SlideShare une entreprise Scribd logo
1  sur  64
Télécharger pour lire hors ligne
Arthur CHARPENTIER, modeling heat waves
Modeling heat-waves :
return period for non-stationary extremes
Arthur Charpentier
Université du Québec à Montréal
charpentier.arthur@uqam.ca
http ://freakonometrics.blog.free.fr/
Changement climatique et gestion des risques, Lyon, Movember 2011
1
Arthur CHARPENTIER, modeling heat waves
Motivation
“Tous nos scénarios à dix ans montrent une aggravation des tempêtes,
inondations, sécheresses. Les catastrophes centennales vont devenir plus
fréquentes.” Jean-Marc Lamère, délégué général de la Fédération Française des
Sociétés d’Assurances, 2003.
Climate change, from Third IPCC Agreement ,2001 :
2
Arthur CHARPENTIER, modeling heat waves
Motivation
“there is no longer any doubt that the Earth’s climate is changing [...] globally,
nine of the past 10 years have been the warmest since records began in 1861”,
February 2005, opening the conference Climate change : a global, national and
regional challenge, Dennis Tirpak.
source : Meehklet al. (2009).
3
Arthur CHARPENTIER, modeling heat waves
The European heatwave of 2003
Third IPCC Assessment, 2001 : treatment of extremes (e.g. trends in extreme
high temperature) is “clearly inadequate”. Karl & Trenberth (2003) noticed
that “the likely outcome is more frequent heat waves”, “more intense and longer
lasting” added Meehl & Tebaldi (2004).
In Nîmes, there were more than 30 days with temperatures higher than 35◦
C
(versus 4 in hot summers, and 12 in the previous heat wave, in 1947).
Similarly, the average maximum (minimum) temperature in Paris peaked over
35◦
C for 10 consecutive days, on 4-13 August. Previous records were 4 days in
1998 (8 to 11 of August), and 5 days in 1911 (8 to 12 of August).
Similar conditions were found in London, where maximum temperatures peaked
above 30◦
C during the period 4-13 August
(see e.g. Burt (2004), Burt & Eden (2004) and Fink et al. (2004).)
4
Arthur CHARPENTIER, modeling heat waves
q
q
q
q
q
q
q
q
q
q
q
q q
q q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q q
q
q q q
q
q
q q
q
q
q
q
q
q
q
q q
q
q
q
q
q q q
q
q
101520
Temperaturein°C
juil. 02 juil. 12 juil. 22 août 01 août 11 août 21 août 31
5
Arthur CHARPENTIER, modeling heat waves
Which temperature might be interesting ?
Karl & Knight (1997) , modeling of the 1995 heatwave in Chicago : minimum
temperature should be most important for health impact (see also Kovats &
Koppe (2005)), several nights with no relief from very warm nighttime
6
Arthur CHARPENTIER, modeling heat waves
Which temperature might be interesting ?
Karl & Knight (1997) , modeling of the 1995 heatwave in Chicago : minimum
temperature should be most important for health impact (see also Kovats &
Koppe (2005)), several nights with no relief from very warm night-time
7
Arthur CHARPENTIER, modeling heat waves
Modeling temperature
Consider the following decomposition
Yt = µt + St + Xt
where
• µt is a (linear) general tendency
• St is a seasonal cycle
• Xt is the remaining (stationary) noise
8
Arthur CHARPENTIER, modeling heat waves
Nonstationarity and linear trend
Consider a spline and lowess regression
9
Arthur CHARPENTIER, modeling heat waves
Nonstationarity and linear trend
or a polynomial regression,and compare local slopes,
10
Arthur CHARPENTIER, modeling heat waves
Nonstationarity and linear trend
Several authors (from Laneet al. (1994) to Blacket al. (2004)) have tried to
explain global warming, and to find explanatory factors.
As pointed out in Queredaet al. (2000), the “analysis of the trend is difficult
and could be biased by non-climatic processes such as the urban effect”. In fact,
“most of the temperature rise could be due to an urban effect” : global warming
can be understood as one of the consequence of “global pollution” (see also
Houghton (1997) or Braunet al. (2004) for a detailed study of the impact of
transportation).
11
Arthur CHARPENTIER, modeling heat waves
Quantile regression to describe ’extremal’ temperature
See Yan (2002), Meehl & Tebaldi (2004), or Alexanderet al. (2006).
Least square used to estimate a linear model for E(Yt),
min
β0,β1
T
t=1
(Yt − [β0 + β1t])2
= min
β0,β1
T
t=1
R(Yt − [β0 + β1t])
where R(x) = x2
.
Quantile regression can be used, let p ∈ (0, 1), and consider
min
β0,β1
T
t=1
R(Yt − [β0 + β1t])
where
Rp(x) = x · (p − 1(x < 0)) =



