
3.2.1 The Classical Image Problem
What is V (z>0) ?
( )
2 2 2 2
1. 0 0
2. 0
V z
V for x y z d
= =
→ + + >>
B.C.
The first uniqueness theorem guarantees that
there is only one solution.
If we can get one any means, that is the only answer.
Trick :
Only care
z > 0
z < 0
is not of
concern
3.2.1
in original
problem
for
V(z=0) = const = 0
( )0 0E z < =
v
0z ≥
( ) ( )2 22 2 2 20
1
( , , )
4
q q
V x y z
x y z d x y z dπε
 
− = +
 
+ + − + + +  
ˆ
0
0
0
z
x y
E E z
E E
at z
or E
= −
= = 
 ÷
= 
=P
v
3.2.2 The Induced Surface Charge
Eq.(2.49)
0
ˆˆ
V
E z V z
z
σ
ε
∂
= = −∇ = −
∂
v
0
0z
V
z
σ ε
=
∂
= −
∂
0 0
z z
A
E A E
σ σ
ε ε
×
− = = −
0
0
Q
E da at z
ε
× = ≅∫
v v
QÑ
( ) ( )2 22 2 2 2
0
1
4
z
q q
z x y z d x y z d
σ
π
=
 
− ∂  
= − 
∂  + + − + + + 
total induced surface charge
3.2.2
Q=-q
3 3
2 2 2 2 2 22 2
0
1 1
2( ) 2( )
2 2
4
( ) ( )
z
z d z dq
x y z d x y z d
π
=
 
− × − − × + −  
= − 
    + + − + + +     
3/2 3/22 2 2 2 2
2 2
qd qd
x y d r d
σ
π π
− −
= =
   + + +
   
01/22 2
1
qd q
r d
∞−
= − = −
 +
 
2
3/20 0 2 2
2
qd
Q da rdrd
r d
π
σ θ
π
∞ −
= =
 +
 
∫ ∫ ∫
3.2.3 Force and Energy
The charge q is attracted toward the plane.
The force of attraction is
With 2 point charges and no conducting plane, the energy is
Eq.(2.36)
( )
( ) ( )
2
2 2
0 0
1 1
ˆˆ
4 4 2
q q q
F z z
dd dπε πε
−
= = −
 − − 
v
( )
( ) ( )
( )
( )
2
1
20 0
2
0
1
2
1 1 1
2 4 4
1
4 2
i i i
i
W q V p
q q
q q
d d d d
q
d
πε πε
πε
=
=
  
    = × − + − ×    +  − −   
= −
∑
3.2.3 (2)
or
For point charge q and the conducting plane at z = 0 the energy
is half of the energy given at above, because the field exist
only at z ≥ 0 ,and is zero at z < 0 ; that is
( )
2
0
1
4 4
q
W
dπε
= −
( )
( )
2
2
0
2 2
0 0
1
4 2
1 1
4 4 4 4
d d
d
q
W F dl dz
z
q q
z d
πε
πε πε
∞ ∞
∞
= × =
 
= − = − ÷ ÷
 
∫ ∫
vv
ˆ( )dl dlz= −
v
Q
3.2.4 Other Image Problems
Stationary distribution of charge
1
q
2
q
3
q
1
q−
2
q−
3
q−
3.2.4 (2)
Conducting sphere of radius R
Image charge
at
R
q q
a
′ = −
2
R
b
a
=
( )
0
0
0
1
,
4
1
ˆˆˆˆ4
1
4 ˆˆˆˆ
q q
V r
q q
rr as rr bs
q q
a r
r r s b r s
r b
θ
πε
πε
πε
′ 
= + ÷
 
 ′
= + ÷
− − 
 
 ÷′
= + ÷
 ÷− − ÷
 
′r r
1
2 2 22 cosr a ra θ = + −
 
r
1
2 2 22 cosr b rb θ = + −
 ′r
Force
[Note : how about conducting circular cylinder?]
3.2.4 (3)
( )
0
1
, 0
4
ˆˆˆˆ
q q
V R
a R
R r s b r s
R b
θ
πε
 
 ÷′
= + = ÷
 ÷− − ÷
 
q q
R b
′
= −
b R
q q q
R a
′ = − = −
a R
R b
=
2
R
b
a
=
( ) ( )
2
2 22 20 0
1 1
4 4
qq q Ra
F
a b a R
πε πε
′
= = −
− −
3.3 Separation of Variables
3.3.0 Fourier series and Fourier transform
3.3.1 Cartesian Coordinate
3.3.2 Spherical Coordinate
ˆˆ ˆ, ,x y zare unique because
3.3.0 Fourier series and Fourier transform
Basic set of unit vectors in a certain coordinate can express
any vector uniquely in the space represented by the coordinate.e.g.
Completeness: a set of function ( )xfn
( ) ( )xfCxf n
n
n∑
∞
=
=
1
( )xf
is complete.
if for any function
Orthogonal: a set of functions is orthogonal
if ( ) ( ) 0=∫ dxxfxf m
b
a
n
mn ≠
=const
for
for mn =
in 3D. Cartesian Coordinate.zVyVxViVV zyx
N
i
i ˆˆˆˆ
1
++== ∑=

zyx VVV ,, are orthogonal.
ji ˆˆ ⋅ = i j=
i j≠0
1
3.3.0 (2)
A complete and orthogonal set of functions forms
a basic set of functions.
e.g.
Nnk ∈,
( ) ( )sin sinkx kx− = −
( ) ( )cos coskx kx− =
odd
{ nkif
nkifdxnxkx ≠
=
−∫ = 0
coscos π
π
π
0cossin∫−
=
π
π
dxnxkx
{ nkif
nkifdxnxkx ≠
=
−∫ = 0
sinsin π
π
π
even
sin(nx) is a basic set of functions for any odd function.
cos(nx) is a basic set of functions for any even function.
sin(nx) and cos(nx) are a basic set of functions for any functions.





