SlideShare une entreprise Scribd logo
1  sur  3
International Journal on Natural Language
Computing (IJNLC)
ISSN: 2278 - 1307 [Online]; 2319 - 4111 [Print].
http://airccse.org/journal/ijnlc/index.html
Current Issue: June 2019, Volume 8, Number 3
TOC - Table of Contents
SENTIMENT ANALYSIS ON PRODUCT FEATURES BASED ON LEXICON
APPROACH USING NATURAL LANGUAGE PROCESSING
Ameya Yerpude, Akshay Phirke, Ayush Agrawal and Atharva Deshmukh
Department of Computer Science and Engineering, RCOEM, Nagpur, India
ABSTRACT
Sentiment analysis has played an important role in identifying what other people think and what their
behavior is. Text can be used to analyze the sentiment and classified as positive, negative or neutral.
Applying the sentiment analysis on the product reviews on e-market helps not only the customer but also
the industry people for taking decision. The method which provides sentiment analysis about the
individual product’s features is discussed here. This paper presents the use of Natural Language
Processing and SentiWordNet in this interesting application in Python: 1. Sentiment Analysis on Product
review [Domain: Electronic]2. sentiment analysis regarding the product’s feature present in the product
review [Sub Domain: Mobile Phones]. It usesa lexicon based approach in which text is tokenized for
calculating the sentiment analysis of the product reviews on a e-market. The first part of paper
includessentiment analyzer whichclassifiesthe sentiment present in product reviews into positive, negative
or neutral depending on the polarity. The second part of the paper is an extension to the first part in which
the customer review’s containing product’s features will be segregated and then these separated reviews
are classified into positive, negative and neutral using sentiment analysis. Here, mobile phones are used as
the product with features as screen, processors, etc. This gives a business solution for users and industries
for effective product decisions.
KEYWORDS
Sentiment Analysis, Natural Language Processing, SentiWordNet, lexicon based approach
SOURCE URL
http://aircconline.com/ijnlc/V8N3/8319ijnlc01.pdf
VOLUME LINK
http://airccse.org/journal/ijnlc/vol8.html
FAKE NEWS DETECTION WITH SEMANTIC FEATURES AND TEXT MINING
Pranav Bharadwaj1 and Zongru Shao2
1
South Brunswick High School, Monmouth Junction, NJ 2
Spectronn , USA
ABSTRACT
Nearly 70% of people are concerned about the propagation of fake news. This paper aims to
detect fake news in online articles through the use of semantic features and various machine
learning techniques. In this research, we investigated recurrent neural networks vs. the naive
bayes classifier and random forest classifiers using five groups of linguistic features. Evaluated
with real or fake dataset from kaggle.com, the best performing model achieved an accuracy of
95.66% using bigram features with the random forest classifier. The fact that bigrams outperform
unigrams, trigrams, and quadgrams show that word pairs as opposed to single words or phrases
best indicate the authenticity of news.
KEYWORDS
Text Mining, Fake News, Machine Learning, Semantic Features, Natural Language Processing
(NLP)
SOURCE URL
http://aircconline.com/ijnlc/V8N3/8319ijnlc02.pdf
VOLUME LINK
http://airccse.org/journal/ijnlc/vol8.html

Contenu connexe

Similaire à Current Issue- june 2019-ijnlc

A Study on the Applications and Impact of Artificial Intelligence in E Commer...
A Study on the Applications and Impact of Artificial Intelligence in E Commer...A Study on the Applications and Impact of Artificial Intelligence in E Commer...
A Study on the Applications and Impact of Artificial Intelligence in E Commer...
ijtsrd
 
An approach based on deep learning that recommends fertilizers and pesticide...
An approach based on deep learning that recommends  fertilizers and pesticide...An approach based on deep learning that recommends  fertilizers and pesticide...
An approach based on deep learning that recommends fertilizers and pesticide...
IJECEIAES
 

