SlideShare une entreprise Scribd logo
1  sur  69
Developments in the Learning Sciences and TechnologiesRoy PeaStanford UniversityLPCH Leadership Forum10 June 2010
Topical map ,[object Object]
Radical changes in learning environments with technology
NSF LIFE Center: “Social turn” in sciences of learning
Visions of Cyberlearning - and a brief example
Creating the 2010 National Educational Technology Plan
Preparing Learning Sciences and Technologies researchers at Stanford
Dialogue,[object Object]
H-STAR as crossroads for interdisciplinary research  …engaging people, expertise, projects & programs connecting Stanford resources in human sciences with research & innovation in information technology. The social problems at this intersection are significant, challenging, and in flux, as there is no social equivalent to Moore's Law — technological capabilities are expanding far more rapidly than our social and cultural adaptations to their properties. At the individual level, technology can be difficult to use, limiting its potential benefits: it can join people — but also separate them; it can teach — but also distract and create new inequities; and it can accelerate work and life — but also interfere and overwhelm. The "digital divide" highlights how information technology is distributed unevenly on the basis of economics, knowledge, language, and culture.  Although technology is a primary business force that can make products and services better, cheaper, and faster, it also transforms the fundamental character of human experiences in disruptive waves.
H-STAR focus Individual and societal challenges with research and innovation that preserves the details, literatures, and methods of traditional disciplines while benefiting from the emergent synergies and surprises that come from interdisciplinary ventures. The human science literatures represented in H-STAR include the cognitive sciences and neurosciences, linguistics, logic, symbolic systems, learning sciences and education, philosophy, sociological & anthropological studies of social interaction mediated by technologies, information processing, emotions, persuasion and rhetoric, visualization and vision sciences, and work about oral, written, visual and musical production. The information technologies that H-STAR influences include computing and media systems of all shapes and sizes that can understand and produce language, faces, gestures and emotions, and systems that can automate human-machine dialogue, display information in different formats and sizes, and create collaborative work and learning spaces, incorporating agents, avatars, gaming, and immersive environments.
MediaX Research Activities  Span Stanford Labs Stanford University Medical Media & Information Technology SUMMIT Distributed Vision Lab DVL Electrical Engineering Psychology Psy Computer Science Virtual Human Interaction Lab, Communications between Humans and Interactive Media Lab EE Linguistics Ling Philosophy  CS Com Phil SHL Stanford Humanities Lab Graduate School Of Business GSB VWG Virtual Worlds Group  SCIL Stanford Center for Innovations in Learning CSLI Center for the Study Of Language & Information Art Digital Art Center Eng Engineering & Product  Design Ed School of Education; Education and Learning Sciences PBLL Law Work Technology & Organization Des SSP Stanford Joint Program in Design PBLL Law School LIFE Project Based Learning Laboratory Symbolic Systems Program Learning in Informal and  Formal Environments
H-STAR faculty participation 59 Stanford researchers from all five schools have carried out H-STAR funded research, participated in an H-STAR research planning retreat, or hosted a visiting H-STAR researcher from another university. Over 90 Stanford faculty with their students have received over $2.5 M in research support through H-STAR's Media X Industry Partners Program (last 6 years). Active areas include ,[object Object]
technology and the developing world
information and social network visualization
security and privacy
participatory media including web video technologies
simulation, law and information policy
learning technologies
HCI design
pervasive computing: mobile devices, speech recognition, automated dialogue systems, visual search
collaboration technologies
novel input and display devices
entertainment and serious games,[object Object]
Professional Society, Journals, Doctoral programs “ISLS is dedicated to the interdisciplinary empirical investigation of learning as it exists in real-world settings and how learning may be facilitated both with and without technology.” Journal of the Learning Sciences International Journal of Computer Supported Collaborative Learning Many different doctoral programs in USA and abroad….
How are Learning Environments being Transformed?
Youth are (mostly) wired and ready for tomorrow’s education ,[object Object]
64% of online teens are generating new media content 39% of online teens share online their own artistic creations, photos, stories, or videos
 28% have created their own online journal or blog
 27% maintain personal webpages
 33% create or work on webpages or blogs for others
 26%  remix content they find online into their own creationsPew Internet & American Life Project (December 19, 2007)
Next decade of technology-enhanced learning opportunities combines…  Very-low cost, “always on” smart phones Participatory media culture Social networks used for learning and education Increasingly open educational resources, tagged to learning standards Immersive worlds and games – for learning, too Location-aware services (GPS) for learning-in-the world More accessible platforms for developing learning and educational tools to be used by learners 24/7
What’s enabled these changes?  ,[object Object]
Web technologies enabling people to share, access, publish—and learn from—online content and software, across the globe.
Convergence: Professional tools such as desktop and laptop computers have begun merging with personal technologies - mobile phones, PDAs, music players, digital video recorders, digital cameras.
Networked content today provides a rich immersive learning environment incorporating accessible data using colorful visualizations, animated graphics, and interactive applications - Not only “classroom content” – books and videos.,[object Object]
The Learning in Informal and Formal Environments (LIFE) Center life-slc.org An NSF Science of Learning Center
LIFE Center Purpose To develop and test principles about the social foundations of human learning in informal and formal environments, including how people learn to innovate in contemporary society, with the goal of enhancing human learning from infancy to adulthood
The “Social Turn”in the Sciences of Learning Increasing attention to social foundations of learning, to augment the cognitive revolution. Learning involves not only transformation of cognitive structures but of participation in cultural practices. Evidence that social interactions contribute significantly to key “drivers” of learning: identity, interests, agency, engagement, social networks. Concern with examining cultural practices that shape learning outside of school – including family, community, media & tools. Sense of increasing societal importance of collaboration and teamwork & need for science to better understand and improve practice and mediating technologies Greater use of social designs in formal instruction beyond teacher-led classes. Appreciation of special brain processing of social stimuli from social neuroscience research – e.g., on mirror neurons.