for any ( )xf ( ) ( ) ( )
2
xfxf
xg
−−
= ( ) ( ) ( )
2
xfxf
xh
−+
=odd
( ) ( ) ( )xhxgxf +=
even
3.3.0 (3)
,
↑
odd
↑
even
[sinkx] [coskx]
Fourier transform and Fourier series
( ) ( )
0
(*) sin cosn n
n
f x A nx B nx
∞
=
= +∑
( ) ( )
1
sinnA f x nx dx
π
ππ −
= ∫
( ) ( )
1
cosnB f x nx dx
π
ππ −
= ∫
( ) 0
2
1
00 == ∫−
AdxxfB
π
ππ
} ∞⋅⋅⋅⋅= ,2,1n
;
3.3.0 (4)
Proof
( ) ( )
( )
* sin
sin
kx dx
f x kxdx
π
π
π
π
−
−
×
⇒ ×
∫
∫
( ) ( )
0
sin cos sinn n
n
A nx B nx kx dx
π
π
∞
−
=
= +∑ ∫
( ) ( )
0
sin sinn
n
A nx kx dx
π
π
∞
−
=
= ∑ ∫
( ) ( )0
1
sinkA f x kx dx
π
π
∴ = ∫
if 0kA kπ= ≠
0
cos cosn
n
B nx kx dx
π
π
∞
−
=
= ∑ ∫
( ) ( )
( ) ( )
* cos
cos
kx dx
f x kx dx
π
π
π
π
−
−
×
⇒
∫
∫
( ) ( )
0
sin cos cosn n
n
A nx B nx kx dx
π
π
∞
−
=
= +∑ ∫
( )0
1
2
B f x dx
π
ππ −
= ∫
{=
( ) ( )
1
cosnB f x nx dx
π
ππ −
∴ = ∫
3.3.0 (5)
B0 2π for k = 0
Bk π for k = 1, 2, …
3.3.1 Cartesian Coordinate
Use the method of separation of variables to solve the Laplace’s eq.
Example 3
0)(
)()0(
0)(
0)0(
0
→∞→
==
==
==
xV
yVxV
yV
yV
π
Find the potential inside this “slot”?
Laplace’s eq.
2 2
2 2
0
V V
x y
∂ ∂
+ =
∂ ∂
set )()(),( yYxXyxV =
2 2
2 2
0
X Y
Y X
x y
∂ ∂
+ =
∂ ∂
0
11
)(
2
2
)(
2
2
=
∂
∂
+
∂
∂

onlyydepedentygonlyxdepedentxf
y
Y
Yx
X
X
f and g are constant
1 2 0C C+ =
12
2
1
)( C
dx
Xd
X
xf ==
2
22
1
( )
d Y
g y C
Y dy
= =
2
21 kCC =−=set
so Xk
dx
Xd 2
2
2
=
2
2
2
d Y
k Y
dy
= −
kyDkyCyYBeAexX kxkx
cossin)(,)( +=+= −
=),( yxV )( kxkx
BeAe −
+ )cossin( kyDkyC +
3.3.1 (2)
1 2, are constant
( ) ( ) 0
C C
f x g y+ =
3.3.1 (3)
B.C. (iv) ( ) 0 0, 0V x A k→ ∞ → ⇒ = >
B.C. (i) ( 0) 0 0V y D= = ⇒ =
=),( yxV kx
e−
)cossin( kyDkyC +
( , ) sinkx
V x y Ce ky−
=
B.C. (ii) ( ) 0 sin 0 1,2,3V y k kπ π= = ⇒ = = L
B.C. (iii) )()0( 0 yVxV ==
=)(0 yV
1
sinkx
k
k
C e ky
∞
−
=
∑ A fourier series for odd function
00
2
( )sinkC V y ky dyπ
π
= ∫
The principle of superposition =),( yxV
1
sinkx
k
Ce ky
∞
−
=
∑
3.3.1 (4)
For antconstVyV == 00 )(
0
0
0
4 0
2
sin
0
2
(1 cos )
k
V
k
V
C ky dy
if k even
V
k
k if k odd
π
π
π
π
π
=
=

