SlideShare une entreprise Scribd logo
1  sur  26
Télécharger pour lire hors ligne
Once-for-All: Train One Network and
Specialize it for Efficient Deployment
[ICLR 2020]
2022. 03. 20. (Sun)
Presented by: 김동현
w/ Fundamental Team: 김채현, 박종익, 양현모, 이근배, 이재윤, 송헌
1
Contents
● Problem and Approach
● Key Challenge
● How to Train Once-for-all Network
● How to Deploy Once-for-all Network
● Evaluations
● Discussions
● Conclusion
2
Contents
● Problem and Approach
● Key Challenge
● How to Train Once-for-all Network
● How to Deploy Once-for-all Network
● Evaluations
● Discussions
● Conclusion
3
Main Problem to Solve
● There are various hardware platforms to deploy DNN models.
○ Survey says there are 23.14 billion IoT devices until 2018.
○ The devices have different resource constraints;
It is impossible to deploy the same model to all devices.
● The optimal neural network architecture varies by deployment environments
(e.g., #arithmetic units, application requirements).
4
Main Problem to Solve
● It is computationally prohibitive to find all the optimal architecture by training
on each environment.
● Then, how is it possible to cost-efficiently find the specialized model on
each platform?
5
target latency
= 20ms
Suggested Approach
● Train a Once-for-all(OFA) network, which enables serving on various
environment without additional training.
○ Various scales of sub-networks (about 1019
) are available from one OFA network.
○ Each hardware can find the specialized model for its requirements (e.g, latency).
6
Key Challenges for Once-for-All Network
Requirements
1. The sub-network architecture should be part of the largest network.
2. Sub-networks should share parameters with larger networks.
3. Optimal model architecture for specified hardwares should be easily found.
7
Key Challenges for Once-for-All Network
Requirements
1. The sub-network architecture should be part of the largest network.
2. Sub-networks should share parameters with larger networks.
3. Optimal model architecture for specified hardwares should be easily found.
Challenges
1. How to design sub-network architecture space based on a OFA network.
2. How to let sub-networks share parameters with larger networks.
3. How to select the optimal model for the hardware (in terms of latency,
accuracy).
8
Contents
● Problem and Approach
● Key Challenge
● How to Train Once-for-all Network : Challenges #1, #2
● How to Deploy Once-for-all Network: Challenges #3
● Evaluations
● Discussions
● Conclusion
9
Q&A
10
● Assumption: Follow the common practice of CNN models (e.g., ResNet).
○ A model consists of groups of Layers (i.e., units).
● Architecture Search Space
○ # Layers(L): the depth of each unit is chosen from {2, 3, 4}
○ # Channels(C): expansion ratio in each layer is chosen from {3, 4, 6}
○ Kernel Size(Ks): {3, 5, 7}
○ Input Dimension: ranges from 128 to 224 with a stride
● Num available sub-networks: ((3 * 3)2
+ (3 * 3)3
+ (3 * 3)4
)5
= about 1019
Training OFA Network - Network Architecture
… … …
…
L1 L2 L3
C
…
Ks
# units
11
How sub-networks share parameters:
● Elastic Kernel Size
○ Merely sharing the parameters of larger kernel can affect the performance.
○ When changing kernel size, pass through Transform Matrix:
■ For each layer, hold parameters for elastic kernels.
● # 25*25 parameters for 7x7 -> 5x5.
● # 9*9 parameters for 5x5 -> 3x3.
● E.g., 5x5 kernel = (Center of 7x7) * Transform Matrix
Training OFA Network - Sharing Parameters
12
How sub-networks share parameters:
● Elastic Depth (= #Layers)
○ The first D layers are shared when L layers exist in a unit.
○ Simpler depth settings compared to selecting random layers from L layers.
Training OFA Network - Sharing Parameters
L D
13
How sub-networks share parameters:
● Elastic Width (= #Channels)
○ For the given expansion ratio, select channels through a channel sorting method:
1. Calculate L1 Norm for each channel’s weights.
2. Sort the channels by the L1 Norm order.
3. Choose the top-K channels.
