SlideShare une entreprise Scribd logo
1  sur  26
Télécharger pour lire hors ligne
4/29/2011




     Mechanics of Flexible Materials

                 By Hammad Mohsin




                                                        1




                 Course Outline 
A)FUNDAMENTALS & POLYMERS 
Module 1 Introduction to Mechanics of Materials
• Role of Mechanics of Materials in Engineering
  Role of Mechanics of Materials in Engineering, 
  Stresses and Deformations, True Stress and True 
  Strain
Module 2 Study of Stress and Strain
• Stress ‐ Strain Diagrams of Ductile and Brittle 
                      g
  Materials, Isotropic and An‐isotropic Materials, 
  Modulus of Elasticity, Modulus of Rigidity, Elastic and
  Plastic Behavior of Materials, Non Linear Elasticity, 
  Linear Elasticity,                                2




                                                                   1
4/29/2011




• Stress and Strain in Changed Thermal Conditions, 
  Repeated Loading, Bending of Elasto‐plastic 
  Materials, Analysis of Stresses and Deformations
Module 3 Molecular basis of Rubberlike elasticity
• Structure of a Typical Network,  Elementary 
  Molecular Theories, More Advanced Molecular 
  Theories Phenomenological Theories and 
  Molecular Structure, Swelling of Networks and 
  Responsive Gels Enthalpic and Entropic 
      p                   p            p
  Contributions to Rubber Elasticity: Force‐
  Temperature Relations ,  Direct Determination of 
  Molecular Dimensions
                                                  3




Module 4 Strength of Elastomers
• Initiation of Fracture, Threshold Strengths and 
  Extensibilities, Fracture Under Multiaxial 
  Stresses , Crack Propagation,  Tensile Rupture, 
  Repeated Stressing: Mechanical Fatigue,  
  Repeated Stressing Mechanical Fatigue
  Surface Cracking by Ozone, Abrasive Wear. 

Module 5 Failure Prevention
• Analysis of polymer product failure Design
  Analysis of polymer product  failure, Design 
  aids for preventing brittle failure, Defect 
  analysis HDPE pipe durability.  

                                                  4




                                                             2
4/29/2011




B) TEXTILE MATERIALS
Module 6 Mechanical Properties  of Textile Fibres
• Tensile Recovery, Elastic Performance Coefficient in 
  Tension, Inter Fibre Stress and its Transmission, 
           ,                                         ,
  Stress analysis of stable fibre, filaments, influence 
  of twist on yarn modulus 
• Plasticity of textile fibers based on effect of load, 
  time, temperature superposition.
Module 7 Mechanics of Yarns:
• Mechanics of Bent Yarns, Flexural Rigidity, Fabric 
  Wrinkling, Stiffness in Textile Fabrics. Creasing and 
  Crease‐proofing of Textiles                        5




  • Module 8 Compression of Textile Materials
  • Study of Resilience, Friction between Single 
    Fibres, Friction in Plied Yarns
  • Module 9 Mechanical Properties of Non 
    Wovens and composite materials 




                                                     6




                                                                  3
4/29/2011




                               Books 
• Neilsen L., Landel R.,“Mechanical Properties of Polymers 
  and Composites” (1994)
• Moalli J “Plastic Failure: Analysis and Prevention” (2001)
  Moalli  J  Plastic Failure: Analysis and Prevention (2001)
• Mark J, Erman B., Elrich F “Science and Technology of 
  Rubbers” (2005)
• Ferdinand P Beer, E Russell Jhonston Jr., Jhon T Dewolf 
  “Mechanics of Materials” (2004)
• Jinlian Hu “Structure and Mechanics of Woven Fabrics” 
  Jinlian Hu  Structure and Mechanics of Woven Fabrics
  (2004)
• AE Bogdanovich, C M Pastore “Mechanics of Textile and 
  Laminated Composites” (1996)
                                                                7




                          Assessment 
   •   Quizzes:                                           10%
   •   Class participation  & Discussion     10%
   •   Assignments :                                      10%
   •   Midterm:                                           30%
   •   Final:                                             40%




                                                                8




                                                                           4
4/29/2011




                                                  Cause 
                                                 & effect 
                                                 model



                                                           9




Material Properties
  1.  Elastic                                                    
      a.  Elastic Behavior causes a 
      a. Elastic Behavior causes a
    material to return to its 
    original shape after being 
    deformed.                                       




                                                          10




                                                                           5
4/29/2011




     b.  Completely elastic behavior


                                      F = kx
 Force
                                k is called the elastic
                                modulus
  (F)



                     Distance (x)
                                                          11




                        2. Viscous
a.  Viscous behavior is related to the rate of 
deformation.
d f      ti


                 ⎛ Δx ⎞
            F = η⎜    ⎟
                 ⎝ Δt ⎠

         Viscosity           Rate of deformation



                                                          12




                                                                      6
4/29/2011




                                                    fast
                                                    f t


force, F
                                                   slow




                        distance, x

                                                           13




     3.  Viscoelastic 
           a.  Fibers exhibit viscoelastic behavior  
        b. force required to deform a material  
            dependents amount of deformation and  rate 
        at which the material is deformed