= − = 
=
∫
sin10 0
sinh
1,3,5,
4 21
( , ) sin tan ( )
yk
x
k
V V
V x y e ky
kπ π
− −
=
= =∑
L
3.4 Multipole Expansion
3.4.1 Approximate Potentials at Large distances
3.4.2 The Monopole and Dipole Terms
3.4.3 Origin of Coordinates
in Multipole Expansions
3.4.4 The Electric Field of a Dipole
1 1
2
1 cos
24 0
( ) cos
( )
d
r
qd
r
V p
θ
πε
θ− ≅
≅
r r+ -
3.4.1 Approximate Potentials at Large distances
Example 3.10 A dipole (Fig 3.27). Find the approximate potential
at points far from the dipole.
⇒
1
4 0
( ) ( )
q q
V p
πε + −
= −
r r
2 2 2
2
( ) cos
d
r rd θ± = + mr
2
2
24
(1 cos )
d d
r r
r θ= ± +
2
(1 cos )
r d
d
r
r θ
>>
≅ m
1
1 1 12
2
(1 cos ) (1 cos )
d d
r r r r
θ θ
−
±
≅ ≅ ±m
r
3.4.1
Example 3.10 For an arbitrary localized charge distribution.
Find a systematic expansion of the potential?
0
1 1
( )
4
V p dρ τ
πε
= ∫ r
2 2 2
2 2
2 cos
[1 ( ) 2( )cos ]
r r
r r
r r rr
r
θ
θ
′ ′
′ ′= + −
= + −
r
1 ( )( 2cos )
r r
r r
r θ
′ ′
= +∈ ∈= −r
3.4.1(2)
1 1 3 52 2 3 3
2 8 16
[1 ( )( 2cos ) ( ) ( 2cos ) ( ) ( 2cos ) ]
r r r r r r
r r r r r r r
θ θ θ
′ ′ ′ ′ ′ ′
= − − + − − − +L
1 3 1 5 32 2 3 3
2 2 2 2
[1 ( )cos ( ) ( cos ) ( ) ( cos cos ) ]
r r r
r r r r
θ θ θ θ
′ ′ ′
= + + − + − +L
1
0
( ) (cos )
r n
nr r
n
P dθ ρ τ
∞
′
=
′= ∑
Monopole term Dipole term Quadrupole term
Multipole expansion
1
1 1 1 1 3 52 32
2 8 16
(1 ) (1 )
r r
−
∈ ∈ ∈= +∈ = − + − +L
r
1
( 1)4 0 0
1 1 1 1 3 12
2 34 2 20
1
( ) ( ) (cos )
[ cos ( ) ( cos ) ]
n
nn
n
r r r
V r r P d
r
d r d r d
πε
πε
θ ρ τ
ρ τ θ ρ τ θ ρ τ
∞
+
=
′=
′ ′= + + − +
∑ ∫
∫ ∫ ∫ L
3.4.2 The Monopole and Dipole Terms
monopole
dipole
dominates if r >> 1
dipole moment (vector)
A physical dipole is consist of a pair of equal and
opposite charge,
1
4 0
( )
Q
mon r
V p
πε
=
1 1
24 0
1 1
24 0
( ) cos
ˆ
dip
r
r
P
V p r d
r r d
πε
πε
θ ρ τ
ρ τ
′=
′= ×
∫
∫
v
v
14243
ˆcosr r rθ′ ′= ×
v
ˆ1
24 0
1
( )
p r
dip
r
n
i i
i
V p
p r d q r
πε
ρ τ
×
=
=
′ ′= = ∑∫
v
v v v
q±
( )p qr qr q r r qd+ − + −′ ′ ′ ′= − = − =
vv v v v v
3.4.3 Origin of Coordinates in Multipole Expansions
if
( )
p r d
r d d
r d d d
p dQ
ρ τ
ρ τ
ρ τ ρ τ
′=
′= −
′= −
= −
∫
∫
∫ ∫
vv
vv
vv
0Q p p= =
v
3.4.4 The Electric Field of a Dipole
A pure dipole
ˆ cos
2 24 40 0
2 cos
34 0
1 sin
34 0
1
sin
34 0
( , )
0
ˆˆ( , ) (2cos sin )
P r P
dip
r r
V P
r r r
V P
r r
V
r
P
dip
r
V r
E
E
E
E r r
θ
πε πε
θ
πε
θ
θ θ πε
ϕ θ ϕ
πε
θ
θ θ θ θ
×
∂
−
∂
∂
−
∂
∂
−
∂
= =
= =
= =
= =
= +
v
v

Contenu connexe

Tendances

Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1Pokkarn Narkhede
 
Solution of non-linear equations
Solution of non-linear equationsSolution of non-linear equations
Solution of non-linear equationsZunAib Ali
 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Viraj Patel
 
Molecular Orbital Theory (MOT)
Molecular Orbital Theory (MOT)Molecular Orbital Theory (MOT)
Molecular Orbital Theory (MOT)Tushar Swami
 
Relativistic formulation of Maxwell equations.
Relativistic formulation of Maxwell equations.Relativistic formulation of Maxwell equations.
Relativistic formulation of Maxwell equations.dhrubanka
 
Euler's Method
Euler's MethodEuler's Method
Euler's Methoddmidgette
 
Statistical mechanics
Statistical mechanics Statistical mechanics
Statistical mechanics Kumar
 
Schrodinger equation and its applications: Chapter 2
Schrodinger equation and its applications: Chapter 2Schrodinger equation and its applications: Chapter 2
Schrodinger equation and its applications: Chapter 2Dr.Pankaj Khirade
 
Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Hassaan Saleem
 
Quantum mechanics
Quantum mechanics Quantum mechanics
Quantum mechanics Kumar
 
Schrodinger equation.pptx
Schrodinger equation.pptxSchrodinger equation.pptx
Schrodinger equation.pptxsheneaziz3
 