Similaire à Current Issue- june 2019-ijnlc (20)

Human Emotion Detection for Customer Feedback & Food Classifier
Human Emotion Detection for Customer Feedback & Food ClassifierHuman Emotion Detection for Customer Feedback & Food Classifier
Human Emotion Detection for Customer Feedback & Food Classifier
 
Investigating Assisting Mental Health Condition using Sentiment Analysis thro...
Investigating Assisting Mental Health Condition using Sentiment Analysis thro...Investigating Assisting Mental Health Condition using Sentiment Analysis thro...
Investigating Assisting Mental Health Condition using Sentiment Analysis thro...
 
BE-IT01 (1).pptx
BE-IT01 (1).pptxBE-IT01 (1).pptx
BE-IT01 (1).pptx
 
IRJET- Interpreting Public Sentiments Variation by using FB-LDA Technique
IRJET- Interpreting Public Sentiments Variation by using FB-LDA TechniqueIRJET- Interpreting Public Sentiments Variation by using FB-LDA Technique
IRJET- Interpreting Public Sentiments Variation by using FB-LDA Technique
 
IRJET- Cross-Domain Sentiment Encoding through Stochastic Word Embedding
IRJET- Cross-Domain Sentiment Encoding through Stochastic Word EmbeddingIRJET- Cross-Domain Sentiment Encoding through Stochastic Word Embedding
IRJET- Cross-Domain Sentiment Encoding through Stochastic Word Embedding
 
IRJET- Analytic System Based on Prediction Analysis of Social Emotions from U...
IRJET- Analytic System Based on Prediction Analysis of Social Emotions from U...IRJET- Analytic System Based on Prediction Analysis of Social Emotions from U...
IRJET- Analytic System Based on Prediction Analysis of Social Emotions from U...
 
A Study on the Applications and Impact of Artificial Intelligence in E Commer...
A Study on the Applications and Impact of Artificial Intelligence in E Commer...A Study on the Applications and Impact of Artificial Intelligence in E Commer...
A Study on the Applications and Impact of Artificial Intelligence in E Commer...
 
IRJET- Analyzing Sentiments in One Go
IRJET-  	  Analyzing Sentiments in One GoIRJET-  	  Analyzing Sentiments in One Go
IRJET- Analyzing Sentiments in One Go
 
Detection of speech under stress using spectral analysis
Detection of speech under stress using spectral analysisDetection of speech under stress using spectral analysis
Detection of speech under stress using spectral analysis
 
Detection of speech under stress using spectral analysis
Detection of speech under stress using spectral analysisDetection of speech under stress using spectral analysis
Detection of speech under stress using spectral analysis
 
IRJET- Human Activity Recognition using Flex Sensors
IRJET- Human Activity Recognition using Flex SensorsIRJET- Human Activity Recognition using Flex Sensors
IRJET- Human Activity Recognition using Flex Sensors
 
IRJET - Threat Prediction using Speech Analysis
IRJET - Threat Prediction using Speech AnalysisIRJET - Threat Prediction using Speech Analysis
IRJET - Threat Prediction using Speech Analysis
 
An approach based on deep learning that recommends fertilizers and pesticide...
An approach based on deep learning that recommends  fertilizers and pesticide...An approach based on deep learning that recommends  fertilizers and pesticide...
An approach based on deep learning that recommends fertilizers and pesticide...
 
