SlideShare une entreprise Scribd logo
1  sur  9
Télécharger pour lire hors ligne
International Journal of Mathematics and Statistics Invention (IJMSI)
E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759
www.ijmsi.org ǁ Volume 2 ǁ Issue 3 ǁ March 2014 ǁ PP-64-72
www.ijmsi.org 64 | P a g e
Duality between initial and terminal function problems
Ukwu Chukwunenye
Department of Mathematics, University of Jos, P.M.B 2084 Jos, Nigeria.
ABSTRACT: This paper successfully investigated the topological duality between initial and terminal function
problems with respect to single-delay autonomous linear control systems using the expressions for the solution
matrices and indices of control systems developed and proved in Ukwu and Garba [2014a, c] for single – delay
autonomous linear systems, as well as the general variation of constants formula for the relevant systems. The
paper obtained independent proofs that the solution matrices and the indices of control systems are analytic
almost everywhere and differentiable except at a single point. The proofs were achieved using an algorithm
involving key transformations from one problem to the other, effectively establishing that the results from one
problem can be realized from the other.
KEYWORDS: Duality, Initial, Problems, Terminal, Transformations.
I. INTRODUCTION
The qualitative approach to the controllability of functional differential control systems have been areas
of active research for the past fifty years among control theorists and applied mathematicians in general. This
circumvents the severe difficulties associated with the search for and computations of solutions of such systems.
Unfortunately computations of solutions cannot be wished away in the tracking of trajectories and
many practical applications. Literature on state space approach to control studies is replete with variation of
constants formulas, which incorporate the solution matrices of the free part of the systems. See Chukwu (1992),
Gabsov and Kirillova (1976), Hale (1977), Manitius (1978), Tadmore (1984), Ukwu (1987, 1992, 1996) and
Ukwu and Garba [2014a]. Furthermore the importance of indices of control systems matrices stems from the
fact that they not only pave the way for the derivation of determining matrices for the determination of
Euclidean controllability and compactness of cores of Euclidean targets but can be used independently for such
determination, Ukwu and Garba [2014c]. Regrettably no author had made any noteworthy attempt to obtain
general expressions for such solution matrices and indices of control systems matrices involving the delay huntil
Ukwu and Garba [2014a,c].
This article makes further contribution to knowledge in controllability studies by establishing that
initial and terminal function problems are duals of each other, using Ukwu and Garba [2014a,c] as key
components in the ensuing analyses and much more.
II. PRELIMINARIES
Consider the initial function problem:
0 1( ) ( ) ( ) (1)
( ) ( ), [ ,0] (2)
x t A x t A x t h
x t t t h
  
  

and the terminal function problem:
0 1
1 1
( ) ( ) ( ) (3)
( ) ( ), [ , ] (4)
y y A y h A
y t h t
  
   
   
  

0 1
where and are constant matrices; (.) and (.) are column and row n-vector functionsA A n n x y respect
ively.
Let ( , ) and ( , )Y t X t  be solution matrices of systems (1) and (3) respectively. Then ( , ) and ( , )X t Y t 
satisfy respectively the following matrix differential equations:
Duality between initial and terminal function problem…
www.ijmsi.org 65 | P a g e
     0 1
,
, , , , where ( , ) (5)
0,
nI t
Y t A Y t A Y t h Y t
t t

   
 

    

     0 1, , , , (6)X t X t A X h t A

  

   
for 0 , , 0,1,...t t k h k      where
  ;
0;
(7), nI t
t
X t 
 





See Chukwu (1992), Hale (1977) and Tadmore (1984) for properties of  , .X t  of particular
importance is the fact that  ,t   is analytic on the
intervals     1 1 1
1 , , 0,1,...; 1 0t j h t j h j t j h       . Any such   1 1
1 ,t j h t j h     is called a
regular point of  ,t   .
The first result we will establish is that ( , ) and ( , )Y t X t  are topological duals of each other. This
result will rely on and exploit the following Ukwu-Garba’s theorems on global expressions for the
matrices ( , ) and ( , ).Y t X t  See Ukwu and Garba [2014 a,c].
1 1
1
et [ ( 1) , ],Let [( ) ,( 1 ) ], {0,1, }, {0,1};l
0: ( 1) 0.
k i jK t j h t jhJ k i h k i h k i
j t j h
         
   

III. THEOREM: UKWU-GARBA’S SOLUTION MATRIX FORMULA FOR
AUTONOMOUS, SINGLE – DELAY LINEAR SYSTEMS
 
0
0 0 0
0 0 0
0 0 1 0 1
0
( ) ( )
1 1
( ) ( )
1
( ) ( ) ( )
1 1
2 , 1, ,2 1( 1)
, ; (8)
, ; (9)
( )
, , 2 (10)
i
j i i
A t
t
A t A t s A s h
h
t
A t A t s A s h
h
s ht jk
A t s A s h s A s h
k
j i j jjh i h
e t J
e e Ae ds t J
Y t
e e Ae ds
e Ae Ae ds t J k


 
 

   
   
 

  


  

  
    
   


   
IV. THEOREM: UKWU-GARBA’S CONTROL INDEX THEOREM FOR
AUTONOMOUS LINEAR DELAY CONTROL SYSTEMS:
 
 
 
 
 
0 1
0 1 0 1 1 0 1
1
0 1 0 1 1 0 1
1
0 1 1 0 1 0
1
0
( ) ( )
1 1 1
( ) ( )1
1 1
1
( ) ( ) ( )
1 1
, 1, ,2 1( 1)
, ; (11)
, ; (12)
( , )
(13)
1
i
q q k
A t
A t A t h s A s
t h
A t A t h s A s
t h
s h k
j A t h s A s h s A s
i k k qt i h
e K
e e Ae ds K
X t
e e Ae ds
e Ae Ae


 

 






   

   

 
    
  

 


 
   
 


  12
, , 2
k
j
j
k kh
ds K j



 
 









  
  
   
 
Duality between initial and terminal function problem…
www.ijmsi.org 66 | P a g e
Our current result is captured in the following theorem.
V. THEOREM: UKWU’S TOPOLOGICAL DUAL ALGORITHM FOR AUTONOMOUS
LINEAR DELAY SYSTEMS
( , ) and ( , )Y t X t  are topological duals of each other subject to the transformations below. To obtain
( , ) from ( , ) )X t Y t  perform the following operations;
(i) t t   in the formula for ( ).Y t
(ii) (.) (.)t  in the lower integral limits, as well as in the leading integral limits in (10) with the preceding
sign convention ( 1) , for 1 ,j
j k   followed by the notational changes
2 2
, ; (.) (.)
jk
k j
j k
j k J K
 
    
(iii) in the upper integral limits in ( , ).i i Y ts h s h   
0 0 1( ) ( )
(iv) The leading exponential function , {2,3, },in the integralsjA t s A t h s
e e j k
   
   
in ( , )Y t  and the trailing exponential function 0 1 0( ) ( )
.jA s h A s
e e
 

To obtain ( , ) from ( , )Y t X t  perform the following operations:
(v) (.) (.)t  in the leading integral limits, as well as in the lower integral limits. Omit the sign convention
( 1) , for 1 ,j
j k   and effect the notational changes
2 2
; (.) (.)
j k
j k
k j
K J 
 
   
(vi) Replace the leading exponential function 0 1 0( ) ( )
by , {1,2, },in ( , )jA t h s A t s
e e j k X t


   
  
and the trailing exponential function 0 0 1( ) ( )
byjA s A s h
e e
 
(vii) Replace the upper integral limits in ( , ) by .i is h X t s h 
(viii) Given the initial function problem (1) and (2) the equivalent terminal function problem is given by:
0 1
1 1
( ) ( ) ( ) (14)
( ) ( ), [ , ] (15)
y y A y h A
y t h t
  