Learning Ecology Framework (Brigid Barron, Human Development, 2006) Accessed set of contexts, comprised of configurations of activities, material resources, and relationships that are found in co-located physical or virtual spaces that provide opportunities for learning. (Source: B. Barron, Human  Development, 2006) Contexts of Development  • Unit of analysis is person and multiple life spaces •  A learning ecology is dynamic  • Subject to interventions • Activities, ideas are more or less boundary crossing • Influences: Lewin, Bronfenbrenner, Cole, Engeström, Lave, Rogoff, Saxe, Vygotsky Framework has descriptive and prescriptive uses
Mapping learning activity across setting and time Case analyses indicate that most sustained learning projects have been aided by one or more learning partners, and that choices of learning opportunities often had dramatic consequences for expertise development – learning is profoundly social Learning partners father Community School Home
Learning and developing 21st Century expertise (LIFE Center) Expertise is the integrated blending of knowledge, skills, tools, strategies and values to adaptively respond to the changing conditions of thinking and action in a global context. Both disciplinary knowledge and interdisciplinary knowledge Developed & evidenced in “communities of practice” Striking a balance of efficiency and innovation “For the past 25 years, we have optimized our organizations for efficiency and quality. Over the next quarter century, we must optimize our entire society for innovation.” (US National Innovation Initiative, Council on Competitiveness, 2004)
LIFE Center: ‘What develops with expertise?’ Competencies and dispositions for acting adaptively in problem domains – including:  Knowledge and skills e.g., conceptual, procedural, strategic, tactical, and analogical capabilities -- traditional focus of expertise studies Metacognition  e.g., knowing when and how to use resources if you have them, and how to recruit them if you do not - in terms of people, tools, information Sense of self  e.g., identity development, interests, engagement, persistence, orientation to error and failure Social network relationships with others  and their resources of all these kinds, possible divisions of labor if they can help Uses of and innovations with technologies and material resources e.g., representational and computational tools for mediating problem solving, physical stuff that can be leveraged in the situation at hand Values  e.g., the dimensions of valuation that influence whether something is viewed as a problem or not, strategies considered culturally appropriate in addressing it, consideration of acceptable tradeoffs when values conflict
Navigating Complex Learning Ecologies in a Changing World (cf. Carol Lee, Educational Researcher, 2008) U.S. society is becoming increasingly diverse (ethnic and racial group representation, global migration, linguistic variation, etc.).  Understanding life-course outcomes necessitates studying how people move and learn across settings and navigate across varied cultural practices and value systems.  Places vary in their ability to adapt to (and leverage) the variable resources that learners bring with them. Learning is largely not coordinated across settings. There is basic science needed to document the multiple learning pathways that exist across the complex ecologies of society.
LIFE Consensus Study on Learning In and Out of School in Diverse Communities ,[object Object]
Focus on maximizing strengths and building on the educational capital of diverse students, rather than a focus on performance gaps.,[object Object]
A shift… to The Future of Cyberlearning: A vision of the year 2015… Mobile technology access to school materials and assignments Virtual Laboratory Simulations Learners Virtual interaction with classmates Supplemental content Visualizations of real-time data from remote sensors Parents Teachers Lifelong “Digital Portfolio” Home School
      What Is Cyberlearning? “Learning that is mediated by networked computing and communications technologies” As in “cyberinfrastructure”: “if infrastructure is required for an industrial economy, then we could say that cyberinfrastructureis required for a knowledge economy.” “Cyber” also as in Norbert Wiener’s (1948) “cybernetics” — built etymologically on the Greek term for “steering.” Cyberlearning is learning in a networked world, where the forms of “steering” of learning can come from personal, educational, or hybrid designs.
A Brief History of Technological Advances Making Cyberlearning Possible
Participatory culture: 21st Century Education “We have also identified a set of core social skills and cultural competencies that young people should acquire if they are to be full, active, creative, and ethical participants in this emerging participatory culture: Play — the capacity to experiment with your surroundings as a form of problem-solving Performance — the ability to adopt alternative identities for the purpose of improvisation and discovery Simulation — the ability to interpret and construct dynamic models of real world processes Appropriation — the ability to meaningfully sample and remix media content Multitasking — the ability to scan one’s environment and shift focus as needed to salient details. Distributed Cognition — the ability to interact meaningfully with tools that expand mental capacities Collective Intelligence — the ability to pool knowledge and compare notes with others toward a common goal Judgment — the ability to evaluate the reliability and credibility of different information sources Transmedia Navigation — the ability to follow the flow of stories and information across multiple modalities Networking — the ability to search for, synthesize, and disseminate information Negotiation — the ability to travel across diverse communities, discerning and respecting multiple perspectives, and grasping and following alternative norms.” • How do we ensure that every child has access to the skills and experiences needed to become a full participant in the social, cultural, economic, and political future of our society? • How do we ensure that every child has the ability to articulate his or her understanding of the way that media shapes perceptions of the world? • How do we ensure that every child has been socialized into the emerging ethical standards that will shape their practices as media makers and as participants within online communities?
LETS GO! Mobile Science Inquiry Roy Pea & Heidy Maldonado Stanford University Marcelo Milrad & Daniel Spikol
LETS GO: Learning Ecologywith Technologiesfrom Sciencefor Global Outcomes ,[object Object]
Leveraging new tools:
Science sensors and digital cameras               for data capture & mapping (GPS)
Information visualization for data-analysis
Low-cost mobile computers with networking
Pen-based paper computing for audio notetaking in the field (Livescribe),[object Object]
Geo-temporalvisualization of all the collected data
Geo-tagging of uploaded sensor data, photos, videos for viewing, analysis and reflection through a web browser
Leadership principle: “Inspire a Shared Vision”
Key Audiences K-16 education leaders and educators Public and private sector education community Policymakers Business leaders Students and their families Public at large