Training OFA Network - Sharing Parameters
L1 Norm
14
Progressive Shrinking
1. Train a full model (i.e. max vaule for each configuration).
● With the trained full-size model, Knowledge-Distillation techniques are leveraged.
● Note: Full model != Best model
Training OFA Network - Training Process
… … …
…
L1 L2 L3
Note1: Input image size is randomly chosen for each training batch
15
Progressive Shrinking
1. Train a full model (i.e. max vaule for each configuration).
2. Sample sub-networks varying kernel sizes and fine-tune.
a. For each step, sample one sub-net with different kernel sizes.
b. Calculate Loss. Loss = Full model loss * KD_raio + sub-net loss
c. Update the weights (updating sub-net’s weight -> updating the full model’s weight)
Training OFA Network - Training Process
… … …
L1 L2 L3 16
Note1: Input image size is randomly chosen for each training batch
Progressive Shrinking
1. Train a full model (i.e. max vaule for each configuration).
2. Sample sub-networks varying kernel sizes and fine-tune.
3. Sample sub-networks varying depth and fine-tune.
4. Sample sub-networks varying channel expansion ratio and fine-tune.
Training OFA Network - Training Process
… … …
L1 L2 L3
Note2: Refer to Appendix B for impl. details of progressive shrinking
Note1: Input image size is randomly chosen for each training batch
17
Deploying Specialized Model w/ OFA Network
Problem:
● derive the specialized sub-network for a given deployment scenario (e.g.,
latency constraints).
Solution:
● Train an accuracy predictor (3-layer FFNN)
○ f(architecture, input image size) => accuracy
○ randomly sample 16K sub-networks, measure the accuracy on 10K validation images
● Latency Lookup Table (Details in the ProxylessNAS paper)
○ On each hardware platform, build a latency lookup table .
● Conduct an evolutionary search leveraging the above information.
○ Mutate from the known sub-network by sampling and predicting the performance.
○ add the mutated sub-network to the child pool if it satisfies the constraint (latency).
18
Q&A
19
Evaluation
● ImageNet Dataset
● Eval on Various Hardware Platforms:
○ Samsung S7 Edge, Note8, Note10, Google Pixel1, Pixel2, LG G8, NVIDIA 1080Ti, V100
GPUs, Jetson TX2, Intel Xeon CPU, Xilinx ZU9EG, and ZU3EG FPGAs
● Please refer to the paper for the detailed training configurations.
20
Evaluation
Performance of sub-networks on ImageNet
● top-1 accuracy under 224x224 resolution.
● Can achieve higher performance through Progressive Shrinking.
○ 74.8% top1 accuracy (D=4, W=3, K=3), which is on par with MobileNetV3-Large.
○ Without PS, it achieves 71.5%, which is 3.3% lower.
21
get the same architecture from
the full model w/o PS
Evaluation
Reduced Design Cost
● reports comparison between OFA and hardware-aware NAS methods
○ NAS: The design cost is linear to the number of deployment scenarios (N).
○ the total CO2 emissions of OFA is:
■ 16× fewer than ProxylessNAS
■ 19× fewer than FBNet
■ 1,300× fewer than MnasNet
22
Evaluation
OFA under Different Computational Resource Constraints
● Better accuracy under the same constraints:
○ (Left): MACs, (Right): Latency
○ Achieves higher accuracy, Requires lower computations
○ Better than “OFA - Train from scratch”, which is trained from the scratch without pretraining.
23
Discussions
● Would it work if the same approach is applied to other models, tasks (e.g.,
Transformer, NLP)?
● The architecture search space is limited to certain models.
○ e.g. How to apply the method to models such as HRNet?
24
Conclusion
● Once-for-all(OFA) Network allows training one large model and deploying
various sub-networks without additional training.
● OFA suggests Progressive Shrinking algorithm to share and find
sub-networks, which highly reduces the design cost.
● The paper shows OFA can achieve higher performance with ImageNet
dataset.
● With a trained OFA network, optimal sub-networks can be found on various
deployment environments.
25
Q&A
26