   
   
  

T T
1 1 1 denotes the transpose of (.).
where
( ) ( ), [ , ];(.) (16)t t h t       
Proof
We need to prove that the continuity and analytic dispositions of 1( , ), jX t K   can be inferred
from those of ( , ), kY t t J   and vice-versa. In particular, we prove that the continuity and non-analytic
behavior of 1 1 1
( , ),for : ( 1) 0X t t jh t j h       correspond to those of
1( , ),for : .Y t t kh t t   
We start from the expression for ( , ). Note that ( , ) ( )Y t Y t Y t    since the systems (1) and (5) are
autonomous. So we may replace byt t  in Ukwu and Garba’s solution matrix theorem to secure ( , ).Y t 
This justifies (i). With 1t t , in Ukwu and Garba’s Control Index theorem, the transformation (.) (.)t  , in
(ii) ensures that 1 1 1, , ,( 1) ( 1) .t t jh t jh t i h t i h           
These, together with the sign convention and the notational changes in (ii) guarantee that (8) and (9)
with t replaced by t  transform to (11) and (12) respectively. We need to prove that the multiple integral in
(10) transforms to the multiple integral in (13). To achieve the proof, combine the foregoing with j k and
the transformations in (iii) and (iv) to deduce immediately that the multiple integral in (10) transforms to the
Duality between initial and terminal function problem…
www.ijmsi.org 67 | P a g e
multiple integral in (13), proving that 1
( , )X t has been obtained from ( , ).Y t  The proof that 1
( , )X t
transforms to ( , )Y t  is similar.
Finally we investigate the continuity and analytic dispositions of ( , )Y t  and 1
( , ).X t Being sums of
integrals of products of constant matrices and exponential functions we deduce that
( , )Y t  and 1
( , )X t are analytic in the interiors of andk j
J K respectively, since 0 (.)
is .
A
e C
Finally we must examine ( , )Y t  and 1( , )X t on the boundaries of andk jJ K respectively.
( , ) 0 lim ( , ) 0, lim ( , ) 0;
t t
Y t t Y t Y t
 
    
 
     
0
0
( , ) [ , ] lim ( , ) , lim ( , ) .
A t
t t
Y t e t h Y t I Y t A
 
     
 
      
Therefore ( )Y t is not continuous at t  and certainly not differentiable there. It follows that ( )Y t is not
analytic at .t 
0 0
0 0 1 0 1 0 1
( ) ( ) ( ) ( )
lim ( , ) ; lim ( , ) lim ( , ) lim ( , ) ( ) (0) ,
A h A h
t h t h t h t h
Y t A e Y t A Y t A Y t h A Y h AY A e A
   
      
       
        
by the continuity of ( )Y t for 0t  and the appropriate evaluations using the interval 0J  for the left limit
and 1J  for the right limit. Alternatively, we apply Leibniz’s rule for differentiating an integral to
( )
lim ( , )
t h
Y t


 
to obtain 0 0 0 0 0(2 ) ( ) ( ) ( )
0 1 0 1 0 10 .
h
A h h A h h A t s A t s A h
h
A e Ae A e Ae ds A e A



   

    
Therefore ( , )Y t  is not differentiable at t h  and hence not analytic there. Equivalently using the fact
that (1) and (5) are autonomous, ( )Y t is not differentiable at t h and hence not analytic there.
 
0 0 0
0 0 1 0 1
( ) ( )
1
( ) ( ) ( )
1 1
2 , 1, ,2 1( 1)
( )
, , 2
i
j i i
t
A t A t s A s h
h
s ht jk
A t s A s h s A s h
k
j i j jjh i h
Y t e e Ae ds
e Ae Ae ds t J k


 

   
   
 
 
   
  

   
 
0 0 0
0 0 1 0 1
( ) ( )
1
( )
( ) ( ) ( )
1 1
2 , 1, ,2 1( 1)
lim ( )
, 2
i
j i i
kh
A kh A kh s A s h
t kh
h
s hkh jk
A kh s A s h s A s h
j i j jjh i h
Y t e e Ae ds
e Ae Ae ds k



 


   
   
  
 
  
  

   
 
0 0 0
0 0 1 0 1
( ) ( )
1
( )
1
( ) ( ) ( )
1 1
2 , 1, ,2 1( 1)
since the integral contribution at is zero.
lim ( )
, 1 2
i
j i i
kh
A kh A kh s A s h
t kh
h
s hkh jk
A kh s A s h s A s h
j i j jjh i h
j kh
Y t e e Ae ds
e Ae Ae ds k



 


   
   

 
 
   
  

   
 
0 0 0
0 0 1 0 1
( ) ( )
1 1
1
( ) ( ) ( )
1 1
2 , 1, ,2 1( 1)
On , ( )
, 1 2
i
j i i
t
A t A t s A s h
k
h
s ht jk
A t s A s h s A s h
j i j jjh i h
J Y t e e Ae ds
e Ae Ae ds k


 


   
   
 
 
   
  

   
Duality between initial and terminal function problem…
www.ijmsi.org 68 | P a g e
 
0 0 0
0 10 0 1
( ) ( )
1
( )
1
( )( ) ( )
1 1
2 , 1, ,2 1( 1)
This completes the proof of the continuity of ( ), for 0,
lim ( )
, 1 2
i
j i i
kh
A kh A kh s A s h
t kh
h
s hkh jk
A s hA kh s A s h s
j i j jjh i h
Y t t
Y t e e Ae ds
e Ae Ae ds k



 


  
   

  
 
   
  

   
and hence that of ( , ),Y t t 
 
 
0 0 0 0
0 1 0 1
0 0 1 0 1
( ) ( ) ( )
0 1 0 1
( ) ( )
1 1
2 , 1, ,2 1( 1)
( ) ( ) ( )
0 1 1
2 , 1, ,2 1( 1)
( )
i
i i
i
j i i
t
A t A t h A t s A s h
h
s h jk
A s h s A s h
j i j j i h
s ht jk
A t s A s h s A s h
j i j jjh i h
Y t A e Ae A e Ae ds
Ae Ae ds
A e Ae Ae ds






  

  
   

   
   
  

 
  
  

  
   



, , 2kt J k 
 
 
0 0 0 0
0 1 0 1
0 0 1
[ 1] ( ) ( )
0 1 0 1
( )
( ) ( )
1 1
2 , 1, ,2 1( 1)
1
( ) ( )
0 1
2 , 1, ,2 ( 1)
lim ( )
i
i i
i
j i i
kh
A kh A k h A kh s A s h
t kh
h
s h jk
A s h s A s h
j i j j i h
s hkhk
A t s A s h s
j i j jjh i h
Y t A e Ae A e Ae ds
Ae Ae ds
A e Ae A





  


  
   

  
   
   

 
  
  

  
  



0 1( )
1
1
since the integral contribution at is zero.
, 3
j
A s h
t kh
e ds k





 
 
0 0 0 0
0 1 0 1
0 0 1
[ 1] ( ) ( )
1 0 1 0 1
( )
1
( ) ( )
1 1
2 , 1, ,2 1( 1)
1
( ) ( )
0 1
2 , 1, ,2 ( 1)
lim ( )
i
i i
i
j i i
kh
A kh A k h A kh s A s h
k
t kh
h
s h jk
A s h s A s h
j i j j i h
s htk
A kh s A s h s
j i j jjh i h
t J Y t A e Ae A e Ae ds
Ae Ae ds
A e Ae





  



  
   

  
   
    




  
  



0 1( )
1
1
, 1 2
j
A s h
Ae ds k




  
  

We proceed to take the second derivative of Y( t ).
 