x · (p − 1) if x < 0
x · p if x > 0
12
Arthur CHARPENTIER, modeling heat waves
Remark :
E(Y ) = argmin E (Y − γ)2
= argmin (Y − γ)2
dF(y)
while
Qp(Y ) = argmin [p − 1] ·
γ
−∞
[γ − x]dF(x) + p ·
+∞
γ
[x − γ]dF(x) .
5%, 25%, 75%, and 95% quantile regressions,
13
Arthur CHARPENTIER, modeling heat waves
Quantile regression to describe ’extremal’ temperature
slopes (β1) of quantile regressions, as functions of probability q ∈ (0, 1),
Remark : constant rate means that scenario 1 is realistic in the Third IPCC
Agreement, 2001 :
14
Arthur CHARPENTIER, modeling heat waves
Quantile regression to describe ’extremal’ temperature
slopes (β1) of quantile regressions, as functions of probability q ∈ (0.9, 1),
15
Arthur CHARPENTIER, modeling heat waves
Regression for yearly maxima
Let Mi denote the highest minimal daily temperature observed during year i,
16
Arthur CHARPENTIER, modeling heat waves
Regression for yearly maxima
Let Mi denote the highest minimal daily temperature observed during year i,
17
Arthur CHARPENTIER, modeling heat waves
Linear trend, and Gaussian noise
Benestad (2003) or Redner & Petersen (2006)
temperature for a given (calendar) day is an “independent Gaussian random
variable with constant standard deviation σ and a mean that increases at constant
speed ν”
In the US, ν = 0.03◦
C per year, and σ = 3.5◦
C
In Paris, ν = 0.027◦
C per year, and σ = 3.23◦
C
Assuming independence it is possible to estimate return periods
18
Arthur CHARPENTIER, modeling heat waves
Linear trend, and Gaussian noise
Return period of k consecutive days with temperature exceeding s,
19
Arthur CHARPENTIER, modeling heat waves
The seasonal component
Seasonal pattern during the yearly
did not use a cosine function to model St but a spline regression (on circular
data),
20
Arthur CHARPENTIER, modeling heat waves
The residual part (or stationary component)
Let Xt = Yt − β0 + β1t + St
21
Arthur CHARPENTIER, modeling heat waves
The residual part (or stationary component)
Xt might look stationary,
22
Arthur CHARPENTIER, modeling heat waves
The residual part (or stationary component)
but the variance of Xt seems to have a seasonal pattern,
23
Arthur CHARPENTIER, modeling heat waves
The residual part (or stationary component)
Dispersion and variance of residuals, graph of |Xt| series
24
Arthur CHARPENTIER, modeling heat waves
A spatial model for residuals ?
Consider here two series of temperatures (e.g. Paris and Marseille).
25
Arthur CHARPENTIER, modeling heat waves
A spatial model for residuals ?
Consider here two series of temperatures (e.g. Paris and Marseille).
26
Arthur CHARPENTIER, modeling heat waves
A spatial model for residuals ?
Consider here two series of temperatures (e.g. Paris and Marseille), and their
stationary residuals
27
Arthur CHARPENTIER, modeling heat waves
Tail dependence indices
For the lower tail
L(z) = P(U < z, V < z)/z = C(z, z)/z = P(U < z|V < z) = P(V < z|U < z),
and for the upper tail
R(z) = P(U > z, V > z)/(1 − z) = P(U > z|V > z).
see Joe (1990). Define
λU = R(1) = lim
z→1
R(z) and λL = L(0) = lim
z→0
L(z).
such that
λL = lim
u→0
P X ≤ F−1
X (u) |Y ≤ F−1
Y (u) ,
and
λU = lim
u→1
P X > F−1
X (u) |Y > F−1
Y (u) .
28
Arthur CHARPENTIER, modeling heat waves
Tail dependence indices
Ledford & Tawn (1996) suggested the following alternative approach,
• for independent random variables,
P(X > t, Y > t) = P(X > t) × P(Y > t) = P(X > t)2
,
• for comonotonic random variables, P(X > t, Y > t) = P(X > t) = P(X > t)1
,
Assume that P(X > t, Y > t) ∼ P(X > t)1/η
as t → ∞, where η ∈ (0, 1] will be a
tail index.
Define
χU (z) =
2 log(1 − z)
log C (z, z)
− 1 and χL(z) =
2 log(1 − z)
log C(z, z)
− 1
with ηU = (1 + limz→0 χU (z))/2 and ηL = (1 + limz→0 χL(z))/2 sont appelés
indices de queue supérieure et inférieure, respectivement.
29
Arthur CHARPENTIER, modeling heat waves
Tail functions L(·) and R(·)
Gaussian copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
L and R concentration functions
L function (lower tails) R function (upper tails)
GAUSSIAN
q
q
Student t copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
L and R concentration functions
L function (lower tails) R function (upper tails)
STUDENT (df=3)
q
q
Clayton copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
L and R concentration functions
L function (lower tails) R function (upper tails)
CLAYTON
q
q
Gumbel copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
L and R concentration functions
L function (lower tails) R function (upper tails)
GUMBEL
q
q
30
Arthur CHARPENTIER, modeling heat waves
Tail functions χL(·) and χU (·)
Gaussian copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Chi dependence functions
lower tails upper tails
GAUSSIAN
q
q
Student t copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Chi dependence functions
lower tails upper tails
STUDENT (df=3)
q
q
Clayton copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Chi dependence functions
lower tails upper tails
CLAYTON
q
q
Gumbel copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Chi dependence functions
lower tails upper tails
GUMBEL
q
q
31
Arthur CHARPENTIER, modeling heat waves
Tail functions L(·) and R(·)
32
Arthur CHARPENTIER, modeling heat waves
Tail functions χL(·) and χU (·)
33
Arthur CHARPENTIER, modeling heat waves
Dynamics of the residual part
consider an ARMA model to model residuals dynamics
φ1 φ2 θ1 θ2 σ2
ARMA(2,2) 1.4196
(0.0419)
−0.4733
(0.0322)
−0.6581
(0.0419)
−0.1032
(0.00752)
5.023
It is possible to fit a Gaussian or a Student ARMA process,
34
Arthur CHARPENTIER, modeling heat waves
−4 −2 0 2 4
−15−10−50510
QQ plot of residuals (Gaussian)
Theoretical Quantiles
SampleQuantiles
−4 −2 0 2 4
−15−10−50510
QQ plot of residuals (Student)
Theoritical Quantiles
Samplequantiles
35
Arthur CHARPENTIER, modeling heat waves
Extremes and discrete data
Recall Fisher-Tippett theorem : let X1, · · · , Xn, · · · be i.i.d. with cdf F, with
right point xF = sup{x; F(x) < 1}, and define Xn:n = sup{X1, · · · , Xn}. If
lim
x→xF
1 − F(x)
1 − F(x−)
= 1, (1)
then there exists 3 possible limits for
lim
n→∞
P
Xn:n − bn
an
≤ x = G(x),
(Fréchet, Gumbel and Weibull), see Leadbetteret al.(1983), and we shall say
that F ∈ MDA(G). But Assumption (1) is usually not satisfied for discrete data.
Approximations can be derived for standard discrete distributions (Poisson,
geometric, etc). Nevertheless, if X is an absolutely continuous random variable,
with xF = ∞, with hazard rate satisfying h(x) = d log x → 0 as x → ∞, if X is
a discretized version of X, with cdf F , then (1) holds, and further,
F ∈ MDA(G) if and only if F ∈ MDA(G).
36
Arthur CHARPENTIER, modeling heat waves
Generalized Pareto and modeling exceedances
Instead of looking at maximas, use the threshold approch and Pickamds,
Balkema, de Haan theorem :
P (X > x + u|X > u) ≈ 1 +
ξx
βu
−1/ξ
+
with x+ = max{x, 0}, βu > 0 and ξ are respectively scale and shape parameters,
in the context of a stationary process (Xt).
For non-stationary processes, Smith (1989) and Davison & Smith (1990)
suggested a GPD model with covariate,
P (X > x + u|X > u, Z = z) ≈ 1 +
ξ(z)x
βu(z)
−1/ξ(z)
+
See e.g. Chavez-Desmoulins & Davison (2005) for non-parametric (GAM)
models.
37
Arthur CHARPENTIER, modeling heat waves
Generalized Pareto and modeling exceedances
But as point out in Eastoe & Tawn (2008) a strong constraint is that the scale
parameter has to satisfy, for any v > u,
βv(z) = βu(z) + (v − u)ξ(z).
Coelho et al. (2008) and Kyslýet al. (2010) suggested to use a time varying
threshold u(z), while Eastoe & Tawn (2008) suggested preprocessing
techniques, and to assume that Xt = µt + σt
˜Xt, with ˜Xt stationary.
38
Arthur CHARPENTIER, modeling heat waves
Generalized Pareto and modeling exceedances
What about tails of |Xt| ?
39
Arthur CHARPENTIER, modeling heat waves
Generalized Pareto and modeling exceedances
What about tails of |Xt| ?
different thresholds u.
40
Arthur CHARPENTIER, modeling heat waves
Long range dependence ?
Smith (1993) or Dempster & Liu (1995) suggested that, on a long period, the
average annual temperature should be decomposed as follows
• an increasing linear trend,
• a random component, with long range dependence.
E.g.(Yt) such that Φ(L)(1 − L)d
Yt = Θ(L)εt where d ∈ (−1/2, 1/2), and where
(1 − L)d
= 1 +
∞
j=1
d(d − 1) · · · (d − j + 1)
j!
(1−)j
Lj
.
i.e. ARFIMA(p, d, q), fractional processes (see e.g. Hurst (1951) or
Mandelbrot (1965))
E.g.(Yt) such that
Φ(L)(1 − 2uL + L2
)d
Yt = Θ(L)εt,
i.e. GARMA(p, d, q) from Hosking (1981) Gegenbauer’s frequency, defined as
ω = cos−1
(u), is closely related to the seasonality of the series. Here, u = 2π/365
(because of the annual cycle of temperature).
41
Arthur CHARPENTIER, modeling heat waves
A stationary process (Yt)t∈Z is said to have long range dependence if
∞
h=1
|ρX(h)| = ∞,
and short range dependence if not.
Smith (1993) “we do not believe that the autoregressive model provides an
acceptable method for assessing theses uncertainties” (on temperature series)
42
Arthur CHARPENTIER, modeling heat waves
Long range dependence and regression
Gray, Zhang & Woodward (1989) proposed an extension to model persistent
seasonal series, using Gegenbauer’s polynomial Gd
n(·), defined as
Gd
n(x) =
(−2)n
n!
Γ(n + d)Γ(n + 2d)
Γ(d)Γ(2n + 2d)
(1 − x2
)−α+1/2 dn
dxn
(1 − x2
)n+d−1/2
.
and such that Gd
n(·) is the unique polynomial of degree n such that
(1 − 2uZ + Z2
)d
=
∞
n=0
Gd
n(u) · Zn
.
If d ∈ (0, 1/2), and |u| < 1 then
ρ(h) ∼ h2d−1
sin([π − arccos(u)]h) as h → ∞.
43
Arthur CHARPENTIER, modeling heat waves
Long range dependence and regression
If γX(·) denotes the autocovariance function of a stationary process (Xt)t∈Z ,
V ar(Xn) =
γX(0)
n
+
2
n
n−1
k=1
1 −
k
n
γ(k),
where Xn is the standard empirical mean of a sample {X1, ..., Xn} (see
Brockwell & Davis (1991), or Smith (1993)).
Furthermore, if autocovariance function satisfies γ(h) ∼ a · h2d−1
as h → ∞, then
V ar(Xn) ∼
a
d(2d − 1)
· n2d−2
,
as derived in Samarov & Taqqu (1988).
And further, the ordinary least squares estimator of the slope β (in the case
where the Xi’s are regressed on some covariate Y ) is still
β =
Xi(Yi − Y n)
(Yi − Y n)2
.
44
Arthur CHARPENTIER, modeling heat waves
As shown in Yajima (1988), and more generally in Yajima (1991) in the case of
general regressors,
V ar(β) ∼
36a(1 − d)
d(1 + d)(2d + 1)
· n2d−4
.
45
Arthur CHARPENTIER, modeling heat waves
Long range dependence and extremes
From Leadbetter (1974), let X1, · · · , Xn, · · · be a stationnary process, and
denote Xn:n = max{X1, · · · , Xn} ; if there exists sequences (an) and (bn) such
that
lim
n→∞
P
Xn:n − bn
an
≤ x = G(x),
and if so called D(anz + bn) holds for all z ∈ R (i.e. not long range dependence),
then G is a GEV distribution.
Remark but parameters are not necessarily the same as an i.i.d. sequence with
the same margins (see extremal index concept.
Condition D(un) from Leadbetter et al. (1983) : for all p, q and n, and indices
1 ≤ i1 < i2 < · · · < ip
I
< j1 < j2 < · · · < jq
J
≤ n,
46
Arthur CHARPENTIER, modeling heat waves
such that j1 − ip ≥ m,
P max
k∈I∪J
{Xk} ≤ un − P max
i∈I
{Xi} ≤ un · P max
j∈J
{Xj} ≤ un ≤ α(n, m),
where α(n, m) → 0 as n → ∞, for some m = o(n).
Remark Note that
P max
k∈I∪J
{Xk} ≤ un − P max
i∈I
{Xi} ≤ un · P max
j∈J
{Xj} ≤ un = 0
means independence.
Remark For a Gaussian sequence, with autocorrelation function ρ(h), D(un) is
satisfied if ρ(n) · log(n) → 0 as n → ∞. I.e. weaker than geometric decay for AR
processes.
47
Arthur CHARPENTIER, modeling heat waves
Stability of the dynamics
First order autocorrelation of the noise (ρ(1) = corr(Xt, Xt−1)) and estimation of