Contenu connexe

Tendances

Tendances (20)

You only look once (YOLO) : unified real time object detection
You only look once (YOLO) : unified real time object detectionYou only look once (YOLO) : unified real time object detection
You only look once (YOLO) : unified real time object detection
 
한글 언어 자원과 R: KoNLP 개선과 활용
한글 언어 자원과 R: KoNLP 개선과 활용한글 언어 자원과 R: KoNLP 개선과 활용
한글 언어 자원과 R: KoNLP 개선과 활용
 
Yolo v2 ai_tech_20190421
Yolo v2 ai_tech_20190421Yolo v2 ai_tech_20190421
Yolo v2 ai_tech_20190421
 
PR-132: SSD: Single Shot MultiBox Detector
PR-132: SSD: Single Shot MultiBox DetectorPR-132: SSD: Single Shot MultiBox Detector
PR-132: SSD: Single Shot MultiBox Detector
 
Vision Transformer(ViT) / An Image is Worth 16*16 Words: Transformers for Ima...
Vision Transformer(ViT) / An Image is Worth 16*16 Words: Transformers for Ima...Vision Transformer(ViT) / An Image is Worth 16*16 Words: Transformers for Ima...
Vision Transformer(ViT) / An Image is Worth 16*16 Words: Transformers for Ima...
 
PR-231: A Simple Framework for Contrastive Learning of Visual Representations
PR-231: A Simple Framework for Contrastive Learning of Visual RepresentationsPR-231: A Simple Framework for Contrastive Learning of Visual Representations
PR-231: A Simple Framework for Contrastive Learning of Visual Representations
 
Mobilenetv1 v2 slide
Mobilenetv1 v2 slideMobilenetv1 v2 slide
Mobilenetv1 v2 slide
 
主成分分析
主成分分析主成分分析
主成分分析
 
Relational knowledge distillation
Relational knowledge distillationRelational knowledge distillation
Relational knowledge distillation
 
Efficient Neural Architecture Search via Parameter Sharing
Efficient Neural Architecture Search via Parameter SharingEfficient Neural Architecture Search via Parameter Sharing
Efficient Neural Architecture Search via Parameter Sharing
 
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th Place Solution
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th Place SolutionKaggle Lyft Motion Prediction for Autonomous Vehicles 4th Place Solution
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th Place Solution
 
Loss Functions for Deep Learning - Javier Ruiz Hidalgo - UPC Barcelona 2018
Loss Functions for Deep Learning - Javier Ruiz Hidalgo - UPC Barcelona 2018Loss Functions for Deep Learning - Javier Ruiz Hidalgo - UPC Barcelona 2018
Loss Functions for Deep Learning - Javier Ruiz Hidalgo - UPC Barcelona 2018
 
[160404] 유니티 apk 용량 줄이기
[160404] 유니티 apk 용량 줄이기[160404] 유니티 apk 용량 줄이기
[160404] 유니티 apk 용량 줄이기
 
Loss functions (DLAI D4L2 2017 UPC Deep Learning for Artificial Intelligence)
Loss functions (DLAI D4L2 2017 UPC Deep Learning for Artificial Intelligence)Loss functions (DLAI D4L2 2017 UPC Deep Learning for Artificial Intelligence)
Loss functions (DLAI D4L2 2017 UPC Deep Learning for Artificial Intelligence)
 
Convolutional Neural Network and Its Applications
Convolutional Neural Network and Its ApplicationsConvolutional Neural Network and Its Applications
Convolutional Neural Network and Its Applications
 
Semantic segmentation with Convolutional Neural Network Approaches
Semantic segmentation with Convolutional Neural Network ApproachesSemantic segmentation with Convolutional Neural Network Approaches
Semantic segmentation with Convolutional Neural Network Approaches
 
Mask R-CNN
Mask R-CNNMask R-CNN
Mask R-CNN
 
You only look once
You only look onceYou only look once
You only look once
 
Anchor free object detection by deep learning
Anchor free object detection by deep learningAnchor free object detection by deep learning
Anchor free object detection by deep learning
 
Kaggle – Airbnb New User Bookingsのアプローチについて(Kaggle Tokyo Meetup #1 20160305)
Kaggle – Airbnb New User Bookingsのアプローチについて(Kaggle Tokyo Meetup #1 20160305)Kaggle – Airbnb New User Bookingsのアプローチについて(Kaggle Tokyo Meetup #1 20160305)
Kaggle – Airbnb New User Bookingsのアプローチについて(Kaggle Tokyo Meetup #1 20160305)
 

Similaire à Once-for-All: Train One Network and Specialize it for Efficient Deployment