0 0 0 0 0
0 1 0 1
( ) ( ) ( ) ( )2 2
0 1 0 0 1 0 1
( ) ( )
0 1 1
2 , 1, ,2 1( 1)
( )
i
i i
t
A t A t h A t h A t s A s h
h
s h jk
A s h s A s h
j i j j i h
Y t A e A A e A Ae A e Ae ds
A Ae Ae ds


   

  
   
   


  

 
0 0 1 0 1
( ) ( ) ( )2
0 1 1
2 , 1, ,2 1( 1)
, , 2
i
j i i
s ht jk
A t s A s h s A s h
k
j i j jjh i h
A e Ae Ae ds t J k



   
   
 
   
  
   
 
0 0 0 0 0
0 1 0 1
[ 1] [ 1] ( ) ( )2 2
0 1 0 0 1 0 1
( )
( ) ( )
0 1 1
2 , 1, ,2 1( 1)
lim ( )
i
i i
kh
A kh A k h A k h A kh s A s h
t kh
h
s h jk
A s h s A s h
j i j j i h
Y t A e A A e A Ae A e Ae ds
A Ae Ae ds



   


  
   
    


  

Duality between initial and terminal function problem…
www.ijmsi.org 69 | P a g e
 
0 0 1 0 1
( ) ( ) ( )2
0 1 1
2 , 1, ,2 1( 1)
, 2
i
j i i
s hkh jk
A kh s A s h s A s h
j i j jjh i h
A e Ae Ae ds k



   
   
 
  
  
   
 
0 0 0 0 0
0 1 0 1
[ 1] [ 1] ( ) ( )2 2
0 1 0 0 1 0 1
( )
1
( ) ( )
0 1 1
2 , 1, ,2 1( 1)
lim ( )
i
i i
kh
A kh A k h A k h A kh s A s h
t kh
h
s h jk
A s h s A s h
j i j j i h
Y t A e A A e A Ae A e Ae ds
A Ae Ae ds



   


  
   
   


  

 
0 0 1 0 1
1
( ) ( ) ( )2
0 1 1
2 , 1, ,2 1( 1)
, 2
i
j i i
s hkh jk
A kh s A s h s A s h
j i j jjh i h
A e Ae Ae ds k



   
   
 
  
  
   
 
0 1 0 1( ) ( )
0 1 1
( ) ( )
, 1, ,2 1( 1)
Clearly, lim ( ) lim ( )
i
i i
s h k
A s h s A s h
t kh t kh
i k k i h
Y t Y t A Ae Ae ds


 

  
 
  
   
 
02
0Clearly, lim ( ) ,A h
t h
Y t A e


0 0 0 0 0( ) ( ) ( ) ( )2 2
0 1 0 0 1 0 1( )
t
A t A t h A t h A t s A s h
h
Y t A e A A e A Ae A e Ae ds   
    
02
0 1 0 0 1 1 0 0 1lim ( ) lim ( ) lim ( )A h
t h t h t h
Y t A e A A A A Y t Y t A A A A  
  
        
Therefore, ( )Y t is differentiable except at 0, but not twice differentiable at kh, for any nonnegative
integer k. This completes the proof that ( )Y t is non-analytic at kh , for k nonnegative.
Additional information revealed is the differentiability of ( ),for 0.Y t t 
We conclude the following:
( , )(i)Y t  is analytic except at , {0,1, } is analytic for { : 0,1, }( , )t kh k kh kY t t       R
(ii) ( , )Y t  is differentiable at , 0.t kh k  
0
1 1
1 1 1
0 1
1
( )
lim limfor ;, ( , ) ( , ) 0 ( , )( , ) n
t t
A t
K X t I X t X tX t e
 

     
 

    is not continuous at
1t  and hence not analytic there. 0
1
1
( )
lim ( , ) ,
A h
t h
X t e


 

1 01 1
1
1 1
0 1 0 0
1
( )
( ) ( ) ( )
1 1 1lim( , ) ( , )h A h
t h
A t A t s A s
t h
AK X t e e e ds X t e



    

 


    .
Therefore 1( , )X t is continuous at 1 .t h   By Leibniz’s rule of integral differentiation,
0 1 1
0
1
1 1
1
( )
1 0 1 1 0
0 1 1 0
( )
0 1 0 0
1
0
( )
( ) ( ) ( )
1 1
1
0
; lim ( , ) .lim
( , )
( , )
A t h h
A hh
t ht h
A t A t s A s
t h
A
e A A A
A X t A e
A
A
K X t e e e ds
eX t
 




 
 
  

 
  




  
  
 




Therefore 1( , )X t is not differentiable at 1 ,t h   and hence not analytic there.
Duality between initial and terminal function problem…
www.ijmsi.org 70 | P a g e
 
 
 
 
0 1 0 1 1 0 1 1 0 1
1
0 1 1 0 1
0 1 1 0 1
1
( ) ( ) ( )
1 0 1 1 0 1
1
( ) ( )
1 1
2 , 1, ,2 1( 1)
1 ( ) ( )
1
1
( , )
1
1
i
q q
q q
k
A t A t h s A t h s A s
t h
s hj k
j A t h s A s h s
k i k k qi h
k
j A t h s A s h s
q
ds
X t A e e A e A A e ds
e Ae A
e Ae



 





     

 
   
   
    


  

  
   
   
 


  
 
0
1
1
1
( )
1 0
2 , 1, ,2 ( 1)
, , 2
i
k
k
j
s hj
A s
k i k kt kh i h
ds K jA A e 





 

   
 
  
  
   
   
 
 
 
 
1
0 1 1 0 1 10 0
1
1
0 1 1 0 1
0 1 1
1
( ) ( )[ 1]
1 0 1 1 0 1
1
( ) ( )
1 1
2 , 1, ,2 1( 1)
1 ( )
lim ( , )
1
1
i
q q
k
t jh
A t h s A s jh tA jh A j h
t jh t h
s hj k
j A t h s A s h s
k i k k qi h
j A t h s
ds
X t A e e A e A A e ds
e Ae A
e








   
  
 
   
   
  
 
    
  
   
   
 


  
 
1
0 10 1
1
1
1 1
( )( )
1 1 0
2 , 1, ,2 1( 1)
, 1 2
i
kq q
k
t jh s hj k
A s jh tA s h s
k i k k qt kh i h
ds jAe A A e 



  
  
    
 
  
  
   
   
since the integral contribution from k j is zero.
 
 
 
 
1
0 1 1 0 1 10 0
1
1
0 1 1 0 1
0
1
( ) ( )[ 1]
1 1 0 1 1 0 1
1
( ) ( )
1 1
2 , 1, ,2 1( 1)
1 (
lim ( , )
1
1
i
q q
k
t jh
A t h s A s jh tA jh A j h
j
t jh t h
s hj k
j A t h s A s h s
k i k k qi h
j A t
ds
K X t A e e A e A A e ds
e Ae A
e



 




   

  
 
   
   

 
      
  
   
   
 


  
 
1
1 1 0 10 1
1
1
1 1
) ( )( )
1 1 0
2 , 1, ,2 1( 1)
, 1 2
i
kq q
k
t jh s hj k
h s A s jh tA s h s
k i k k qt kh i h
ds jAe A A e 



  
    
    
 
  
  
   
   
Therefore 1( , )X t is differentiable except at 1.t  We proceed to take the second derivative:
 
 
 
