SlideShare une entreprise Scribd logo
SUPPORTS DE
TRANSMISSION
Page 1
Jamila BAKKOURY
Les supports physiques de transmissions sont les éléments
permettant de faire circuler les informations entre les
équipements de transmission.
On classe généralement ces supports en trois catégories, selon le
type de grandeur physique qu'ils permettent de faire circuler,
donc de leur constitution physique :
• Les supports filaires permettent de faire circuler une
grandeur électrique sur un câble généralement métallique
• Les supports aériens désignent l'air ou le vide, ils
permettent la circulation d'ondes électromagnétiques ou
radioélectriques diverses
• Les supports optiques permettent d'acheminer des
informations sous forme lumineuse.
SUPPORTS DE TRANSMISSION
On peut, aussi, classifier les supports de transmission en fonction de la
bande de fréquence dans laquelle ils sont exploitables.
La limitation de la bande d’utilisation provient en grande partie de
l’atténuation que subit l’onde transmise dans le milieu de propagation.
Canaux guidés
Paires torsadées (téléphone) 300Hz-300kHz
Paires torsadées (ADSL) 26kHZ-1MHz
Câble coaxial (Ethernet) 300kHz-1GHz
Guide d’onde 1GHz-300GHz
Fibre optique 30THz-1000THz
Canaux Hertziens (exemples)
VLF 3kHz-30kHz
LF 30kHz-300kHz
MF 300kHz-3MHz
HF 3MHz-30MHz
VHF 30MHz-300MHz
UHF 300MHz-3GHz
SUPPORTS DE TRANSMISSION
Selon le type de support physique, la grandeur physique a une
vitesse de propagation plus ou moins rapide.
Exemple :
Le son se propage dans l'air à une vitesse de l'ordre de 340 m/s
alors que la lumière a une célérité proche de 300 000 km/s.
Ex : calculer le temps de transmission (approximatif) d’une chaine de TV via un
satellite de télécommunication.
SUPPORTS DE TRANSMISSION
 Classification selon le mode de propagation:
• les supports guidés : paires torsadées, câbles coaxiaux, fibres optiques.
• Les supports non guidés : les ondes hertziennes, radioélectriques,
lumineuses.
 Performance d’un support de transmission (débit de transmission) :
dépend de la bande passante, de l’atténuation ( la distance ) et des
bruits.
• Pour les supports non guidés atténuation et bruit sont très
variables (conditions atmosphériques).
• performance croissante : paire torsadée – câble coaxial – fibre
optique.
SUPPORTS DE TRANSMISSION
PAIRE TORSADÉE
• Une paire torsadée est constituée de deux brins torsadés en
cuivre, protégés chacun par une enveloppe isolante
• On distingue :
– paire torsadée non blindé
– paire torsadée blindée
• Constituée d’une paire de fils électriques tournés en spirale ( pour
diminuer les interférences électriques).
• Utilisée pour la communication téléphonique et les réseaux locaux.
• Inconvénients : forte atténuation du signal – sensibilité au bruit.
• Utilisation de répéteurs (régénérateurs).
PAIRE TORSADÉE
 Avantages :
Simplicité – coût d’installation très faible.
 Caractéristiques :
• Bande passante 250 MHz
• Distance entre répéteurs 1-10 km
• Vitesse de transmission : 100 – 1000 Mbps. La vitesse de transmission
peut atteindre 1Gbps sur des distances de 100 m.
PAIRE TORSADÉE
CABLE COAXIAL
• Grande qualité de transmission
• Grande capacité (multiplexage de fréquences, ex: distribution,
réception de plusieurs chaînes simultanément)
• Constitué de deux conducteurs cylindriques construits autour d’un
même axe et séparés l’un de l’autre par un isolant.
• utilisé pour la télévision – les réseaux locaux et à longue distance.
CABLE COAXIAL
• Peu sensible aux interférences (blindage)
• Plus coûteux que les paires torsadées
• Vulnérable à la détérioration de son enveloppe, principalement les
infiltrations d'eau
• Bande passante 350 MHz
• Distance entre répéteurs 2-10 km
• Vitesse de transmission : 500 – 5000 Mbps.
CABLE COAXIAL
• L’atténuation dépend du rapport entre les deux diamètres ( optimal
pour un rapport de 3.6)
• Avantages : Bande passante relativement importante (multiplexage de
signaux) – Assez facile à installer - Résistance assez importante face aux
perturbations électriques et électromagnétiques.
• Inconvénients : Gros diamètre ( 1 – 1.9 cm) – assez rigide : difficultés
de câblage.
CABLE COAXIAL
Cœur (10 à 85 μ m)
Gaine optique (125 μm)
Gaine plastique (250 μm)
FIBRE OPTIQUE
Page 14
• Cœur : fibre de verre ou de plastique (guide d’ondes lumineuses)
• Revêtement : avec indice de réfraction tel que la lumière reste
prisonnière dans la fibre.
• Gaine protectrice externe : empêche les ondes lumineuses externes
de pénétrer et absorbe les ondes internes échappées.
• Production du signal optique : Source lumière LASER ou LED.
FIBRE OPTIQUE
 Avantages : très petites et peu coûteuses – Quelques milliers de
fibres optiques dans un câble de grosseur du câble coaxial. – résistance
à la corrosion - insensibles aux parasites EM.
 Inconvénients : sensible à l’humidité – cœur fragile (contraintes
mécaniques) –équipements encore coûteux.
 Caractéristiques :
• Bande passante 10 GHz
• Distance entre répéteurs 10-100 km
• Vitesse de transmission : 10 – 100 Gbps.
FIBRE OPTIQUE
Différentes familles de fibre optique utilisées en télécommunications.
Les fibres optiques peuvent être monomodes
ou multimodes,
à saut d'indice
ou à gradient d'indice.
FIBRE OPTIQUE
• Cœur très fin.
• La bande passante transmise est presque infinie (>
10Ghz/km).
• Fibre utilisée surtout pour les sites distants
• Le petit diamètre du cœur (10um) nécessite une grande
puissance d‘émission, donc des diodes au laser qui sont
relativement onéreuses
• Grandes distances (30 km). Fréquence de transmission
(Ghz). Un seul chemin par fibre. coûteuses
17
FIBRES OPTIQUES MONOMODES
 courtes distances (10 – 16 km).
 Fréquence de transmission (50 à 100 MHz). Plusieurs chemins
possibles.
• A saut d’indice : différents points de réflexion donc problème de
dispersion des rayons lumineux. Les moins coûteuses.
• A gradient d’indice : Réduction des dispersions en faisant varier
l’indice de réfraction dans le cœur.
FIBRES OPTIQUES MULTIMODES
revêtement
FIBRES OPTIQUES MULTIMODES
• A saut d’indice :
Cône d'acceptance
Q0 q0
0
z
Cœur (indice n1) r
a b
Gaine (indice n2)
n(r)
Rayon guidé
Rayon réfracté
Angle limite : n1.cos q0 = n2
ouverture numérique ON = sin Q0 = n1 sinq0 = 2
2
2
1 n
n 
q0
FIBRES OPTIQUES MULTIMODES
• A gradient d’indice :
Cœur : indice n(r) r
0
z
a b
Gaine (indice n2)
n(r)
n1
Indice du cœur : n(r) = n1
2
)
r/a
(
2
1 