Quantum Mechanics Presentation
Quantum Mechanics PresentationQuantum Mechanics Presentation
Quantum Mechanics PresentationJasmine Wang
 
Quantum course
Quantum courseQuantum course
Quantum courseFLI
 
Half range sine cosine fourier series
Half range sine cosine fourier seriesHalf range sine cosine fourier series
Half range sine cosine fourier seriesHardik Parmar
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSChandan Singh
 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradientKunj Patel
 

Tendances (20)

Classical Mechanics-MSc
Classical Mechanics-MScClassical Mechanics-MSc
Classical Mechanics-MSc
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1
 
Solution of non-linear equations
Solution of non-linear equationsSolution of non-linear equations
Solution of non-linear equations
 
Quantum Chemistry
Quantum ChemistryQuantum Chemistry
Quantum Chemistry
 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations
 
Molecular Orbital Theory (MOT)
Molecular Orbital Theory (MOT)Molecular Orbital Theory (MOT)
Molecular Orbital Theory (MOT)
 
Relativistic formulation of Maxwell equations.
Relativistic formulation of Maxwell equations.Relativistic formulation of Maxwell equations.
Relativistic formulation of Maxwell equations.
 
Euler's Method
Euler's MethodEuler's Method
Euler's Method
 
Statistical mechanics
Statistical mechanics Statistical mechanics
Statistical mechanics
 
Schrodinger equation and its applications: Chapter 2
Schrodinger equation and its applications: Chapter 2Schrodinger equation and its applications: Chapter 2
Schrodinger equation and its applications: Chapter 2
 
Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)
 
Quantum mechanics
Quantum mechanics Quantum mechanics
Quantum mechanics
 
Schrodinger equation.pptx
Schrodinger equation.pptxSchrodinger equation.pptx
Schrodinger equation.pptx
 
Quantum Mechanics Presentation
Quantum Mechanics PresentationQuantum Mechanics Presentation
Quantum Mechanics Presentation
 
Quantum course
Quantum courseQuantum course
Quantum course
 
Fourier transforms
Fourier transforms Fourier transforms
Fourier transforms
 
Half range sine cosine fourier series
Half range sine cosine fourier seriesHalf range sine cosine fourier series
Half range sine cosine fourier series
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICS
 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradient
 
Harmonic Oscillator
Harmonic OscillatorHarmonic Oscillator
Harmonic Oscillator
 

Similaire à Laplace equation

Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysisdivyanshuprakashrock
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - NotesDr. Nirav Vyas
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsionrro7560
 
Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Fabian Pedregosa
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)tejaspatel1997
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Asad Bukhari
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Nur Kamila
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Fatini Adnan
 
Partial diferential good
Partial diferential goodPartial diferential good
Partial diferential goodgenntmbr
 
Capitulo 4, 7ma edición
Capitulo 4, 7ma ediciónCapitulo 4, 7ma edición
Capitulo 4, 7ma ediciónSohar Carr
 
Matlab lab manual
Matlab lab manualMatlab lab manual
Matlab lab manualnmahi96
 
about power system operation and control13197214.ppt
about power system operation and control13197214.pptabout power system operation and control13197214.ppt
about power system operation and control13197214.pptMohammedAhmed66819
 
Circular and gavitational force
Circular and gavitational forceCircular and gavitational force
Circular and gavitational forceeshwar360
 
Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential slides
 
Second-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesSecond-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesMaxim Eingorn
 
Integrability and weak diffraction in a two-particle Bose-Hubbard model
 Integrability and weak diffraction in a two-particle Bose-Hubbard model  Integrability and weak diffraction in a two-particle Bose-Hubbard model
Integrability and weak diffraction in a two-particle Bose-Hubbard model jiang-min zhang
 

Similaire à Laplace equation (20)

Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysis
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion
 
Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)
 
Scalar and vector differentiation
Scalar and vector differentiationScalar and vector differentiation
Scalar and vector differentiation
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)
 
Partial diferential good
Partial diferential goodPartial diferential good
Partial diferential good
 
A05330107
A05330107A05330107
A05330107
 
Capitulo 4, 7ma edición
Capitulo 4, 7ma ediciónCapitulo 4, 7ma edición
Capitulo 4, 7ma edición
 
EM_Theory.pdf
EM_Theory.pdfEM_Theory.pdf
EM_Theory.pdf
 
Matlab lab manual
Matlab lab manualMatlab lab manual
Matlab lab manual
 
about power system operation and control13197214.ppt
about power system operation and control13197214.pptabout power system operation and control13197214.ppt
about power system operation and control13197214.ppt
 
Circular and gavitational force
Circular and gavitational forceCircular and gavitational force
Circular and gavitational force
 
Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential
 
Second-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesSecond-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like Masses
 
Integrability and weak diffraction in a two-particle Bose-Hubbard model
 Integrability and weak diffraction in a two-particle Bose-Hubbard model  Integrability and weak diffraction in a two-particle Bose-Hubbard model
Integrability and weak diffraction in a two-particle Bose-Hubbard model
 
Simple harmonic motion1
Simple harmonic motion1Simple harmonic motion1
Simple harmonic motion1
 