                                        fast

 F                   viscous
                                          slow

                              elastic

                          x                                14




                                                                       7
4/29/2011




B.  Internal Structure                                                      
     1.  Chemical Composition
            Sequence and kind of atoms in structure
            Sequence and kind of atoms in structure
      2.  Crystallinity
            Polymer chains or sections packed together
      3.  Orientation
            Alignment of chains along fiber axis
C.  Thermal Properties                                               
C Thermal Properties
     Melting Temperature
     2.  Glass Transition Temperature
          Most polymers are thermoplastic – they  soften 
      before melting
                                                                       15




 D. Physical Properties                                         
     Breaking Strength
             Force required to break a fiber
             Force required to break a fiber
        2.  Breaking Elongation
             Amount of stretch before breaking
        3.  Modulus
             Resistance to deformation
        4.  Toughness
             Amount of energy absorbed
        5.  Elasticity
             Ability to recover after being deformed

                                                                       16




                                                                                      8
4/29/2011




                                                  17




    Structural factors=> Mechanical 
                Behavior
l. Molecular weight
2. Cross‐linking and branching
2 Cross‐linking and branching
3. Crystallinity and crystal morphology
4. Copolymerization (random, block, and graft)
5. Plasticization
6. Molecular orientation
7. Fillers
7 Fillers
8. Blending
9. Phase separation and orientation in blocks, 
   grafts, and blends
                                                  18




                                                              9
4/29/2011




      External Factors Mechanical 
                Properties
1. Temperature
2. Time, frequency, rate of stressing or straining
3. Pressure
4. Stress and strain amplitude
5. Type of deformation (shear, tensile, biaxial, e tc. )
6. Heat treatments or thermal history
6 Heat treatments or thermal history
7. Nature of surrounding atmosphere, especially 
   moisture content

                                                       19




5 assumptions ‐> Mechanical Behavior
1) Linearity: Two types of linearity are normally 
  assumed: A) Material linearity (Hookean stress
  assumed: A) Material linearity (Hookean stress‐
  strain behavior) or linear relation between stress 
  and strain; B) Geometric linearity or small strains 
  and deformation.
2) Elastic: Deformations due to external loads are 
  completely and instantaneously reversible upon 
  load removal.
  load removal.
3) Continuum: Matter is continuously distributed 
  for all size scales, i.e. there are no holes or voids.
4) Homogeneous: Material properties are the same 
  at every point or material properties are invariant 
  upon translation.                                    20




                                                                  10
4/29/2011




   5) Isotropic: Materials which have the same 
     mechanical properties in all directions at an 
          h i l         ti i ll di ti         t
     arbitrary point or materials whose properties 
     are invariant upon rotation of axes at a point. 
     Amorphous materials are isotropic.




                                                                    21




           Stress‐ Strain > Definations
• Dog Bone is used and material properties such as 
• 1) Young’s modulus, 2) Poisson’s ratio, 3) failure (yield) stress and 
    )     g            , )              , )          (y )
  strain.
• The specimen may be cut from a thin flat plate of constant 
  thickness or may be machined from a cylindrical bar. 
• The “dogbone” shape is to avoid stress concentrations from 
  loading machine connections and to insure a homogeneous state 
  of stress and strain within the measurement region. 



• The term homogeneous here indicates a uniform state of stress 
  or strain over the measurement region, i.e. the throat or reduced 
  central portion of the specimen.
                                                                    22




                                                                                 11
4/29/2011




• The engineering (average) stress can be 
  calculated by dividing the applied tensile 
    l l t d b di idi th           li d t il
  force, P, (normal to the cross section) by the 
  area of the original cross sectional area A0 as 
  follows,

            Stress 


                                                     23




                      Strain 
• The engineering (average) strain in the direction 
  of the tensile load can be found by dividing the 
  change in length, ∆L, of the inscribed rectangle by 
  the original length L0,




• The term  lambda in the above equation is called 
  the extension ratio and is sometimes used for 
  large deformations e.g., Low modulus rubber 
                                                     24




                                                                12
4/29/2011




        True Stresses and Strain 
• True stress and strain are calculated using the 
  instantaneous (deformed at a particular load) 
  i t t          (d f      d t       ti l l d)
  values of the cross‐sectional area, A, and the 
  length of the rectangle, L,




                                                 25




              Young Modulus 
• Young’s modulus, E, may be determined from 
  the slope of the stress‐strain curve or by 
  th l        f th t        t i           b
  dividing stress by strain,




                                                 26




                                                            13
4/29/2011




• the axial deformation over length L0 is,




• Poisson’s ratio, , is defined as the absolute 
  value of the ratio of strain transverse, єy, to 
  the load direction to the strain in the load 
  direction, є x ,



Where strain transverse
‐ve for Applied tensile load,                        27




                         Shear 



•   L = length of the cylinder, 
•   T = applied torque, 
•   r = radial distance, 
•   J = polar second moment of area  
•   G = shear modulus.
•     =shear stress,        = angle of twist,
•     =shear strain,                                 28