the fractional index d.
1920 1940 1960 1980 2000
0.600.650.700.750.800.85
Correlation of the noise, between t and t+1
Time
Firstorderautocorrelation
1920 1940 1960 1980 2000
0.050.100.150.200.25
Minimal temperature, fractional index
Time
Fractionalindexd
48
Arthur CHARPENTIER, modeling heat waves
On return periods
Depends on scenarios for the increasing trend,
• an optimistic scenario, where we assume that there will be no more increasing
trend in the future,
• a pessimistic scenario, where we assume that the trend will remain, with the
same slope.
Depends on the definition of the heat wave
• during 11 consecutive days, the temperature was higher than 19◦
C (type (A)),
• during 3 consecutive days, the temperature was higher than 24◦
C (type (B)).
49
Arthur CHARPENTIER, modeling heat waves
short memory short memory long memory
short tail noise heavy tail noise short tail noise
optimistic 88 years 69 years 53 years
pessimistic 79 years 54 years 37 years
Table 1 – Periods of return (expected value, in years) before the next heat wave
similar with August 2003 (type (A)).
50
Arthur CHARPENTIER, modeling heat waves
short memory short memory long memory
short tail noise heavy tail noise short tail noise
optimistic 115 years 59 years 76 years
pessimistic 102 years 51 years 64 years
Table 2 – Periods of return (expected value, in years) before the next heat wave
similar with August 2003 (type (B)).
51
Arthur CHARPENTIER, modeling heat waves
On return periods, optimistic scenario
0 50 100 150 200
0.00.20.40.60.81.0
Distribution function of the period of return
Years before next heat wave
4consecutivedaysexceeding24degrees
GARMA + Gaussian noise
ARMA + t noise
ARMA + Gaussian noise
0 50 100 150 2000.00.20.40.60.81.0
Distribution function of the period of return
Years before next heat wave
11consecutivedaysexceeding19degrees
GARMA + Gaussian noise
ARMA + t noise
ARMA + Gaussian noise
52
Arthur CHARPENTIER, modeling heat waves
On return periods, optimistic scenario
0 50 100 150 200
0.0000.0050.0100.0150.0200.0250.030
Density of the period of return
Years before next heat wave
4consecutivedaysexceeding24degrees
GARMA + Gaussian noise
ARMA + t noise
ARMA + Gaussian noise
0 50 100 150 2000.0000.0050.0100.0150.0200.0250.030
Density of the period of return
Years before next heat wave
11consecutivedaysexceeding19degrees
GARMA + Gaussian noise
ARMA + t noise
ARMA + Gaussian noise
53
Arthur CHARPENTIER, modeling heat waves
On return periods, optimistic scenario
0 50 100 150 200
0.00.20.40.60.81.0
Distribution function of the period of return
Years before next heat wave
4consecutivedaysexceeding24degrees
GARMA + Gaussian noise
ARMA + t noise
ARMA + Gaussian noise
0 50 100 150 200
0.00.20.40.60.81.0
Distribution function of the period of return
Years before next heat wave
11consecutivedaysexceeding19degrees
GARMA + Gaussian noise
ARMA + t noise
ARMA + Gaussian noise
54
Arthur CHARPENTIER, modeling heat waves
On return periods, optimistic scenario
0 50 100 150 200
0.0000.0050.0100.0150.0200.0250.030
Density of the period of return
Years before next heat wave
4consecutivedaysexceeding24degrees
GARMA + Gaussian noise
ARMA + t noise
ARMA + Gaussian noise
0 50 100 150 200
0.0000.0050.0100.0150.0200.0250.030
Density of the period of return
Years before next heat wave
11consecutivedaysexceeding19degrees
GARMA + Gaussian noise
ARMA + t noise
ARMA + Gaussian noise
55
Arthur CHARPENTIER, modeling heat waves
Some references
Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason,
B., Klein Tank, A., Haylock, M., Collins, D., Trewin, B.,
Rahimzadeh, F., Tagipour, A., Ambenje, P., Rupa Kumar, K.,
Revadekar, J., Griffiths, G., Vincent, L., Stephenson, David B.,
Burn, J., Aguliar, E., Brunet, M., Taylor, M., New, M., Zhai, P.,
Rusticucci, M., & Vazquez-Aguirre, J. L. (2006). Global observed changes
in daily climate extremes of temperature and precipitation. Journal of
Geophysical Research, 111, 1-22.
Beniston, M. (2004). The 2003 heat wave in Europe : A shape of things to
come ? An analysis based on Swiss climatological data and model simulations.
Geophysical Research Letters, 31, 2022-2026.
Benestad, R.E. (2003). How often can we expect a record event ? Climate
Research, 25, 3-13.
56
Arthur CHARPENTIER, modeling heat waves
Black, E., Blackburn, M., Harrison, G. Hoskings, B. & Methven, J.
(2004). Factors contributing to the summer 2003 European heatwave. Weather,
59, 217-223.
Bouëtte, J.C., Chassagneux, J.F., Sibaï, D., Terron, R. &
Charpentier, A. (2006). Windspeed in Ireland : long memory or seasonal
effect ?. Stochastic Environmental Research and Risk Assessment. 20, 141 - 151.
Braun, M., Dutzik, T., Davis, M. & Didisheim, P. (2004). Driving global
warming. Environment Maine Research and Policy Center.
Brockwell, P.J. & Davis, R.A. (1991). Time Series : Theory and Methods.
Springer-Verlag.
Burt, S. (2004). The August 2003 heatwave in the United Kingdom. Part I :
Maximum temperatures and historical precedents. Weather, 59, 199-208.
Burt, S. & Eden, P. (2004). The August 2003 heatwave in the United
Kingdom. Part II : The hottest sites. Weather, 59, 239-246.
57
Arthur CHARPENTIER, modeling heat waves
Burt, S. (2004). The August 2003 heatwave in the United Kingdom. Part III :
Minimum temperatures. Weather, 59, 272-273.
Charpentier, A. (2010). On the return period of the 2003 heat wave. Climatic
Change, DOI 10.1007/s10584-010-9944-0
Coelho, C.A.S., Ferro, C.A.T., Stephenson, D.B. & Steinskog, D.J.
(2008). Methods for exploring spatial and temporal variability of extreme events
in climate data. Journal of Climate, 21, 2072-2092.
Davison, A.C. & Smith, R.L. (1990). Models for exceedances over high
thresholds. Journal of the Royal Statistical Society. Series B., 52, 393-442.
Dempster, A.P. & Liu, C. (1995).Trend and drift in climatological time series.
Proceedings of the 6th International Meeting on Statistical Climatology, Galway,
Ireland, 21-24.
Eastoe, E. & Tawn, J.A. (2009). Modelling non-stationary extremes with
application to surface level ozone. Applied Statistician, 58, 25-45.
58
Arthur CHARPENTIER, modeling heat waves
Fink A. H., Brucher, T., Kruger, A., Leckebusch, G.C., Pinto, J.G. &
Ulbrich, U. (2004). The 2003 European summer heatwaves and
droughtSynoptic diagnosis and impacts. Weather, 59, 209-215.
Gray, H.L., Zhang, N.F., & Woodward, W. (1989). On Generalized
Fractional Processes. Journal of Time Series Analysis, 10, 233-57.
Gumbel E. (1958). Statistics of Extreme. Columbia University Press.
Hosking, J. R. M. (1981). Fractional Differencing. Biometrika, 68, 165-76.
Houghton, J.T. (1997). Global Warming. Cambridge University Press.
Hurst, H.E. (1951). Long-term storage capacity of reservoirs, Trans. Am. Soc.
Civil Engineers, 116, 770–799.
Karl, T.R. & Trenberth, K.E. (2003). Modern Global Climate Change.
Science, 302, 1719.
Karl, T.R., & Knight, R.W. (1997). The 1995 Chicago heat wave : How likely
is a recurrence ? Bulletin of the American Meteorological Society, 78, 1107-1119.
59
Arthur CHARPENTIER, modeling heat waves
Kiktev, D., D. M. H. Sexton, L. Alexander, & C. K. Folland (2003).
Comparison of modeled and observed trends in indices of daily climate extremes.
Journal of Climatology, 16, 35603571.
Kovats, R.S. & Koppe, C. (2005). Heatwaves past and future impacts on
health. in Ebi, K., J. Smith and I. Burton (eds). Integration of Public Health
with Adaptation to Climate Change : Lessons learned and New Directions.
Taylor & Francis Group, Lisse, The Netherlands.
Kyselý, J., Picek, J. & Beranová, R. (2010). Estimating extremes in
climate change simulations using the peaks- over threshold method with a
non-stationary threshold. Global and Planetary Change, 72, 55-68.
Lane, L.J., Nichols, M.H. & Osborn, H.B. (1994). Time series analyses of
global change data Environmental Pollution, 83, 63-68.
Leadbetter, M. R., Lindgren, G. & Rootzén, H. (1983). Extremes and
Related Properties of Random Sequences and Processes. Springer Verlag.
60
Arthur CHARPENTIER, modeling heat waves
Leadbetter, M. R. (1974). On extreme values in stationary sequences. Z.
Wahrsch. Verw. Gebiete, 65, 291-306.
Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner,
H. (2004). European seasonal and annual temperature variability, trends, and
extremes since 1500. Science, 303, 14991503.
Mandelbrot, B.B. (1965). Une classe de processus stochastiques
homothétiques à soi : application à la loi climatique de H.E. Hurst. Comptes
Rendus de l’Académie des Sciences. 260, 3274-3277.
Meehl, G.A., & Tebaldi, C. (2004). More intense, more frequent, and longer
lasting heat waves in the 21st century. Science, 305, 994-997.
Meehl, G.A., Tebaldi, C., Walton, G., Easterling, D., McDaniel, L.
(2009). Relative increase of record high maximum temperatures compared to
record low minimum temperatures in the U.S. Geophysical Research Letters, 36.
61
Arthur CHARPENTIER, modeling heat waves
Nogaj, M., Parey, S. & Dacunha-Castelle, D. (2007). Non-stationary
extreme models and a climatic application. Nonlinear Processes in Geophysics,
14, 305-316.
Palma, W. (2007). Long memory time series. Wiley Interscience.
Pelletier, J.D. & Turcotte, D.L. (1999) Self-Affine Time Series : II.
Applications and Models. in Long-Range Persistence in Geophysical Time Series.
Advances in Geophysics, vol 40. Renata Dmowska & Barry Saltzman Eds.
Academic Press.
Pirard, P., Vandentorren, S., Pascal, M., Laaidi, K., Le Tertre, A.,
Cassadou, S. & Ledrans, M. (2005). Summary of the mortality impact
assessment of the 2003 heat wave in France. EuroSurveillance, 10, 153-156.
Poumadre, M., Mays, C., Le Mer, S. & Blong, R. (2005). The 2003 Heat
Wave in France : Dangerous Climate Change Here and Now. Risk Analysis, 25,
1483-1494.
62
Arthur CHARPENTIER, modeling heat waves
Quereda Sala, J., Gil Olcina, A., Perez Cuevas, A., Olcina Cantos,
J., Rico Amoros, A. & Montón Chiva, E. (2000). Climatic Warming in the
Spanish Mediterranean : Natural Trend or Urban Effect. Climatic Change, 46,
473-483.
Redner, S. & Petersen, M.R. (2006). Role of global warming on the
statistics of record-breaking temperatures. Physical Review E.
Rocha Souza, L. & Soares, L.J. (2007). Electricity rationing and public
response. Energy Economics, 29, 296-311.
Samarov, A. & Taqqu, M. (1988). On the efficiency of the sample mean in
long-memory noise. Journal of Time Series Analysis, 9, 191-200.
Schar, C., Luigi Vidale, P., Luthi, D., Frei, C., Haberli, C., Liniger,
M.A. & Appenzeller, C. (2004). The role of increasing temperature variability
in European summer heatwaves. Nature, 427, 332-336.
Smith, R. (1989). Extreme value analysis of environmental time series : an
application to trend detection in ground-level ozone. Statistical Sciences, 4,
367-393.
63
Arthur CHARPENTIER, modeling heat waves
Smith, R.L. (1993). Long-range dependence and global warming. in Statistics
for the Environment, Barnett & Turkman eds., Wiley, 141-161.
Smith, R., Tawn, J.A. & Coles, S.G. (1997). Markov chain models for
threshold exceedances. Biometrika, 84, 249-268.
Stott, P.A., Stone, D.A. & Allen, M.R. (2004). Human contribution to
the European heatwave of 2003. Nature, 432, 610-613.
Trigo R.M., Garca-Herrera, R. Diaz, J., Trigo, I.F. & Valente, M.A.
(2005). How exceptional was the early August 2003 heatwave in France ?
Geophysical Reseach Letters, 32.
Yajima, Y. (1988). On estimation of a regression model with long-memory
stationary errors. Annals of Statistics, 16, 791-807.
Yajima(1991)Yajima, Y. (1991). Asymptotic properties of the LSE in a
regression model with long-memory stationary errors. Annals of Statistics, 19,
158-177.
64