Dernier

Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfSanaAli374401
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfChris Hunter
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 

Dernier (20)

Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 

Laplace equation

  • 1. Special Techniques for Calculating Potential 3.1 Laplace’s Equation 3.2 The Method of Images 3.3 Separation of Variables 3.4 Multipole Expansion
  • 2. 3.1 Laplace’s Equation 3.1.1 Introduction 3.1.2 Laplace’s Equation in One Dimension 3.1.3 Laplace’s Equation in Two Dimensions 3.1.4 Laplace’s Equation in Three Dimensions 3.1.5 Boundary Conditions and Uniqueness Theorems 3.1.6 Conducts and the Second Uniqueness Theorem
  • 3. 3.1.1 Introduction The primary task of electrostatics is to study the interaction (force) of a given stationary charges. since this integrals can be difficult (unless there is symmetry) we usually calculate This integral is often too tough to handle analytically. 2 0 ˆ1 ( ) 4 F q Etest RE d R ρ τ πε = = ∫ v v v ˆˆ ˆx y zE E x E y E z= + + +××× v 0 1 1( ) 4 V d R E V ρ τ πε = ∫ = −∇ v ∴ Q
  • 4. In differential form Eq.(2.21): Poisson’s eq. Laplace’s eq or The solutions of Laplace’s eq are called harmonic function. 3.1.1 2 0 V ρ ε ∇ = − 2 0V∇ = 2 2 2 2 2 2 2 1 10 ( ) 0 i k i i i k TV A h q h q V V V x y z ∂ ∂= ∇ = ∂ ∂∏ ∂ ∂ ∂ + + = ∂ ∂ ∂  to solve a differential eq. we need boundary conditions.  In case of ρ = 0, Poisson’s eq. reduces to
  • 5. 3.1.2 Laplace’s Equation in One Dimension 2 2 0 d V V mx b dx = ⇒ = + m, b are to be determined by B.C.s e.q., 1. V(x) is the average of V(x + R) and V(x - R), for any R: 2. Laplace’s equation tolerates no local maxima or minima. ( 1) 4 1 5 ( 5) 0 5 V x m V x V x b = = = −  ⇒ ⇒ = − +  = = =  V=4 V=0 1 5 x [ ]1 2 ( ) ( ) ( )V x V x R V x R= + + −
  • 6. Method of relaxation: 3.1.2 (2)  A numerical method to solve Laplace equation.  Starting V at the boundary and guess V on a grid of interior points. Reassign each point with the average of its nearest neighbors. Repeat this process till they converge.
  • 7. 3.1.2 (3) The example of relaxation n V(x=0)V(x=1)V(x=2)V(x=3)V(x=4) 0 4 0 0 0 0 1 4 2 0 0 0 2 4 2 1 0 0 3 4 1 0 4 4 0 5 4 0 6 4 0 7 4 0 8 4 0 9 4 0 10 4 0 4 3 2 1 0
  • 8. 3.1.3 Laplace’s Equation in Two Dimensions A partial differential eq. : There is no general solution. The solution will be given in 3.3. We discuss certain general properties for now. 1. The value of V at a point (x, y) is the average of those around the point. 2. V has no local maxima or minima; all extreme occur at the boundaries. 3. The method of relaxation can be applied. 2 2 2 2 0 V V x y ∂ ∂ + = ∂ ∂ 1( , ) 2 circle V x y Vdl Rπ = ∫Ñ
  • 9. 3.1.4 Laplace’s Equation in Three Dimensions 1. The value of V at point P is the average value of V over a spherical surface of radius R centered at P: The same for a collection of q by the superposition principle. 2. As a consequence, V can have no local maxima or minima; the extreme values of V must occur at the boundaries. 3. The method of relaxation can be applied. 2 1( ) 4 sphere V p Vda Rπ = ∫Ñ 2 2 2 0 1 , 2 cos 4 q V r R rR θ πε = = + − r r 1 2 2 22 2 0 1 [ 2 cos ] sin 44 ave q V r R rR R d d R θ θ θ ϕ πεπ − = + −∫ 2 2 0 1 2 cos 04 2 q r R rR rR πθ πε = + − ( ) ( ) at the center of the sphere 0 0 1 1 4 2 4 q q r R r R V rR rπε πε  = + − − = = 