                                                                14
4/29/2011




• The shear modulus, G, is the slope of the shear 
  stress‐strain curve and may be found from,



where the shear strain is easily found by measuring 
 only the angular rotation, , in a given length, L. 
 The shear modulus is related to Young’s modulus



• As Poisson’s ratio, , varies between 0.3 and 0.5 for 
  most materials, the shear modulus is often 
  approximated by, G ~ E/3.                        29




    Typical Stress Strain Properties 




                                                   30




                                                                15
4/29/2011




                     Yield point
• if the stress exceeds the proportional limit a 
  residual or permanent deformation may remain 
  when the specimen is unloaded and the material is 
                p
  said to have “yielded”.
• The exact yield point may not be the same as the 
  proportional limit and if this is the case the location 
  is difficult to determine. 
• As a result, an arbitrary “0.2% offset” procedure is 
  often used to determine the yield point in metals 


                                                      31




  • That is, a line parallel to the initial tangent to 
    the stress‐strain diagram is drawn to pass 
    th t          t i di         i d        t
    through a strain of 0.002 in./in. 
  • The yield point is then defined as the point C 
    of intersection of this line and the stress‐strain 
    diagram.
        g
  • This procedure can be used for polymers but 
    the offset must be much larger than 0.2% 
    definition used for metals.
                                                      32




                                                                   16
4/29/2011




the stress is nearly 
linear with strain until it reaches the 
upper yield point 
stress which is also 
known as the 
elastic‐plastic 
tensile instability 
p
point. 
At this point the load (or stress) decreases as the 
   deformation continues to increase. That is, less load 
   is necessary to sustain continued deformation. 
                                                    33




  The region between the lower yield point
  and the maximum stress is a region of strain 
    hardening, Poly‐Carbonate shows the similar 
    behavior




                                                    34




                                                                  17
4/29/2011




• If the strain scale of Fig. (a) is expanded as 
  illustrated in Fig. (b),




• the stress‐strain diagram of mild steel is 
  approximated by two straight lines; 
• i) for the linear elastic portion and 
• ii) is horizontal at a stress level of the lower 
  yield point.                                        35




• This characteristic of mild steel to “flow”,
  “neck” “d
  “ k” or “draw” without rupture when the 
                   ” ith t        t       h th
  yield point has been exceeded has led to the 
  concepts of plastic, limit or ultimate design.




                                                      36




                                                                 18
4/29/2011




            Idealized Stress‐ Strain 




• a linear elastic perfectly brittle material is assumed 
  to have a stress‐strain diagram fig (a)
• a perfectly elastic‐plastic  material with the stress‐
  strain diagram Fig (b) mild steel or Poly C        37




• Metals (and polymers) often have nonlinear
• stress‐strain behavior as shown in Fig. (a). These 
  are sometimes modeled with a bilinear diagram 
  as shown in Fig. (b) and are referred to as a 
  perfectly linear elastic strain hardening material.38




                                                                  19
4/29/2011




       Mathematical Definitions 
Definition of a Continuum: A basic assumption 
 of elementary solid mechanics is that a 
   f l      t      lid     h i i th t
 material can be approximated as a continuum. 
 That is, the material (of mass M) is 
 continuously distributed over an arbitrarily 
 small volume, V, such that,




                                            39




   Mathematical/ Physical  Def. of 
     Normal and Shear Stress 
• Consider a body in 
  equilibrium under the 
      ilib i      d th
  action of external 
  forces
• F1, F2, F3, F4 = Fi as 
  shown in Fig.g



                                            40




                                                       20
4/29/2011




• If a cutting plane is 
  passed through the 
         d th     h th
  body as
• shown in Fig, 
  equilibrium is 
  maintained on the 
  remaining portion
by internal forces 
  distributed over the 
  surface S.                                      41




• At any arbitrary point p, 
• the incremental resultant force, ∆Fr, on the 
  cut surface can be broken up into a normal 
  force in the direction of the normal, n, to 
  surface S and
• a tangential force parallel to surface S. 
• The normal stress and the shear stress at 
  point p is mathematically defined as,
     i    i      h     i ll d fi d



                                                  42




                                                             21
4/29/2011




Alternatively, the resultant 
 force, ∆Fr, at point p can 
 be divided by the area, ∆ 
 A, 
and the limit taken to 
and the limit taken to
 obtain the stress resultant 
 σr as shown in Fig. Normal 
 and tangential 
 components of this stress 
 resultant will then be the 
 normal stress σn and 
 shear stress τs at point p 
 on the area A.
                                                    43




• If a pair of cutting planes a differential distance 
  apart are passed through
• the body parallel to each of the three coordinate 
            yp
  planes, a cube will be identified. 
• Each plane will have normal and tangential 
  components of the stress resultants. 
• The tangential or shear stress resultant on each 
  plane can further be represented by two 
  components in the coordinate directions. 