Standardising the compressed representation of neural networks
Standardising the compressed representation of neural networksStandardising the compressed representation of neural networks
Standardising the compressed representation of neural networks
Förderverein Technische Fakultät
 
(Im2col)accelerating deep neural networks on low power heterogeneous architec...
(Im2col)accelerating deep neural networks on low power heterogeneous architec...(Im2col)accelerating deep neural networks on low power heterogeneous architec...
(Im2col)accelerating deep neural networks on low power heterogeneous architec...
Bomm Kim
 
intro-to-cnn-April_2020.pptx
intro-to-cnn-April_2020.pptxintro-to-cnn-April_2020.pptx
intro-to-cnn-April_2020.pptx
ssuser3aa461
 
PR243: Designing Network Design Spaces
PR243: Designing Network Design SpacesPR243: Designing Network Design Spaces
PR243: Designing Network Design Spaces
Jinwon Lee
 

Similaire à Once-for-All: Train One Network and Specialize it for Efficient Deployment (20)

Tutorial-on-DNN-09A-Co-design-Sparsity.pdf
Tutorial-on-DNN-09A-Co-design-Sparsity.pdfTutorial-on-DNN-09A-Co-design-Sparsity.pdf
Tutorial-on-DNN-09A-Co-design-Sparsity.pdf
 
B.tech_project_ppt.pptx
B.tech_project_ppt.pptxB.tech_project_ppt.pptx
B.tech_project_ppt.pptx
 
Multicore architectures
Multicore architecturesMulticore architectures
Multicore architectures
 
PR-144: SqueezeNext: Hardware-Aware Neural Network Design
PR-144: SqueezeNext: Hardware-Aware Neural Network DesignPR-144: SqueezeNext: Hardware-Aware Neural Network Design
PR-144: SqueezeNext: Hardware-Aware Neural Network Design
 
Standardising the compressed representation of neural networks
Standardising the compressed representation of neural networksStandardising the compressed representation of neural networks
Standardising the compressed representation of neural networks
 
Cvpr 2018 papers review (efficient computing)
Cvpr 2018 papers review (efficient computing)Cvpr 2018 papers review (efficient computing)
Cvpr 2018 papers review (efficient computing)
 
(Im2col)accelerating deep neural networks on low power heterogeneous architec...
(Im2col)accelerating deep neural networks on low power heterogeneous architec...(Im2col)accelerating deep neural networks on low power heterogeneous architec...
(Im2col)accelerating deep neural networks on low power heterogeneous architec...
 
Clustering
ClusteringClustering
Clustering
 
intro-to-cnn-April_2020.pptx
intro-to-cnn-April_2020.pptxintro-to-cnn-April_2020.pptx
intro-to-cnn-April_2020.pptx
 
Deep Learning for Computer Vision: Memory usage and computational considerati...
Deep Learning for Computer Vision: Memory usage and computational considerati...Deep Learning for Computer Vision: Memory usage and computational considerati...
Deep Learning for Computer Vision: Memory usage and computational considerati...
 
Convolutional Neural Networks : Popular Architectures
Convolutional Neural Networks : Popular ArchitecturesConvolutional Neural Networks : Popular Architectures
Convolutional Neural Networks : Popular Architectures
 
Lightweight DNN Processor Design (based on NVDLA)
Lightweight DNN Processor Design (based on NVDLA)Lightweight DNN Processor Design (based on NVDLA)
Lightweight DNN Processor Design (based on NVDLA)
 
PR243: Designing Network Design Spaces
PR243: Designing Network Design SpacesPR243: Designing Network Design Spaces
PR243: Designing Network Design Spaces
 
Unit 1
Unit 1Unit 1
Unit 1
 
Netflix machine learning
Netflix machine learningNetflix machine learning
Netflix machine learning
 
Deep Learning Initiative @ NECSTLab
Deep Learning Initiative @ NECSTLabDeep Learning Initiative @ NECSTLab
Deep Learning Initiative @ NECSTLab
 
"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...
"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio..."Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...
"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...
 