  • 10. 3.1.5 Boundary Conditions and Uniqueness Theorems in 1D, • one end Va • the other end Vb V is uniquely determined by its value at the boundary. First uniqueness theorem : the solution to Laplace’s equation in some region is uniquely determined, if the value of V is specified on all their surfaces; the outer boundary could be at infinity, where V is ordinarily taken to be zero. V mx b= +
  • 11. 3.1.5 Proof: Suppose V1 , V2 are solutions at boundary at boundary. V3 = 0 everywhere hence V1 = V2 everywhere 2 1 0V∇ = 2 2 0V∇ = 1 2 ?V V= 3 1 2V V V= − 2 2 2 3 1 2 0V V V∇ = ∇ −∇ = 1 2 3 0V V V= ⇒ = ∴
  • 12. Proof. at boundary. Corollary : The potential in some region is uniquely determined if (a) the charge density throughout the region, and (b) the value of V on all boundaries, are specified. 3.1.5 The first uniqueness theorem applies to regions with charge. 2 1 0 V ρ ε ∇ = − 2 2 0 V ρ ε ∇ = − 3 1 2V V V= − 2 2 2 3 1 2 0 0 0V V V ρ ρ ε ε ∇ = ∇ −∇ = − + = 3 1 2 3 0 0, . ., 1 2 V V V V i e V V = − = ∴ = =
  • 13. 3.1.6 Conductors and the Second Uniqueness Theorem  Second uniqueness theorem: Proof: Suppose both and are satisfied. and 0 1 1E ε ρ∇× = v 0 1 2E ε ρ∇× = v In a region containing conductors and filled with a specified charge density ρ, the electric field is uniquely determined if the total charge on each conductor is given. (The region as a whole can be bounded by another conductor, or else unbounded.) 2E v 1E v 0 0 1 1 1 1 2 2, ith conducting ith conducting surface surface i iE da Q E da Qε ε × = × =∫ ∫ v vv v Ñ Ñ 0 0 1 1 1 2, outer bourndary outer bourndary tot totE da Q E da Qε ε × = × =∫ ∫ v vv v Ñ Ñ
  • 14. for V3 is a constant over each conducting surface define 3.1.6 3 1 2E E E= − v v v 0 0 3 1 2 1 2( ) 0E E E E E ρ ρ ε ε ∇× = ∇× − = ∇× −∇× = − = rv v v v 3 1 2 0E da E da E da× = × − × =∫ ∫ ∫ v v vv v v Ñ Ñ Ñ 2 3 3 3 3 3 3 3( ) ( ) ( )V E V E E V E∇× = ∇× + ∇ = − v v v 2 3 3 3 3 3( ) volume surface E d V E d V E daτ τ= − ∇× = − ×∫ ∫ ∫ v v v Ñ 3 3 0 surface V E da= − × =∫ v v Ñ 3 1 20E E E∴ = = v v v i.e.,
  • 15. 3.2 The Method of Images 3.2.1 The Classical Image Problem 3.2.2 The Induced Surface Charge 3.2.3 Force and Energy 3.2.4 Other Image Problems
  • 16. 3.2.1 The Classical Image Problem What is V (z>0) ? ( ) 2 2 2 2 1. 0 0 2. 0 V z V for x y z d = = → + + >> B.C. The first uniqueness theorem guarantees that there is only one solution. If we can get one any means, that is the only answer.
  • 17. Trick : Only care z > 0 z < 0 is not of concern 3.2.1 in original problem for V(z=0) = const = 0 ( )0 0E z < = v 0z ≥ ( ) ( )2 22 2 2 20 1 ( , , ) 4 q q V x y z x y z d x y z dπε   − = +   + + − + + +   ˆ 0 0 0 z x y E E z E E at z or E = − = =   ÷ =  =P v
  • 18. 3.2.2 The Induced Surface Charge Eq.(2.49) 0 ˆˆ V E z V z z σ ε ∂ = = −∇ = − ∂ v 0 0z V z σ ε = ∂ = − ∂ 0 0 z z A E A E σ σ ε ε × − = = − 0 0 Q E da at z ε × = ≅∫ v v QÑ ( ) ( )2 22 2 2 2 0 1 4 z q q z x y z d x y z d σ π =   − ∂   = −  ∂  + + − + + + 
  • 19. total induced surface charge 3.2.2 Q=-q 3 3 2 2 2 2 2 22 2 0 1 1 2( ) 2( ) 2 2 4 ( ) ( ) z z d z dq x y z d x y z d π =   − × − − × + −   = −      + + − + + +      3/2 3/22 2 2 2 2 2 2 qd qd x y d r d σ π π − − = =    + + +     01/22 2 1 qd q r d ∞− = − = −  +   2 3/20 0 2 2 2 qd Q da rdrd r d π σ θ π ∞ − = =  +   ∫ ∫ ∫