Contenu connexe

Tendances

Earth 0205-response spectrum
Earth 0205-response spectrumEarth 0205-response spectrum
Earth 0205-response spectrum
tharwat sakr
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
Ali Osman Öncel
 
Prediction of the daily global solar irradiance received on a horizontal surf...
Prediction of the daily global solar irradiance received on a horizontal surf...Prediction of the daily global solar irradiance received on a horizontal surf...
Prediction of the daily global solar irradiance received on a horizontal surf...
irjes
 
Ch6 z5e thermo
Ch6 z5e thermoCh6 z5e thermo
Ch6 z5e thermo
blachman
 

Tendances (19)

5 earth gravitation
5 earth gravitation5 earth gravitation
5 earth gravitation
 
Response spectra
Response spectraResponse spectra
Response spectra
 
Earth 0205-response spectrum
Earth 0205-response spectrumEarth 0205-response spectrum
Earth 0205-response spectrum
 
Gravitational Waves and Binary Systems (2) - Thibault Damour
Gravitational Waves and Binary Systems (2) - Thibault DamourGravitational Waves and Binary Systems (2) - Thibault Damour
Gravitational Waves and Binary Systems (2) - Thibault Damour
 
Report2
Report2Report2
Report2
 
One dimensional steady state fin equation for long fins
One dimensional steady state fin equation for long finsOne dimensional steady state fin equation for long fins
One dimensional steady state fin equation for long fins
 
Transient Heat-conduction-Part-II
Transient Heat-conduction-Part-IITransient Heat-conduction-Part-II
Transient Heat-conduction-Part-II
 
Introduction to the Keldysh non-equlibrium Green's function technique
Introduction to the Keldysh non-equlibrium Green's function techniqueIntroduction to the Keldysh non-equlibrium Green's function technique
Introduction to the Keldysh non-equlibrium Green's function technique
 
Ch30 ssm
Ch30 ssmCh30 ssm
Ch30 ssm
 
Gravitational Waves and Binary Systems (3) - Thibault Damour
Gravitational Waves and Binary Systems (3) - Thibault DamourGravitational Waves and Binary Systems (3) - Thibault Damour
Gravitational Waves and Binary Systems (3) - Thibault Damour
 
Ch02 ssm
Ch02 ssmCh02 ssm
Ch02 ssm
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
 
Prediction of the daily global solar irradiance received on a horizontal surf...
Prediction of the daily global solar irradiance received on a horizontal surf...Prediction of the daily global solar irradiance received on a horizontal surf...
Prediction of the daily global solar irradiance received on a horizontal surf...
 
Several Pieces in Graph Theory
Several Pieces in Graph TheorySeveral Pieces in Graph Theory
Several Pieces in Graph Theory
 
Lecture20
Lecture20Lecture20
Lecture20
 
Fins
FinsFins
Fins
 
Ch6 z5e thermo
Ch6 z5e thermoCh6 z5e thermo
Ch6 z5e thermo
 
Response spectrum method
Response spectrum methodResponse spectrum method
Response spectrum method
 
Note chapter9 0708-edit-1
Note chapter9 0708-edit-1Note chapter9 0708-edit-1
Note chapter9 0708-edit-1
 

Similaire à Slides lyon-3

Natalini nse slide_giu2013
Natalini nse slide_giu2013Natalini nse slide_giu2013
Natalini nse slide_giu2013
Madd Maths
 
Climate Sensitivity, Forcings, And Feedbacks_2.pptx
Climate Sensitivity, Forcings, And Feedbacks_2.pptxClimate Sensitivity, Forcings, And Feedbacks_2.pptx
Climate Sensitivity, Forcings, And Feedbacks_2.pptx
ObulReddy61
 
eg-353-paper687856
eg-353-paper687856eg-353-paper687856
eg-353-paper687856
JOYAL JACOB
 
How turbulent is the atmosphere at large scales
How turbulent is the atmosphere at large scalesHow turbulent is the atmosphere at large scales
How turbulent is the atmosphere at large scales
Farid Ait-Chaalal, PhD
 

Similaire à Slides lyon-3 (20)

Sildes buenos aires
Sildes buenos airesSildes buenos aires
Sildes buenos aires
 
Effects of radiation on an unsteady natural convective flow of a eg nimonic 8...
Effects of radiation on an unsteady natural convective flow of a eg nimonic 8...Effects of radiation on an unsteady natural convective flow of a eg nimonic 8...
Effects of radiation on an unsteady natural convective flow of a eg nimonic 8...
 