CABLES A FIBRES OPTIQUES
CONNECTEURS OPTIQUES
PRINCIPAUX TYPES DE FIBRES
Matériau Plastique Toute silice
Type Multimode
Multimode gradient
d’indice
Monomode
standard
Monomode
disp. décalée
Diamètres
cœur / gaine (mm)
980/1000 50/125 62,5/125 9/125 7/125
Longueurs d’onde
et atténuation
Visible
200 dB/km
0,85 µm – 1,3 µm
3 dB/km – 0,9 dB/km
1,3 – 1,55 µm
0,5 – 0,2 dB/km
1,5 à 1,6 µm
0,22 dB/km
Débits et
distances
10 à 100 Mb/s
100 m
100 Mb/s /5 km
1 Gb/s /400 m
100 Mb/s
2 km
1 à 10 Gbit/s
20 à 50 km
n x 10 Gbit/s
milliers de km
Mise en œuvre
problème
Facile
température
Assez facile
Plus délicate
raccordements
Coût global Faible Assez faible
Plus élevé (interfaces,
connecteurs)
Applications
principales
Eclairage,
visualisation,
trans. données
très courte
distance
Distribution,
LANs hauts
débits
(GE courte
distance)
LANs tous
débits
LANs très hauts
débits,
réseaux
métropolitains,
longues dist.
Liaisons très
longues (avec
amplificateurs
et WDM)
MULTIPLEXAGE EN LONGUEUR
D’ONDES (WDM)
• L'utilisation nécessite:
– Un ensemble de diodes laser émettant à des longueurs d'ondes
différentes.
– Des multiplexeurs/démultiplexeurs optiques pour combiner/séparer
l'ensemble des signaux optiques dans/de la fibre.
• Transmission des données entre deux stations par un signal
radio
• Utilisés pour relier les différentes villes d'une même région
• Nécessite des relais en moyenne tous les 50 Km pour
régénérer le signal (à cause de la courbure de la terre)
• Transmission de grande capacité à faibles coûts (vs câble en
cuivre et fibre optique)
• Peu être sujet au blocage à cause d'obstacles physiques tels
les immeubles en hauteur ou les montagnes
LES FAISCEAUX HERTZIENS
au-delà de 30 MHz, les ondes hertziennes se propagent en ligne
droite. En dessous de 30MHz, les ondes se réfléchissent sur
certaines couches de l’atmosphère, engendrant ainsi des trajets
multiples de propagation.
L’affaiblissement dû à la
propagation en espace libre, sur
une distance d, est :
Exemple:
Calculer l’affaiblissement pour une
fréquence porteuse de 12 GHz (d=36000
km pour un satellite géostationnaire)
A =
4pd
l
æ
è
ç
ö
ø
÷
2
LES FAISCEAUX HERTZIENS
PERTURBATIONS
DES PROPAGATIONS HERTZIENNES
• Rarement en visibilité (line of sight)
• Réflexions multiples dues aux obstacles, étalement temporel
• Diffusions, diffractions sur les arrêtes des bâtiments
• Absorption atmosphérique
Les radio communications subissent de très nombreuses perturbations
qui rendent la propagation très complexe et difficilement maitrisable :
Transmission
directe
diffusion
réflexion
diffraction
 Tout signal radio subit le phénomène de Multi trajet. Le signal reçu résulte de
la somme de tous les signaux directs, réfléchies et diffractées. Il est à l’origine
d’évanouissements ou fading.
 Chacun de ces signaux va posséder des caractéristiques différentes (temps
d’arrivée, angle d’incidence, amplitude, phase, fréquence, polarisation).
 Les différentes contributions arrivent à des instants différents.
 L’ensemble de ces contributions (principalement la différence de phase)
donne lieu à des évanouissements sélectifs en fréquence importants (de 2 à
30 dB).
Évanouissements
sélectifs en fréquence
transmission Diffusion /
diffraction
réflexion
temps
Signal reçu
seuil
Trajets multiples
Fonction de
transfert
seuil
fade
Impulsion
Plusieurs
impulsions
Signal réparti sur
plusieurs impulsions
PERTURBATIONS
DES PROPAGATIONS HERTZIENNES
• Satellites géostationnaires (3600 km d’altitude)
• Les stations terrestres envoient les signaux au satellite qui les
retransmet.
• Il y a réception du signal, amplification, changement de
fréquence et retransmission vers la terre.
• Toutes les stations qui «voient » le satellite peuvent se
brancher.
• Durée de vie limitée des satellites (remplacement coûteux).
SATTELITES