Plant Disease Doctor App
Plant Disease Doctor AppPlant Disease Doctor App
Plant Disease Doctor App
 
A Novel Hybrid Classification Approach for Sentiment Analysis of Text Document
A Novel Hybrid Classification Approach for Sentiment Analysis of Text Document  A Novel Hybrid Classification Approach for Sentiment Analysis of Text Document
A Novel Hybrid Classification Approach for Sentiment Analysis of Text Document
 
Obtrusiveness of smartphone applications for sleep health
Obtrusiveness of smartphone applications for sleep healthObtrusiveness of smartphone applications for sleep health
Obtrusiveness of smartphone applications for sleep health
 
Voice based Application as Medicine Spotter for Visually Impaired
Voice based Application as Medicine Spotter for Visually ImpairedVoice based Application as Medicine Spotter for Visually Impaired
Voice based Application as Medicine Spotter for Visually Impaired
 
A review of factors that impact the design of a glove based wearable devices
A review of factors that impact the design of a glove based wearable devicesA review of factors that impact the design of a glove based wearable devices
A review of factors that impact the design of a glove based wearable devices
 
PLANT LEAFLET MALADY REVELATION UTILIZING CNN ALONGSIDE FOG SYSTEM
PLANT LEAFLET MALADY REVELATION UTILIZING CNN ALONGSIDE FOG SYSTEMPLANT LEAFLET MALADY REVELATION UTILIZING CNN ALONGSIDE FOG SYSTEM
PLANT LEAFLET MALADY REVELATION UTILIZING CNN ALONGSIDE FOG SYSTEM
 
Leaf Disease Detection Using Image Processing and ML
Leaf Disease Detection Using Image Processing and MLLeaf Disease Detection Using Image Processing and ML
Leaf Disease Detection Using Image Processing and ML
 

Plus de kevig

Identifying Key Terms in Prompts for Relevance Evaluation with GPT Models
Identifying Key Terms in Prompts for Relevance Evaluation with GPT ModelsIdentifying Key Terms in Prompts for Relevance Evaluation with GPT Models
Identifying Key Terms in Prompts for Relevance Evaluation with GPT Models
kevig
 
Identifying Key Terms in Prompts for Relevance Evaluation with GPT Models
Identifying Key Terms in Prompts for Relevance Evaluation with GPT ModelsIdentifying Key Terms in Prompts for Relevance Evaluation with GPT Models
Identifying Key Terms in Prompts for Relevance Evaluation with GPT Models
kevig
 
Performance, Energy Consumption and Costs: A Comparative Analysis of Automati...
Performance, Energy Consumption and Costs: A Comparative Analysis of Automati...Performance, Energy Consumption and Costs: A Comparative Analysis of Automati...
Performance, Energy Consumption and Costs: A Comparative Analysis of Automati...
kevig
 
Performance, energy consumption and costs: a comparative analysis of automati...
Performance, energy consumption and costs: a comparative analysis of automati...Performance, energy consumption and costs: a comparative analysis of automati...
Performance, energy consumption and costs: a comparative analysis of automati...
kevig
 

Plus de kevig (20)

Identifying Key Terms in Prompts for Relevance Evaluation with GPT Models
Identifying Key Terms in Prompts for Relevance Evaluation with GPT ModelsIdentifying Key Terms in Prompts for Relevance Evaluation with GPT Models
Identifying Key Terms in Prompts for Relevance Evaluation with GPT Models
 
Identifying Key Terms in Prompts for Relevance Evaluation with GPT Models
Identifying Key Terms in Prompts for Relevance Evaluation with GPT ModelsIdentifying Key Terms in Prompts for Relevance Evaluation with GPT Models
Identifying Key Terms in Prompts for Relevance Evaluation with GPT Models
 
IJNLC 2013 - Ambiguity-Aware Document Similarity
IJNLC  2013 - Ambiguity-Aware Document SimilarityIJNLC  2013 - Ambiguity-Aware Document Similarity
IJNLC 2013 - Ambiguity-Aware Document Similarity
 
Genetic Approach For Arabic Part Of Speech Tagging
Genetic Approach For Arabic Part Of Speech TaggingGenetic Approach For Arabic Part Of Speech Tagging
Genetic Approach For Arabic Part Of Speech Tagging
 