Modern Convolutional Neural Network techniques for image segmentation
Modern Convolutional Neural Network techniques for image segmentationModern Convolutional Neural Network techniques for image segmentation
Modern Convolutional Neural Network techniques for image segmentation
 
Introduction to computer vision
Introduction to computer visionIntroduction to computer vision
Introduction to computer vision
 
VGG.pptx
VGG.pptxVGG.pptx
VGG.pptx
 

Plus de taeseon ryu

VoxelNet
VoxelNetVoxelNet
VoxelNet
taeseon ryu
 
OpineSum Entailment-based self-training for abstractive opinion summarization...
OpineSum Entailment-based self-training for abstractive opinion summarization...OpineSum Entailment-based self-training for abstractive opinion summarization...
OpineSum Entailment-based self-training for abstractive opinion summarization...
taeseon ryu
 
RL_UpsideDown
RL_UpsideDownRL_UpsideDown
RL_UpsideDown
taeseon ryu
 
MOReL: Model-Based Offline Reinforcement Learning
MOReL: Model-Based Offline Reinforcement LearningMOReL: Model-Based Offline Reinforcement Learning
MOReL: Model-Based Offline Reinforcement Learning
taeseon ryu
 

Plus de taeseon ryu (20)

VoxelNet
VoxelNetVoxelNet
VoxelNet
 
OpineSum Entailment-based self-training for abstractive opinion summarization...
OpineSum Entailment-based self-training for abstractive opinion summarization...OpineSum Entailment-based self-training for abstractive opinion summarization...
OpineSum Entailment-based self-training for abstractive opinion summarization...
 
3D Gaussian Splatting
3D Gaussian Splatting3D Gaussian Splatting
3D Gaussian Splatting
 
JetsonTX2 Python
 JetsonTX2 Python  JetsonTX2 Python
JetsonTX2 Python
 
Hyperbolic Image Embedding.pptx
Hyperbolic  Image Embedding.pptxHyperbolic  Image Embedding.pptx
Hyperbolic Image Embedding.pptx
 
MCSE_Multimodal Contrastive Learning of Sentence Embeddings_변현정
MCSE_Multimodal Contrastive Learning of Sentence Embeddings_변현정MCSE_Multimodal Contrastive Learning of Sentence Embeddings_변현정
MCSE_Multimodal Contrastive Learning of Sentence Embeddings_변현정
 
LLaMA Open and Efficient Foundation Language Models - 230528.pdf
LLaMA Open and Efficient Foundation Language Models - 230528.pdfLLaMA Open and Efficient Foundation Language Models - 230528.pdf
LLaMA Open and Efficient Foundation Language Models - 230528.pdf
 
YOLO V6
YOLO V6YOLO V6
YOLO V6
 
Dataset Distillation by Matching Training Trajectories
Dataset Distillation by Matching Training Trajectories Dataset Distillation by Matching Training Trajectories
Dataset Distillation by Matching Training Trajectories
 
RL_UpsideDown
RL_UpsideDownRL_UpsideDown
RL_UpsideDown
 
Packed Levitated Marker for Entity and Relation Extraction
Packed Levitated Marker for Entity and Relation ExtractionPacked Levitated Marker for Entity and Relation Extraction
Packed Levitated Marker for Entity and Relation Extraction
 
MOReL: Model-Based Offline Reinforcement Learning
MOReL: Model-Based Offline Reinforcement LearningMOReL: Model-Based Offline Reinforcement Learning
MOReL: Model-Based Offline Reinforcement Learning
 
Scaling Instruction-Finetuned Language Models
Scaling Instruction-Finetuned Language ModelsScaling Instruction-Finetuned Language Models
Scaling Instruction-Finetuned Language Models
 
Visual prompt tuning
Visual prompt tuningVisual prompt tuning
Visual prompt tuning
 
mPLUG
mPLUGmPLUG
mPLUG
 
variBAD, A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning.pdf
variBAD, A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning.pdfvariBAD, A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning.pdf
variBAD, A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning.pdf
 
Reinforced Genetic Algorithm Learning For Optimizing Computation Graphs.pdf
Reinforced Genetic Algorithm Learning For Optimizing Computation Graphs.pdfReinforced Genetic Algorithm Learning For Optimizing Computation Graphs.pdf
Reinforced Genetic Algorithm Learning For Optimizing Computation Graphs.pdf
 
The Forward-Forward Algorithm
The Forward-Forward AlgorithmThe Forward-Forward Algorithm
The Forward-Forward Algorithm
 