Contenu connexe

Similaire à fdocuments.net_chap6-supportsdetransmissiom.ppt

Couche physique réseau
Couche physique réseauCouche physique réseau
Couche physique réseau
sarah Benmerzouk
 
Reseaux-Optiques-par exemples fibre optique.pdf
Reseaux-Optiques-par exemples fibre optique.pdfReseaux-Optiques-par exemples fibre optique.pdf
Reseaux-Optiques-par exemples fibre optique.pdf
ykyog
 
0025-formation-reseaux-fibre-optique.pdf
0025-formation-reseaux-fibre-optique.pdf0025-formation-reseaux-fibre-optique.pdf
0025-formation-reseaux-fibre-optique.pdf
docteurgyneco1
 
chapitre 1 - Ingénierie des systèmes de télécommunications.pdf
chapitre 1 - Ingénierie des systèmes de télécommunications.pdfchapitre 1 - Ingénierie des systèmes de télécommunications.pdf
chapitre 1 - Ingénierie des systèmes de télécommunications.pdf
MariamHafsa
 
Etude_Etude_des_supports_de_transmission.pdf
Etude_Etude_des_supports_de_transmission.pdfEtude_Etude_des_supports_de_transmission.pdf
Etude_Etude_des_supports_de_transmission.pdf
docteurgyneco1
 
Cours réseaux chap3et4
Cours réseaux chap3et4Cours réseaux chap3et4
Cours réseaux chap3et4Amel Morchdi
 
fdocuments.net_formation-fibre-optique.pdf
fdocuments.net_formation-fibre-optique.pdffdocuments.net_formation-fibre-optique.pdf
fdocuments.net_formation-fibre-optique.pdf
docteurgyneco1
 
Les technologies des réseaux sans Fil: GSM, Bluetooth
Les technologies des réseaux sans Fil: GSM, BluetoothLes technologies des réseaux sans Fil: GSM, Bluetooth
Les technologies des réseaux sans Fil: GSM, Bluetooth
Faouzia Benabbou
 
Mesures radar
Mesures radarMesures radar
Mesures radar
assad63
 
Compte rendu
Compte renduCompte rendu
Compte rendu
Maha Achouri
 
fdocuments.net_cours-fibre-optique-exercises.pdf
fdocuments.net_cours-fibre-optique-exercises.pdffdocuments.net_cours-fibre-optique-exercises.pdf
fdocuments.net_cours-fibre-optique-exercises.pdf
docteurgyneco1
 
Fibre optique diaporama.pdf
Fibre optique diaporama.pdfFibre optique diaporama.pdf
Fibre optique diaporama.pdf
toutou0071
 
Fibre optique diaporama.pdf
Fibre optique diaporama.pdfFibre optique diaporama.pdf
Fibre optique diaporama.pdf
toutou0071
 
prés. (4).pptx
prés. (4).pptxprés. (4).pptx
prés. (4).pptx
JaWad791058
 
cours-gratuit.com--id-12501.pdf
cours-gratuit.com--id-12501.pdfcours-gratuit.com--id-12501.pdf
cours-gratuit.com--id-12501.pdf
benaziza ahmed
 
0199-formation-fibre-optique(1).pdf
0199-formation-fibre-optique(1).pdf0199-formation-fibre-optique(1).pdf
0199-formation-fibre-optique(1).pdf
SIRIKIYEO
 
Digital Subscriber Line - Ligne numérique d’abonné
Digital Subscriber Line - Ligne numérique d’abonnéDigital Subscriber Line - Ligne numérique d’abonné
Digital Subscriber Line - Ligne numérique d’abonné
Anis Nouri
 
conceptscell ljfgjkk ljvcx ljgfy ljvcx lkhg bjio khgfd
conceptscell ljfgjkk ljvcx ljgfy ljvcx lkhg bjio khgfdconceptscell ljfgjkk ljvcx ljgfy ljvcx lkhg bjio khgfd
conceptscell ljfgjkk ljvcx ljgfy ljvcx lkhg bjio khgfd
kmehdaoui66
 

Similaire à fdocuments.net_chap6-supportsdetransmissiom.ppt (20)

Couche physique réseau
Couche physique réseauCouche physique réseau
Couche physique réseau
 
Reseaux-Optiques-par exemples fibre optique.pdf
Reseaux-Optiques-par exemples fibre optique.pdfReseaux-Optiques-par exemples fibre optique.pdf
Reseaux-Optiques-par exemples fibre optique.pdf
 
0025-formation-reseaux-fibre-optique.pdf
0025-formation-reseaux-fibre-optique.pdf0025-formation-reseaux-fibre-optique.pdf
0025-formation-reseaux-fibre-optique.pdf
 
chapitre 1 - Ingénierie des systèmes de télécommunications.pdf
chapitre 1 - Ingénierie des systèmes de télécommunications.pdfchapitre 1 - Ingénierie des systèmes de télécommunications.pdf
chapitre 1 - Ingénierie des systèmes de télécommunications.pdf
 
Etude_Etude_des_supports_de_transmission.pdf
Etude_Etude_des_supports_de_transmission.pdfEtude_Etude_des_supports_de_transmission.pdf
Etude_Etude_des_supports_de_transmission.pdf
 
Cours réseaux chap3et4
Cours réseaux chap3et4Cours réseaux chap3et4
Cours réseaux chap3et4
 
Fibre optique
Fibre optiqueFibre optique
Fibre optique
 
fdocuments.net_formation-fibre-optique.pdf
fdocuments.net_formation-fibre-optique.pdffdocuments.net_formation-fibre-optique.pdf
fdocuments.net_formation-fibre-optique.pdf
 
Les technologies des réseaux sans Fil: GSM, Bluetooth
Les technologies des réseaux sans Fil: GSM, BluetoothLes technologies des réseaux sans Fil: GSM, Bluetooth
Les technologies des réseaux sans Fil: GSM, Bluetooth
 
