SlideShare une entreprise Scribd logo
1  sur  24
B-Trees
1
B-Trees
B-Trees 2
Motivation for B-Trees
• Index structures for large datasets cannot be stored in main
memory
• Storing it on disk requires different approach to efficiency
• Assume that we use an AVL tree to store about 20 million
records
• We end up with a very deep binary tree with lots of different
disk accesses; log2 20,000,000 is about 24, so this takes about
0.2 seconds
• We know we can’t improve on the log n lower bound on
search for a binary tree
• But, the solution is to use more branches and thus reduce the
height of the tree!
– As branching increases, depth decreases
B-Trees 3
Definition of a B-tree
• A B-tree of order m is an m-way tree (i.e., a tree where each
node may have up to m children) in which:
1. the number of keys in each non-leaf node is one less than the number
of its children and these keys partition the keys in the children in the
fashion of a search tree
2. all leaves are on the same level
3. all non-leaf nodes except the root have at least m / 2 children
4. the root is either a leaf node, or it has from two to m children
5. a leaf node contains no more than m – 1 keys
B-Trees 4
An example B-Tree
51 6242
6 12
26
55 60 7064 9045
1 2 4 7 8 13 15 18 25
27 29 46 48 53
A B-tree of order 5
containing 26 items
Note that all the leaves are at the same level
B-Trees 5
Inserting into a B-Tree
• Attempt to insert the new key into a leaf
• If this would result in that leaf becoming too big, split the leaf
into two, promoting the middle key to the leaf’s parent
• If this would result in the parent becoming too big, split the
parent into two, promoting the middle key
• This strategy might have to be repeated all the way to the top
• If necessary, the root is split in two and the middle key is
promoted to a new root, making the tree one level higher
B-Trees 6
• Suppose we start with an empty B-tree and keys arrive in the
following order:1 12 8 2 25 5 14 28 17 7 52 16 48 68
3 26 29 53 55 45
• We want to construct a B-tree of order 5
• The first four items go into the root:
• To put the fifth item in the root would violate condition 5
• Therefore, when 25 arrives, pick the middle key to make a
new root
Constructing a B-tree
1 2 8 12
B-Trees 7
Constructing a B-tree (contd.)
1 2
8
12 25
6, 14, 28 get added to the leaf nodes:
1 2
8
12 146 25 28
B-Trees 8
Constructing a B-tree (contd.)
Adding 17 to the right leaf node would over-fill it, so we take the
middle key, promote it (to the root) and split the leaf
8 17
12 14 25 281 2 6
7, 52, 16, 48 get added to the leaf nodes
8 17
12 14 25 281 2 6 16 48 527
B-Trees 9
Constructing a B-tree (contd.)
Adding 68 causes us to split the right most leaf, promoting 48 to the
root, and adding 3 causes us to split the left most leaf, promoting 3
to the root; 26, 29, 53, 55 then go into the leaves
3 8 17 48
52 53 55 6825 26 28 291 2 6 7 12 14 16
Adding 45 causes a split of 25 26 28 29
and promoting 28 to the root then causes the root to split
B-Trees 10
Constructing a B-tree (contd.)
17
3 8 28 48
1 2 6 7 12 14 16 52 53 55 6825 26 29 45
B-Trees 11
Exercise in Inserting a B-Tree
• Insert the following keys to a 5-way B-tree:
• 3, 7, 9, 23, 45, 1, 5, 14, 25, 24, 13, 11, 8, 19, 4, 31, 35, 56
•
B-Trees 12
Removal from a B-tree
• During insertion, the key always goes into a leaf. For deletion
we wish to remove from a leaf. There are three possible ways
we can do this:
• 1 - If the key is already in a leaf node, and removing it doesn’t
cause that leaf node to have too few keys, then simply remove
the key to be deleted.