Towards Robust and Reproducible Active Learning using Neural Networks
Towards Robust and Reproducible Active Learning using Neural NetworksTowards Robust and Reproducible Active Learning using Neural Networks
Towards Robust and Reproducible Active Learning using Neural Networks
 
BRIO: Bringing Order to Abstractive Summarization
BRIO: Bringing Order to Abstractive SummarizationBRIO: Bringing Order to Abstractive Summarization
BRIO: Bringing Order to Abstractive Summarization
 

Dernier

Vip Mumbai Call Girls Thane West Call On 9920725232 With Body to body massage...
Vip Mumbai Call Girls Thane West Call On 9920725232 With Body to body massage...Vip Mumbai Call Girls Thane West Call On 9920725232 With Body to body massage...
Vip Mumbai Call Girls Thane West Call On 9920725232 With Body to body massage...
amitlee9823
 
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
amitlee9823
 
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
amitlee9823
 
Call Girls Indiranagar Just Call 👗 9155563397 👗 Top Class Call Girl Service B...
Call Girls Indiranagar Just Call 👗 9155563397 👗 Top Class Call Girl Service B...Call Girls Indiranagar Just Call 👗 9155563397 👗 Top Class Call Girl Service B...
Call Girls Indiranagar Just Call 👗 9155563397 👗 Top Class Call Girl Service B...
only4webmaster01
 
Call Girls In Hsr Layout ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Hsr Layout ☎ 7737669865 🥵 Book Your One night StandCall Girls In Hsr Layout ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Hsr Layout ☎ 7737669865 🥵 Book Your One night Stand
amitlee9823
 
Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...
Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...
Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...
amitlee9823
 
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
amitlee9823
 
FESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfFESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdf
MarinCaroMartnezBerg
 
Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
Call Girls In Bellandur ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bellandur ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bellandur ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bellandur ☎ 7737669865 🥵 Book Your One night Stand
amitlee9823
 

Dernier (20)

Vip Mumbai Call Girls Thane West Call On 9920725232 With Body to body massage...
Vip Mumbai Call Girls Thane West Call On 9920725232 With Body to body massage...Vip Mumbai Call Girls Thane West Call On 9920725232 With Body to body massage...
Vip Mumbai Call Girls Thane West Call On 9920725232 With Body to body massage...
 
Mature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptxMature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptx
 
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
 
BDSM⚡Call Girls in Mandawali Delhi >༒8448380779 Escort Service
BDSM⚡Call Girls in Mandawali Delhi >༒8448380779 Escort ServiceBDSM⚡Call Girls in Mandawali Delhi >༒8448380779 Escort Service
BDSM⚡Call Girls in Mandawali Delhi >༒8448380779 Escort Service
 
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
 
Call Girls Indiranagar Just Call 👗 9155563397 👗 Top Class Call Girl Service B...
Call Girls Indiranagar Just Call 👗 9155563397 👗 Top Class Call Girl Service B...Call Girls Indiranagar Just Call 👗 9155563397 👗 Top Class Call Girl Service B...
Call Girls Indiranagar Just Call 👗 9155563397 👗 Top Class Call Girl Service B...
 
Call Girls In Hsr Layout ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Hsr Layout ☎ 7737669865 🥵 Book Your One night StandCall Girls In Hsr Layout ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Hsr Layout ☎ 7737669865 🥵 Book Your One night Stand
 
Call me @ 9892124323 Cheap Rate Call Girls in Vashi with Real Photo 100% Secure
Call me @ 9892124323  Cheap Rate Call Girls in Vashi with Real Photo 100% SecureCall me @ 9892124323  Cheap Rate Call Girls in Vashi with Real Photo 100% Secure
Call me @ 9892124323 Cheap Rate Call Girls in Vashi with Real Photo 100% Secure
 
Discover Why Less is More in B2B Research
Discover Why Less is More in B2B ResearchDiscover Why Less is More in B2B Research
Discover Why Less is More in B2B Research
 
BigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptxBigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptx
 
VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...
VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...
VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...
 
Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...
Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...
Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...
 