Mesures radar
Mesures radarMesures radar
Mesures radar
 
Compte rendu
Compte renduCompte rendu
Compte rendu
 
Transmission de signal
Transmission de signalTransmission de signal
Transmission de signal
 
fdocuments.net_cours-fibre-optique-exercises.pdf
fdocuments.net_cours-fibre-optique-exercises.pdffdocuments.net_cours-fibre-optique-exercises.pdf
fdocuments.net_cours-fibre-optique-exercises.pdf
 
Fibre optique diaporama.pdf
Fibre optique diaporama.pdfFibre optique diaporama.pdf
Fibre optique diaporama.pdf
 
Fibre optique diaporama.pdf
Fibre optique diaporama.pdfFibre optique diaporama.pdf
Fibre optique diaporama.pdf
 
prés. (4).pptx
prés. (4).pptxprés. (4).pptx
prés. (4).pptx
 
cours-gratuit.com--id-12501.pdf
cours-gratuit.com--id-12501.pdfcours-gratuit.com--id-12501.pdf
cours-gratuit.com--id-12501.pdf
 
0199-formation-fibre-optique(1).pdf
0199-formation-fibre-optique(1).pdf0199-formation-fibre-optique(1).pdf
0199-formation-fibre-optique(1).pdf
 
Digital Subscriber Line - Ligne numérique d’abonné
Digital Subscriber Line - Ligne numérique d’abonnéDigital Subscriber Line - Ligne numérique d’abonné
Digital Subscriber Line - Ligne numérique d’abonné
 
conceptscell ljfgjkk ljvcx ljgfy ljvcx lkhg bjio khgfd
conceptscell ljfgjkk ljvcx ljgfy ljvcx lkhg bjio khgfdconceptscell ljfgjkk ljvcx ljgfy ljvcx lkhg bjio khgfd
conceptscell ljfgjkk ljvcx ljgfy ljvcx lkhg bjio khgfd
 

Plus de docteurgyneco1

Cours-Sur-l'-IP-Multiprotocol-Label-SwitchingMPLS
Cours-Sur-l'-IP-Multiprotocol-Label-SwitchingMPLSCours-Sur-l'-IP-Multiprotocol-Label-SwitchingMPLS
Cours-Sur-l'-IP-Multiprotocol-Label-SwitchingMPLS
docteurgyneco1
 
Presentation-des-réseaux-Nouvelle-Génération-NGN.ppt
Presentation-des-réseaux-Nouvelle-Génération-NGN.pptPresentation-des-réseaux-Nouvelle-Génération-NGN.ppt
Presentation-des-réseaux-Nouvelle-Génération-NGN.ppt
docteurgyneco1
 
fdocuments.net---msan---------huawei.pdf
fdocuments.net---msan---------huawei.pdffdocuments.net---msan---------huawei.pdf
fdocuments.net---msan---------huawei.pdf
docteurgyneco1
 
533955144-MSAN-MA5600T-Basic-Operation.pdf
533955144-MSAN-MA5600T-Basic-Operation.pdf533955144-MSAN-MA5600T-Basic-Operation.pdf
533955144-MSAN-MA5600T-Basic-Operation.pdf
docteurgyneco1
 
Support de cours La technologie WDM.pptx
Support de cours La technologie WDM.pptxSupport de cours La technologie WDM.pptx
Support de cours La technologie WDM.pptx
docteurgyneco1
 
472959.ppt
472959.ppt472959.ppt
472959.ppt
docteurgyneco1
 
fdocuments.net_formation-facebook-protection.ppt
fdocuments.net_formation-facebook-protection.pptfdocuments.net_formation-facebook-protection.ppt
fdocuments.net_formation-facebook-protection.ppt
docteurgyneco1
 
fdocuments.net_formation-facebook-56ea53447de92.pdf
fdocuments.net_formation-facebook-56ea53447de92.pdffdocuments.net_formation-facebook-56ea53447de92.pdf
fdocuments.net_formation-facebook-56ea53447de92.pdf
docteurgyneco1
 
CM-SIC1App_Ch1_IntroSignal.pdf
CM-SIC1App_Ch1_IntroSignal.pdfCM-SIC1App_Ch1_IntroSignal.pdf
CM-SIC1App_Ch1_IntroSignal.pdf
docteurgyneco1
 
B-Tds-Signaux_TC.pdf
B-Tds-Signaux_TC.pdfB-Tds-Signaux_TC.pdf
B-Tds-Signaux_TC.pdf
docteurgyneco1
 
fdocuments.net_traitement-de-signal-chapitre-1.ppt
fdocuments.net_traitement-de-signal-chapitre-1.pptfdocuments.net_traitement-de-signal-chapitre-1.ppt
fdocuments.net_traitement-de-signal-chapitre-1.ppt
docteurgyneco1
 
fdocuments.net_traitement-signal.ppt
fdocuments.net_traitement-signal.pptfdocuments.net_traitement-signal.ppt
fdocuments.net_traitement-signal.ppt
docteurgyneco1
 
64378311-Traitement-Du-Signal.ppt
64378311-Traitement-Du-Signal.ppt64378311-Traitement-Du-Signal.ppt
64378311-Traitement-Du-Signal.ppt
docteurgyneco1
 
LES_PRINCIPES_DE_TRANSMISSION_DINFORMATI.docx
LES_PRINCIPES_DE_TRANSMISSION_DINFORMATI.docxLES_PRINCIPES_DE_TRANSMISSION_DINFORMATI.docx
LES_PRINCIPES_DE_TRANSMISSION_DINFORMATI.docx
docteurgyneco1
 