Nonlinear Weather Forecasting-ORSIS.pdf
Nonlinear Weather Forecasting-ORSIS.pdfNonlinear Weather Forecasting-ORSIS.pdf
Nonlinear Weather Forecasting-ORSIS.pdf
 
http://www.ijmer.com/papers/Vol4_Issue1/AW41187193.pdf
http://www.ijmer.com/papers/Vol4_Issue1/AW41187193.pdfhttp://www.ijmer.com/papers/Vol4_Issue1/AW41187193.pdf
http://www.ijmer.com/papers/Vol4_Issue1/AW41187193.pdf
 
EES Functions and Procedures for Natural convection heat transfer
EES Functions and Procedures for Natural convection heat transferEES Functions and Procedures for Natural convection heat transfer
EES Functions and Procedures for Natural convection heat transfer
 
Derivation and solution of the heat equation in 1-D
Derivation and solution of the heat equation in 1-DDerivation and solution of the heat equation in 1-D
Derivation and solution of the heat equation in 1-D
 
Radiation effects on heat and mass transfer of a mhd
Radiation effects on heat and mass transfer of a mhdRadiation effects on heat and mass transfer of a mhd
Radiation effects on heat and mass transfer of a mhd
 
N3 l penelet_final
N3 l penelet_finalN3 l penelet_final
N3 l penelet_final
 
Video lecture in India
Video lecture in IndiaVideo lecture in India
Video lecture in India
 
Natalini nse slide_giu2013
Natalini nse slide_giu2013Natalini nse slide_giu2013
Natalini nse slide_giu2013
 
Top School in india
Top School in indiaTop School in india
Top School in india
 
Applied Thermo, Lecture-01.pdf
Applied Thermo, Lecture-01.pdfApplied Thermo, Lecture-01.pdf
Applied Thermo, Lecture-01.pdf
 
Applied Thermo, Lecture-01.pptx
Applied Thermo, Lecture-01.pptxApplied Thermo, Lecture-01.pptx
Applied Thermo, Lecture-01.pptx
 
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 01 Solutions
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 01 SolutionsCH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 01 Solutions
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 01 Solutions
 
Climate Sensitivity, Forcings, And Feedbacks_2.pptx
Climate Sensitivity, Forcings, And Feedbacks_2.pptxClimate Sensitivity, Forcings, And Feedbacks_2.pptx
Climate Sensitivity, Forcings, And Feedbacks_2.pptx
 
Solution Manual for Heat Convection second edition by Latif M. Jiji
Solution Manual for Heat Convection second edition by Latif M. JijiSolution Manual for Heat Convection second edition by Latif M. Jiji
Solution Manual for Heat Convection second edition by Latif M. Jiji
 
eg-353-paper687856
eg-353-paper687856eg-353-paper687856
eg-353-paper687856
 
Laminar Flow
Laminar FlowLaminar Flow
Laminar Flow
 
A Solution Of The 4Th Clay Millennium Problem About The Navier-Stokes Equations
A Solution Of The 4Th Clay Millennium Problem About The Navier-Stokes EquationsA Solution Of The 4Th Clay Millennium Problem About The Navier-Stokes Equations
A Solution Of The 4Th Clay Millennium Problem About The Navier-Stokes Equations
 
How turbulent is the atmosphere at large scales
How turbulent is the atmosphere at large scalesHow turbulent is the atmosphere at large scales
How turbulent is the atmosphere at large scales
 

Plus de Arthur Charpentier

Plus de Arthur Charpentier (20)

Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
ACT6100 introduction
ACT6100 introductionACT6100 introduction
ACT6100 introduction
 
Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)
 
Control epidemics
Control epidemics Control epidemics
Control epidemics
 
STT5100 Automne 2020, introduction
STT5100 Automne 2020, introductionSTT5100 Automne 2020, introduction
STT5100 Automne 2020, introduction
 
Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
Machine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceMachine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & Insurance
 
Reinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and FinanceReinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and Finance
 
Optimal Control and COVID-19
Optimal Control and COVID-19Optimal Control and COVID-19
Optimal Control and COVID-19
 
Slides OICA 2020
Slides OICA 2020Slides OICA 2020
Slides OICA 2020
 
Lausanne 2019 #3
Lausanne 2019 #3Lausanne 2019 #3
Lausanne 2019 #3
 
Lausanne 2019 #4
Lausanne 2019 #4Lausanne 2019 #4
Lausanne 2019 #4
 
Lausanne 2019 #2
Lausanne 2019 #2Lausanne 2019 #2
Lausanne 2019 #2
 
Lausanne 2019 #1
Lausanne 2019 #1Lausanne 2019 #1
Lausanne 2019 #1
 
Side 2019 #10
Side 2019 #10Side 2019 #10
Side 2019 #10
 
Side 2019 #11
Side 2019 #11Side 2019 #11
Side 2019 #11
 
Side 2019 #12
Side 2019 #12Side 2019 #12
Side 2019 #12
 
Side 2019 #9
Side 2019 #9Side 2019 #9
Side 2019 #9
 
Side 2019 #8
Side 2019 #8Side 2019 #8
Side 2019 #8
 
Side 2019 #7
Side 2019 #7Side 2019 #7
Side 2019 #7
 

Dernier

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Dernier (20)

Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 

Slides lyon-3

  • 1. Arthur CHARPENTIER, modeling heat waves Modeling heat-waves : return period for non-stationary extremes Arthur Charpentier Université du Québec à Montréal charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Changement climatique et gestion des risques, Lyon, Movember 2011 1
  • 2. Arthur CHARPENTIER, modeling heat waves Motivation “Tous nos scénarios à dix ans montrent une aggravation des tempêtes, inondations, sécheresses. Les catastrophes centennales vont devenir plus fréquentes.” Jean-Marc Lamère, délégué général de la Fédération Française des Sociétés d’Assurances, 2003. Climate change, from Third IPCC Agreement ,2001 : 2
  • 3. Arthur CHARPENTIER, modeling heat waves Motivation “there is no longer any doubt that the Earth’s climate is changing [...] globally, nine of the past 10 years have been the warmest since records began in 1861”, February 2005, opening the conference Climate change : a global, national and regional challenge, Dennis Tirpak. source : Meehklet al. (2009). 3
  • 4. Arthur CHARPENTIER, modeling heat waves The European heatwave of 2003 Third IPCC Assessment, 2001 : treatment of extremes (e.g. trends in extreme high temperature) is “clearly inadequate”. Karl & Trenberth (2003) noticed that “the likely outcome is more frequent heat waves”, “more intense and longer lasting” added Meehl & Tebaldi (2004). In Nîmes, there were more than 30 days with temperatures higher than 35◦ C (versus 4 in hot summers, and 12 in the previous heat wave, in 1947). Similarly, the average maximum (minimum) temperature in Paris peaked over 35◦ C for 10 consecutive days, on 4-13 August. Previous records were 4 days in 1998 (8 to 11 of August), and 5 days in 1911 (8 to 12 of August). Similar conditions were found in London, where maximum temperatures peaked above 30◦ C during the period 4-13 August (see e.g. Burt (2004), Burt & Eden (2004) and Fink et al. (2004).) 4
  • 5. Arthur CHARPENTIER, modeling heat waves q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 101520 Temperaturein°C juil. 02 juil. 12 juil. 22 août 01 août 11 août 21 août 31 5
  • 6. Arthur CHARPENTIER, modeling heat waves Which temperature might be interesting ? Karl & Knight (1997) , modeling of the 1995 heatwave in Chicago : minimum temperature should be most important for health impact (see also Kovats & Koppe (2005)), several nights with no relief from very warm nighttime 6
  • 7. Arthur CHARPENTIER, modeling heat waves Which temperature might be interesting ? Karl & Knight (1997) , modeling of the 1995 heatwave in Chicago : minimum temperature should be most important for health impact (see also Kovats & Koppe (2005)), several nights with no relief from very warm night-time 7
  • 8. Arthur CHARPENTIER, modeling heat waves Modeling temperature Consider the following decomposition Yt = µt + St + Xt where • µt is a (linear) general tendency • St is a seasonal cycle • Xt is the remaining (stationary) noise 8
  • 9. Arthur CHARPENTIER, modeling heat waves Nonstationarity and linear trend Consider a spline and lowess regression 9
  • 10. Arthur CHARPENTIER, modeling heat waves Nonstationarity and linear trend or a polynomial regression,and compare local slopes, 10
  • 11. Arthur CHARPENTIER, modeling heat waves Nonstationarity and linear trend Several authors (from Laneet al. (1994) to Blacket al. (2004)) have tried to explain global warming, and to find explanatory factors. As pointed out in Queredaet al. (2000), the “analysis of the trend is difficult and could be biased by non-climatic processes such as the urban effect”. In fact, “most of the temperature rise could be due to an urban effect” : global warming can be understood as one of the consequence of “global pollution” (see also Houghton (1997) or Braunet al. (2004) for a detailed study of the impact of transportation). 11
  • 12. Arthur CHARPENTIER, modeling heat waves Quantile regression to describe ’extremal’ temperature See Yan (2002), Meehl & Tebaldi (2004), or Alexanderet al. (2006). Least square used to estimate a linear model for E(Yt), min β0,β1 T t=1 (Yt − [β0 + β1t])2 = min β0,β1 T t=1 R(Yt − [β0 + β1t]) where R(x) = x2 . Quantile regression can be used, let p ∈ (0, 1), and consider min β0,β1 T t=1 R(Yt − [β0 + β1t]) where Rp(x) = x · (p − 1(x < 0)) =    x · (p − 1) if x < 0 x · p if x > 0 12
  • 13. Arthur CHARPENTIER, modeling heat waves Remark : E(Y ) = argmin E (Y − γ)2 = argmin (Y − γ)2 dF(y) while Qp(Y ) = argmin [p − 1] · γ −∞ [γ − x]dF(x) + p · +∞ γ [x − γ]dF(x) . 5%, 25%, 75%, and 95% quantile regressions, 13
  • 14. Arthur CHARPENTIER, modeling heat waves Quantile regression to describe ’extremal’ temperature slopes (β1) of quantile regressions, as functions of probability q ∈ (0, 1), Remark : constant rate means that scenario 1 is realistic in the Third IPCC Agreement, 2001 : 14
  • 15. Arthur CHARPENTIER, modeling heat waves Quantile regression to describe ’extremal’ temperature slopes (β1) of quantile regressions, as functions of probability q ∈ (0.9, 1), 15
  • 16. Arthur CHARPENTIER, modeling heat waves Regression for yearly maxima Let Mi denote the highest minimal daily temperature observed during year i, 16
  • 17. Arthur CHARPENTIER, modeling heat waves Regression for yearly maxima Let Mi denote the highest minimal daily temperature observed during year i, 17
  • 18. Arthur CHARPENTIER, modeling heat waves Linear trend, and Gaussian noise Benestad (2003) or Redner & Petersen (2006) temperature for a given (calendar) day is an “independent Gaussian random variable with constant standard deviation σ and a mean that increases at constant speed ν” In the US, ν = 0.03◦ C per year, and σ = 3.5◦ C In Paris, ν = 0.027◦ C per year, and σ = 3.23◦ C Assuming independence it is possible to estimate return periods 18
  • 19. Arthur CHARPENTIER, modeling heat waves Linear trend, and Gaussian noise Return period of k consecutive days with temperature exceeding s, 19
  • 20. Arthur CHARPENTIER, modeling heat waves The seasonal component Seasonal pattern during the yearly did not use a cosine function to model St but a spline regression (on circular data), 20
  • 21. Arthur CHARPENTIER, modeling heat waves The residual part (or stationary component) Let Xt = Yt − β0 + β1t + St 21
  • 22. Arthur CHARPENTIER, modeling heat waves The residual part (or stationary component) Xt might look stationary, 22
  • 23. Arthur CHARPENTIER, modeling heat waves The residual part (or stationary component) but the variance of Xt seems to have a seasonal pattern, 23
  • 24. Arthur CHARPENTIER, modeling heat waves The residual part (or stationary component) Dispersion and variance of residuals, graph of |Xt| series 24
  • 25. Arthur CHARPENTIER, modeling heat waves A spatial model for residuals ? Consider here two series of temperatures (e.g. Paris and Marseille). 25
  • 26. Arthur CHARPENTIER, modeling heat waves A spatial model for residuals ? Consider here two series of temperatures (e.g. Paris and Marseille). 26
  • 27. Arthur CHARPENTIER, modeling heat waves A spatial model for residuals ? Consider here two series of temperatures (e.g. Paris and Marseille), and their stationary residuals 27
  • 28. Arthur CHARPENTIER, modeling heat waves Tail dependence indices For the lower tail L(z) = P(U < z, V < z)/z = C(z, z)/z = P(U < z|V < z) = P(V < z|U < z), and for the upper tail R(z) = P(U > z, V > z)/(1 − z) = P(U > z|V > z). see Joe (1990). Define λU = R(1) = lim z→1 R(z) and λL = L(0) = lim z→0 L(z). such that λL = lim u→0 P X ≤ F−1 X (u) |Y ≤ F−1 Y (u) , and λU = lim u→1 P X > F−1 X (u) |Y > F−1 Y (u) . 28
  • 29. Arthur CHARPENTIER, modeling heat waves Tail dependence indices Ledford & Tawn (1996) suggested the following alternative approach, • for independent random variables, P(X > t, Y > t) = P(X > t) × P(Y > t) = P(X > t)2 , • for comonotonic random variables, P(X > t, Y > t) = P(X > t) = P(X > t)1 , Assume that P(X > t, Y > t) ∼ P(X > t)1/η as t → ∞, where η ∈ (0, 1] will be a tail index. Define χU (z) = 2 log(1 − z) log C (z, z) − 1 and χL(z) = 2 log(1 − z) log C(z, z) − 1 with ηU = (1 + limz→0 χU (z))/2 and ηL = (1 + limz→0 χL(z))/2 sont appelés indices de queue supérieure et inférieure, respectivement. 29
  • 30. Arthur CHARPENTIER, modeling heat waves Tail functions L(·) and R(·) Gaussian copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 L and R concentration functions L function (lower tails) R function (upper tails) GAUSSIAN q q Student t copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 L and R concentration functions L function (lower tails) R function (upper tails) STUDENT (df=3) q q Clayton copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q qq qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 L and R concentration functions L function (lower tails) R function (upper tails) CLAYTON q q Gumbel copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 L and R concentration functions L function (lower tails) R function (upper tails) GUMBEL q q 30