Contenu connexe

Tendances

Conole turku
Conole turkuConole turku
Conole turku
grainne
 
Literature in digital environments: Changes and emerging trends in Australian...
Literature in digital environments: Changes and emerging trends in Australian...Literature in digital environments: Changes and emerging trends in Australian...
Literature in digital environments: Changes and emerging trends in Australian...
Judy O'Connell
 
Information literacy
Information literacyInformation literacy
Information literacy
Johan Koren
 
The Generation Game He Forum
The Generation Game He ForumThe Generation Game He Forum
The Generation Game He Forum
HAROLDFRICKER
 

Tendances (20)

Mar Camacho, Universitat Rovira i Virgili Faculty (Spain), Visiting scholar a...
Mar Camacho, Universitat Rovira i Virgili Faculty (Spain), Visiting scholar a...Mar Camacho, Universitat Rovira i Virgili Faculty (Spain), Visiting scholar a...
Mar Camacho, Universitat Rovira i Virgili Faculty (Spain), Visiting scholar a...
 
Pedagogy and School Libraries
Pedagogy and School LibrariesPedagogy and School Libraries
Pedagogy and School Libraries
 
Digital Literacy | Why it matters
Digital Literacy | Why it mattersDigital Literacy | Why it matters
Digital Literacy | Why it matters
 
Conole turku
Conole turkuConole turku
Conole turku
 
Insights into Innovation, Tokyo 8-6-10, Martha G. Russell
Insights into Innovation, Tokyo 8-6-10, Martha G. RussellInsights into Innovation, Tokyo 8-6-10, Martha G. Russell
Insights into Innovation, Tokyo 8-6-10, Martha G. Russell
 
Information Literacy in the Digital Age
Information Literacy in the Digital AgeInformation Literacy in the Digital Age
Information Literacy in the Digital Age
 
Technology and Literacies: Case studies from EU projects
Technology and Literacies: Case studies from EU projectsTechnology and Literacies: Case studies from EU projects
Technology and Literacies: Case studies from EU projects
 
Digital Literacy Power Point
Digital  Literacy Power PointDigital  Literacy Power Point
Digital Literacy Power Point
 
Literature in digital environments: Changes and emerging trends in Australian...
Literature in digital environments: Changes and emerging trends in Australian...Literature in digital environments: Changes and emerging trends in Australian...
Literature in digital environments: Changes and emerging trends in Australian...
 
Rethinking Learning in the Age of Digital Fluency
Rethinking Learning in the Age of Digital FluencyRethinking Learning in the Age of Digital Fluency
Rethinking Learning in the Age of Digital Fluency
 
Information literacy
Information literacyInformation literacy
Information literacy
 
New literacies and Transformative Learning Environments
New literacies and Transformative Learning EnvironmentsNew literacies and Transformative Learning Environments
New literacies and Transformative Learning Environments
 
Social Media, Social Networking and School Libraries.
Social Media, Social Networking and School Libraries.Social Media, Social Networking and School Libraries.
Social Media, Social Networking and School Libraries.
 
Engaging Digital Natives With Web 2.0 Pete&C
Engaging Digital Natives With Web 2.0 Pete&CEngaging Digital Natives With Web 2.0 Pete&C
Engaging Digital Natives With Web 2.0 Pete&C
 
Learning 2.0 with Web 2.0
Learning 2.0 with Web 2.0Learning 2.0 with Web 2.0
Learning 2.0 with Web 2.0
 
Top 10 Benefits of Digital Literacy
Top 10 Benefits of Digital LiteracyTop 10 Benefits of Digital Literacy
Top 10 Benefits of Digital Literacy
 
DIgital activism: ways to cultivate your soft skills during the pandemic and ...
DIgital activism: ways to cultivate your soft skills during the pandemic and ...DIgital activism: ways to cultivate your soft skills during the pandemic and ...
DIgital activism: ways to cultivate your soft skills during the pandemic and ...
 
Impact of peer interaction on learning practices in a Social Network Site for...
Impact of peer interaction on learning practices in a Social Network Site for...Impact of peer interaction on learning practices in a Social Network Site for...
Impact of peer interaction on learning practices in a Social Network Site for...
 
The Generation Game
The Generation GameThe Generation Game
The Generation Game
 
The Generation Game He Forum
The Generation Game He ForumThe Generation Game He Forum
The Generation Game He Forum
 

En vedette

Let's check correction
Let's check correctionLet's check correction
Let's check correction
Neus Puig
 
Ieee vlsi titles 2012 copmlete
Ieee vlsi titles 2012 copmleteIeee vlsi titles 2012 copmlete
Ieee vlsi titles 2012 copmlete
tema_solution
 
Embedding VHDL in LabVIEW FPGA on Xilinx Spartan 3E Starter board
Embedding VHDL in LabVIEW FPGA on Xilinx Spartan 3E Starter boardEmbedding VHDL in LabVIEW FPGA on Xilinx Spartan 3E Starter board
Embedding VHDL in LabVIEW FPGA on Xilinx Spartan 3E Starter board
Vincent Claes
 
Chuong 4.1 tin hieu va pho
Chuong 4.1 tin hieu va phoChuong 4.1 tin hieu va pho
Chuong 4.1 tin hieu va pho
thanhyu
 
Fourier series example
Fourier series exampleFourier series example
Fourier series example
Abi finni
 
Simulation of A Communications System Using Matlab
Simulation of A Communications System Using MatlabSimulation of A Communications System Using Matlab
Simulation of A Communications System Using Matlab
Polytechnique Montreal
 

En vedette (20)

Let's check correction
Let's check correctionLet's check correction
Let's check correction
 
PERSONALIZATION IN SENSOR-RICH ENVIRONMENTS
PERSONALIZATION IN SENSOR-RICH ENVIRONMENTSPERSONALIZATION IN SENSOR-RICH ENVIRONMENTS
PERSONALIZATION IN SENSOR-RICH ENVIRONMENTS
 
Spartan 3E FPGA Board Tutoriels
Spartan 3E FPGA Board TutorielsSpartan 3E FPGA Board Tutoriels
Spartan 3E FPGA Board Tutoriels
 
Dsp Presentation
Dsp PresentationDsp Presentation
Dsp Presentation
 
Tutorials book
Tutorials bookTutorials book
Tutorials book
 
Presentation fpgakit
Presentation fpgakitPresentation fpgakit
Presentation fpgakit
 
Ieee vlsi titles 2012 copmlete
Ieee vlsi titles 2012 copmleteIeee vlsi titles 2012 copmlete
Ieee vlsi titles 2012 copmlete
 