CM2-TD1_-_Topologie_et_Supports_de_transmission.pdf
CM2-TD1_-_Topologie_et_Supports_de_transmission.pdfCM2-TD1_-_Topologie_et_Supports_de_transmission.pdf
CM2-TD1_-_Topologie_et_Supports_de_transmission.pdf
docteurgyneco1
 
fdocuments.net_10-fibre-optique-1.pdf
fdocuments.net_10-fibre-optique-1.pdffdocuments.net_10-fibre-optique-1.pdf
fdocuments.net_10-fibre-optique-1.pdf
docteurgyneco1
 
fdocuments.net_deploiement-de-la-fibre-optique.ppt
fdocuments.net_deploiement-de-la-fibre-optique.pptfdocuments.net_deploiement-de-la-fibre-optique.ppt
fdocuments.net_deploiement-de-la-fibre-optique.ppt
docteurgyneco1
 
fdocuments.net_la-fibre-optique-bernard-maudhuit-la-fibre-optique-quesaquo-un...
fdocuments.net_la-fibre-optique-bernard-maudhuit-la-fibre-optique-quesaquo-un...fdocuments.net_la-fibre-optique-bernard-maudhuit-la-fibre-optique-quesaquo-un...
fdocuments.net_la-fibre-optique-bernard-maudhuit-la-fibre-optique-quesaquo-un...
docteurgyneco1
 
Digital_Marketing_Company_Digital_Market.pdf
Digital_Marketing_Company_Digital_Market.pdfDigital_Marketing_Company_Digital_Market.pdf
Digital_Marketing_Company_Digital_Market.pdf
docteurgyneco1
 

Plus de docteurgyneco1 (20)

Cours-Sur-l'-IP-Multiprotocol-Label-SwitchingMPLS
Cours-Sur-l'-IP-Multiprotocol-Label-SwitchingMPLSCours-Sur-l'-IP-Multiprotocol-Label-SwitchingMPLS
Cours-Sur-l'-IP-Multiprotocol-Label-SwitchingMPLS
 
Presentation-des-réseaux-Nouvelle-Génération-NGN.ppt
Presentation-des-réseaux-Nouvelle-Génération-NGN.pptPresentation-des-réseaux-Nouvelle-Génération-NGN.ppt
Presentation-des-réseaux-Nouvelle-Génération-NGN.ppt
 
fdocuments.net---msan---------huawei.pdf
fdocuments.net---msan---------huawei.pdffdocuments.net---msan---------huawei.pdf
fdocuments.net---msan---------huawei.pdf
 
533955144-MSAN-MA5600T-Basic-Operation.pdf
533955144-MSAN-MA5600T-Basic-Operation.pdf533955144-MSAN-MA5600T-Basic-Operation.pdf
533955144-MSAN-MA5600T-Basic-Operation.pdf
 
Support de cours La technologie WDM.pptx
Support de cours La technologie WDM.pptxSupport de cours La technologie WDM.pptx
Support de cours La technologie WDM.pptx
 
472959.ppt
472959.ppt472959.ppt
472959.ppt
 
fdocuments.net_formation-facebook-protection.ppt
fdocuments.net_formation-facebook-protection.pptfdocuments.net_formation-facebook-protection.ppt
fdocuments.net_formation-facebook-protection.ppt
 
fdocuments.net_formation-facebook-56ea53447de92.pdf
fdocuments.net_formation-facebook-56ea53447de92.pdffdocuments.net_formation-facebook-56ea53447de92.pdf
fdocuments.net_formation-facebook-56ea53447de92.pdf
 
c1-nup.pdf
c1-nup.pdfc1-nup.pdf
c1-nup.pdf
 
CM-SIC1App_Ch1_IntroSignal.pdf
CM-SIC1App_Ch1_IntroSignal.pdfCM-SIC1App_Ch1_IntroSignal.pdf
CM-SIC1App_Ch1_IntroSignal.pdf
 
B-Tds-Signaux_TC.pdf
B-Tds-Signaux_TC.pdfB-Tds-Signaux_TC.pdf
B-Tds-Signaux_TC.pdf
 
fdocuments.net_traitement-de-signal-chapitre-1.ppt
fdocuments.net_traitement-de-signal-chapitre-1.pptfdocuments.net_traitement-de-signal-chapitre-1.ppt
fdocuments.net_traitement-de-signal-chapitre-1.ppt
 
fdocuments.net_traitement-signal.ppt
fdocuments.net_traitement-signal.pptfdocuments.net_traitement-signal.ppt
fdocuments.net_traitement-signal.ppt
 
64378311-Traitement-Du-Signal.ppt
64378311-Traitement-Du-Signal.ppt64378311-Traitement-Du-Signal.ppt
64378311-Traitement-Du-Signal.ppt
 
LES_PRINCIPES_DE_TRANSMISSION_DINFORMATI.docx
LES_PRINCIPES_DE_TRANSMISSION_DINFORMATI.docxLES_PRINCIPES_DE_TRANSMISSION_DINFORMATI.docx
LES_PRINCIPES_DE_TRANSMISSION_DINFORMATI.docx
 
CM2-TD1_-_Topologie_et_Supports_de_transmission.pdf
CM2-TD1_-_Topologie_et_Supports_de_transmission.pdfCM2-TD1_-_Topologie_et_Supports_de_transmission.pdf
CM2-TD1_-_Topologie_et_Supports_de_transmission.pdf
 
fdocuments.net_10-fibre-optique-1.pdf
fdocuments.net_10-fibre-optique-1.pdffdocuments.net_10-fibre-optique-1.pdf
fdocuments.net_10-fibre-optique-1.pdf
 
fdocuments.net_deploiement-de-la-fibre-optique.ppt
fdocuments.net_deploiement-de-la-fibre-optique.pptfdocuments.net_deploiement-de-la-fibre-optique.ppt
fdocuments.net_deploiement-de-la-fibre-optique.ppt
 
fdocuments.net_la-fibre-optique-bernard-maudhuit-la-fibre-optique-quesaquo-un...
fdocuments.net_la-fibre-optique-bernard-maudhuit-la-fibre-optique-quesaquo-un...fdocuments.net_la-fibre-optique-bernard-maudhuit-la-fibre-optique-quesaquo-un...
fdocuments.net_la-fibre-optique-bernard-maudhuit-la-fibre-optique-quesaquo-un...
 