                                                    44




                                                               22
4/29/2011




• The internal stress 
  state is then 
  represented by 
  three stress 
  components on 
  components on
  each coordinate 
  plane as shown in 
  Fig. Therefore at 
  any point in a body 
  there will be nine 
   h       ill b i
  stress components. 
  These are often 
  identified in matrix 
  form such that,                                  45




 Using equilibrium, it is easy to show that the 
   stress matrix is symmetric,
    t        ti i          ti
 or




 • leaving only six independent stresses existing at 
   a material point.                               46




                                                              23
4/29/2011




   Physical and Mathematical Def. of 
         Normal & Shear Strain  
  • If there is stress acting on the body. For 
    example 
           l




                                                  47




• Both shearing and normal deformation may occur 
  with displacements. 
• u is the displacement component in the x 
  direction and v is the displacement component in 
  the y direction.
  the y direction




                                                  48




                                                             24
4/29/2011




• The unit change in the x dimension will be the 
  strain єxx and is given by,




• If we apply similarly for y and z direction, and 
  assume that change of angle is very small then 
  ∆u will be ignored. Then in 3 co‐ordinate 
  system normal strains are defined as:‐



                                                      49




                 Shear strains
• Shear strains are defined as the distortion of 
  the original 90º angle at the origin or the sum 
  of the angles Ѳ1 + Ѳ2. That is, again using the 
  small deformation assumption,




• After solving in all 3 directions shear strain is

                                                           50




                                                                      25
4/29/2011




• Like stresses, nine components of strain exist 
  at a point and these can be represented in 
  matrix form as,




• Again, it is possible to show that the strain 
   g ,         p
  matrix is symmetric or that,



• Hence there are only six independent strains.     51




                                                               26

Contenu connexe

Tendances

Application of composite materials in aerospace industry
Application of composite materials in aerospace industryApplication of composite materials in aerospace industry
Application of composite materials in aerospace industry
Amol Chakankar
 
Polymer Composites in Aviation Sector
Polymer Composites in Aviation SectorPolymer Composites in Aviation Sector
Polymer Composites in Aviation Sector
Shivi Kesarwani
 

Tendances (20)

Resin Transfer Molding
Resin Transfer MoldingResin Transfer Molding
Resin Transfer Molding
 
Vacuum bag forming and pressure bag forming
Vacuum bag forming and pressure bag formingVacuum bag forming and pressure bag forming
Vacuum bag forming and pressure bag forming
 
prepreg and Resin transfer molding
prepreg and Resin transfer moldingprepreg and Resin transfer molding
prepreg and Resin transfer molding
 
Polymer Matrix Composites (PMC) Manufacturing and application
Polymer Matrix Composites (PMC) Manufacturing and applicationPolymer Matrix Composites (PMC) Manufacturing and application
Polymer Matrix Composites (PMC) Manufacturing and application
 
Application of composite materials in aerospace industry (1)
Application of composite materials in aerospace industry (1)Application of composite materials in aerospace industry (1)
Application of composite materials in aerospace industry (1)
 
Composite introduction
Composite introductionComposite introduction
Composite introduction
 
Presentation1
Presentation1Presentation1
Presentation1
 
MECHANICS OF MATERIALS
MECHANICS OF MATERIALSMECHANICS OF MATERIALS
MECHANICS OF MATERIALS
 
Composite materials in aerospace applications
Composite materials in aerospace applicationsComposite materials in aerospace applications
Composite materials in aerospace applications
 
Composites
CompositesComposites
Composites
 
Composite materials
Composite materialsComposite materials
Composite materials
 
Application of composite materials in aerospace industry
Application of composite materials in aerospace industryApplication of composite materials in aerospace industry
Application of composite materials in aerospace industry
 
Polymer Composites in Aviation Sector
Polymer Composites in Aviation SectorPolymer Composites in Aviation Sector
Polymer Composites in Aviation Sector
 
Finite Element Analysis of Composites by Dan Milligan
 Finite Element Analysis of Composites by Dan Milligan Finite Element Analysis of Composites by Dan Milligan
Finite Element Analysis of Composites by Dan Milligan
 
Wear and Tribology Assignment
Wear and Tribology AssignmentWear and Tribology Assignment
Wear and Tribology Assignment
 
Classification of composites 2
Classification of composites 2Classification of composites 2
Classification of composites 2
 
Metal matrix composites and Metal matrix Ceramics
 Metal matrix composites and Metal matrix Ceramics Metal matrix composites and Metal matrix Ceramics
Metal matrix composites and Metal matrix Ceramics
 
Ceramics Matrix Composite
Ceramics Matrix CompositeCeramics Matrix Composite
Ceramics Matrix Composite
 
Short fiber reinforcements
Short fiber reinforcementsShort fiber reinforcements
Short fiber reinforcements
 
Phy351 ch 9
Phy351 ch 9Phy351 ch 9
Phy351 ch 9
 

En vedette (6)

Unit 1- simple stress and strain
Unit 1- simple stress and strainUnit 1- simple stress and strain
Unit 1- simple stress and strain
 