• 2 - If the key is not in a leaf then it is guaranteed (by the
nature of a B-tree) that its predecessor or successor will be in
a leaf -- in this case we can delete the key and promote the
predecessor or successor key to the non-leaf deleted key’s
position.
B-Trees 13
Removal from a B-tree (2)
• If (1) or (2) lead to a leaf node containing less than the
minimum number of keys then we have to look at the siblings
immediately adjacent to the leaf in question:
– 3: if one of them has more than the min. number of keys then we can
promote one of its keys to the parent and take the parent key into our
lacking leaf
– 4: if neither of them has more than the min. number of keys then the
lacking leaf and one of its neighbours can be combined with their
shared parent (the opposite of promoting a key) and the new leaf will
have the correct number of keys; if this step leave the parent with too
few keys then we repeat the process up to the root itself, if required
B-Trees 14
Type #1: Simple leaf deletion
12 29 52
2 7 9 15 22 56 69 7231 43
Delete 2: Since there are enough
keys in the node, just delete it
Assuming a 5-way
B-Tree, as before...
Note when printed: this slide is animated
B-Trees 15
Type #2: Simple non-leaf deletion
12 29 52
7 9 15 22 56 69 7231 43
Delete 52
Borrow the predecessor
or (in this case) successor
56
Note when printed: this slide is animated
B-Trees 16
Type #4: Too few keys in node and
its siblings
12 29 56
7 9 15 22 69 7231 43
Delete 72
Too few keys!
Join back together
Note when printed: this slide is animated
B-Trees 17
Type #4: Too few keys in node and
its siblings
12 29
7 9 15 22 695631 43
Note when printed: this slide is animated
B-Trees 18
Type #3: Enough siblings
12 29
7 9 15 22 695631 43
Delete 22
Demote root key and
promote leaf key
Note when printed: this slide is animated
B-Trees 19
Type #3: Enough siblings
12
297 9 15
31
695643
Note when printed: this slide is animated
B-Trees 20
Exercise in Removal from a B-Tree
• Delete these keys: 4, 6 from the tree created in the previous
question
•
B-Trees 21
Reasons for using B-Trees
• When searching tables held on disc, the cost of each disc
transfer is high but doesn't depend much on the amount of
data transferred, especially if consecutive items are transferred
– If we use a B-tree of order 101, say, we can transfer each node in one
disc read operation
– A B-tree of order 101 and height 3 can hold 1014 – 1 items
(approximately 100 million) and any item can be accessed with 3 disc
reads (assuming we hold the root in memory)
• If we take m = 3, we get a 2-3 tree, in which non-leaf nodes
have two or three children (i.e., one or two keys)
– B-Trees are always balanced (since the leaves are all at the same
level), so 2-3 trees make a good type of balanced tree
Specialization
• 2-3-4 tree
A B-tree of order 4, that is, internal nodes have
two, three, or four children.
B-tree with m=4.
• 2-3 tree
A B-tree of order 3, that is, internal nodes have
two or three children.
• B*-tree
A B-tree in which nodes are kept 2/3 full by
redistributing keys to fill two child nodes, then
splitting them
B-Trees 23
B-Trees 24
Comparing Trees
• Binary trees
– Can become unbalanced and lose their good time complexity (big O)
– AVL trees are strict binary trees that overcome the balance problem
– Heaps remain balanced but only prioritise (not order) the keys
• Multi-way trees
– B-Trees can be m-way, they can have any number of children
– One B-Tree, the 2-3 (or 3-way) B-Tree, approximates a permanently
balanced binary tree, exchanging the AVL tree’s balancing operations
for insertion and (more complex) deletion operations