Digital_Marketing_Company_Digital_Market.pdf
Digital_Marketing_Company_Digital_Market.pdfDigital_Marketing_Company_Digital_Market.pdf
Digital_Marketing_Company_Digital_Market.pdf
 

Dernier

Les écrans informatiques au fil du temps.pptx
Les écrans informatiques au fil du temps.pptxLes écrans informatiques au fil du temps.pptx
Les écrans informatiques au fil du temps.pptx
abderrahimbourimi
 
Ouvrez la porte ou prenez un mur (Agile Tour Genève 2024)
Ouvrez la porte ou prenez un mur (Agile Tour Genève 2024)Ouvrez la porte ou prenez un mur (Agile Tour Genève 2024)
Ouvrez la porte ou prenez un mur (Agile Tour Genève 2024)
Laurent Speyser
 
COURS D'ADMINISTRATION RESEAU SOUS WINDOWS
COURS D'ADMINISTRATION RESEAU  SOUS WINDOWSCOURS D'ADMINISTRATION RESEAU  SOUS WINDOWS
COURS D'ADMINISTRATION RESEAU SOUS WINDOWS
AlbertSmithTambwe
 
Le support de présentation des Signaux 2024
Le support de présentation des Signaux 2024Le support de présentation des Signaux 2024
Le support de présentation des Signaux 2024
UNITECBordeaux
 
OCTO TALKS : 4 Tech Trends du Software Engineering.pdf
OCTO TALKS : 4 Tech Trends du Software Engineering.pdfOCTO TALKS : 4 Tech Trends du Software Engineering.pdf
OCTO TALKS : 4 Tech Trends du Software Engineering.pdf
OCTO Technology
 
De l'IA comme plagiat à la rédaction d'une « charte IA » à l'université
De l'IA comme plagiat à la rédaction d'une « charte IA » à l'universitéDe l'IA comme plagiat à la rédaction d'une « charte IA » à l'université
De l'IA comme plagiat à la rédaction d'une « charte IA » à l'université
Université de Franche-Comté
 
Le Comptoir OCTO - Qu’apporte l’analyse de cycle de vie lors d’un audit d’éco...
Le Comptoir OCTO - Qu’apporte l’analyse de cycle de vie lors d’un audit d’éco...Le Comptoir OCTO - Qu’apporte l’analyse de cycle de vie lors d’un audit d’éco...
Le Comptoir OCTO - Qu’apporte l’analyse de cycle de vie lors d’un audit d’éco...
OCTO Technology
 
PRESENTATION DE L'ACTIVE DIRECTORY SOUS WINDOWS SERVEUR.pptx
PRESENTATION DE L'ACTIVE DIRECTORY SOUS WINDOWS SERVEUR.pptxPRESENTATION DE L'ACTIVE DIRECTORY SOUS WINDOWS SERVEUR.pptx
PRESENTATION DE L'ACTIVE DIRECTORY SOUS WINDOWS SERVEUR.pptx
AlbertSmithTambwe
 
Le Comptoir OCTO - Équipes infra et prod, ne ratez pas l'embarquement pour l'...
Le Comptoir OCTO - Équipes infra et prod, ne ratez pas l'embarquement pour l'...Le Comptoir OCTO - Équipes infra et prod, ne ratez pas l'embarquement pour l'...
Le Comptoir OCTO - Équipes infra et prod, ne ratez pas l'embarquement pour l'...
OCTO Technology
 

Dernier (9)

Les écrans informatiques au fil du temps.pptx
Les écrans informatiques au fil du temps.pptxLes écrans informatiques au fil du temps.pptx
Les écrans informatiques au fil du temps.pptx
 
Ouvrez la porte ou prenez un mur (Agile Tour Genève 2024)
Ouvrez la porte ou prenez un mur (Agile Tour Genève 2024)Ouvrez la porte ou prenez un mur (Agile Tour Genève 2024)
Ouvrez la porte ou prenez un mur (Agile Tour Genève 2024)
 
COURS D'ADMINISTRATION RESEAU SOUS WINDOWS
COURS D'ADMINISTRATION RESEAU  SOUS WINDOWSCOURS D'ADMINISTRATION RESEAU  SOUS WINDOWS
COURS D'ADMINISTRATION RESEAU SOUS WINDOWS
 
Le support de présentation des Signaux 2024
Le support de présentation des Signaux 2024Le support de présentation des Signaux 2024
Le support de présentation des Signaux 2024
 
OCTO TALKS : 4 Tech Trends du Software Engineering.pdf
OCTO TALKS : 4 Tech Trends du Software Engineering.pdfOCTO TALKS : 4 Tech Trends du Software Engineering.pdf
OCTO TALKS : 4 Tech Trends du Software Engineering.pdf
 
De l'IA comme plagiat à la rédaction d'une « charte IA » à l'université
De l'IA comme plagiat à la rédaction d'une « charte IA » à l'universitéDe l'IA comme plagiat à la rédaction d'une « charte IA » à l'université
De l'IA comme plagiat à la rédaction d'une « charte IA » à l'université
 
Le Comptoir OCTO - Qu’apporte l’analyse de cycle de vie lors d’un audit d’éco...
Le Comptoir OCTO - Qu’apporte l’analyse de cycle de vie lors d’un audit d’éco...Le Comptoir OCTO - Qu’apporte l’analyse de cycle de vie lors d’un audit d’éco...
Le Comptoir OCTO - Qu’apporte l’analyse de cycle de vie lors d’un audit d’éco...
 