Stress Management
Stress ManagementStress Management
Stress Management
 
Stress strain curve
Stress strain curveStress strain curve
Stress strain curve
 
Simple stresses and strains
Simple stresses and strains Simple stresses and strains
Simple stresses and strains
 
Lecture 1 stresses and strains
Lecture 1 stresses and strainsLecture 1 stresses and strains
Lecture 1 stresses and strains
 
True stress
True stressTrue stress
True stress
 

Similaire à 1 introduction to stress and strain

207682663-Composite-Material-An-Introduction.pptx
207682663-Composite-Material-An-Introduction.pptx207682663-Composite-Material-An-Introduction.pptx
207682663-Composite-Material-An-Introduction.pptx
Abinash Behera
 
FRACTURE MECHANICS OF NANO-SILICA PARTICLES IN REINFORCED EPOXIES
FRACTURE MECHANICS OF NANO-SILICA PARTICLES IN REINFORCED EPOXIES  FRACTURE MECHANICS OF NANO-SILICA PARTICLES IN REINFORCED EPOXIES
FRACTURE MECHANICS OF NANO-SILICA PARTICLES IN REINFORCED EPOXIES
Jordan Suls
 
Svnit composite materials
Svnit composite materialsSvnit composite materials
Svnit composite materials
NEERAJ PARMAR
 
Plastics Mechanical Properties
Plastics   Mechanical PropertiesPlastics   Mechanical Properties
Plastics Mechanical Properties
ibaiges
 
Materials Technology for Engineers pre-test 1 notes
Materials Technology for Engineers pre-test 1 notesMaterials Technology for Engineers pre-test 1 notes
Materials Technology for Engineers pre-test 1 notes
musadoto
 

Similaire à 1 introduction to stress and strain (20)

M_Sc_Course_Materials_Engineering
M_Sc_Course_Materials_EngineeringM_Sc_Course_Materials_Engineering
M_Sc_Course_Materials_Engineering
 
Learning Reflection of Textile Physics II
Learning Reflection of Textile Physics IILearning Reflection of Textile Physics II
Learning Reflection of Textile Physics II
 
207682663-Composite-Material-An-Introduction.pptx
207682663-Composite-Material-An-Introduction.pptx207682663-Composite-Material-An-Introduction.pptx
207682663-Composite-Material-An-Introduction.pptx
 
defense7
defense7defense7
defense7
 
COMPOSITES ( as per MGU syllabus)
COMPOSITES ( as per MGU syllabus)COMPOSITES ( as per MGU syllabus)
COMPOSITES ( as per MGU syllabus)
 
FRACTURE MECHANICS OF NANO-SILICA PARTICLES IN REINFORCED EPOXIES
FRACTURE MECHANICS OF NANO-SILICA PARTICLES IN REINFORCED EPOXIES  FRACTURE MECHANICS OF NANO-SILICA PARTICLES IN REINFORCED EPOXIES
FRACTURE MECHANICS OF NANO-SILICA PARTICLES IN REINFORCED EPOXIES
 
Svnit composite materials
Svnit composite materialsSvnit composite materials
Svnit composite materials
 
Introduction to Elasticity of materials
Introduction to Elasticity of materialsIntroduction to Elasticity of materials
Introduction to Elasticity of materials
 
Introduction to Mechanical Metallurgy (Our course project)
Introduction to Mechanical Metallurgy (Our course project)Introduction to Mechanical Metallurgy (Our course project)
Introduction to Mechanical Metallurgy (Our course project)
 
H04464456
H04464456H04464456
H04464456
 
FINITE ELEMENT ANALYSIS OF JUTE AND BANANA FIBERS REINFORCED COMPOSITES FOR M...
FINITE ELEMENT ANALYSIS OF JUTE AND BANANA FIBERS REINFORCED COMPOSITES FOR M...FINITE ELEMENT ANALYSIS OF JUTE AND BANANA FIBERS REINFORCED COMPOSITES FOR M...
FINITE ELEMENT ANALYSIS OF JUTE AND BANANA FIBERS REINFORCED COMPOSITES FOR M...
 
advanced materials-converted-1.pdf
 advanced materials-converted-1.pdf advanced materials-converted-1.pdf
advanced materials-converted-1.pdf
 
Dental Polymers.pptx
Dental Polymers.pptxDental Polymers.pptx
Dental Polymers.pptx
 
Plastics Mechanical Properties
Plastics   Mechanical PropertiesPlastics   Mechanical Properties
Plastics Mechanical Properties
 
MS_Unit-1_Lecture-1_Introduction .pdf
MS_Unit-1_Lecture-1_Introduction .pdfMS_Unit-1_Lecture-1_Introduction .pdf
MS_Unit-1_Lecture-1_Introduction .pdf
 
Introduction and literature review on buckling of laminated plates
Introduction and literature review on buckling of laminated platesIntroduction and literature review on buckling of laminated plates
Introduction and literature review on buckling of laminated plates
 