Contenu connexe

Tendances (20)

Threaded Binary Tree
Threaded Binary TreeThreaded Binary Tree
Threaded Binary Tree
 
DFS and BFS
DFS and BFSDFS and BFS
DFS and BFS
 
Graph Basic In Data structure
Graph Basic In Data structureGraph Basic In Data structure
Graph Basic In Data structure
 
Trees (data structure)
Trees (data structure)Trees (data structure)
Trees (data structure)
 
Search tree,Tree and binary tree and heap tree
Search tree,Tree  and binary tree and heap treeSearch tree,Tree  and binary tree and heap tree
Search tree,Tree and binary tree and heap tree
 
1.5 binary search tree
1.5 binary search tree1.5 binary search tree
1.5 binary search tree
 
Graph coloring problem
Graph coloring problemGraph coloring problem
Graph coloring problem
 
b+ tree
b+ treeb+ tree
b+ tree
 
Spanning trees
Spanning treesSpanning trees
Spanning trees
 
Linked List
Linked ListLinked List
Linked List
 
Priority Queue in Data Structure
Priority Queue in Data StructurePriority Queue in Data Structure
Priority Queue in Data Structure
 
Tree in data structure
Tree in data structureTree in data structure
Tree in data structure
 
Graph traversals in Data Structures
Graph traversals in Data StructuresGraph traversals in Data Structures
Graph traversals in Data Structures
 
Binary trees1
Binary trees1Binary trees1
Binary trees1
 
single linked list
single linked listsingle linked list
single linked list
 
Greedy Algorihm
Greedy AlgorihmGreedy Algorihm
Greedy Algorihm
 
Tree Traversal
Tree TraversalTree Traversal
Tree Traversal
 
Ppt bubble sort
Ppt bubble sortPpt bubble sort
Ppt bubble sort
 
B-Tree
B-TreeB-Tree
B-Tree
 
Binary tree
Binary treeBinary tree
Binary tree
 

En vedette

Bigtable and Boxwood
Bigtable and BoxwoodBigtable and Boxwood
Bigtable and BoxwoodEvan Weaver
 
Oracle DBA Online Training in India
Oracle DBA Online Training in IndiaOracle DBA Online Training in India
Oracle DBA Online Training in Indiaunited global soft
 
Top 10 Oracle SQL tuning tips
Top 10 Oracle SQL tuning tipsTop 10 Oracle SQL tuning tips
Top 10 Oracle SQL tuning tipsNirav Shah
 
Tpr star tree
Tpr star treeTpr star tree
Tpr star treeWin Yu
 
Algorithm Introduction #18 B-Tree
Algorithm Introduction #18 B-TreeAlgorithm Introduction #18 B-Tree
Algorithm Introduction #18 B-TreeSatoshi Asano
 
Лекция 5: B-деревья (B-trees, k-way merge sort)
Лекция 5: B-деревья (B-trees, k-way merge sort)Лекция 5: B-деревья (B-trees, k-way merge sort)
Лекция 5: B-деревья (B-trees, k-way merge sort)Mikhail Kurnosov
 
M-tree Algorithm
M-tree AlgorithmM-tree Algorithm
M-tree AlgorithmJames Guo
 
10.m way search tree
10.m way search tree10.m way search tree
10.m way search treeChandan Singh
 
CAD: introduction to floorplanning
CAD:  introduction to floorplanningCAD:  introduction to floorplanning
CAD: introduction to floorplanningTeam-VLSI-ITMU
 

En vedette (20)

B tree
B treeB tree
B tree
 
Btrees
BtreesBtrees
Btrees
 
08 B Trees
08 B Trees08 B Trees
08 B Trees
 
trees
trees trees
trees
 
Bigtable and Boxwood
Bigtable and BoxwoodBigtable and Boxwood
Bigtable and Boxwood
 
B-link-tree
B-link-treeB-link-tree
B-link-tree
 
Oracle DBA Online Training in India
Oracle DBA Online Training in IndiaOracle DBA Online Training in India
Oracle DBA Online Training in India
 
Top 10 Oracle SQL tuning tips
Top 10 Oracle SQL tuning tipsTop 10 Oracle SQL tuning tips
Top 10 Oracle SQL tuning tips
 
1.9 b tree
1.9 b tree1.9 b tree
1.9 b tree
 
Network Forensics
Network ForensicsNetwork Forensics
Network Forensics
 
B+tree
B+treeB+tree
B+tree
 
Tpr star tree
Tpr star treeTpr star tree
Tpr star tree
 
Algorithm Introduction #18 B-Tree
Algorithm Introduction #18 B-TreeAlgorithm Introduction #18 B-Tree
Algorithm Introduction #18 B-Tree
 