Embedding VHDL in LabVIEW FPGA on Xilinx Spartan 3E Starter board
Embedding VHDL in LabVIEW FPGA on Xilinx Spartan 3E Starter boardEmbedding VHDL in LabVIEW FPGA on Xilinx Spartan 3E Starter board
Embedding VHDL in LabVIEW FPGA on Xilinx Spartan 3E Starter board
 
Design and Implementation of AMBA ASB APB Bridge
Design and Implementation of AMBA ASB APB BridgeDesign and Implementation of AMBA ASB APB Bridge
Design and Implementation of AMBA ASB APB Bridge
 
Smart Workspaces
Smart WorkspacesSmart Workspaces
Smart Workspaces
 
SoC FPGA Technology
SoC FPGA TechnologySoC FPGA Technology
SoC FPGA Technology
 
Sodc 1 Introduction
Sodc 1 IntroductionSodc 1 Introduction
Sodc 1 Introduction
 
10 Million in 10 Weeks (Stanford Facebook Class, Fall 2007)
10 Million in 10 Weeks (Stanford Facebook Class, Fall 2007)10 Million in 10 Weeks (Stanford Facebook Class, Fall 2007)
10 Million in 10 Weeks (Stanford Facebook Class, Fall 2007)
 
Introduction to Communication Systems 2
Introduction to Communication Systems 2Introduction to Communication Systems 2
Introduction to Communication Systems 2
 
Chuong 4.1 tin hieu va pho
Chuong 4.1 tin hieu va phoChuong 4.1 tin hieu va pho
Chuong 4.1 tin hieu va pho
 
Logic design and switching theory
Logic design and switching theoryLogic design and switching theory
Logic design and switching theory
 
Introduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysisIntroduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysis
 
Fourier series example
Fourier series exampleFourier series example
Fourier series example
 
Wireless Channel Modeling - MATLAB Simulation Approach
Wireless Channel Modeling - MATLAB Simulation ApproachWireless Channel Modeling - MATLAB Simulation Approach
Wireless Channel Modeling - MATLAB Simulation Approach
 
Simulation of A Communications System Using Matlab
Simulation of A Communications System Using MatlabSimulation of A Communications System Using Matlab
Simulation of A Communications System Using Matlab
 

Similaire à Roy pea lpch_06_10_10

Workshop spring 2010-revised
Workshop spring 2010-revisedWorkshop spring 2010-revised
Workshop spring 2010-revised
Emeliluz
 
Technology To Enhance Literacy And Learning
Technology To Enhance Literacy And LearningTechnology To Enhance Literacy And Learning
Technology To Enhance Literacy And Learning
Karen Brooks
 
Workshop spring 2010-revised
Workshop spring 2010-revisedWorkshop spring 2010-revised
Workshop spring 2010-revised
Emeliluz
 
Learning Informatics: AI • Analytics • Accountability • Agency
Learning Informatics: AI • Analytics • Accountability • AgencyLearning Informatics: AI • Analytics • Accountability • Agency
Learning Informatics: AI • Analytics • Accountability • Agency
Simon Buckingham Shum
 
Social Computing
Social ComputingSocial Computing
Social Computing
Mike Tan
 
New Paltz Presentation 5
New Paltz Presentation 5New Paltz Presentation 5
New Paltz Presentation 5
dwesting
 
H&IELearningCentres
H&IELearningCentresH&IELearningCentres
H&IELearningCentres
Dannno
 

Similaire à Roy pea lpch_06_10_10 (20)

networklearning
networklearningnetworklearning
networklearning
 
A CONCEPTUAL FRAMEWORK ON FUTURISTIC STUDIES
A CONCEPTUAL FRAMEWORK ON FUTURISTIC STUDIESA CONCEPTUAL FRAMEWORK ON FUTURISTIC STUDIES
A CONCEPTUAL FRAMEWORK ON FUTURISTIC STUDIES
 
CIC Networked Learning Practices Workshop - Caroline Haythornthwaite
CIC Networked Learning Practices Workshop - Caroline HaythornthwaiteCIC Networked Learning Practices Workshop - Caroline Haythornthwaite
CIC Networked Learning Practices Workshop - Caroline Haythornthwaite
 
Workshop spring 2010-revised
Workshop spring 2010-revisedWorkshop spring 2010-revised
Workshop spring 2010-revised
 
Technology To Enhance Literacy And Learning
Technology To Enhance Literacy And LearningTechnology To Enhance Literacy And Learning
Technology To Enhance Literacy And Learning
 
Workshop spring 2010-revised
Workshop spring 2010-revisedWorkshop spring 2010-revised
Workshop spring 2010-revised
 
Shall We Play?
Shall We Play?Shall We Play?
Shall We Play?
 
NMC Horizon Report > 2007 Higher Ed Edition Presentation
NMC Horizon Report > 2007 Higher Ed Edition PresentationNMC Horizon Report > 2007 Higher Ed Edition Presentation
NMC Horizon Report > 2007 Higher Ed Edition Presentation
 
ticEDUCA2010 presentation (Andrews)
ticEDUCA2010 presentation (Andrews)ticEDUCA2010 presentation (Andrews)
ticEDUCA2010 presentation (Andrews)
 
Digitaalinen tulevaisuus 2030 – kuinka ”tukiäly” tukee ihmisten arkea, oppimi...
Digitaalinen tulevaisuus 2030 – kuinka ”tukiäly” tukee ihmisten arkea, oppimi...Digitaalinen tulevaisuus 2030 – kuinka ”tukiäly” tukee ihmisten arkea, oppimi...
Digitaalinen tulevaisuus 2030 – kuinka ”tukiäly” tukee ihmisten arkea, oppimi...
 
Learning Informatics: AI • Analytics • Accountability • Agency
Learning Informatics: AI • Analytics • Accountability • AgencyLearning Informatics: AI • Analytics • Accountability • Agency
Learning Informatics: AI • Analytics • Accountability • Agency
 
Social Computing
Social ComputingSocial Computing
Social Computing
 
What is Learning in a Participatory Culture?
What is Learning in a Participatory Culture?What is Learning in a Participatory Culture?
What is Learning in a Participatory Culture?
 