 
0 1 0 1 0 1 1 0 1
1
0 1 1 0 1
0 1 1
1 1
2
( ) ( ) ( )2 2
1 0 1 0 1 0 12
1
1 ( ) ( )
1 1 0
2 1
2 ( )
1
, 1, ,2 ( 1)
( , )
1
1
i
q q
k k
A t A t h A t h s A s
t h
s hj k
j A t h s A s h s
k q
j A t h s A
i k k i h
ds ds
X t A e e A A e A A e ds
e Ae A A
e Ae
 
 

  



 
     

 
    
 
  
  

  

  
   
   
 
 

  
 
0 1 0
1
1
1
( ) ( )2
1 0
2 1, 1, ,2 ( 1)
, , 2
i
q q k
k
j
s hj k
s h s A s
k qi k kt kh i h
ds K jA A e 





 
  
   
 
  
  
   
   
 
 
 
1
0 1 1 0 1 10 0
1
1
0 1 1 0 1
1 1
2
( ) ( )[ 1]2 2
1 0 1 0 1 0 12
1
1 ( ) ( )
1 1 0
2 , 1, ,2 1( 1)
lim ( , )
1
i
q q
k k
t jh
A t h s A s jh tA jh A j h
t jh t h
s hj k
j A t h s A s h s
k i k k qi h
ds ds
X t A e e A A e A A e ds
e Ae A A  
 




 

   
  
 
    
   
 
     
  
   
   
 

  
 
 
1
0 1 1 0 10 1
1
1
1 1
2 ( ) ( )( ) 2
1 1 0
2 , 1, ,2 1( 1)
, 1 21
i
kq q
k
t jh s hj k
j A t h s A s jh tA s h s
k i k k qt kh i h
ds je Ae A A e 



  
     
    
 
  
    
   
   
Duality between initial and terminal function problem…
www.ijmsi.org 71 | P a g e
because the integral contribution from k j is zero.
 
 
 
1
0 1 1 0 1 10 0
0 1 1 0 1
1
1 1
2
( ) ( )[ 1]2 2
1 1 0 1 0 1 0 12
1 1
1 ( ) ( )
1 1 0
2 1, 1, ,2 ( 1)
lim ( , )
1
i
q q
k
t jh
A t h s A s jh tA jh A j h
j
s hj k
j A t h s A s h s
k q
t jh t h
i k k i h
ds
K X t A e e A A e A A e ds
e Ae A A 


 





   

 
    
 
  
  
 
      
  
   
   


  
 
 
1
0 1 1 0 10 1
1
1
1
1 1
2 ( ) ( )( ) 2
1 1 0
2 1, 1, ,2 ( 1)
, 1 21
i
kq q
k
k
t jh s hj k
j A t h s A s jh tA s h s
k qi k kt kh i h
ds
ds je Ae A A e







  
     
   
 
  
    
   

   
   1 1
1 1 1
Hence lim ( , ) lim ( , ), 2: [ 1] 0.
t jh t jh
X t X t j t j h
 
  
   
    
1
Therefore, ( , )X t is differentiable except at 1t  , but not twice differentiable at 1t jh   , for
any nonnegative integer j. This completes the proof that 1
( , )X t is not analytic at 1
t j h   , for any
nonnegative integer j.
Additional information revealed is the differentiability of 1 1( , ),for .X t t  
We conclude the following:
1
( , )(i) tX  is analytic except at 1 1
, {0,1, }: [ 1] 0t j tjh j h     
1 1
is analytic for { : 0,1, }( , )X t jt jh   R
1
(ii) ( , )X t is differentiable at 1
, 0.t jh j   
Proof of (viii)
Given (14), (15) and (16), observe that
T T
1 1 1 1
( ) (0) and ( ) ( ); is the terminal point for , while 0 is the initial point for ; is
the initial point for , while is the initial point for .
t t h h t t h
h
     
 
    

The variation of constants formula for the initial function problem (1) and (2) is:
0
1( ) ( ) (0) ( ) ( ) , 0 (17)
h
x t Y t Y t h s A s ds t 

    
Cf. Chukwu ( 1992, pp. 125-126, 345) and Manitius (1978, pp. 6, 12) , while the variation of constants formula
for the terminal function problem (14) and (15) is:
1
1 1 1( ) (0) ( ) ( ) ( ) , 0 (18)
t
y X t t h s A X s h d

             
This completes the proof that the stated initial and terminal function problems are duals of each other.
VI. CONCLUSION
This article has established the duality between the solution matrices in Ukwu and Garba [2014a] and
the corresponding indices of control systems in Ukwu and Garba [2014c], as well as the duality between their
variation of constants formulas, culminating in the conclusion that the associated initial and terminal function
problems are duals of each other. The proofs were achieved using an algorithm involving deft application of
rules of integral differentiation and key transformations from one problem to the other, leading to the assertion
that the results from one problem can be realized from the other. The ideas exposed in this paper can be
exploited to extend the results to double-delay and neutral systems if the structures of the associated solution
and control index matrices can be determined.
Duality between initial and terminal function problem…
www.ijmsi.org 72 | P a g e
REFERENCES
[1] Ukwu, C. and E. J. D. Garba (2014a). A derivation of an optimal expression for the index of control systems matrices for single
– delay differential systems. Journal of Mathematical Science, Vol. 25 Number-1, January, 2014.
[2] Ukwu, C. and E. J. D. Garba (2014c). Optimal expressions for solution matrices of single – delay differential systems.
International Journal of Mathematics and Statistics Invention (IJMSI), Volume 2, Issue 2, February 2014.
[3] Chukwu, E. N. Stability and time-optimal control of hereditary systems (Academic Press, New York, 1992).
[4] Gabasov, R. and Kirillova, F. The qualitative theory of optimal processes ( Marcel Dekker Inc., New York, 1976).
[5] Hale, J. K. Theory of functional differential equations. Applied Mathematical Science, Vol. 3, 1977, Springer-Verlag, New York.
[6] Manitius, A. (1978). Control Theory and Topics in Functional Analysis. Vol. 3, Int. Atomic Energy Agency, Vienna.
[7] Tadmore, G. Functional differential equations of retarded and neutral types: Analytical solutions and piecewise
continuous controls, Journal of Differential Equations, Vol. 51, No. 2, 1984, Pp. 151-181.
[8] Ukwu, C. (1987). Compactness of cores of targets for linear delay systems., J. Math. Analy. and Appl., Vol. 125, No. 2, August 1.
pp. 323-330.
[9] Ukwu, C. Euclidean controllability and cores of euclidean targets for differential difference systems Master of Science Thesis in
Applied Math. with O.R. (Unpublished), North Carolina State University, Raleigh, N. C. U.S.A., 1992.
[10] Ukwu, C. An exposition on Cores and Controllability of differential difference systems, ABACUS, Vol. 24, No. 2, 1996, pp. 276-
285.

Contenu connexe

Tendances

An order seven implicit symmetric sheme applied to second order initial value...
An order seven implicit symmetric sheme applied to second order initial value...An order seven implicit symmetric sheme applied to second order initial value...
An order seven implicit symmetric sheme applied to second order initial value...
Alexander Decker
 
M sc it_modelling_biological_systems2005
M sc it_modelling_biological_systems2005M sc it_modelling_biological_systems2005
M sc it_modelling_biological_systems2005
Aafaq Malik
 
6. bounds test for cointegration within ardl or vecm
6. bounds test for cointegration within ardl or vecm 6. bounds test for cointegration within ardl or vecm
6. bounds test for cointegration within ardl or vecm
Quang Hoang
 

Tendances (19)

D023031047
D023031047D023031047
D023031047
 
C023014030
C023014030C023014030
C023014030
 
C023014030
C023014030C023014030
C023014030
 
Stochastics Calculus: Malliavin Calculus in a simplest way
Stochastics Calculus: Malliavin Calculus in a simplest wayStochastics Calculus: Malliavin Calculus in a simplest way
Stochastics Calculus: Malliavin Calculus in a simplest way
 
Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model
 
D024025032
D024025032D024025032
D024025032
 
An order seven implicit symmetric sheme applied to second order initial value...
An order seven implicit symmetric sheme applied to second order initial value...An order seven implicit symmetric sheme applied to second order initial value...
An order seven implicit symmetric sheme applied to second order initial value...
 