Лекция 5: B-деревья (B-trees, k-way merge sort)
Лекция 5: B-деревья (B-trees, k-way merge sort)Лекция 5: B-деревья (B-trees, k-way merge sort)
Лекция 5: B-деревья (B-trees, k-way merge sort)
 
M-tree Algorithm
M-tree AlgorithmM-tree Algorithm
M-tree Algorithm
 
10.m way search tree
10.m way search tree10.m way search tree
10.m way search tree
 
CAD: introduction to floorplanning
CAD:  introduction to floorplanningCAD:  introduction to floorplanning
CAD: introduction to floorplanning
 
floor planning
floor planningfloor planning
floor planning
 
Coal7 segmentation in Assembly Programming
Coal7 segmentation in Assembly ProgrammingCoal7 segmentation in Assembly Programming
Coal7 segmentation in Assembly Programming
 
Avl tree
Avl treeAvl tree
Avl tree
 

Similaire à B trees

BTrees-fall2010.ppt
BTrees-fall2010.pptBTrees-fall2010.ppt
BTrees-fall2010.pptzalanmvb
 
16807097.ppt b tree are a good data structure
16807097.ppt b tree are a good data structure16807097.ppt b tree are a good data structure
16807097.ppt b tree are a good data structureSadiaSharmin40
 
B tree by-jash acharya
B tree by-jash acharyaB tree by-jash acharya
B tree by-jash acharyaJash Acharya
 
Data structures trees - B Tree & B+Tree.pptx
Data structures trees - B Tree & B+Tree.pptxData structures trees - B Tree & B+Tree.pptx
Data structures trees - B Tree & B+Tree.pptxMalligaarjunanN
 
Presentation on b trees [autosaved]
Presentation on b trees [autosaved]Presentation on b trees [autosaved]
Presentation on b trees [autosaved]AKASHKUMAR1542
 
Lecture 9 b tree
Lecture 9 b treeLecture 9 b tree
Lecture 9 b treeAbirami A
 
B TREE ( a to z concept ) in data structure or DBMS
B TREE ( a to z concept ) in data structure  or DBMSB TREE ( a to z concept ) in data structure  or DBMS
B TREE ( a to z concept ) in data structure or DBMSMathkeBhoot
 
btrees.ppt ttttttttttttttttttttttttttttt
btrees.ppt  tttttttttttttttttttttttttttttbtrees.ppt  ttttttttttttttttttttttttttttt
btrees.ppt tttttttttttttttttttttttttttttRAtna29
 

Similaire à B trees (20)

Btree
BtreeBtree
Btree
 
BTrees-fall2010.ppt
BTrees-fall2010.pptBTrees-fall2010.ppt
BTrees-fall2010.ppt
 
B trees
B treesB trees
B trees
 
16807097.ppt b tree are a good data structure
16807097.ppt b tree are a good data structure16807097.ppt b tree are a good data structure
16807097.ppt b tree are a good data structure
 
4-b-tree.ppt
4-b-tree.ppt4-b-tree.ppt
4-b-tree.ppt
 
B tree by-jash acharya
B tree by-jash acharyaB tree by-jash acharya
B tree by-jash acharya
 
Btrees
BtreesBtrees
Btrees
 
B trees2
B trees2B trees2
B trees2
 
Data structures trees - B Tree & B+Tree.pptx
Data structures trees - B Tree & B+Tree.pptxData structures trees - B Tree & B+Tree.pptx
Data structures trees - B Tree & B+Tree.pptx
 
Presentation on b trees [autosaved]
Presentation on b trees [autosaved]Presentation on b trees [autosaved]
Presentation on b trees [autosaved]
 
B trees
B treesB trees
B trees
 
Lecture 9 b tree
Lecture 9 b treeLecture 9 b tree
Lecture 9 b tree
 
B and B+ tree
B and B+ treeB and B+ tree
B and B+ tree
 
B TREE ( a to z concept ) in data structure or DBMS
B TREE ( a to z concept ) in data structure  or DBMSB TREE ( a to z concept ) in data structure  or DBMS
B TREE ( a to z concept ) in data structure or DBMS
 