  • 31. Arthur CHARPENTIER, modeling heat waves Tail functions χL(·) and χU (·) Gaussian copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Chi dependence functions lower tails upper tails GAUSSIAN q q Student t copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Chi dependence functions lower tails upper tails STUDENT (df=3) q q Clayton copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Chi dependence functions lower tails upper tails CLAYTON q q Gumbel copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Chi dependence functions lower tails upper tails GUMBEL q q 31
  • 32. Arthur CHARPENTIER, modeling heat waves Tail functions L(·) and R(·) 32
  • 33. Arthur CHARPENTIER, modeling heat waves Tail functions χL(·) and χU (·) 33
  • 34. Arthur CHARPENTIER, modeling heat waves Dynamics of the residual part consider an ARMA model to model residuals dynamics φ1 φ2 θ1 θ2 σ2 ARMA(2,2) 1.4196 (0.0419) −0.4733 (0.0322) −0.6581 (0.0419) −0.1032 (0.00752) 5.023 It is possible to fit a Gaussian or a Student ARMA process, 34
  • 35. Arthur CHARPENTIER, modeling heat waves −4 −2 0 2 4 −15−10−50510 QQ plot of residuals (Gaussian) Theoretical Quantiles SampleQuantiles −4 −2 0 2 4 −15−10−50510 QQ plot of residuals (Student) Theoritical Quantiles Samplequantiles 35
  • 36. Arthur CHARPENTIER, modeling heat waves Extremes and discrete data Recall Fisher-Tippett theorem : let X1, · · · , Xn, · · · be i.i.d. with cdf F, with right point xF = sup{x; F(x) < 1}, and define Xn:n = sup{X1, · · · , Xn}. If lim x→xF 1 − F(x) 1 − F(x−) = 1, (1) then there exists 3 possible limits for lim n→∞ P Xn:n − bn an ≤ x = G(x), (Fréchet, Gumbel and Weibull), see Leadbetteret al.(1983), and we shall say that F ∈ MDA(G). But Assumption (1) is usually not satisfied for discrete data. Approximations can be derived for standard discrete distributions (Poisson, geometric, etc). Nevertheless, if X is an absolutely continuous random variable, with xF = ∞, with hazard rate satisfying h(x) = d log x → 0 as x → ∞, if X is a discretized version of X, with cdf F , then (1) holds, and further, F ∈ MDA(G) if and only if F ∈ MDA(G). 36
  • 37. Arthur CHARPENTIER, modeling heat waves Generalized Pareto and modeling exceedances Instead of looking at maximas, use the threshold approch and Pickamds, Balkema, de Haan theorem : P (X > x + u|X > u) ≈ 1 + ξx βu −1/ξ + with x+ = max{x, 0}, βu > 0 and ξ are respectively scale and shape parameters, in the context of a stationary process (Xt). For non-stationary processes, Smith (1989) and Davison & Smith (1990) suggested a GPD model with covariate, P (X > x + u|X > u, Z = z) ≈ 1 + ξ(z)x βu(z) −1/ξ(z) + See e.g. Chavez-Desmoulins & Davison (2005) for non-parametric (GAM) models. 37
  • 38. Arthur CHARPENTIER, modeling heat waves Generalized Pareto and modeling exceedances But as point out in Eastoe & Tawn (2008) a strong constraint is that the scale parameter has to satisfy, for any v > u, βv(z) = βu(z) + (v − u)ξ(z). Coelho et al. (2008) and Kyslýet al. (2010) suggested to use a time varying threshold u(z), while Eastoe & Tawn (2008) suggested preprocessing techniques, and to assume that Xt = µt + σt ˜Xt, with ˜Xt stationary. 38
  • 39. Arthur CHARPENTIER, modeling heat waves Generalized Pareto and modeling exceedances What about tails of |Xt| ? 39
  • 40. Arthur CHARPENTIER, modeling heat waves Generalized Pareto and modeling exceedances What about tails of |Xt| ? different thresholds u. 40
  • 41. Arthur CHARPENTIER, modeling heat waves Long range dependence ? Smith (1993) or Dempster & Liu (1995) suggested that, on a long period, the average annual temperature should be decomposed as follows • an increasing linear trend, • a random component, with long range dependence. E.g.(Yt) such that Φ(L)(1 − L)d Yt = Θ(L)εt where d ∈ (−1/2, 1/2), and where (1 − L)d = 1 + ∞ j=1 d(d − 1) · · · (d − j + 1) j! (1−)j Lj . i.e. ARFIMA(p, d, q), fractional processes (see e.g. Hurst (1951) or Mandelbrot (1965)) E.g.(Yt) such that Φ(L)(1 − 2uL + L2 )d Yt = Θ(L)εt, i.e. GARMA(p, d, q) from Hosking (1981) Gegenbauer’s frequency, defined as ω = cos−1 (u), is closely related to the seasonality of the series. Here, u = 2π/365 (because of the annual cycle of temperature). 41
  • 42. Arthur CHARPENTIER, modeling heat waves A stationary process (Yt)t∈Z is said to have long range dependence if ∞ h=1 |ρX(h)| = ∞, and short range dependence if not. Smith (1993) “we do not believe that the autoregressive model provides an acceptable method for assessing theses uncertainties” (on temperature series) 42
  • 43. Arthur CHARPENTIER, modeling heat waves Long range dependence and regression Gray, Zhang & Woodward (1989) proposed an extension to model persistent seasonal series, using Gegenbauer’s polynomial Gd n(·), defined as Gd n(x) = (−2)n n! Γ(n + d)Γ(n + 2d) Γ(d)Γ(2n + 2d) (1 − x2 )−α+1/2 dn dxn (1 − x2 )n+d−1/2 . and such that Gd n(·) is the unique polynomial of degree n such that (1 − 2uZ + Z2 )d = ∞ n=0 Gd n(u) · Zn . If d ∈ (0, 1/2), and |u| < 1 then ρ(h) ∼ h2d−1 sin([π − arccos(u)]h) as h → ∞. 43
  • 44. Arthur CHARPENTIER, modeling heat waves Long range dependence and regression If γX(·) denotes the autocovariance function of a stationary process (Xt)t∈Z , V ar(Xn) = γX(0) n + 2 n n−1 k=1 1 − k n γ(k), where Xn is the standard empirical mean of a sample {X1, ..., Xn} (see Brockwell & Davis (1991), or Smith (1993)). Furthermore, if autocovariance function satisfies γ(h) ∼ a · h2d−1 as h → ∞, then V ar(Xn) ∼ a d(2d − 1) · n2d−2 , as derived in Samarov & Taqqu (1988). And further, the ordinary least squares estimator of the slope β (in the case where the Xi’s are regressed on some covariate Y ) is still β = Xi(Yi − Y n) (Yi − Y n)2 . 44
  • 45. Arthur CHARPENTIER, modeling heat waves As shown in Yajima (1988), and more generally in Yajima (1991) in the case of general regressors, V ar(β) ∼ 36a(1 − d) d(1 + d)(2d + 1) · n2d−4 . 45
  • 46. Arthur CHARPENTIER, modeling heat waves Long range dependence and extremes From Leadbetter (1974), let X1, · · · , Xn, · · · be a stationnary process, and denote Xn:n = max{X1, · · · , Xn} ; if there exists sequences (an) and (bn) such that lim n→∞ P Xn:n − bn an ≤ x = G(x), and if so called D(anz + bn) holds for all z ∈ R (i.e. not long range dependence), then G is a GEV distribution. Remark but parameters are not necessarily the same as an i.i.d. sequence with the same margins (see extremal index concept. Condition D(un) from Leadbetter et al. (1983) : for all p, q and n, and indices 1 ≤ i1 < i2 < · · · < ip I < j1 < j2 < · · · < jq J ≤ n, 46
  • 47. Arthur CHARPENTIER, modeling heat waves such that j1 − ip ≥ m, P max k∈I∪J {Xk} ≤ un − P max i∈I {Xi} ≤ un · P max j∈J {Xj} ≤ un ≤ α(n, m), where α(n, m) → 0 as n → ∞, for some m = o(n). Remark Note that P max k∈I∪J {Xk} ≤ un − P max i∈I {Xi} ≤ un · P max j∈J {Xj} ≤ un = 0 means independence. Remark For a Gaussian sequence, with autocorrelation function ρ(h), D(un) is satisfied if ρ(n) · log(n) → 0 as n → ∞. I.e. weaker than geometric decay for AR processes. 47
  • 48. Arthur CHARPENTIER, modeling heat waves Stability of the dynamics First order autocorrelation of the noise (ρ(1) = corr(Xt, Xt−1)) and estimation of the fractional index d. 1920 1940 1960 1980 2000 0.600.650.700.750.800.85 Correlation of the noise, between t and t+1 Time Firstorderautocorrelation 1920 1940 1960 1980 2000 0.050.100.150.200.25 Minimal temperature, fractional index Time Fractionalindexd 48
  • 49. Arthur CHARPENTIER, modeling heat waves On return periods Depends on scenarios for the increasing trend, • an optimistic scenario, where we assume that there will be no more increasing trend in the future, • a pessimistic scenario, where we assume that the trend will remain, with the same slope. Depends on the definition of the heat wave • during 11 consecutive days, the temperature was higher than 19◦ C (type (A)), • during 3 consecutive days, the temperature was higher than 24◦ C (type (B)). 49
  • 50. Arthur CHARPENTIER, modeling heat waves short memory short memory long memory short tail noise heavy tail noise short tail noise optimistic 88 years 69 years 53 years pessimistic 79 years 54 years 37 years Table 1 – Periods of return (expected value, in years) before the next heat wave similar with August 2003 (type (A)). 50
  • 51. Arthur CHARPENTIER, modeling heat waves short memory short memory long memory short tail noise heavy tail noise short tail noise optimistic 115 years 59 years 76 years pessimistic 102 years 51 years 64 years Table 2 – Periods of return (expected value, in years) before the next heat wave similar with August 2003 (type (B)). 51
  • 52. Arthur CHARPENTIER, modeling heat waves On return periods, optimistic scenario 0 50 100 150 200 0.00.20.40.60.81.0 Distribution function of the period of return Years before next heat wave 4consecutivedaysexceeding24degrees GARMA + Gaussian noise ARMA + t noise ARMA + Gaussian noise 0 50 100 150 2000.00.20.40.60.81.0 Distribution function of the period of return Years before next heat wave 11consecutivedaysexceeding19degrees GARMA + Gaussian noise ARMA + t noise ARMA + Gaussian noise 52
  • 53. Arthur CHARPENTIER, modeling heat waves On return periods, optimistic scenario 0 50 100 150 200 0.0000.0050.0100.0150.0200.0250.030 Density of the period of return Years before next heat wave 4consecutivedaysexceeding24degrees GARMA + Gaussian noise ARMA + t noise ARMA + Gaussian noise 0 50 100 150 2000.0000.0050.0100.0150.0200.0250.030 Density of the period of return Years before next heat wave 11consecutivedaysexceeding19degrees GARMA + Gaussian noise ARMA + t noise ARMA + Gaussian noise 53