Materials Technology for Engineers pre-test 1 notes
Materials Technology for Engineers pre-test 1 notesMaterials Technology for Engineers pre-test 1 notes
Materials Technology for Engineers pre-test 1 notes
 
Biomaterials and biosciences biometals.pptx
Biomaterials and biosciences biometals.pptxBiomaterials and biosciences biometals.pptx
Biomaterials and biosciences biometals.pptx
 
2142904
21429042142904
2142904
 
E04472840
E04472840E04472840
E04472840
 

Dernier

Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
ssuserdda66b
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Dernier (20)

UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 

1 introduction to stress and strain

  • 1. 4/29/2011 Mechanics of Flexible Materials By Hammad Mohsin 1 Course Outline  A)FUNDAMENTALS & POLYMERS  Module 1 Introduction to Mechanics of Materials • Role of Mechanics of Materials in Engineering Role of Mechanics of Materials in Engineering,  Stresses and Deformations, True Stress and True  Strain Module 2 Study of Stress and Strain • Stress ‐ Strain Diagrams of Ductile and Brittle  g Materials, Isotropic and An‐isotropic Materials,  Modulus of Elasticity, Modulus of Rigidity, Elastic and Plastic Behavior of Materials, Non Linear Elasticity,  Linear Elasticity,  2 1
  • 2. 4/29/2011 • Stress and Strain in Changed Thermal Conditions,  Repeated Loading, Bending of Elasto‐plastic  Materials, Analysis of Stresses and Deformations Module 3 Molecular basis of Rubberlike elasticity • Structure of a Typical Network,  Elementary  Molecular Theories, More Advanced Molecular  Theories Phenomenological Theories and  Molecular Structure, Swelling of Networks and  Responsive Gels Enthalpic and Entropic  p p p Contributions to Rubber Elasticity: Force‐ Temperature Relations ,  Direct Determination of  Molecular Dimensions 3 Module 4 Strength of Elastomers • Initiation of Fracture, Threshold Strengths and  Extensibilities, Fracture Under Multiaxial  Stresses , Crack Propagation,  Tensile Rupture,  Repeated Stressing: Mechanical Fatigue,   Repeated Stressing Mechanical Fatigue Surface Cracking by Ozone, Abrasive Wear.  Module 5 Failure Prevention • Analysis of polymer product failure Design Analysis of polymer product  failure, Design  aids for preventing brittle failure, Defect  analysis HDPE pipe durability.   4 2
  • 3. 4/29/2011 B) TEXTILE MATERIALS Module 6 Mechanical Properties  of Textile Fibres • Tensile Recovery, Elastic Performance Coefficient in  Tension, Inter Fibre Stress and its Transmission,  , , Stress analysis of stable fibre, filaments, influence  of twist on yarn modulus  • Plasticity of textile fibers based on effect of load,  time, temperature superposition. Module 7 Mechanics of Yarns: • Mechanics of Bent Yarns, Flexural Rigidity, Fabric  Wrinkling, Stiffness in Textile Fabrics. Creasing and  Crease‐proofing of Textiles  5 • Module 8 Compression of Textile Materials • Study of Resilience, Friction between Single  Fibres, Friction in Plied Yarns • Module 9 Mechanical Properties of Non  Wovens and composite materials  6 3
  • 4. 4/29/2011 Books  • Neilsen L., Landel R.,“Mechanical Properties of Polymers  and Composites” (1994) • Moalli J “Plastic Failure: Analysis and Prevention” (2001) Moalli  J  Plastic Failure: Analysis and Prevention (2001) • Mark J, Erman B., Elrich F “Science and Technology of  Rubbers” (2005) • Ferdinand P Beer, E Russell Jhonston Jr., Jhon T Dewolf  “Mechanics of Materials” (2004) • Jinlian Hu “Structure and Mechanics of Woven Fabrics”  Jinlian Hu  Structure and Mechanics of Woven Fabrics (2004) • AE Bogdanovich, C M Pastore “Mechanics of Textile and  Laminated Composites” (1996) 7 Assessment  • Quizzes:                          10% • Class participation  & Discussion     10% • Assignments :                                      10% • Midterm:                        30% • Final:                               40% 8 4
  • 5. 4/29/2011 Cause  & effect  model 9 Material Properties 1.  Elastic                                                     a.  Elastic Behavior causes a  a. Elastic Behavior causes a material to return to its  original shape after being  deformed.                                        10 5
  • 6. 4/29/2011 b.  Completely elastic behavior F = kx Force k is called the elastic modulus (F) Distance (x) 11 2. Viscous a.  Viscous behavior is related to the rate of  deformation. d f ti ⎛ Δx ⎞ F = η⎜ ⎟ ⎝ Δt ⎠ Viscosity Rate of deformation 12 6
  • 7. 4/29/2011 fast f t force, F slow distance, x 13 3.  Viscoelastic  a.  Fibers exhibit viscoelastic behavior   b. force required to deform a material   dependents amount of deformation and  rate  at which the material is deformed fast F viscous slow elastic x 14 7
  • 8. 4/29/2011 B.  Internal Structure                                                       1.  Chemical Composition Sequence and kind of atoms in structure Sequence and kind of atoms in structure 2.  Crystallinity Polymer chains or sections packed together 3.  Orientation Alignment of chains along fiber axis C.  Thermal Properties                                                C Thermal Properties Melting Temperature 2.  Glass Transition Temperature Most polymers are thermoplastic – they  soften  before melting 15 D. Physical Properties                                          Breaking Strength Force required to break a fiber Force required to break a fiber 2.  Breaking Elongation Amount of stretch before breaking 3.  Modulus Resistance to deformation 4.  Toughness Amount of energy absorbed 5.  Elasticity Ability to recover after being deformed 16 8