B+ tree.pptx
B+ tree.pptxB+ tree.pptx
B+ tree.pptx
 
B tree-180214044656
B tree-180214044656B tree-180214044656
B tree-180214044656
 
B tree
B  treeB  tree
B tree
 
Multi way&btree
Multi way&btreeMulti way&btree
Multi way&btree
 
Tree traversal techniques
Tree traversal techniquesTree traversal techniques
Tree traversal techniques
 
btrees.ppt ttttttttttttttttttttttttttttt
btrees.ppt  tttttttttttttttttttttttttttttbtrees.ppt  ttttttttttttttttttttttttttttt
btrees.ppt ttttttttttttttttttttttttttttt
 

Dernier

2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structuredhanjurrannsibayan2
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024Elizabeth Walsh
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsKarakKing
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 

Dernier (20)

2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 

B trees

  • 2. B-Trees 2 Motivation for B-Trees • Index structures for large datasets cannot be stored in main memory • Storing it on disk requires different approach to efficiency • Assume that we use an AVL tree to store about 20 million records • We end up with a very deep binary tree with lots of different disk accesses; log2 20,000,000 is about 24, so this takes about 0.2 seconds • We know we can’t improve on the log n lower bound on search for a binary tree • But, the solution is to use more branches and thus reduce the height of the tree! – As branching increases, depth decreases
  • 3. B-Trees 3 Definition of a B-tree • A B-tree of order m is an m-way tree (i.e., a tree where each node may have up to m children) in which: 1. the number of keys in each non-leaf node is one less than the number of its children and these keys partition the keys in the children in the fashion of a search tree 2. all leaves are on the same level 3. all non-leaf nodes except the root have at least m / 2 children 4. the root is either a leaf node, or it has from two to m children 5. a leaf node contains no more than m – 1 keys
  • 4. B-Trees 4 An example B-Tree 51 6242 6 12 26 55 60 7064 9045 1 2 4 7 8 13 15 18 25 27 29 46 48 53 A B-tree of order 5 containing 26 items Note that all the leaves are at the same level
  • 5. B-Trees 5 Inserting into a B-Tree • Attempt to insert the new key into a leaf • If this would result in that leaf becoming too big, split the leaf into two, promoting the middle key to the leaf’s parent • If this would result in the parent becoming too big, split the parent into two, promoting the middle key • This strategy might have to be repeated all the way to the top • If necessary, the root is split in two and the middle key is promoted to a new root, making the tree one level higher
  • 6. B-Trees 6 • Suppose we start with an empty B-tree and keys arrive in the following order:1 12 8 2 25 5 14 28 17 7 52 16 48 68 3 26 29 53 55 45 • We want to construct a B-tree of order 5 • The first four items go into the root: • To put the fifth item in the root would violate condition 5 • Therefore, when 25 arrives, pick the middle key to make a new root Constructing a B-tree 1 2 8 12
  • 7. B-Trees 7 Constructing a B-tree (contd.) 1 2 8 12 25 6, 14, 28 get added to the leaf nodes: 1 2 8 12 146 25 28
  • 8. B-Trees 8 Constructing a B-tree (contd.) Adding 17 to the right leaf node would over-fill it, so we take the middle key, promote it (to the root) and split the leaf 8 17 12 14 25 281 2 6 7, 52, 16, 48 get added to the leaf nodes 8 17 12 14 25 281 2 6 16 48 527
  • 9. B-Trees 9 Constructing a B-tree (contd.) Adding 68 causes us to split the right most leaf, promoting 48 to the root, and adding 3 causes us to split the left most leaf, promoting 3 to the root; 26, 29, 53, 55 then go into the leaves 3 8 17 48 52 53 55 6825 26 28 291 2 6 7 12 14 16 Adding 45 causes a split of 25 26 28 29 and promoting 28 to the root then causes the root to split
  • 10. B-Trees 10 Constructing a B-tree (contd.) 17 3 8 28 48 1 2 6 7 12 14 16 52 53 55 6825 26 29 45
  • 11. B-Trees 11 Exercise in Inserting a B-Tree • Insert the following keys to a 5-way B-tree: • 3, 7, 9, 23, 45, 1, 5, 14, 25, 24, 13, 11, 8, 19, 4, 31, 35, 56 •