  • 54. Arthur CHARPENTIER, modeling heat waves On return periods, optimistic scenario 0 50 100 150 200 0.00.20.40.60.81.0 Distribution function of the period of return Years before next heat wave 4consecutivedaysexceeding24degrees GARMA + Gaussian noise ARMA + t noise ARMA + Gaussian noise 0 50 100 150 200 0.00.20.40.60.81.0 Distribution function of the period of return Years before next heat wave 11consecutivedaysexceeding19degrees GARMA + Gaussian noise ARMA + t noise ARMA + Gaussian noise 54
  • 55. Arthur CHARPENTIER, modeling heat waves On return periods, optimistic scenario 0 50 100 150 200 0.0000.0050.0100.0150.0200.0250.030 Density of the period of return Years before next heat wave 4consecutivedaysexceeding24degrees GARMA + Gaussian noise ARMA + t noise ARMA + Gaussian noise 0 50 100 150 200 0.0000.0050.0100.0150.0200.0250.030 Density of the period of return Years before next heat wave 11consecutivedaysexceeding19degrees GARMA + Gaussian noise ARMA + t noise ARMA + Gaussian noise 55
  • 56. Arthur CHARPENTIER, modeling heat waves Some references Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A., Ambenje, P., Rupa Kumar, K., Revadekar, J., Griffiths, G., Vincent, L., Stephenson, David B., Burn, J., Aguliar, E., Brunet, M., Taylor, M., New, M., Zhai, P., Rusticucci, M., & Vazquez-Aguirre, J. L. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 111, 1-22. Beniston, M. (2004). The 2003 heat wave in Europe : A shape of things to come ? An analysis based on Swiss climatological data and model simulations. Geophysical Research Letters, 31, 2022-2026. Benestad, R.E. (2003). How often can we expect a record event ? Climate Research, 25, 3-13. 56
  • 57. Arthur CHARPENTIER, modeling heat waves Black, E., Blackburn, M., Harrison, G. Hoskings, B. & Methven, J. (2004). Factors contributing to the summer 2003 European heatwave. Weather, 59, 217-223. Bouëtte, J.C., Chassagneux, J.F., Sibaï, D., Terron, R. & Charpentier, A. (2006). Windspeed in Ireland : long memory or seasonal effect ?. Stochastic Environmental Research and Risk Assessment. 20, 141 - 151. Braun, M., Dutzik, T., Davis, M. & Didisheim, P. (2004). Driving global warming. Environment Maine Research and Policy Center. Brockwell, P.J. & Davis, R.A. (1991). Time Series : Theory and Methods. Springer-Verlag. Burt, S. (2004). The August 2003 heatwave in the United Kingdom. Part I : Maximum temperatures and historical precedents. Weather, 59, 199-208. Burt, S. & Eden, P. (2004). The August 2003 heatwave in the United Kingdom. Part II : The hottest sites. Weather, 59, 239-246. 57
  • 58. Arthur CHARPENTIER, modeling heat waves Burt, S. (2004). The August 2003 heatwave in the United Kingdom. Part III : Minimum temperatures. Weather, 59, 272-273. Charpentier, A. (2010). On the return period of the 2003 heat wave. Climatic Change, DOI 10.1007/s10584-010-9944-0 Coelho, C.A.S., Ferro, C.A.T., Stephenson, D.B. & Steinskog, D.J. (2008). Methods for exploring spatial and temporal variability of extreme events in climate data. Journal of Climate, 21, 2072-2092. Davison, A.C. & Smith, R.L. (1990). Models for exceedances over high thresholds. Journal of the Royal Statistical Society. Series B., 52, 393-442. Dempster, A.P. & Liu, C. (1995).Trend and drift in climatological time series. Proceedings of the 6th International Meeting on Statistical Climatology, Galway, Ireland, 21-24. Eastoe, E. & Tawn, J.A. (2009). Modelling non-stationary extremes with application to surface level ozone. Applied Statistician, 58, 25-45. 58
  • 59. Arthur CHARPENTIER, modeling heat waves Fink A. H., Brucher, T., Kruger, A., Leckebusch, G.C., Pinto, J.G. & Ulbrich, U. (2004). The 2003 European summer heatwaves and droughtSynoptic diagnosis and impacts. Weather, 59, 209-215. Gray, H.L., Zhang, N.F., & Woodward, W. (1989). On Generalized Fractional Processes. Journal of Time Series Analysis, 10, 233-57. Gumbel E. (1958). Statistics of Extreme. Columbia University Press. Hosking, J. R. M. (1981). Fractional Differencing. Biometrika, 68, 165-76. Houghton, J.T. (1997). Global Warming. Cambridge University Press. Hurst, H.E. (1951). Long-term storage capacity of reservoirs, Trans. Am. Soc. Civil Engineers, 116, 770–799. Karl, T.R. & Trenberth, K.E. (2003). Modern Global Climate Change. Science, 302, 1719. Karl, T.R., & Knight, R.W. (1997). The 1995 Chicago heat wave : How likely is a recurrence ? Bulletin of the American Meteorological Society, 78, 1107-1119. 59
  • 60. Arthur CHARPENTIER, modeling heat waves Kiktev, D., D. M. H. Sexton, L. Alexander, & C. K. Folland (2003). Comparison of modeled and observed trends in indices of daily climate extremes. Journal of Climatology, 16, 35603571. Kovats, R.S. & Koppe, C. (2005). Heatwaves past and future impacts on health. in Ebi, K., J. Smith and I. Burton (eds). Integration of Public Health with Adaptation to Climate Change : Lessons learned and New Directions. Taylor & Francis Group, Lisse, The Netherlands. Kyselý, J., Picek, J. & Beranová, R. (2010). Estimating extremes in climate change simulations using the peaks- over threshold method with a non-stationary threshold. Global and Planetary Change, 72, 55-68. Lane, L.J., Nichols, M.H. & Osborn, H.B. (1994). Time series analyses of global change data Environmental Pollution, 83, 63-68. Leadbetter, M. R., Lindgren, G. & Rootzén, H. (1983). Extremes and Related Properties of Random Sequences and Processes. Springer Verlag. 60
  • 61. Arthur CHARPENTIER, modeling heat waves Leadbetter, M. R. (1974). On extreme values in stationary sequences. Z. Wahrsch. Verw. Gebiete, 65, 291-306. Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner, H. (2004). European seasonal and annual temperature variability, trends, and extremes since 1500. Science, 303, 14991503. Mandelbrot, B.B. (1965). Une classe de processus stochastiques homothétiques à soi : application à la loi climatique de H.E. Hurst. Comptes Rendus de l’Académie des Sciences. 260, 3274-3277. Meehl, G.A., & Tebaldi, C. (2004). More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994-997. Meehl, G.A., Tebaldi, C., Walton, G., Easterling, D., McDaniel, L. (2009). Relative increase of record high maximum temperatures compared to record low minimum temperatures in the U.S. Geophysical Research Letters, 36. 61
  • 62. Arthur CHARPENTIER, modeling heat waves Nogaj, M., Parey, S. & Dacunha-Castelle, D. (2007). Non-stationary extreme models and a climatic application. Nonlinear Processes in Geophysics, 14, 305-316. Palma, W. (2007). Long memory time series. Wiley Interscience. Pelletier, J.D. & Turcotte, D.L. (1999) Self-Affine Time Series : II. Applications and Models. in Long-Range Persistence in Geophysical Time Series. Advances in Geophysics, vol 40. Renata Dmowska & Barry Saltzman Eds. Academic Press. Pirard, P., Vandentorren, S., Pascal, M., Laaidi, K., Le Tertre, A., Cassadou, S. & Ledrans, M. (2005). Summary of the mortality impact assessment of the 2003 heat wave in France. EuroSurveillance, 10, 153-156. Poumadre, M., Mays, C., Le Mer, S. & Blong, R. (2005). The 2003 Heat Wave in France : Dangerous Climate Change Here and Now. Risk Analysis, 25, 1483-1494. 62
  • 63. Arthur CHARPENTIER, modeling heat waves Quereda Sala, J., Gil Olcina, A., Perez Cuevas, A., Olcina Cantos, J., Rico Amoros, A. & Montón Chiva, E. (2000). Climatic Warming in the Spanish Mediterranean : Natural Trend or Urban Effect. Climatic Change, 46, 473-483. Redner, S. & Petersen, M.R. (2006). Role of global warming on the statistics of record-breaking temperatures. Physical Review E. Rocha Souza, L. & Soares, L.J. (2007). Electricity rationing and public response. Energy Economics, 29, 296-311. Samarov, A. & Taqqu, M. (1988). On the efficiency of the sample mean in long-memory noise. Journal of Time Series Analysis, 9, 191-200. Schar, C., Luigi Vidale, P., Luthi, D., Frei, C., Haberli, C., Liniger, M.A. & Appenzeller, C. (2004). The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332-336. Smith, R. (1989). Extreme value analysis of environmental time series : an application to trend detection in ground-level ozone. Statistical Sciences, 4, 367-393. 63
  • 64. Arthur CHARPENTIER, modeling heat waves Smith, R.L. (1993). Long-range dependence and global warming. in Statistics for the Environment, Barnett & Turkman eds., Wiley, 141-161. Smith, R., Tawn, J.A. & Coles, S.G. (1997). Markov chain models for threshold exceedances. Biometrika, 84, 249-268. Stott, P.A., Stone, D.A. & Allen, M.R. (2004). Human contribution to the European heatwave of 2003. Nature, 432, 610-613. Trigo R.M., Garca-Herrera, R. Diaz, J., Trigo, I.F. & Valente, M.A. (2005). How exceptional was the early August 2003 heatwave in France ? Geophysical Reseach Letters, 32. Yajima, Y. (1988). On estimation of a regression model with long-memory stationary errors. Annals of Statistics, 16, 791-807. Yajima(1991)Yajima, Y. (1991). Asymptotic properties of the LSE in a regression model with long-memory stationary errors. Annals of Statistics, 19, 158-177. 64