Rule Based Transliteration Scheme for English to Punjabi
Rule Based Transliteration Scheme for English to PunjabiRule Based Transliteration Scheme for English to Punjabi
Rule Based Transliteration Scheme for English to Punjabi
 
Improving Dialogue Management Through Data Optimization
Improving Dialogue Management Through Data OptimizationImproving Dialogue Management Through Data Optimization
Improving Dialogue Management Through Data Optimization
 
Document Author Classification using Parsed Language Structure
Document Author Classification using Parsed Language StructureDocument Author Classification using Parsed Language Structure
Document Author Classification using Parsed Language Structure
 
Rag-Fusion: A New Take on Retrieval Augmented Generation
Rag-Fusion: A New Take on Retrieval Augmented GenerationRag-Fusion: A New Take on Retrieval Augmented Generation
Rag-Fusion: A New Take on Retrieval Augmented Generation
 
Performance, Energy Consumption and Costs: A Comparative Analysis of Automati...
Performance, Energy Consumption and Costs: A Comparative Analysis of Automati...Performance, Energy Consumption and Costs: A Comparative Analysis of Automati...
Performance, Energy Consumption and Costs: A Comparative Analysis of Automati...
 
Evaluation of Medium-Sized Language Models in German and English Language
Evaluation of Medium-Sized Language Models in German and English LanguageEvaluation of Medium-Sized Language Models in German and English Language
Evaluation of Medium-Sized Language Models in German and English Language
 
IMPROVING DIALOGUE MANAGEMENT THROUGH DATA OPTIMIZATION
IMPROVING DIALOGUE MANAGEMENT THROUGH DATA OPTIMIZATIONIMPROVING DIALOGUE MANAGEMENT THROUGH DATA OPTIMIZATION
IMPROVING DIALOGUE MANAGEMENT THROUGH DATA OPTIMIZATION
 
Document Author Classification Using Parsed Language Structure
Document Author Classification Using Parsed Language StructureDocument Author Classification Using Parsed Language Structure
Document Author Classification Using Parsed Language Structure
 
RAG-FUSION: A NEW TAKE ON RETRIEVALAUGMENTED GENERATION
RAG-FUSION: A NEW TAKE ON RETRIEVALAUGMENTED GENERATIONRAG-FUSION: A NEW TAKE ON RETRIEVALAUGMENTED GENERATION
RAG-FUSION: A NEW TAKE ON RETRIEVALAUGMENTED GENERATION
 
Performance, energy consumption and costs: a comparative analysis of automati...
Performance, energy consumption and costs: a comparative analysis of automati...Performance, energy consumption and costs: a comparative analysis of automati...
Performance, energy consumption and costs: a comparative analysis of automati...
 
EVALUATION OF MEDIUM-SIZED LANGUAGE MODELS IN GERMAN AND ENGLISH LANGUAGE
EVALUATION OF MEDIUM-SIZED LANGUAGE MODELS IN GERMAN AND ENGLISH LANGUAGEEVALUATION OF MEDIUM-SIZED LANGUAGE MODELS IN GERMAN AND ENGLISH LANGUAGE
EVALUATION OF MEDIUM-SIZED LANGUAGE MODELS IN GERMAN AND ENGLISH LANGUAGE
 
February 2024 - Top 10 cited articles.pdf
February 2024 - Top 10 cited articles.pdfFebruary 2024 - Top 10 cited articles.pdf
February 2024 - Top 10 cited articles.pdf
 
Enhanced Retrieval of Web Pages using Improved Page Rank Algorithm
Enhanced Retrieval of Web Pages using Improved Page Rank AlgorithmEnhanced Retrieval of Web Pages using Improved Page Rank Algorithm
Enhanced Retrieval of Web Pages using Improved Page Rank Algorithm
 
Effect of MFCC Based Features for Speech Signal Alignments
Effect of MFCC Based Features for Speech Signal AlignmentsEffect of MFCC Based Features for Speech Signal Alignments
Effect of MFCC Based Features for Speech Signal Alignments
 