Digital Storytelling and More: Ideas to Invigorate Literacy Instruction
Digital Storytelling and More: Ideas to Invigorate Literacy InstructionDigital Storytelling and More: Ideas to Invigorate Literacy Instruction
Digital Storytelling and More: Ideas to Invigorate Literacy Instruction
 
Presentation for Graduates Harrietville 2008
Presentation for Graduates Harrietville 2008Presentation for Graduates Harrietville 2008
Presentation for Graduates Harrietville 2008
 
Digital futures and learning in the 21st century
Digital futures and learning in the 21st centuryDigital futures and learning in the 21st century
Digital futures and learning in the 21st century
 
New Learners
New LearnersNew Learners
New Learners
 
New Paltz Presentation 5
New Paltz Presentation 5New Paltz Presentation 5
New Paltz Presentation 5
 
Technology in Education
Technology in EducationTechnology in Education
Technology in Education
 
H&IELearningCentres
H&IELearningCentresH&IELearningCentres
H&IELearningCentres
 

Dernier

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Dernier (20)

How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 

Roy pea lpch_06_10_10

  • 1. Developments in the Learning Sciences and TechnologiesRoy PeaStanford UniversityLPCH Leadership Forum10 June 2010
  • 2.
  • 3. Radical changes in learning environments with technology
  • 4. NSF LIFE Center: “Social turn” in sciences of learning
  • 5. Visions of Cyberlearning - and a brief example
  • 6. Creating the 2010 National Educational Technology Plan
  • 7. Preparing Learning Sciences and Technologies researchers at Stanford
  • 8.
  • 9. H-STAR as crossroads for interdisciplinary research …engaging people, expertise, projects & programs connecting Stanford resources in human sciences with research & innovation in information technology. The social problems at this intersection are significant, challenging, and in flux, as there is no social equivalent to Moore's Law — technological capabilities are expanding far more rapidly than our social and cultural adaptations to their properties. At the individual level, technology can be difficult to use, limiting its potential benefits: it can join people — but also separate them; it can teach — but also distract and create new inequities; and it can accelerate work and life — but also interfere and overwhelm. The "digital divide" highlights how information technology is distributed unevenly on the basis of economics, knowledge, language, and culture. Although technology is a primary business force that can make products and services better, cheaper, and faster, it also transforms the fundamental character of human experiences in disruptive waves.
  • 10. H-STAR focus Individual and societal challenges with research and innovation that preserves the details, literatures, and methods of traditional disciplines while benefiting from the emergent synergies and surprises that come from interdisciplinary ventures. The human science literatures represented in H-STAR include the cognitive sciences and neurosciences, linguistics, logic, symbolic systems, learning sciences and education, philosophy, sociological & anthropological studies of social interaction mediated by technologies, information processing, emotions, persuasion and rhetoric, visualization and vision sciences, and work about oral, written, visual and musical production. The information technologies that H-STAR influences include computing and media systems of all shapes and sizes that can understand and produce language, faces, gestures and emotions, and systems that can automate human-machine dialogue, display information in different formats and sizes, and create collaborative work and learning spaces, incorporating agents, avatars, gaming, and immersive environments.
  • 11. MediaX Research Activities Span Stanford Labs Stanford University Medical Media & Information Technology SUMMIT Distributed Vision Lab DVL Electrical Engineering Psychology Psy Computer Science Virtual Human Interaction Lab, Communications between Humans and Interactive Media Lab EE Linguistics Ling Philosophy CS Com Phil SHL Stanford Humanities Lab Graduate School Of Business GSB VWG Virtual Worlds Group SCIL Stanford Center for Innovations in Learning CSLI Center for the Study Of Language & Information Art Digital Art Center Eng Engineering & Product Design Ed School of Education; Education and Learning Sciences PBLL Law Work Technology & Organization Des SSP Stanford Joint Program in Design PBLL Law School LIFE Project Based Learning Laboratory Symbolic Systems Program Learning in Informal and Formal Environments
  • 12.
  • 13. technology and the developing world
  • 14. information and social network visualization
  • 16. participatory media including web video technologies
  • 17. simulation, law and information policy
  • 20. pervasive computing: mobile devices, speech recognition, automated dialogue systems, visual search
  • 22. novel input and display devices
  • 23.
  • 24. Professional Society, Journals, Doctoral programs “ISLS is dedicated to the interdisciplinary empirical investigation of learning as it exists in real-world settings and how learning may be facilitated both with and without technology.” Journal of the Learning Sciences International Journal of Computer Supported Collaborative Learning Many different doctoral programs in USA and abroad….
  • 25. How are Learning Environments being Transformed?
  • 26.
  • 27. 64% of online teens are generating new media content 39% of online teens share online their own artistic creations, photos, stories, or videos
  • 28. 28% have created their own online journal or blog
  • 29. 27% maintain personal webpages
  • 30. 33% create or work on webpages or blogs for others
  • 31. 26% remix content they find online into their own creationsPew Internet & American Life Project (December 19, 2007)
  • 32.
  • 33. Next decade of technology-enhanced learning opportunities combines… Very-low cost, “always on” smart phones Participatory media culture Social networks used for learning and education Increasingly open educational resources, tagged to learning standards Immersive worlds and games – for learning, too Location-aware services (GPS) for learning-in-the world More accessible platforms for developing learning and educational tools to be used by learners 24/7
  • 34.
  • 35. Web technologies enabling people to share, access, publish—and learn from—online content and software, across the globe.
  • 36. Convergence: Professional tools such as desktop and laptop computers have begun merging with personal technologies - mobile phones, PDAs, music players, digital video recorders, digital cameras.
  • 37.
  • 38.
  • 39. The Learning in Informal and Formal Environments (LIFE) Center life-slc.org An NSF Science of Learning Center
  • 40. LIFE Center Purpose To develop and test principles about the social foundations of human learning in informal and formal environments, including how people learn to innovate in contemporary society, with the goal of enhancing human learning from infancy to adulthood
  • 41. The “Social Turn”in the Sciences of Learning Increasing attention to social foundations of learning, to augment the cognitive revolution. Learning involves not only transformation of cognitive structures but of participation in cultural practices. Evidence that social interactions contribute significantly to key “drivers” of learning: identity, interests, agency, engagement, social networks. Concern with examining cultural practices that shape learning outside of school – including family, community, media & tools. Sense of increasing societal importance of collaboration and teamwork & need for science to better understand and improve practice and mediating technologies Greater use of social designs in formal instruction beyond teacher-led classes. Appreciation of special brain processing of social stimuli from social neuroscience research – e.g., on mirror neurons.
  • 42.
  • 43. Learning Ecology Framework (Brigid Barron, Human Development, 2006) Accessed set of contexts, comprised of configurations of activities, material resources, and relationships that are found in co-located physical or virtual spaces that provide opportunities for learning. (Source: B. Barron, Human Development, 2006) Contexts of Development • Unit of analysis is person and multiple life spaces • A learning ecology is dynamic • Subject to interventions • Activities, ideas are more or less boundary crossing • Influences: Lewin, Bronfenbrenner, Cole, Engeström, Lave, Rogoff, Saxe, Vygotsky Framework has descriptive and prescriptive uses
  • 44. Mapping learning activity across setting and time Case analyses indicate that most sustained learning projects have been aided by one or more learning partners, and that choices of learning opportunities often had dramatic consequences for expertise development – learning is profoundly social Learning partners father Community School Home