  • 20. 3.2.3 Force and Energy The charge q is attracted toward the plane. The force of attraction is With 2 point charges and no conducting plane, the energy is Eq.(2.36) ( ) ( ) ( ) 2 2 2 0 0 1 1 ˆˆ 4 4 2 q q q F z z dd dπε πε − = = −  − −  v ( ) ( ) ( ) ( ) ( ) 2 1 20 0 2 0 1 2 1 1 1 2 4 4 1 4 2 i i i i W q V p q q q q d d d d q d πε πε πε = =        = × − + − ×    +  − −    = − ∑
  • 21. 3.2.3 (2) or For point charge q and the conducting plane at z = 0 the energy is half of the energy given at above, because the field exist only at z ≥ 0 ,and is zero at z < 0 ; that is ( ) 2 0 1 4 4 q W dπε = − ( ) ( ) 2 2 0 2 2 0 0 1 4 2 1 1 4 4 4 4 d d d q W F dl dz z q q z d πε πε πε ∞ ∞ ∞ = × =   = − = − ÷ ÷   ∫ ∫ vv ˆ( )dl dlz= − v Q
  • 22. 3.2.4 Other Image Problems Stationary distribution of charge 1 q 2 q 3 q 1 q− 2 q− 3 q−
  • 23. 3.2.4 (2) Conducting sphere of radius R Image charge at R q q a ′ = − 2 R b a = ( ) 0 0 0 1 , 4 1 ˆˆˆˆ4 1 4 ˆˆˆˆ q q V r q q rr as rr bs q q a r r r s b r s r b θ πε πε πε ′  = + ÷    ′ = + ÷ − −     ÷′ = + ÷  ÷− − ÷   ′r r 1 2 2 22 cosr a ra θ = + −   r 1 2 2 22 cosr b rb θ = + −  ′r
  • 24. Force [Note : how about conducting circular cylinder?] 3.2.4 (3) ( ) 0 1 , 0 4 ˆˆˆˆ q q V R a R R r s b r s R b θ πε    ÷′ = + = ÷  ÷− − ÷   q q R b ′ = − b R q q q R a ′ = − = − a R R b = 2 R b a = ( ) ( ) 2 2 22 20 0 1 1 4 4 qq q Ra F a b a R πε πε ′ = = − − −
  • 25. 3.3 Separation of Variables 3.3.0 Fourier series and Fourier transform 3.3.1 Cartesian Coordinate 3.3.2 Spherical Coordinate
  • 26. ˆˆ ˆ, ,x y zare unique because 3.3.0 Fourier series and Fourier transform Basic set of unit vectors in a certain coordinate can express any vector uniquely in the space represented by the coordinate.e.g. Completeness: a set of function ( )xfn ( ) ( )xfCxf n n n∑ ∞ = = 1 ( )xf is complete. if for any function Orthogonal: a set of functions is orthogonal if ( ) ( ) 0=∫ dxxfxf m b a n mn ≠ =const for for mn = in 3D. Cartesian Coordinate.zVyVxViVV zyx N i i ˆˆˆˆ 1 ++== ∑=  zyx VVV ,, are orthogonal. ji ˆˆ ⋅ = i j= i j≠0 1
  • 27. 3.3.0 (2) A complete and orthogonal set of functions forms a basic set of functions. e.g. Nnk ∈, ( ) ( )sin sinkx kx− = − ( ) ( )cos coskx kx− = odd { nkif nkifdxnxkx ≠ = −∫ = 0 coscos π π π 0cossin∫− = π π dxnxkx { nkif nkifdxnxkx ≠ = −∫ = 0 sinsin π π π even sin(nx) is a basic set of functions for any odd function. cos(nx) is a basic set of functions for any even function. sin(nx) and cos(nx) are a basic set of functions for any functions.
  • 28.      for any ( )xf ( ) ( ) ( ) 2 xfxf xg −− = ( ) ( ) ( ) 2 xfxf xh −+ =odd ( ) ( ) ( )xhxgxf += even 3.3.0 (3) , ↑ odd ↑ even [sinkx] [coskx] Fourier transform and Fourier series ( ) ( ) 0 (*) sin cosn n n f x A nx B nx ∞ = = +∑ ( ) ( ) 1 sinnA f x nx dx π ππ − = ∫ ( ) ( ) 1 cosnB f x nx dx π ππ − = ∫ ( ) 0 2 1 00 == ∫− AdxxfB π ππ } ∞⋅⋅⋅⋅= ,2,1n ;
  • 29. 3.3.0 (4) Proof ( ) ( ) ( ) * sin sin kx dx f x kxdx π π π π − − × ⇒ × ∫ ∫ ( ) ( ) 0 sin cos sinn n n A nx B nx kx dx π π ∞ − = = +∑ ∫ ( ) ( ) 0 sin sinn n A nx kx dx π π ∞ − = = ∑ ∫ ( ) ( )0 1 sinkA f x kx dx π π ∴ = ∫ if 0kA kπ= ≠
  • 30. 0 cos cosn n B nx kx dx π π ∞ − = = ∑ ∫ ( ) ( ) ( ) ( ) * cos cos kx dx f x kx dx π π π π − − × ⇒ ∫ ∫ ( ) ( ) 0 sin cos cosn n n A nx B nx kx dx π π ∞ − = = +∑ ∫ ( )0 1 2 B f x dx π ππ − = ∫ {= ( ) ( ) 1 cosnB f x nx dx π ππ − ∴ = ∫ 3.3.0 (5) B0 2π for k = 0 Bk π for k = 1, 2, …
  • 31. 3.3.1 Cartesian Coordinate Use the method of separation of variables to solve the Laplace’s eq. Example 3 0)( )()0( 0)( 0)0( 0 →∞→ == == == xV yVxV yV yV π Find the potential inside this “slot”? Laplace’s eq. 2 2 2 2 0 V V x y ∂ ∂ + = ∂ ∂ set )()(),( yYxXyxV = 2 2 2 2 0 X Y Y X x y ∂ ∂ + = ∂ ∂