M sc it_modelling_biological_systems2005
M sc it_modelling_biological_systems2005M sc it_modelling_biological_systems2005
M sc it_modelling_biological_systems2005
 
Stability analysis for nonlinear impulsive optimal control problems
Stability analysis for nonlinear impulsive optimal control problemsStability analysis for nonlinear impulsive optimal control problems
Stability analysis for nonlinear impulsive optimal control problems
 
6. bounds test for cointegration within ardl or vecm
6. bounds test for cointegration within ardl or vecm 6. bounds test for cointegration within ardl or vecm
6. bounds test for cointegration within ardl or vecm
 
Active Controller Design for Regulating the Output of the Sprott-P System
Active Controller Design for Regulating the Output of the Sprott-P SystemActive Controller Design for Regulating the Output of the Sprott-P System
Active Controller Design for Regulating the Output of the Sprott-P System
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
Stability behavior of second order neutral impulsive stochastic differential...
Stability behavior of second order neutral impulsive  stochastic differential...Stability behavior of second order neutral impulsive  stochastic differential...
Stability behavior of second order neutral impulsive stochastic differential...
 
C024015024
C024015024C024015024
C024015024
 
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
 
JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models
JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron modelsJAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models
JAISTサマースクール2016「脳を知るための理論」講義01 Single neuron models
 
Presentation03 ss
Presentation03 ssPresentation03 ss
Presentation03 ss
 
On observer design methods for a
On observer design methods for aOn observer design methods for a
On observer design methods for a
 
Kt2418201822
Kt2418201822Kt2418201822
Kt2418201822
 

Similaire à F023064072

A current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsA current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systems
Alexander Decker
 
Redundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systemsRedundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systems
Springer
 
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
toukaigi
 

Similaire à F023064072 (20)

D023031047
D023031047D023031047
D023031047
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical System
 
B02609013
B02609013B02609013
B02609013
 
C02402023032
C02402023032C02402023032
C02402023032
 
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
 
D025030035
D025030035D025030035
D025030035
 
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
 
HYBRID SLIDING SYNCHRONIZER DESIGN OF IDENTICAL HYPERCHAOTIC XU SYSTEMS
HYBRID SLIDING SYNCHRONIZER DESIGN OF  IDENTICAL HYPERCHAOTIC XU SYSTEMS HYBRID SLIDING SYNCHRONIZER DESIGN OF  IDENTICAL HYPERCHAOTIC XU SYSTEMS
HYBRID SLIDING SYNCHRONIZER DESIGN OF IDENTICAL HYPERCHAOTIC XU SYSTEMS
 
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable CoefficientsDecay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
 
A current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsA current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systems
 
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
 
Redundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systemsRedundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systems
 
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
 
Modern Control System (BE)
Modern Control System (BE)Modern Control System (BE)
Modern Control System (BE)
 
E028047054
E028047054E028047054
E028047054
 
On Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace TransformOn Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace Transform
 
17 16512 32451-1-sm (edit ari)
17 16512 32451-1-sm (edit ari)17 16512 32451-1-sm (edit ari)
17 16512 32451-1-sm (edit ari)
 
17 16512 32451-1-sm (edit ari)
17 16512 32451-1-sm (edit ari)17 16512 32451-1-sm (edit ari)
17 16512 32451-1-sm (edit ari)
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
 

Dernier

Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
mphochane1998
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
HenryBriggs2
 
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
Health
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 

Dernier (20)

COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Bridge Jacking Design Sample Calculation.pptx
Bridge Jacking Design Sample Calculation.pptxBridge Jacking Design Sample Calculation.pptx
Bridge Jacking Design Sample Calculation.pptx
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Air Compressor reciprocating single stage
Air Compressor reciprocating single stageAir Compressor reciprocating single stage
Air Compressor reciprocating single stage
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Learn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic MarksLearn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic Marks
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
 