  • 45. Learning and developing 21st Century expertise (LIFE Center) Expertise is the integrated blending of knowledge, skills, tools, strategies and values to adaptively respond to the changing conditions of thinking and action in a global context. Both disciplinary knowledge and interdisciplinary knowledge Developed & evidenced in “communities of practice” Striking a balance of efficiency and innovation “For the past 25 years, we have optimized our organizations for efficiency and quality. Over the next quarter century, we must optimize our entire society for innovation.” (US National Innovation Initiative, Council on Competitiveness, 2004)
  • 46. LIFE Center: ‘What develops with expertise?’ Competencies and dispositions for acting adaptively in problem domains – including: Knowledge and skills e.g., conceptual, procedural, strategic, tactical, and analogical capabilities -- traditional focus of expertise studies Metacognition e.g., knowing when and how to use resources if you have them, and how to recruit them if you do not - in terms of people, tools, information Sense of self e.g., identity development, interests, engagement, persistence, orientation to error and failure Social network relationships with others and their resources of all these kinds, possible divisions of labor if they can help Uses of and innovations with technologies and material resources e.g., representational and computational tools for mediating problem solving, physical stuff that can be leveraged in the situation at hand Values e.g., the dimensions of valuation that influence whether something is viewed as a problem or not, strategies considered culturally appropriate in addressing it, consideration of acceptable tradeoffs when values conflict
  • 47. Navigating Complex Learning Ecologies in a Changing World (cf. Carol Lee, Educational Researcher, 2008) U.S. society is becoming increasingly diverse (ethnic and racial group representation, global migration, linguistic variation, etc.). Understanding life-course outcomes necessitates studying how people move and learn across settings and navigate across varied cultural practices and value systems. Places vary in their ability to adapt to (and leverage) the variable resources that learners bring with them. Learning is largely not coordinated across settings. There is basic science needed to document the multiple learning pathways that exist across the complex ecologies of society.
  • 48.
  • 49.
  • 50. A shift… to The Future of Cyberlearning: A vision of the year 2015… Mobile technology access to school materials and assignments Virtual Laboratory Simulations Learners Virtual interaction with classmates Supplemental content Visualizations of real-time data from remote sensors Parents Teachers Lifelong “Digital Portfolio” Home School
  • 51. What Is Cyberlearning? “Learning that is mediated by networked computing and communications technologies” As in “cyberinfrastructure”: “if infrastructure is required for an industrial economy, then we could say that cyberinfrastructureis required for a knowledge economy.” “Cyber” also as in Norbert Wiener’s (1948) “cybernetics” — built etymologically on the Greek term for “steering.” Cyberlearning is learning in a networked world, where the forms of “steering” of learning can come from personal, educational, or hybrid designs.
  • 52. A Brief History of Technological Advances Making Cyberlearning Possible
  • 53. Participatory culture: 21st Century Education “We have also identified a set of core social skills and cultural competencies that young people should acquire if they are to be full, active, creative, and ethical participants in this emerging participatory culture: Play — the capacity to experiment with your surroundings as a form of problem-solving Performance — the ability to adopt alternative identities for the purpose of improvisation and discovery Simulation — the ability to interpret and construct dynamic models of real world processes Appropriation — the ability to meaningfully sample and remix media content Multitasking — the ability to scan one’s environment and shift focus as needed to salient details. Distributed Cognition — the ability to interact meaningfully with tools that expand mental capacities Collective Intelligence — the ability to pool knowledge and compare notes with others toward a common goal Judgment — the ability to evaluate the reliability and credibility of different information sources Transmedia Navigation — the ability to follow the flow of stories and information across multiple modalities Networking — the ability to search for, synthesize, and disseminate information Negotiation — the ability to travel across diverse communities, discerning and respecting multiple perspectives, and grasping and following alternative norms.” • How do we ensure that every child has access to the skills and experiences needed to become a full participant in the social, cultural, economic, and political future of our society? • How do we ensure that every child has the ability to articulate his or her understanding of the way that media shapes perceptions of the world? • How do we ensure that every child has been socialized into the emerging ethical standards that will shape their practices as media makers and as participants within online communities?
  • 54. LETS GO! Mobile Science Inquiry Roy Pea & Heidy Maldonado Stanford University Marcelo Milrad & Daniel Spikol
  • 55.
  • 57. Science sensors and digital cameras for data capture & mapping (GPS)
  • 59. Low-cost mobile computers with networking
  • 60.
  • 61. Geo-temporalvisualization of all the collected data
  • 62. Geo-tagging of uploaded sensor data, photos, videos for viewing, analysis and reflection through a web browser
  • 63.
  • 64.
  • 65.
  • 66.
  • 67. Leadership principle: “Inspire a Shared Vision”
  • 68.
  • 69. Key Audiences K-16 education leaders and educators Public and private sector education community Policymakers Business leaders Students and their families Public at large
  • 70. Key Messages The NETP is a Five-Year Action Plan for Transforming American Education, Powered by Technology an urgent national priority, based on a growing understanding of what we need to do to remain competitive in a global economy. A Rigorous and Inclusion Process The NETP, led by the Department of Education’s Office of Educational Technology, was developed using a rigorous and inclusive process built on the report of a Technical Working Group of leading education researchers and practitioners, and on input received from tens of thousands respected education leaders and the public. Five Goals, Recommendations and an Action Plan The NETP presents five goals with recommendations for states, districts, the federal government, and other stakeholders in our education system that address the five essential components of a 21st century model powered by technology: Learning, Assessment, Teaching, Infrastructure, and Productivity. The Time to Act is Now We do not have the luxury of time – we must act now, embrace continuous improvement, and commit to fine-tuning and mid-course corrections as we go.
  • 71. “Transformation, Not Evolution” To accomplish these goals, we must embrace a strategy of innovation, prompt implementation, regular evaluation, and continuous improvement. The programs and projects that work must be brought to scale so every school has the opportunity to take advantage of that success. Our regulations, policies, actions, and investments must be strategic and coherent. The NETP presents goals, recommendations, and an action plan for revolutionary transformation rather than a plan for evolutionary tinkering.
  • 72. Five Goals, Recommendations, and an NETP Action Plan NETP presents five goals with recommendations for states, districts, the federal government, and other stakeholders in our education system that address the five essential components of a 21st century model powered by technology: Learning, Assessment, Teaching, Infrastructure, and Productivity.
  • 73. Informed by the Learning Sciences, Powered by Technology Advances in the learning sciences give us valuable insights into how people learn. The new recognition of life-long, life-wide learning ecologies requires new designs. Technology innovations give us the ability to act on these insights as never before.
  • 74. “Broadband Everywhere” The plan relies on the broadband initiatives funded by the American Recovery and Reinvestment Act of 2009, including the FCC’s broadband plan, which are intended to accelerate broadband deployment in unserved, underserved, and rural areas, and to strategic institutions that are likely to create jobs or provide significant public benefits.