  • 9. 4/29/2011 17 Structural factors=> Mechanical  Behavior l. Molecular weight 2. Cross‐linking and branching 2 Cross‐linking and branching 3. Crystallinity and crystal morphology 4. Copolymerization (random, block, and graft) 5. Plasticization 6. Molecular orientation 7. Fillers 7 Fillers 8. Blending 9. Phase separation and orientation in blocks,  grafts, and blends 18 9
  • 10. 4/29/2011 External Factors Mechanical  Properties 1. Temperature 2. Time, frequency, rate of stressing or straining 3. Pressure 4. Stress and strain amplitude 5. Type of deformation (shear, tensile, biaxial, e tc. ) 6. Heat treatments or thermal history 6 Heat treatments or thermal history 7. Nature of surrounding atmosphere, especially  moisture content 19 5 assumptions ‐> Mechanical Behavior 1) Linearity: Two types of linearity are normally  assumed: A) Material linearity (Hookean stress assumed: A) Material linearity (Hookean stress‐ strain behavior) or linear relation between stress  and strain; B) Geometric linearity or small strains  and deformation. 2) Elastic: Deformations due to external loads are  completely and instantaneously reversible upon  load removal. load removal. 3) Continuum: Matter is continuously distributed  for all size scales, i.e. there are no holes or voids. 4) Homogeneous: Material properties are the same  at every point or material properties are invariant  upon translation. 20 10
  • 11. 4/29/2011 5) Isotropic: Materials which have the same  mechanical properties in all directions at an  h i l ti i ll di ti t arbitrary point or materials whose properties  are invariant upon rotation of axes at a point.  Amorphous materials are isotropic. 21 Stress‐ Strain > Definations • Dog Bone is used and material properties such as  • 1) Young’s modulus, 2) Poisson’s ratio, 3) failure (yield) stress and  ) g , ) , ) (y ) strain. • The specimen may be cut from a thin flat plate of constant  thickness or may be machined from a cylindrical bar.  • The “dogbone” shape is to avoid stress concentrations from  loading machine connections and to insure a homogeneous state  of stress and strain within the measurement region.  • The term homogeneous here indicates a uniform state of stress  or strain over the measurement region, i.e. the throat or reduced  central portion of the specimen. 22 11
  • 12. 4/29/2011 • The engineering (average) stress can be  calculated by dividing the applied tensile  l l t d b di idi th li d t il force, P, (normal to the cross section) by the  area of the original cross sectional area A0 as  follows, Stress  23 Strain  • The engineering (average) strain in the direction  of the tensile load can be found by dividing the  change in length, ∆L, of the inscribed rectangle by  the original length L0, • The term  lambda in the above equation is called  the extension ratio and is sometimes used for  large deformations e.g., Low modulus rubber  24 12
  • 13. 4/29/2011 True Stresses and Strain  • True stress and strain are calculated using the  instantaneous (deformed at a particular load)  i t t (d f d t ti l l d) values of the cross‐sectional area, A, and the  length of the rectangle, L, 25 Young Modulus  • Young’s modulus, E, may be determined from  the slope of the stress‐strain curve or by  th l f th t t i b dividing stress by strain, 26 13
  • 14. 4/29/2011 • the axial deformation over length L0 is, • Poisson’s ratio, , is defined as the absolute  value of the ratio of strain transverse, єy, to  the load direction to the strain in the load  direction, є x , Where strain transverse ‐ve for Applied tensile load, 27 Shear  • L = length of the cylinder,  • T = applied torque,  • r = radial distance,  • J = polar second moment of area   • G = shear modulus. • =shear stress,        = angle of twist, • =shear strain, 28 14
  • 15. 4/29/2011 • The shear modulus, G, is the slope of the shear  stress‐strain curve and may be found from, where the shear strain is easily found by measuring  only the angular rotation, , in a given length, L.  The shear modulus is related to Young’s modulus • As Poisson’s ratio, , varies between 0.3 and 0.5 for  most materials, the shear modulus is often  approximated by, G ~ E/3. 29 Typical Stress Strain Properties  30 15
  • 16. 4/29/2011 Yield point • if the stress exceeds the proportional limit a  residual or permanent deformation may remain  when the specimen is unloaded and the material is  p said to have “yielded”. • The exact yield point may not be the same as the  proportional limit and if this is the case the location  is difficult to determine.  • As a result, an arbitrary “0.2% offset” procedure is  often used to determine the yield point in metals  31 • That is, a line parallel to the initial tangent to  the stress‐strain diagram is drawn to pass  th t t i di i d t through a strain of 0.002 in./in.  • The yield point is then defined as the point C  of intersection of this line and the stress‐strain  diagram. g • This procedure can be used for polymers but  the offset must be much larger than 0.2%  definition used for metals. 32 16