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 

F023064072

  • 1. International Journal of Mathematics and Statistics Invention (IJMSI) E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759 www.ijmsi.org ǁ Volume 2 ǁ Issue 3 ǁ March 2014 ǁ PP-64-72 www.ijmsi.org 64 | P a g e Duality between initial and terminal function problems Ukwu Chukwunenye Department of Mathematics, University of Jos, P.M.B 2084 Jos, Nigeria. ABSTRACT: This paper successfully investigated the topological duality between initial and terminal function problems with respect to single-delay autonomous linear control systems using the expressions for the solution matrices and indices of control systems developed and proved in Ukwu and Garba [2014a, c] for single – delay autonomous linear systems, as well as the general variation of constants formula for the relevant systems. The paper obtained independent proofs that the solution matrices and the indices of control systems are analytic almost everywhere and differentiable except at a single point. The proofs were achieved using an algorithm involving key transformations from one problem to the other, effectively establishing that the results from one problem can be realized from the other. KEYWORDS: Duality, Initial, Problems, Terminal, Transformations. I. INTRODUCTION The qualitative approach to the controllability of functional differential control systems have been areas of active research for the past fifty years among control theorists and applied mathematicians in general. This circumvents the severe difficulties associated with the search for and computations of solutions of such systems. Unfortunately computations of solutions cannot be wished away in the tracking of trajectories and many practical applications. Literature on state space approach to control studies is replete with variation of constants formulas, which incorporate the solution matrices of the free part of the systems. See Chukwu (1992), Gabsov and Kirillova (1976), Hale (1977), Manitius (1978), Tadmore (1984), Ukwu (1987, 1992, 1996) and Ukwu and Garba [2014a]. Furthermore the importance of indices of control systems matrices stems from the fact that they not only pave the way for the derivation of determining matrices for the determination of Euclidean controllability and compactness of cores of Euclidean targets but can be used independently for such determination, Ukwu and Garba [2014c]. Regrettably no author had made any noteworthy attempt to obtain general expressions for such solution matrices and indices of control systems matrices involving the delay huntil Ukwu and Garba [2014a,c]. This article makes further contribution to knowledge in controllability studies by establishing that initial and terminal function problems are duals of each other, using Ukwu and Garba [2014a,c] as key components in the ensuing analyses and much more. II. PRELIMINARIES Consider the initial function problem: 0 1( ) ( ) ( ) (1) ( ) ( ), [ ,0] (2) x t A x t A x t h x t t t h        and the terminal function problem: 0 1 1 1 ( ) ( ) ( ) (3) ( ) ( ), [ , ] (4) y y A y h A y t h t                0 1 where and are constant matrices; (.) and (.) are column and row n-vector functionsA A n n x y respect ively. Let ( , ) and ( , )Y t X t  be solution matrices of systems (1) and (3) respectively. Then ( , ) and ( , )X t Y t  satisfy respectively the following matrix differential equations:
  • 2. Duality between initial and terminal function problem… www.ijmsi.org 65 | P a g e      0 1 , , , , , where ( , ) (5) 0, nI t Y t A Y t A Y t h Y t t t                    0 1, , , , (6)X t X t A X h t A          for 0 , , 0,1,...t t k h k      where   ; 0; (7), nI t t X t         See Chukwu (1992), Hale (1977) and Tadmore (1984) for properties of  , .X t  of particular importance is the fact that  ,t   is analytic on the intervals     1 1 1 1 , , 0,1,...; 1 0t j h t j h j t j h       . Any such   1 1 1 ,t j h t j h     is called a regular point of  ,t   . The first result we will establish is that ( , ) and ( , )Y t X t  are topological duals of each other. This result will rely on and exploit the following Ukwu-Garba’s theorems on global expressions for the matrices ( , ) and ( , ).Y t X t  See Ukwu and Garba [2014 a,c]. 1 1 1 et [ ( 1) , ],Let [( ) ,( 1 ) ], {0,1, }, {0,1};l 0: ( 1) 0. k i jK t j h t jhJ k i h k i h k i j t j h                III. THEOREM: UKWU-GARBA’S SOLUTION MATRIX FORMULA FOR AUTONOMOUS, SINGLE – DELAY LINEAR SYSTEMS   0 0 0 0 0 0 0 0 0 1 0 1 0 ( ) ( ) 1 1 ( ) ( ) 1 ( ) ( ) ( ) 1 1 2 , 1, ,2 1( 1) , ; (8) , ; (9) ( ) , , 2 (10) i j i i A t t A t A t s A s h h t A t A t s A s h h s ht jk A t s A s h s A s h k j i j jjh i h e t J e e Ae ds t J Y t e e Ae ds e Ae Ae ds t J k                                              IV. THEOREM: UKWU-GARBA’S CONTROL INDEX THEOREM FOR AUTONOMOUS LINEAR DELAY CONTROL SYSTEMS:           0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 ( ) ( ) 1 1 1 ( ) ( )1 1 1 1 ( ) ( ) ( ) 1 1 , 1, ,2 1( 1) , ; (11) , ; (12) ( , ) (13) 1 i q q k A t A t A t h s A s t h A t A t h s A s t h s h k j A t h s A s h s A s i k k qt i h e K e e Ae ds K X t e e Ae ds e Ae Ae                                                   12 , , 2 k j j k kh ds K j                            
  • 3. Duality between initial and terminal function problem… www.ijmsi.org 66 | P a g e Our current result is captured in the following theorem. V. THEOREM: UKWU’S TOPOLOGICAL DUAL ALGORITHM FOR AUTONOMOUS LINEAR DELAY SYSTEMS ( , ) and ( , )Y t X t  are topological duals of each other subject to the transformations below. To obtain ( , ) from ( , ) )X t Y t  perform the following operations; (i) t t   in the formula for ( ).Y t (ii) (.) (.)t  in the lower integral limits, as well as in the leading integral limits in (10) with the preceding sign convention ( 1) , for 1 ,j j k   followed by the notational changes 2 2 , ; (.) (.) jk k j j k j k J K        (iii) in the upper integral limits in ( , ).i i Y ts h s h    0 0 1( ) ( ) (iv) The leading exponential function , {2,3, },in the integralsjA t s A t h s e e j k         in ( , )Y t  and the trailing exponential function 0 1 0( ) ( ) .jA s h A s e e    To obtain ( , ) from ( , )Y t X t  perform the following operations: (v) (.) (.)t  in the leading integral limits, as well as in the lower integral limits. Omit the sign convention ( 1) , for 1 ,j j k   and effect the notational changes 2 2 ; (.) (.) j k j k k j K J        (vi) Replace the leading exponential function 0 1 0( ) ( ) by , {1,2, },in ( , )jA t h s A t s e e j k X t          and the trailing exponential function 0 0 1( ) ( ) byjA s A s h e e   (vii) Replace the upper integral limits in ( , ) by .i is h X t s h  (viii) Given the initial function problem (1) and (2) the equivalent terminal function problem is given by: 0 1 1 1 ( ) ( ) ( ) (14) ( ) ( ), [ , ] (15) y y A y h A y t h t                T T 1 1 1 denotes the transpose of (.). where ( ) ( ), [ , ];(.) (16)t t h t        Proof We need to prove that the continuity and analytic dispositions of 1( , ), jX t K   can be inferred from those of ( , ), kY t t J   and vice-versa. In particular, we prove that the continuity and non-analytic behavior of 1 1 1 ( , ),for : ( 1) 0X t t jh t j h       correspond to those of 1( , ),for : .Y t t kh t t    We start from the expression for ( , ). Note that ( , ) ( )Y t Y t Y t    since the systems (1) and (5) are autonomous. So we may replace byt t  in Ukwu and Garba’s solution matrix theorem to secure ( , ).Y t  This justifies (i). With 1t t , in Ukwu and Garba’s Control Index theorem, the transformation (.) (.)t  , in (ii) ensures that 1 1 1, , ,( 1) ( 1) .t t jh t jh t i h t i h            These, together with the sign convention and the notational changes in (ii) guarantee that (8) and (9) with t replaced by t  transform to (11) and (12) respectively. We need to prove that the multiple integral in (10) transforms to the multiple integral in (13). To achieve the proof, combine the foregoing with j k and the transformations in (iii) and (iv) to deduce immediately that the multiple integral in (10) transforms to the