  • 75. The NETP’s Five Goals Learning: “All learners will have engaging and empowering learning experiences both in and outside of school that prepare them to be active, creative, knowledgeable, and ethical participants in our globally networked society” Assessment: “Our education system at all levels will leverage the power of technology to measure what matters and use assessment data for continuous improvement.” Teaching: “Professional educators will be supported individually and in teams by technology that connects them to data, content, resources, expertise, and learning experiences that can empower and inspire them to provide more effective teaching to all learners.” Infrastructure: “All students and educators will have access to a comprehensive infrastructure for learning when and where they need it.” Productivity: “Our education system at all levels will redesign processes and structures to take advantage of the power of technology to improve learning outcomes while making more efficient use of time, money, and staff.”
  • 76. 1. Learning The model of 21st century learning described in this plan puts students at the center and empowers them to take control of their learning. The model asks that we change what and how we teach to match what people need to know, how they learn, where and when they will learn, and who needs to learn. It calls for bringing state-of-the art technology into learning in meaningful ways to engage, motivate, and inspire students to achieve.
  • 77.
  • 78. 2. Assessment The sciences, technology, and assessment theory provide a strong foundation for much-needed improvements in assessment. These include new and better ways to measure what matters, diagnose strengths and weaknesses in the course of learning when there is still time to improve student performance, and involve multiple stakeholders in the process of designing, conducting, and using assessment. This plan looks to technology-based assessment to provide data to drive decisions on the basis of what is best for each and every student, and that in aggregate will lead to continuous improvement across our entire education system.
  • 79. 3. Teaching Teaching today is a profession practiced much as it has been done for the past century and mostly in isolation. Transforming our education system will require a new model of teaching that strengthens and elevates the profession. Just as leveraging technology can help us improve learning and assessment, technology can help us build the capacity of educators by enabling a shift to a model of connected teaching. In a connected teaching model, connection replaces isolation, and classrooms are fully instrumented with 24 by 7 access to data about student learning, and analytic tools that help educators act on the insights the data provide.
  • 80. 4. Infrastructure A comprehensive infrastructure for learning that provides every student, educator and level of our education system with the resources they need is necessary to transform our education system. Its essential underlying principle is that infrastructure includes people, processes, learning resources, and policies, and sustainable models for continuous improvement in addition to broadband connectivity, servers, software, management systems, and administration tools. Building such an infrastructure is a far-reaching project that will demand concerted and coordinated effort to achieve.
  • 81.
  • 82. 5. Productivity While investment in education is important to transforming education, tight economic times and basic fiscal responsibility demand that we get more out of each dollar we spend. We must be clear about the learning outcomes we expect from the investments we make. We must leverage technology to plan, manage, monitor, and report spending to provide decision-makers with a reliable, accurate, and complete view of the financial performance of our education system at all levels. Such visibility is essential to our commitment to continuous improvement, and our ability to continually measure and improve the productivity of our education system to meet our goals for educational attainment within the budgets we can afford.
  • 83. Grand Challenge Problems: Ambitious R&D efforts that should be funded to support this plan
  • 84. Grand Challenge Problems: History A grand challenge defines a commitment by a scientific community to work together towards a common goal - valuable and achievable within a predicted timescale. Predecessor: Hilbert’s1900 address to International Congress of Mathematicians on 23 major mathematical problems to be studied for the next century. “Grand Challenges”: major problems of science and society whose solutions require 1000-fold or greater increases in the power and speed of supercomputers and their supporting networks, storage systems, software and virtual environments: U.S. High Performance Computing and Communications program (HPCC, 1991) Larry Smarr, NCSA Director, c. 1989
  • 85. GCP #1 “Design and validate an integrated system that provides real-time access to learning experiences tuned to the levels of difficulty and assistance that optimize learning for all learners, and that includes self-improving features that enable it to become increasingly effective through interaction with learners.”
  • 86. GCP #2 “Design and validate an integrated system for designing and implementing valid, reliable, and cost-effective assessments of complex aspects of 21st century expertise and competencies across academic disciplines.”
  • 87. GCP #3 “Design and validate an integrated approach for capturing, aggregating, mining, and sharing content, student learning and financial data cost-effectively for multiple purposes across many learning platforms and data systems in near real time.”
  • 88. GCP #4 “Identify and validate design principles for efficient and effective online learning systems and combined online and offline learning systems that produce content expertise and competencies equal to or better than those produced by the best conventional instruction in half the time at half the cost.”
  • 89. NETP urges education system at all levels to: Be clear about the outcomes we seek Monitor and measure our performance to improve learning outcomes while managing costs Use a process of continuous improvement – redesigning processes, putting them in place, and constantly evaluating them and iterating for effectiveness, efficiency, and flexibility Apply the advanced technology available in our daily lives to student learning and our entire education system in innovative ways that improve designs, accelerate adoption, and measure outcomes Learn from other kinds of enterprises that have used technology to improve outcomes and increase productivity
  • 90. The Time to Act is Now No luxury of time – we must act, embrace continuous improvement, commit to fine-tuning and mid-course corrections as we go. Success = Leadership + Collaboration + Investment Success will require leadership, collaboration, and investment at all levels of our education system – states, districts, schools, and the federal government – as well as partnerships with higher education institutions, private enterprises, and not-for-profit entities.
  • 91. Leadership principles: “Model the Way”and “Enable Others to Act”
  • 92. SUSE’s Learning Sciences and Technology Design (LSTD) Doctoral Program
  • 93. Ph.D. Program in Learning Sciences and Technology Design (LSTD) LSTD is dedicated to the systematic study and design of psychological, social, and technological processes that support learning in diverse contexts and across the lifespan, including educational settings. LSTD students complete foundational research on learning, and they design innovative learning technologies. Graduates of the program take research leadership positions as faculty, scientists in companies, government and other research labs, designers and evaluators of formal and informal learning environments, and in learning technology policy-making. The LSTD curriculum includes courses on learning, research, and design, as well as small integrative seminars and explicit apprenticeship opportunities. Students also develop advanced technical proficiencies (e.g., programming, computer animation, graphics design, simulation modeling, video production, user experience, museum display).
  • 94. Recent Employment for Stanford University’sLSTD Graduates and Postdoctoral Fellows Robb Lindgren Assistant Professor Digital Media University of Central Florida Angela Booker Assistant Professor Learning Sciences UC Davis Emma Mercier Research Associate Education Durham University UK Lee Martin Assistant Professor Learning Sciences UC Davis Sandra Okita Assistant Professor Technology & Education Teachers College Columbia Sarah Walter Research Scientist Microsoft Gaming Studio Sashank Varma Assistant Professor Educational Psychology UM Minneapolis David Sears Assistant Professor Learning Sciences Purdue University Lori Takeuchi Director of Research Joan Ganz Cooney Center Sesame Workshop 68
  • 95. http://hstar.stanford.edu/ Contact : roypea@stanford.edu http://www.stanford.edu/~roypea