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
 
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
 
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
 
FESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfFESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdf
 
Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Surabaya ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Call Girls In Bellandur ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bellandur ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bellandur ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bellandur ☎ 7737669865 🥵 Book Your One night Stand
 
Sampling (random) method and Non random.ppt
Sampling (random) method and Non random.pptSampling (random) method and Non random.ppt
Sampling (random) method and Non random.ppt
 
Midocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFxMidocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFx
 

Once-for-All: Train One Network and Specialize it for Efficient Deployment

  • 1. Once-for-All: Train One Network and Specialize it for Efficient Deployment [ICLR 2020] 2022. 03. 20. (Sun) Presented by: 김동현 w/ Fundamental Team: 김채현, 박종익, 양현모, 이근배, 이재윤, 송헌 1
  • 2. Contents ● Problem and Approach ● Key Challenge ● How to Train Once-for-all Network ● How to Deploy Once-for-all Network ● Evaluations ● Discussions ● Conclusion 2
  • 3. Contents ● Problem and Approach ● Key Challenge ● How to Train Once-for-all Network ● How to Deploy Once-for-all Network ● Evaluations ● Discussions ● Conclusion 3
  • 4. Main Problem to Solve ● There are various hardware platforms to deploy DNN models. ○ Survey says there are 23.14 billion IoT devices until 2018. ○ The devices have different resource constraints; It is impossible to deploy the same model to all devices. ● The optimal neural network architecture varies by deployment environments (e.g., #arithmetic units, application requirements). 4
  • 5. Main Problem to Solve ● It is computationally prohibitive to find all the optimal architecture by training on each environment. ● Then, how is it possible to cost-efficiently find the specialized model on each platform? 5 target latency = 20ms
  • 6. Suggested Approach ● Train a Once-for-all(OFA) network, which enables serving on various environment without additional training. ○ Various scales of sub-networks (about 1019 ) are available from one OFA network. ○ Each hardware can find the specialized model for its requirements (e.g, latency). 6
  • 7. Key Challenges for Once-for-All Network Requirements 1. The sub-network architecture should be part of the largest network. 2. Sub-networks should share parameters with larger networks. 3. Optimal model architecture for specified hardwares should be easily found. 7
  • 8. Key Challenges for Once-for-All Network Requirements 1. The sub-network architecture should be part of the largest network. 2. Sub-networks should share parameters with larger networks. 3. Optimal model architecture for specified hardwares should be easily found. Challenges 1. How to design sub-network architecture space based on a OFA network. 2. How to let sub-networks share parameters with larger networks. 3. How to select the optimal model for the hardware (in terms of latency, accuracy). 8
  • 9. Contents ● Problem and Approach ● Key Challenge ● How to Train Once-for-all Network : Challenges #1, #2 ● How to Deploy Once-for-all Network: Challenges #3 ● Evaluations ● Discussions ● Conclusion 9
  • 11. ● Assumption: Follow the common practice of CNN models (e.g., ResNet). ○ A model consists of groups of Layers (i.e., units). ● Architecture Search Space ○ # Layers(L): the depth of each unit is chosen from {2, 3, 4} ○ # Channels(C): expansion ratio in each layer is chosen from {3, 4, 6} ○ Kernel Size(Ks): {3, 5, 7} ○ Input Dimension: ranges from 128 to 224 with a stride ● Num available sub-networks: ((3 * 3)2 + (3 * 3)3 + (3 * 3)4 )5 = about 1019 Training OFA Network - Network Architecture … … … … L1 L2 L3 C … Ks # units 11
  • 12. How sub-networks share parameters: ● Elastic Kernel Size ○ Merely sharing the parameters of larger kernel can affect the performance. ○ When changing kernel size, pass through Transform Matrix: ■ For each layer, hold parameters for elastic kernels. ● # 25*25 parameters for 7x7 -> 5x5. ● # 9*9 parameters for 5x5 -> 3x3. ● E.g., 5x5 kernel = (Center of 7x7) * Transform Matrix Training OFA Network - Sharing Parameters 12