  • 17. 4/29/2011 the stress is nearly  linear with strain until it reaches the  upper yield point  stress which is also  known as the  elastic‐plastic  tensile instability  p point.  At this point the load (or stress) decreases as the  deformation continues to increase. That is, less load  is necessary to sustain continued deformation.  33 The region between the lower yield point and the maximum stress is a region of strain  hardening, Poly‐Carbonate shows the similar  behavior 34 17
  • 18. 4/29/2011 • If the strain scale of Fig. (a) is expanded as  illustrated in Fig. (b), • the stress‐strain diagram of mild steel is  approximated by two straight lines;  • i) for the linear elastic portion and  • ii) is horizontal at a stress level of the lower  yield point.  35 • This characteristic of mild steel to “flow”, “neck” “d “ k” or “draw” without rupture when the  ” ith t t h th yield point has been exceeded has led to the  concepts of plastic, limit or ultimate design. 36 18
  • 19. 4/29/2011 Idealized Stress‐ Strain  • a linear elastic perfectly brittle material is assumed  to have a stress‐strain diagram fig (a) • a perfectly elastic‐plastic  material with the stress‐ strain diagram Fig (b) mild steel or Poly C 37 • Metals (and polymers) often have nonlinear • stress‐strain behavior as shown in Fig. (a). These  are sometimes modeled with a bilinear diagram  as shown in Fig. (b) and are referred to as a  perfectly linear elastic strain hardening material.38 19
  • 20. 4/29/2011 Mathematical Definitions  Definition of a Continuum: A basic assumption  of elementary solid mechanics is that a  f l t lid h i i th t material can be approximated as a continuum.  That is, the material (of mass M) is  continuously distributed over an arbitrarily  small volume, V, such that, 39 Mathematical/ Physical  Def. of  Normal and Shear Stress  • Consider a body in  equilibrium under the  ilib i d th action of external  forces • F1, F2, F3, F4 = Fi as  shown in Fig.g 40 20
  • 21. 4/29/2011 • If a cutting plane is  passed through the  d th h th body as • shown in Fig,  equilibrium is  maintained on the  remaining portion by internal forces  distributed over the  surface S. 41 • At any arbitrary point p,  • the incremental resultant force, ∆Fr, on the  cut surface can be broken up into a normal  force in the direction of the normal, n, to  surface S and • a tangential force parallel to surface S.  • The normal stress and the shear stress at  point p is mathematically defined as, i i h i ll d fi d 42 21
  • 22. 4/29/2011 Alternatively, the resultant  force, ∆Fr, at point p can  be divided by the area, ∆  A,  and the limit taken to  and the limit taken to obtain the stress resultant  σr as shown in Fig. Normal  and tangential  components of this stress  resultant will then be the  normal stress σn and  shear stress τs at point p  on the area A. 43 • If a pair of cutting planes a differential distance  apart are passed through • the body parallel to each of the three coordinate  yp planes, a cube will be identified.  • Each plane will have normal and tangential  components of the stress resultants.  • The tangential or shear stress resultant on each  plane can further be represented by two  components in the coordinate directions.  44 22
  • 23. 4/29/2011 • The internal stress  state is then  represented by  three stress  components on  components on each coordinate  plane as shown in  Fig. Therefore at  any point in a body  there will be nine  h ill b i stress components.  These are often  identified in matrix  form such that, 45 Using equilibrium, it is easy to show that the  stress matrix is symmetric, t ti i ti or • leaving only six independent stresses existing at  a material point. 46 23
  • 24. 4/29/2011 Physical and Mathematical Def. of  Normal & Shear Strain   • If there is stress acting on the body. For  example  l 47 • Both shearing and normal deformation may occur  with displacements.  • u is the displacement component in the x  direction and v is the displacement component in  the y direction. the y direction 48 24
  • 25. 4/29/2011 • The unit change in the x dimension will be the  strain єxx and is given by, • If we apply similarly for y and z direction, and  assume that change of angle is very small then  ∆u will be ignored. Then in 3 co‐ordinate  system normal strains are defined as:‐ 49 Shear strains • Shear strains are defined as the distortion of  the original 90º angle at the origin or the sum  of the angles Ѳ1 + Ѳ2. That is, again using the  small deformation assumption, • After solving in all 3 directions shear strain is 50 25
  • 26. 4/29/2011 • Like stresses, nine components of strain exist  at a point and these can be represented in  matrix form as, • Again, it is possible to show that the strain  g , p matrix is symmetric or that, • Hence there are only six independent strains. 51 26