  • 12. B-Trees 12 Removal from a B-tree • During insertion, the key always goes into a leaf. For deletion we wish to remove from a leaf. There are three possible ways we can do this: • 1 - If the key is already in a leaf node, and removing it doesn’t cause that leaf node to have too few keys, then simply remove the key to be deleted. • 2 - If the key is not in a leaf then it is guaranteed (by the nature of a B-tree) that its predecessor or successor will be in a leaf -- in this case we can delete the key and promote the predecessor or successor key to the non-leaf deleted key’s position.
  • 13. B-Trees 13 Removal from a B-tree (2) • If (1) or (2) lead to a leaf node containing less than the minimum number of keys then we have to look at the siblings immediately adjacent to the leaf in question: – 3: if one of them has more than the min. number of keys then we can promote one of its keys to the parent and take the parent key into our lacking leaf – 4: if neither of them has more than the min. number of keys then the lacking leaf and one of its neighbours can be combined with their shared parent (the opposite of promoting a key) and the new leaf will have the correct number of keys; if this step leave the parent with too few keys then we repeat the process up to the root itself, if required
  • 14. B-Trees 14 Type #1: Simple leaf deletion 12 29 52 2 7 9 15 22 56 69 7231 43 Delete 2: Since there are enough keys in the node, just delete it Assuming a 5-way B-Tree, as before... Note when printed: this slide is animated
  • 15. B-Trees 15 Type #2: Simple non-leaf deletion 12 29 52 7 9 15 22 56 69 7231 43 Delete 52 Borrow the predecessor or (in this case) successor 56 Note when printed: this slide is animated
  • 16. B-Trees 16 Type #4: Too few keys in node and its siblings 12 29 56 7 9 15 22 69 7231 43 Delete 72 Too few keys! Join back together Note when printed: this slide is animated
  • 17. B-Trees 17 Type #4: Too few keys in node and its siblings 12 29 7 9 15 22 695631 43 Note when printed: this slide is animated
  • 18. B-Trees 18 Type #3: Enough siblings 12 29 7 9 15 22 695631 43 Delete 22 Demote root key and promote leaf key Note when printed: this slide is animated
  • 19. B-Trees 19 Type #3: Enough siblings 12 297 9 15 31 695643 Note when printed: this slide is animated
  • 20. B-Trees 20 Exercise in Removal from a B-Tree • Delete these keys: 4, 6 from the tree created in the previous question •
  • 21. B-Trees 21 Reasons for using B-Trees • When searching tables held on disc, the cost of each disc transfer is high but doesn't depend much on the amount of data transferred, especially if consecutive items are transferred – If we use a B-tree of order 101, say, we can transfer each node in one disc read operation – A B-tree of order 101 and height 3 can hold 1014 – 1 items (approximately 100 million) and any item can be accessed with 3 disc reads (assuming we hold the root in memory) • If we take m = 3, we get a 2-3 tree, in which non-leaf nodes have two or three children (i.e., one or two keys) – B-Trees are always balanced (since the leaves are all at the same level), so 2-3 trees make a good type of balanced tree
  • 22. Specialization • 2-3-4 tree A B-tree of order 4, that is, internal nodes have two, three, or four children. B-tree with m=4. • 2-3 tree A B-tree of order 3, that is, internal nodes have two or three children. • B*-tree A B-tree in which nodes are kept 2/3 full by redistributing keys to fill two child nodes, then splitting them
  • 24. B-Trees 24 Comparing Trees • Binary trees – Can become unbalanced and lose their good time complexity (big O) – AVL trees are strict binary trees that overcome the balance problem – Heaps remain balanced but only prioritise (not order) the keys • Multi-way trees – B-Trees can be m-way, they can have any number of children – One B-Tree, the 2-3 (or 3-way) B-Tree, approximates a permanently balanced binary tree, exchanging the AVL tree’s balancing operations for insertion and (more complex) deletion operations