  • 13. How sub-networks share parameters: ● Elastic Depth (= #Layers) ○ The first D layers are shared when L layers exist in a unit. ○ Simpler depth settings compared to selecting random layers from L layers. Training OFA Network - Sharing Parameters L D 13
  • 14. How sub-networks share parameters: ● Elastic Width (= #Channels) ○ For the given expansion ratio, select channels through a channel sorting method: 1. Calculate L1 Norm for each channel’s weights. 2. Sort the channels by the L1 Norm order. 3. Choose the top-K channels. Training OFA Network - Sharing Parameters L1 Norm 14
  • 15. Progressive Shrinking 1. Train a full model (i.e. max vaule for each configuration). ● With the trained full-size model, Knowledge-Distillation techniques are leveraged. ● Note: Full model != Best model Training OFA Network - Training Process … … … … L1 L2 L3 Note1: Input image size is randomly chosen for each training batch 15
  • 16. Progressive Shrinking 1. Train a full model (i.e. max vaule for each configuration). 2. Sample sub-networks varying kernel sizes and fine-tune. a. For each step, sample one sub-net with different kernel sizes. b. Calculate Loss. Loss = Full model loss * KD_raio + sub-net loss c. Update the weights (updating sub-net’s weight -> updating the full model’s weight) Training OFA Network - Training Process … … … L1 L2 L3 16 Note1: Input image size is randomly chosen for each training batch
  • 17. Progressive Shrinking 1. Train a full model (i.e. max vaule for each configuration). 2. Sample sub-networks varying kernel sizes and fine-tune. 3. Sample sub-networks varying depth and fine-tune. 4. Sample sub-networks varying channel expansion ratio and fine-tune. Training OFA Network - Training Process … … … L1 L2 L3 Note2: Refer to Appendix B for impl. details of progressive shrinking Note1: Input image size is randomly chosen for each training batch 17
  • 18. Deploying Specialized Model w/ OFA Network Problem: ● derive the specialized sub-network for a given deployment scenario (e.g., latency constraints). Solution: ● Train an accuracy predictor (3-layer FFNN) ○ f(architecture, input image size) => accuracy ○ randomly sample 16K sub-networks, measure the accuracy on 10K validation images ● Latency Lookup Table (Details in the ProxylessNAS paper) ○ On each hardware platform, build a latency lookup table . ● Conduct an evolutionary search leveraging the above information. ○ Mutate from the known sub-network by sampling and predicting the performance. ○ add the mutated sub-network to the child pool if it satisfies the constraint (latency). 18
  • 20. Evaluation ● ImageNet Dataset ● Eval on Various Hardware Platforms: ○ Samsung S7 Edge, Note8, Note10, Google Pixel1, Pixel2, LG G8, NVIDIA 1080Ti, V100 GPUs, Jetson TX2, Intel Xeon CPU, Xilinx ZU9EG, and ZU3EG FPGAs ● Please refer to the paper for the detailed training configurations. 20
  • 21. Evaluation Performance of sub-networks on ImageNet ● top-1 accuracy under 224x224 resolution. ● Can achieve higher performance through Progressive Shrinking. ○ 74.8% top1 accuracy (D=4, W=3, K=3), which is on par with MobileNetV3-Large. ○ Without PS, it achieves 71.5%, which is 3.3% lower. 21 get the same architecture from the full model w/o PS
  • 22. Evaluation Reduced Design Cost ● reports comparison between OFA and hardware-aware NAS methods ○ NAS: The design cost is linear to the number of deployment scenarios (N). ○ the total CO2 emissions of OFA is: ■ 16× fewer than ProxylessNAS ■ 19× fewer than FBNet ■ 1,300× fewer than MnasNet 22
  • 23. Evaluation OFA under Different Computational Resource Constraints ● Better accuracy under the same constraints: ○ (Left): MACs, (Right): Latency ○ Achieves higher accuracy, Requires lower computations ○ Better than “OFA - Train from scratch”, which is trained from the scratch without pretraining. 23
  • 24. Discussions ● Would it work if the same approach is applied to other models, tasks (e.g., Transformer, NLP)? ● The architecture search space is limited to certain models. ○ e.g. How to apply the method to models such as HRNet? 24
  • 25. Conclusion ● Once-for-all(OFA) Network allows training one large model and deploying various sub-networks without additional training. ● OFA suggests Progressive Shrinking algorithm to share and find sub-networks, which highly reduces the design cost. ● The paper shows OFA can achieve higher performance with ImageNet dataset. ● With a trained OFA network, optimal sub-networks can be found on various deployment environments. 25