  • 32. 0 11 )( 2 2 )( 2 2 = ∂ ∂ + ∂ ∂  onlyydepedentygonlyxdepedentxf y Y Yx X X f and g are constant 1 2 0C C+ = 12 2 1 )( C dx Xd X xf == 2 22 1 ( ) d Y g y C Y dy = = 2 21 kCC =−=set so Xk dx Xd 2 2 2 = 2 2 2 d Y k Y dy = − kyDkyCyYBeAexX kxkx cossin)(,)( +=+= − =),( yxV )( kxkx BeAe − + )cossin( kyDkyC + 3.3.1 (2) 1 2, are constant ( ) ( ) 0 C C f x g y+ =
  • 33. 3.3.1 (3) B.C. (iv) ( ) 0 0, 0V x A k→ ∞ → ⇒ = > B.C. (i) ( 0) 0 0V y D= = ⇒ = =),( yxV kx e− )cossin( kyDkyC + ( , ) sinkx V x y Ce ky− = B.C. (ii) ( ) 0 sin 0 1,2,3V y k kπ π= = ⇒ = = L B.C. (iii) )()0( 0 yVxV == =)(0 yV 1 sinkx k k C e ky ∞ − = ∑ A fourier series for odd function 00 2 ( )sinkC V y ky dyπ π = ∫ The principle of superposition =),( yxV 1 sinkx k Ce ky ∞ − = ∑
  • 34. 3.3.1 (4) For antconstVyV == 00 )( 0 0 0 4 0 2 sin 0 2 (1 cos ) k V k V C ky dy if k even V k k if k odd π π π π π = =  = − =  = ∫ sin10 0 sinh 1,3,5, 4 21 ( , ) sin tan ( ) yk x k V V V x y e ky kπ π − − = = =∑ L
  • 35. 3.4 Multipole Expansion 3.4.1 Approximate Potentials at Large distances 3.4.2 The Monopole and Dipole Terms 3.4.3 Origin of Coordinates in Multipole Expansions 3.4.4 The Electric Field of a Dipole
  • 36. 1 1 2 1 cos 24 0 ( ) cos ( ) d r qd r V p θ πε θ− ≅ ≅ r r+ - 3.4.1 Approximate Potentials at Large distances Example 3.10 A dipole (Fig 3.27). Find the approximate potential at points far from the dipole. ⇒ 1 4 0 ( ) ( ) q q V p πε + − = − r r 2 2 2 2 ( ) cos d r rd θ± = + mr 2 2 24 (1 cos ) d d r r r θ= ± + 2 (1 cos ) r d d r r θ >> ≅ m 1 1 1 12 2 (1 cos ) (1 cos ) d d r r r r θ θ − ± ≅ ≅ ±m r
  • 37. 3.4.1 Example 3.10 For an arbitrary localized charge distribution. Find a systematic expansion of the potential? 0 1 1 ( ) 4 V p dρ τ πε = ∫ r 2 2 2 2 2 2 cos [1 ( ) 2( )cos ] r r r r r r rr r θ θ ′ ′ ′ ′= + − = + − r 1 ( )( 2cos ) r r r r r θ ′ ′ = +∈ ∈= −r
  • 38. 3.4.1(2) 1 1 3 52 2 3 3 2 8 16 [1 ( )( 2cos ) ( ) ( 2cos ) ( ) ( 2cos ) ] r r r r r r r r r r r r r θ θ θ ′ ′ ′ ′ ′ ′ = − − + − − − +L 1 3 1 5 32 2 3 3 2 2 2 2 [1 ( )cos ( ) ( cos ) ( ) ( cos cos ) ] r r r r r r r θ θ θ θ ′ ′ ′ = + + − + − +L 1 0 ( ) (cos ) r n nr r n P dθ ρ τ ∞ ′ = ′= ∑ Monopole term Dipole term Quadrupole term Multipole expansion 1 1 1 1 1 3 52 32 2 8 16 (1 ) (1 ) r r − ∈ ∈ ∈= +∈ = − + − +L r 1 ( 1)4 0 0 1 1 1 1 3 12 2 34 2 20 1 ( ) ( ) (cos ) [ cos ( ) ( cos ) ] n nn n r r r V r r P d r d r d r d πε πε θ ρ τ ρ τ θ ρ τ θ ρ τ ∞ + = ′= ′ ′= + + − + ∑ ∫ ∫ ∫ ∫ L
  • 39. 3.4.2 The Monopole and Dipole Terms monopole dipole dominates if r >> 1 dipole moment (vector) A physical dipole is consist of a pair of equal and opposite charge, 1 4 0 ( ) Q mon r V p πε = 1 1 24 0 1 1 24 0 ( ) cos ˆ dip r r P V p r d r r d πε πε θ ρ τ ρ τ ′= ′= × ∫ ∫ v v 14243 ˆcosr r rθ′ ′= × v ˆ1 24 0 1 ( ) p r dip r n i i i V p p r d q r πε ρ τ × = = ′ ′= = ∑∫ v v v v q± ( )p qr qr q r r qd+ − + −′ ′ ′ ′= − = − = vv v v v v
  • 40. 3.4.3 Origin of Coordinates in Multipole Expansions if ( ) p r d r d d r d d d p dQ ρ τ ρ τ ρ τ ρ τ ′= ′= − ′= − = − ∫ ∫ ∫ ∫ vv vv vv 0Q p p= = v
  • 41. 3.4.4 The Electric Field of a Dipole A pure dipole ˆ cos 2 24 40 0 2 cos 34 0 1 sin 34 0 1 sin 34 0 ( , ) 0 ˆˆ( , ) (2cos sin ) P r P dip r r V P r r r V P r r V r P dip r V r E E E E r r θ πε πε θ πε θ θ θ πε ϕ θ ϕ πε θ θ θ θ θ × ∂ − ∂ ∂ − ∂ ∂ − ∂ = = = = = = = = = + v v