NERHMM: A Tool for Named Entity Recognition Based on Hidden Markov Model
NERHMM: A Tool for Named Entity Recognition Based on Hidden Markov ModelNERHMM: A Tool for Named Entity Recognition Based on Hidden Markov Model
NERHMM: A Tool for Named Entity Recognition Based on Hidden Markov Model
 
NLization of Nouns, Pronouns and Prepositions in Punjabi With EUGENE
NLization of Nouns, Pronouns and Prepositions in Punjabi With EUGENENLization of Nouns, Pronouns and Prepositions in Punjabi With EUGENE
NLization of Nouns, Pronouns and Prepositions in Punjabi With EUGENE
 

Dernier

Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
 

Dernier (20)

Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 

Current Issue- june 2019-ijnlc

  • 1. International Journal on Natural Language Computing (IJNLC) ISSN: 2278 - 1307 [Online]; 2319 - 4111 [Print]. http://airccse.org/journal/ijnlc/index.html Current Issue: June 2019, Volume 8, Number 3 TOC - Table of Contents
  • 2. SENTIMENT ANALYSIS ON PRODUCT FEATURES BASED ON LEXICON APPROACH USING NATURAL LANGUAGE PROCESSING Ameya Yerpude, Akshay Phirke, Ayush Agrawal and Atharva Deshmukh Department of Computer Science and Engineering, RCOEM, Nagpur, India ABSTRACT Sentiment analysis has played an important role in identifying what other people think and what their behavior is. Text can be used to analyze the sentiment and classified as positive, negative or neutral. Applying the sentiment analysis on the product reviews on e-market helps not only the customer but also the industry people for taking decision. The method which provides sentiment analysis about the individual product’s features is discussed here. This paper presents the use of Natural Language Processing and SentiWordNet in this interesting application in Python: 1. Sentiment Analysis on Product review [Domain: Electronic]2. sentiment analysis regarding the product’s feature present in the product review [Sub Domain: Mobile Phones]. It usesa lexicon based approach in which text is tokenized for calculating the sentiment analysis of the product reviews on a e-market. The first part of paper includessentiment analyzer whichclassifiesthe sentiment present in product reviews into positive, negative or neutral depending on the polarity. The second part of the paper is an extension to the first part in which the customer review’s containing product’s features will be segregated and then these separated reviews are classified into positive, negative and neutral using sentiment analysis. Here, mobile phones are used as the product with features as screen, processors, etc. This gives a business solution for users and industries for effective product decisions. KEYWORDS Sentiment Analysis, Natural Language Processing, SentiWordNet, lexicon based approach SOURCE URL http://aircconline.com/ijnlc/V8N3/8319ijnlc01.pdf VOLUME LINK http://airccse.org/journal/ijnlc/vol8.html
  • 3. FAKE NEWS DETECTION WITH SEMANTIC FEATURES AND TEXT MINING Pranav Bharadwaj1 and Zongru Shao2 1 South Brunswick High School, Monmouth Junction, NJ 2 Spectronn , USA ABSTRACT Nearly 70% of people are concerned about the propagation of fake news. This paper aims to detect fake news in online articles through the use of semantic features and various machine learning techniques. In this research, we investigated recurrent neural networks vs. the naive bayes classifier and random forest classifiers using five groups of linguistic features. Evaluated with real or fake dataset from kaggle.com, the best performing model achieved an accuracy of 95.66% using bigram features with the random forest classifier. The fact that bigrams outperform unigrams, trigrams, and quadgrams show that word pairs as opposed to single words or phrases best indicate the authenticity of news. KEYWORDS Text Mining, Fake News, Machine Learning, Semantic Features, Natural Language Processing (NLP) SOURCE URL http://aircconline.com/ijnlc/V8N3/8319ijnlc02.pdf VOLUME LINK http://airccse.org/journal/ijnlc/vol8.html