Notes de l'éditeur

  1. Examples include social networking services, SMS, Youtube, Skype.
  2. At end of 2008, 1.54 bil people had access to the internet. By end of 2009, 4.6 bn people will be subscribed to a mobile phone. Mobile broadband 5% of world population and rapidly growing – in Europe, 50% penetration by 2013 from 20% today.
  3. We are tackling learning across informal and formal settings in our $5Mil per year research center with 20 professors and 50 doctoral students and postdocs. distributed center – partners ; one of six.
  4. Our unique focus - to deeply examine the special roles of the social in learning. Learning in K-12 settings under 20% awake time – relatively unexplored sea of blue for learning the other 80% time. Greater potential than realized for harvesting “funds of knowledge” from people’s learning experiences outside of classrooms. Many more forms of productive learning are found and experienced outside school than those exploited by schooling. We need to support bridging across informal and formal learning. We need far more knowledge on the development of learning interests and learning pathways over time and space - and their influences. And we need to treat the activities and life experiences of the learner throughout the day as our units of learning design, description and explanation.
  5. Source: John Seely Brown’s diagrams from Minds on Fire, Brown & Adler (2008)
  6. Secure student groups formed by teachers. Matters for social networking policy issues in many US Schools
  7. March 5, 2010 Release of the Obama AdministrationNational Educational Technology Plan -Establish the purpose and focus of the NETP-Brief you on key elements of the NETP - goals, recommendations, & actions for transforming American education
  8. Games, collaboration, universal access design, interest-driven learning.
  9. Today, we have examples of systems that can recommend learning resources a person might like, learning materials with embedded tutoring functions, software that can provide universal design for learning (UDL) supports for any technology-based learning materials, and learning management systems that move individuals through sets of learning materials and keep track of their progress and activity. What we do not have is an integrated system that can perform all of these functions dynamically while optimizing engagement and learning for all learners. Such an integrated system is essential to implementing the individualized, differentiated, and personalized learning called for in the NETP.
  10. The multiple-choice tests used in nearly all large-scale assessment programs fail to meet the challenge of capturing some of the most important aspects of 21st century expertise and competencies. Past attempts to measure these areas have been high in cost and limited in their reliability. Promising R&D applying technology to each of these components of the grand challenge are ongoing, but the pieces have yet to be integrated into a single system that is applicable across content domains and cost-effective to implement.
  11. To meet the education and productivity goals articulated in the NETP, learners and their parents, educators, school and district leaders, and state and federal policymakers must use timely information about student learning and financial data to inform their decisions. Today, these data are maintained in a variety of digital formats in multiple systems at local and state levels. As the processes of learning, assessment, and financial management and accounting move into the digital realm, educational data systems and educational research has become data-intensive and complex in scale, heterogeneity, and requirements for privacy. Still, we must create systems that capture, curate, maintain, and analyze educational and financial data in all scales and shapes, in near time, from all venues in which learning occurs: school, home, and community. This must be done fully consistent with privacy regulations.
  12. Research labs and commercial entities are hard at work developing online learning systems and combined online and offline learning systems that support the development of expertise within and across academic disciplines. We know we can accelerate learning through online tutoring, restructuring curricula, aiding concentration, and through the use of positive reinforcements including giving control of the learning largely to the learner. And we know that the current “packages” of learning that define semester and yearlong courses are generally arbitrary and a result of long-standing tradition rather than the result of careful studies. Twice the content expertise and competencies in half the time at half the cost through online learning systems will require careful design, development, and testing.