  • 4. Duality between initial and terminal function problem… www.ijmsi.org 67 | P a g e multiple integral in (13), proving that 1 ( , )X t has been obtained from ( , ).Y t  The proof that 1 ( , )X t transforms to ( , )Y t  is similar. Finally we investigate the continuity and analytic dispositions of ( , )Y t  and 1 ( , ).X t Being sums of integrals of products of constant matrices and exponential functions we deduce that ( , )Y t  and 1 ( , )X t are analytic in the interiors of andk j J K respectively, since 0 (.) is . A e C Finally we must examine ( , )Y t  and 1( , )X t on the boundaries of andk jJ K respectively. ( , ) 0 lim ( , ) 0, lim ( , ) 0; t t Y t t Y t Y t                0 0 ( , ) [ , ] lim ( , ) , lim ( , ) . A t t t Y t e t h Y t I Y t A                  Therefore ( )Y t is not continuous at t  and certainly not differentiable there. It follows that ( )Y t is not analytic at .t  0 0 0 0 1 0 1 0 1 ( ) ( ) ( ) ( ) lim ( , ) ; lim ( , ) lim ( , ) lim ( , ) ( ) (0) , A h A h t h t h t h t h Y t A e Y t A Y t A Y t h A Y h AY A e A                             by the continuity of ( )Y t for 0t  and the appropriate evaluations using the interval 0J  for the left limit and 1J  for the right limit. Alternatively, we apply Leibniz’s rule for differentiating an integral to ( ) lim ( , ) t h Y t     to obtain 0 0 0 0 0(2 ) ( ) ( ) ( ) 0 1 0 1 0 10 . h A h h A h h A t s A t s A h h A e Ae A e Ae ds A e A              Therefore ( , )Y t  is not differentiable at t h  and hence not analytic there. Equivalently using the fact that (1) and (5) are autonomous, ( )Y t is not differentiable at t h and hence not analytic there.   0 0 0 0 0 1 0 1 ( ) ( ) 1 ( ) ( ) ( ) 1 1 2 , 1, ,2 1( 1) ( ) , , 2 i j i i t A t A t s A s h h s ht jk A t s A s h s A s h k j i j jjh i h Y t e e Ae ds e Ae Ae ds t J k                                0 0 0 0 0 1 0 1 ( ) ( ) 1 ( ) ( ) ( ) ( ) 1 1 2 , 1, ,2 1( 1) lim ( ) , 2 i j i i kh A kh A kh s A s h t kh h s hkh jk A kh s A s h s A s h j i j jjh i h Y t e e Ae ds e Ae Ae ds k                                  0 0 0 0 0 1 0 1 ( ) ( ) 1 ( ) 1 ( ) ( ) ( ) 1 1 2 , 1, ,2 1( 1) since the integral contribution at is zero. lim ( ) , 1 2 i j i i kh A kh A kh s A s h t kh h s hkh jk A kh s A s h s A s h j i j jjh i h j kh Y t e e Ae ds e Ae Ae ds k                                   0 0 0 0 0 1 0 1 ( ) ( ) 1 1 1 ( ) ( ) ( ) 1 1 2 , 1, ,2 1( 1) On , ( ) , 1 2 i j i i t A t A t s A s h k h s ht jk A t s A s h s A s h j i j jjh i h J Y t e e Ae ds e Ae Ae ds k                              
  • 5. Duality between initial and terminal function problem… www.ijmsi.org 68 | P a g e   0 0 0 0 10 0 1 ( ) ( ) 1 ( ) 1 ( )( ) ( ) 1 1 2 , 1, ,2 1( 1) This completes the proof of the continuity of ( ), for 0, lim ( ) , 1 2 i j i i kh A kh A kh s A s h t kh h s hkh jk A s hA kh s A s h s j i j jjh i h Y t t Y t e e Ae ds e Ae Ae ds k                                 and hence that of ( , ),Y t t      0 0 0 0 0 1 0 1 0 0 1 0 1 ( ) ( ) ( ) 0 1 0 1 ( ) ( ) 1 1 2 , 1, ,2 1( 1) ( ) ( ) ( ) 0 1 1 2 , 1, ,2 1( 1) ( ) i i i i j i i t A t A t h A t s A s h h s h jk A s h s A s h j i j j i h s ht jk A t s A s h s A s h j i j jjh i h Y t A e Ae A e Ae ds Ae Ae ds A e Ae Ae ds                                                  , , 2kt J k      0 0 0 0 0 1 0 1 0 0 1 [ 1] ( ) ( ) 0 1 0 1 ( ) ( ) ( ) 1 1 2 , 1, ,2 1( 1) 1 ( ) ( ) 0 1 2 , 1, ,2 ( 1) lim ( ) i i i i j i i kh A kh A k h A kh s A s h t kh h s h jk A s h s A s h j i j j i h s hkhk A t s A s h s j i j jjh i h Y t A e Ae A e Ae ds Ae Ae ds A e Ae A                                                 0 1( ) 1 1 since the integral contribution at is zero. , 3 j A s h t kh e ds k          0 0 0 0 0 1 0 1 0 0 1 [ 1] ( ) ( ) 1 0 1 0 1 ( ) 1 ( ) ( ) 1 1 2 , 1, ,2 1( 1) 1 ( ) ( ) 0 1 2 , 1, ,2 ( 1) lim ( ) i i i i j i i kh A kh A k h A kh s A s h k t kh h s h jk A s h s A s h j i j j i h s htk A kh s A s h s j i j jjh i h t J Y t A e Ae A e Ae ds Ae Ae ds A e Ae                                             0 1( ) 1 1 , 1 2 j A s h Ae ds k            We proceed to take the second derivative of Y( t ).   0 0 0 0 0 0 1 0 1 ( ) ( ) ( ) ( )2 2 0 1 0 0 1 0 1 ( ) ( ) 0 1 1 2 , 1, ,2 1( 1) ( ) i i i t A t A t h A t h A t s A s h h s h jk A s h s A s h j i j j i h Y t A e A A e A Ae A e Ae ds A Ae Ae ds                           0 0 1 0 1 ( ) ( ) ( )2 0 1 1 2 , 1, ,2 1( 1) , , 2 i j i i s ht jk A t s A s h s A s h k j i j jjh i h A e Ae Ae ds t J k                           0 0 0 0 0 0 1 0 1 [ 1] [ 1] ( ) ( )2 2 0 1 0 0 1 0 1 ( ) ( ) ( ) 0 1 1 2 , 1, ,2 1( 1) lim ( ) i i i kh A kh A k h A k h A kh s A s h t kh h s h jk A s h s A s h j i j j i h Y t A e A A e A Ae A e Ae ds A Ae Ae ds                           
  • 6. Duality between initial and terminal function problem… www.ijmsi.org 69 | P a g e   0 0 1 0 1 ( ) ( ) ( )2 0 1 1 2 , 1, ,2 1( 1) , 2 i j i i s hkh jk A kh s A s h s A s h j i j jjh i h A e Ae Ae ds k                          0 0 0 0 0 0 1 0 1 [ 1] [ 1] ( ) ( )2 2 0 1 0 0 1 0 1 ( ) 1 ( ) ( ) 0 1 1 2 , 1, ,2 1( 1) lim ( ) i i i kh A kh A k h A k h A kh s A s h t kh h s h jk A s h s A s h j i j j i h Y t A e A A e A Ae A e Ae ds A Ae Ae ds                             0 0 1 0 1 1 ( ) ( ) ( )2 0 1 1 2 , 1, ,2 1( 1) , 2 i j i i s hkh jk A kh s A s h s A s h j i j jjh i h A e Ae Ae ds k                          0 1 0 1( ) ( ) 0 1 1 ( ) ( ) , 1, ,2 1( 1) Clearly, lim ( ) lim ( ) i i i s h k A s h s A s h t kh t kh i k k i h Y t Y t A Ae Ae ds                    02 0Clearly, lim ( ) ,A h t h Y t A e   0 0 0 0 0( ) ( ) ( ) ( )2 2 0 1 0 0 1 0 1( ) t A t A t h A t h A t s A s h h Y t A e A A e A Ae A e Ae ds         02 0 1 0 0 1 1 0 0 1lim ( ) lim ( ) lim ( )A h t h t h t h Y t A e A A A A Y t Y t A A A A               Therefore, ( )Y t is differentiable except at 0, but not twice differentiable at kh, for any nonnegative integer k. This completes the proof that ( )Y t is non-analytic at kh , for k nonnegative. Additional information revealed is the differentiability of ( ),for 0.Y t t  We conclude the following: ( , )(i)Y t  is analytic except at , {0,1, } is analytic for { : 0,1, }( , )t kh k kh kY t t       R (ii) ( , )Y t  is differentiable at , 0.t kh k   0 1 1 1 1 1 0 1 1 ( ) lim limfor ;, ( , ) ( , ) 0 ( , )( , ) n t t A t K X t I X t X tX t e                 is not continuous at 1t  and hence not analytic there. 0 1 1 ( ) lim ( , ) , A h t h X t e      1 01 1 1 1 1 0 1 0 0 1 ( ) ( ) ( ) ( ) 1 1 1lim( , ) ( , )h A h t h A t A t s A s t h AK X t e e e ds X t e                  . Therefore 1( , )X t is continuous at 1 .t h   By Leibniz’s rule of integral differentiation, 0 1 1 0 1 1 1 1 ( ) 1 0 1 1 0 0 1 1 0 ( ) 0 1 0 0 1 0 ( ) ( ) ( ) ( ) 1 1 1 0 ; lim ( , ) .lim ( , ) ( , ) A t h h A hh t ht h A t A t s A s t h A e A A A A X t A e A A K X t e e e ds eX t                                    Therefore 1( , )X t is not differentiable at 1 ,t h   and hence not analytic there.