PRESENTATION DE L'ACTIVE DIRECTORY SOUS WINDOWS SERVEUR.pptx
PRESENTATION DE L'ACTIVE DIRECTORY SOUS WINDOWS SERVEUR.pptxPRESENTATION DE L'ACTIVE DIRECTORY SOUS WINDOWS SERVEUR.pptx
PRESENTATION DE L'ACTIVE DIRECTORY SOUS WINDOWS SERVEUR.pptx
 
Le Comptoir OCTO - Équipes infra et prod, ne ratez pas l'embarquement pour l'...
Le Comptoir OCTO - Équipes infra et prod, ne ratez pas l'embarquement pour l'...Le Comptoir OCTO - Équipes infra et prod, ne ratez pas l'embarquement pour l'...
Le Comptoir OCTO - Équipes infra et prod, ne ratez pas l'embarquement pour l'...
 

fdocuments.net_chap6-supportsdetransmissiom.ppt

  • 2. Les supports physiques de transmissions sont les éléments permettant de faire circuler les informations entre les équipements de transmission. On classe généralement ces supports en trois catégories, selon le type de grandeur physique qu'ils permettent de faire circuler, donc de leur constitution physique : • Les supports filaires permettent de faire circuler une grandeur électrique sur un câble généralement métallique • Les supports aériens désignent l'air ou le vide, ils permettent la circulation d'ondes électromagnétiques ou radioélectriques diverses • Les supports optiques permettent d'acheminer des informations sous forme lumineuse. SUPPORTS DE TRANSMISSION
  • 3. On peut, aussi, classifier les supports de transmission en fonction de la bande de fréquence dans laquelle ils sont exploitables. La limitation de la bande d’utilisation provient en grande partie de l’atténuation que subit l’onde transmise dans le milieu de propagation. Canaux guidés Paires torsadées (téléphone) 300Hz-300kHz Paires torsadées (ADSL) 26kHZ-1MHz Câble coaxial (Ethernet) 300kHz-1GHz Guide d’onde 1GHz-300GHz Fibre optique 30THz-1000THz Canaux Hertziens (exemples) VLF 3kHz-30kHz LF 30kHz-300kHz MF 300kHz-3MHz HF 3MHz-30MHz VHF 30MHz-300MHz UHF 300MHz-3GHz SUPPORTS DE TRANSMISSION
  • 4. Selon le type de support physique, la grandeur physique a une vitesse de propagation plus ou moins rapide. Exemple : Le son se propage dans l'air à une vitesse de l'ordre de 340 m/s alors que la lumière a une célérité proche de 300 000 km/s. Ex : calculer le temps de transmission (approximatif) d’une chaine de TV via un satellite de télécommunication. SUPPORTS DE TRANSMISSION
  • 5.  Classification selon le mode de propagation: • les supports guidés : paires torsadées, câbles coaxiaux, fibres optiques. • Les supports non guidés : les ondes hertziennes, radioélectriques, lumineuses.  Performance d’un support de transmission (débit de transmission) : dépend de la bande passante, de l’atténuation ( la distance ) et des bruits. • Pour les supports non guidés atténuation et bruit sont très variables (conditions atmosphériques). • performance croissante : paire torsadée – câble coaxial – fibre optique. SUPPORTS DE TRANSMISSION
  • 6. PAIRE TORSADÉE • Une paire torsadée est constituée de deux brins torsadés en cuivre, protégés chacun par une enveloppe isolante • On distingue : – paire torsadée non blindé – paire torsadée blindée
  • 7. • Constituée d’une paire de fils électriques tournés en spirale ( pour diminuer les interférences électriques). • Utilisée pour la communication téléphonique et les réseaux locaux. • Inconvénients : forte atténuation du signal – sensibilité au bruit. • Utilisation de répéteurs (régénérateurs). PAIRE TORSADÉE
  • 8.  Avantages : Simplicité – coût d’installation très faible.  Caractéristiques : • Bande passante 250 MHz • Distance entre répéteurs 1-10 km • Vitesse de transmission : 100 – 1000 Mbps. La vitesse de transmission peut atteindre 1Gbps sur des distances de 100 m. PAIRE TORSADÉE
  • 10. • Grande qualité de transmission • Grande capacité (multiplexage de fréquences, ex: distribution, réception de plusieurs chaînes simultanément) • Constitué de deux conducteurs cylindriques construits autour d’un même axe et séparés l’un de l’autre par un isolant. • utilisé pour la télévision – les réseaux locaux et à longue distance. CABLE COAXIAL
  • 11. • Peu sensible aux interférences (blindage) • Plus coûteux que les paires torsadées • Vulnérable à la détérioration de son enveloppe, principalement les infiltrations d'eau • Bande passante 350 MHz • Distance entre répéteurs 2-10 km • Vitesse de transmission : 500 – 5000 Mbps. CABLE COAXIAL
  • 12. • L’atténuation dépend du rapport entre les deux diamètres ( optimal pour un rapport de 3.6) • Avantages : Bande passante relativement importante (multiplexage de signaux) – Assez facile à installer - Résistance assez importante face aux perturbations électriques et électromagnétiques. • Inconvénients : Gros diamètre ( 1 – 1.9 cm) – assez rigide : difficultés de câblage. CABLE COAXIAL
  • 13. Cœur (10 à 85 μ m) Gaine optique (125 μm) Gaine plastique (250 μm) FIBRE OPTIQUE
  • 14. Page 14 • Cœur : fibre de verre ou de plastique (guide d’ondes lumineuses) • Revêtement : avec indice de réfraction tel que la lumière reste prisonnière dans la fibre. • Gaine protectrice externe : empêche les ondes lumineuses externes de pénétrer et absorbe les ondes internes échappées. • Production du signal optique : Source lumière LASER ou LED. FIBRE OPTIQUE
  • 15.  Avantages : très petites et peu coûteuses – Quelques milliers de fibres optiques dans un câble de grosseur du câble coaxial. – résistance à la corrosion - insensibles aux parasites EM.  Inconvénients : sensible à l’humidité – cœur fragile (contraintes mécaniques) –équipements encore coûteux.  Caractéristiques : • Bande passante 10 GHz • Distance entre répéteurs 10-100 km • Vitesse de transmission : 10 – 100 Gbps. FIBRE OPTIQUE
  • 16. Différentes familles de fibre optique utilisées en télécommunications. Les fibres optiques peuvent être monomodes ou multimodes, à saut d'indice ou à gradient d'indice. FIBRE OPTIQUE
  • 17. • Cœur très fin. • La bande passante transmise est presque infinie (> 10Ghz/km). • Fibre utilisée surtout pour les sites distants • Le petit diamètre du cœur (10um) nécessite une grande puissance d‘émission, donc des diodes au laser qui sont relativement onéreuses • Grandes distances (30 km). Fréquence de transmission (Ghz). Un seul chemin par fibre. coûteuses 17 FIBRES OPTIQUES MONOMODES
  • 18.  courtes distances (10 – 16 km).  Fréquence de transmission (50 à 100 MHz). Plusieurs chemins possibles. • A saut d’indice : différents points de réflexion donc problème de dispersion des rayons lumineux. Les moins coûteuses. • A gradient d’indice : Réduction des dispersions en faisant varier l’indice de réfraction dans le cœur. FIBRES OPTIQUES MULTIMODES
  • 19. revêtement FIBRES OPTIQUES MULTIMODES • A saut d’indice : Cône d'acceptance Q0 q0 0 z Cœur (indice n1) r a b Gaine (indice n2) n(r) Rayon guidé Rayon réfracté Angle limite : n1.cos q0 = n2 ouverture numérique ON = sin Q0 = n1 sinq0 = 2 2 2 1 n n  q0
  • 20. FIBRES OPTIQUES MULTIMODES • A gradient d’indice : Cœur : indice n(r) r 0 z a b Gaine (indice n2) n(r) n1 Indice du cœur : n(r) = n1 2 ) r/a ( 2 1  
  • 21. CABLES A FIBRES OPTIQUES
  • 23. PRINCIPAUX TYPES DE FIBRES Matériau Plastique Toute silice Type Multimode Multimode gradient d’indice Monomode standard Monomode disp. décalée Diamètres cœur / gaine (mm) 980/1000 50/125 62,5/125 9/125 7/125 Longueurs d’onde et atténuation Visible 200 dB/km 0,85 µm – 1,3 µm 3 dB/km – 0,9 dB/km 1,3 – 1,55 µm 0,5 – 0,2 dB/km 1,5 à 1,6 µm 0,22 dB/km Débits et distances 10 à 100 Mb/s 100 m 100 Mb/s /5 km 1 Gb/s /400 m 100 Mb/s 2 km 1 à 10 Gbit/s 20 à 50 km n x 10 Gbit/s milliers de km Mise en œuvre problème Facile température Assez facile Plus délicate raccordements Coût global Faible Assez faible Plus élevé (interfaces, connecteurs) Applications principales Eclairage, visualisation, trans. données très courte distance Distribution, LANs hauts débits (GE courte distance) LANs tous débits LANs très hauts débits, réseaux métropolitains, longues dist. Liaisons très longues (avec amplificateurs et WDM)
  • 24. MULTIPLEXAGE EN LONGUEUR D’ONDES (WDM) • L'utilisation nécessite: – Un ensemble de diodes laser émettant à des longueurs d'ondes différentes. – Des multiplexeurs/démultiplexeurs optiques pour combiner/séparer l'ensemble des signaux optiques dans/de la fibre.
  • 25. • Transmission des données entre deux stations par un signal radio • Utilisés pour relier les différentes villes d'une même région • Nécessite des relais en moyenne tous les 50 Km pour régénérer le signal (à cause de la courbure de la terre) • Transmission de grande capacité à faibles coûts (vs câble en cuivre et fibre optique) • Peu être sujet au blocage à cause d'obstacles physiques tels les immeubles en hauteur ou les montagnes LES FAISCEAUX HERTZIENS
  • 26. au-delà de 30 MHz, les ondes hertziennes se propagent en ligne droite. En dessous de 30MHz, les ondes se réfléchissent sur certaines couches de l’atmosphère, engendrant ainsi des trajets multiples de propagation. L’affaiblissement dû à la propagation en espace libre, sur une distance d, est : Exemple: Calculer l’affaiblissement pour une fréquence porteuse de 12 GHz (d=36000 km pour un satellite géostationnaire) A = 4pd l æ è ç ö ø ÷ 2 LES FAISCEAUX HERTZIENS
  • 27. PERTURBATIONS DES PROPAGATIONS HERTZIENNES • Rarement en visibilité (line of sight) • Réflexions multiples dues aux obstacles, étalement temporel • Diffusions, diffractions sur les arrêtes des bâtiments • Absorption atmosphérique Les radio communications subissent de très nombreuses perturbations qui rendent la propagation très complexe et difficilement maitrisable : Transmission directe diffusion réflexion diffraction
  • 28.  Tout signal radio subit le phénomène de Multi trajet. Le signal reçu résulte de la somme de tous les signaux directs, réfléchies et diffractées. Il est à l’origine d’évanouissements ou fading.  Chacun de ces signaux va posséder des caractéristiques différentes (temps d’arrivée, angle d’incidence, amplitude, phase, fréquence, polarisation).  Les différentes contributions arrivent à des instants différents.  L’ensemble de ces contributions (principalement la différence de phase) donne lieu à des évanouissements sélectifs en fréquence importants (de 2 à 30 dB). Évanouissements sélectifs en fréquence transmission Diffusion / diffraction réflexion temps Signal reçu seuil Trajets multiples Fonction de transfert seuil fade Impulsion Plusieurs impulsions Signal réparti sur plusieurs impulsions PERTURBATIONS DES PROPAGATIONS HERTZIENNES
  • 29. • Satellites géostationnaires (3600 km d’altitude) • Les stations terrestres envoient les signaux au satellite qui les retransmet. • Il y a réception du signal, amplification, changement de fréquence et retransmission vers la terre. • Toutes les stations qui «voient » le satellite peuvent se brancher. • Durée de vie limitée des satellites (remplacement coûteux). SATTELITES