  • 7. Duality between initial and terminal function problem… www.ijmsi.org 70 | P a g e         0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 ( ) ( ) ( ) 1 0 1 1 0 1 1 ( ) ( ) 1 1 2 , 1, ,2 1( 1) 1 ( ) ( ) 1 1 ( , ) 1 1 i q q q q k A t A t h s A t h s A s t h s hj k j A t h s A s h s k i k k qi h k j A t h s A s h s q ds X t A e e A e A A e ds e Ae A e Ae                                                           0 1 1 1 ( ) 1 0 2 , 1, ,2 ( 1) , , 2 i k k j s hj A s k i k kt kh i h ds K jA A e                                      1 0 1 1 0 1 10 0 1 1 0 1 1 0 1 0 1 1 1 ( ) ( )[ 1] 1 0 1 1 0 1 1 ( ) ( ) 1 1 2 , 1, ,2 1( 1) 1 ( ) lim ( , ) 1 1 i q q k t jh A t h s A s jh tA jh A j h t jh t h s hj k j A t h s A s h s k i k k qi h j A t h s ds X t A e e A e A A e ds e Ae A e                                                        1 0 10 1 1 1 1 1 ( )( ) 1 1 0 2 , 1, ,2 1( 1) , 1 2 i kq q k t jh s hj k A s jh tA s h s k i k k qt kh i h ds jAe A A e                                since the integral contribution from k j is zero.         1 0 1 1 0 1 10 0 1 1 0 1 1 0 1 0 1 ( ) ( )[ 1] 1 1 0 1 1 0 1 1 ( ) ( ) 1 1 2 , 1, ,2 1( 1) 1 ( lim ( , ) 1 1 i q q k t jh A t h s A s jh tA jh A j h j t jh t h s hj k j A t h s A s h s k i k k qi h j A t ds K X t A e e A e A A e ds e Ae A e                                                          1 1 1 0 10 1 1 1 1 1 ) ( )( ) 1 1 0 2 , 1, ,2 1( 1) , 1 2 i kq q k t jh s hj k h s A s jh tA s h s k i k k qt kh i h ds jAe A A e                                  Therefore 1( , )X t is differentiable except at 1.t  We proceed to take the second derivative:         0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 2 ( ) ( ) ( )2 2 1 0 1 0 1 0 12 1 1 ( ) ( ) 1 1 0 2 1 2 ( ) 1 , 1, ,2 ( 1) ( , ) 1 1 i q q k k A t A t h A t h s A s t h s hj k j A t h s A s h s k q j A t h s A i k k i h ds ds X t A e e A A e A A e ds e Ae A A e Ae                                                              0 1 0 1 1 1 ( ) ( )2 1 0 2 1, 1, ,2 ( 1) , , 2 i q q k k j s hj k s h s A s k qi k kt kh i h ds K jA A e                                      1 0 1 1 0 1 10 0 1 1 0 1 1 0 1 1 1 2 ( ) ( )[ 1]2 2 1 0 1 0 1 0 12 1 1 ( ) ( ) 1 1 0 2 , 1, ,2 1( 1) lim ( , ) 1 i q q k k t jh A t h s A s jh tA jh A j h t jh t h s hj k j A t h s A s h s k i k k qi h ds ds X t A e e A A e A A e ds e Ae A A                                                           1 0 1 1 0 10 1 1 1 1 1 2 ( ) ( )( ) 2 1 1 0 2 , 1, ,2 1( 1) , 1 21 i kq q k t jh s hj k j A t h s A s jh tA s h s k i k k qt kh i h ds je Ae A A e                                    
  • 8. Duality between initial and terminal function problem… www.ijmsi.org 71 | P a g e because the integral contribution from k j is zero.       1 0 1 1 0 1 10 0 0 1 1 0 1 1 1 1 2 ( ) ( )[ 1]2 2 1 1 0 1 0 1 0 12 1 1 1 ( ) ( ) 1 1 0 2 1, 1, ,2 ( 1) lim ( , ) 1 i q q k t jh A t h s A s jh tA jh A j h j s hj k j A t h s A s h s k q t jh t h i k k i h ds K X t A e e A A e A A e ds e Ae A A                                                            1 0 1 1 0 10 1 1 1 1 1 1 2 ( ) ( )( ) 2 1 1 0 2 1, 1, ,2 ( 1) , 1 21 i kq q k k t jh s hj k j A t h s A s jh tA s h s k qi k kt kh i h ds ds je Ae A A e                                           1 1 1 1 1 Hence lim ( , ) lim ( , ), 2: [ 1] 0. t jh t jh X t X t j t j h               1 Therefore, ( , )X t is differentiable except at 1t  , but not twice differentiable at 1t jh   , for any nonnegative integer j. This completes the proof that 1 ( , )X t is not analytic at 1 t j h   , for any nonnegative integer j. Additional information revealed is the differentiability of 1 1( , ),for .X t t   We conclude the following: 1 ( , )(i) tX  is analytic except at 1 1 , {0,1, }: [ 1] 0t j tjh j h      1 1 is analytic for { : 0,1, }( , )X t jt jh   R 1 (ii) ( , )X t is differentiable at 1 , 0.t jh j    Proof of (viii) Given (14), (15) and (16), observe that T T 1 1 1 1 ( ) (0) and ( ) ( ); is the terminal point for , while 0 is the initial point for ; is the initial point for , while is the initial point for . t t h h t t h h               The variation of constants formula for the initial function problem (1) and (2) is: 0 1( ) ( ) (0) ( ) ( ) , 0 (17) h x t Y t Y t h s A s ds t        Cf. Chukwu ( 1992, pp. 125-126, 345) and Manitius (1978, pp. 6, 12) , while the variation of constants formula for the terminal function problem (14) and (15) is: 1 1 1 1( ) (0) ( ) ( ) ( ) , 0 (18) t y X t t h s A X s h d                This completes the proof that the stated initial and terminal function problems are duals of each other. VI. CONCLUSION This article has established the duality between the solution matrices in Ukwu and Garba [2014a] and the corresponding indices of control systems in Ukwu and Garba [2014c], as well as the duality between their variation of constants formulas, culminating in the conclusion that the associated initial and terminal function problems are duals of each other. The proofs were achieved using an algorithm involving deft application of rules of integral differentiation and key transformations from one problem to the other, leading to the assertion that the results from one problem can be realized from the other. The ideas exposed in this paper can be exploited to extend the results to double-delay and neutral systems if the structures of the associated solution and control index matrices can be determined.
  • 9. Duality between initial and terminal function problem… www.ijmsi.org 72 | P a g e REFERENCES [1] Ukwu, C. and E. J. D. Garba (2014a). A derivation of an optimal expression for the index of control systems matrices for single – delay differential systems. Journal of Mathematical Science, Vol. 25 Number-1, January, 2014. [2] Ukwu, C. and E. J. D. Garba (2014c). Optimal expressions for solution matrices of single – delay differential systems. International Journal of Mathematics and Statistics Invention (IJMSI), Volume 2, Issue 2, February 2014. [3] Chukwu, E. N. Stability and time-optimal control of hereditary systems (Academic Press, New York, 1992). [4] Gabasov, R. and Kirillova, F. The qualitative theory of optimal processes ( Marcel Dekker Inc., New York, 1976). [5] Hale, J. K. Theory of functional differential equations. Applied Mathematical Science, Vol. 3, 1977, Springer-Verlag, New York. [6] Manitius, A. (1978). Control Theory and Topics in Functional Analysis. Vol. 3, Int. Atomic Energy Agency, Vienna. [7] Tadmore, G. Functional differential equations of retarded and neutral types: Analytical solutions and piecewise continuous controls, Journal of Differential Equations, Vol. 51, No. 2, 1984, Pp. 151-181. [8] Ukwu, C. (1987). Compactness of cores of targets for linear delay systems., J. Math. Analy. and Appl., Vol. 125, No. 2, August 1. pp. 323-330. [9] Ukwu, C. Euclidean controllability and cores of euclidean targets for differential difference systems Master of Science Thesis in Applied Math. with O.R. (Unpublished), North Carolina State University, Raleigh, N. C. U.S.A., 1992. [10] Ukwu, C. An exposition on Cores and Controllability of differential difference systems, ABACUS, Vol. 24, No. 2, 1996, pp. 276- 285.