January 27, 2005 11:45       L24-CH08           Sheet number 1 Page number 337                       black                ...
January 27, 2005 11:45          L24-CH08                 Sheet number 2 Page number 338               black             33...
January 27, 2005 11:45       L24-CH08         Sheet number 3 Page number 339             black              Exercise Set 8...
January 27, 2005 11:45     L24-CH08         Sheet number 4 Page number 340                black             340           ...
January 27, 2005 11:45       L24-CH08         Sheet number 5 Page number 341                black              Exercise Se...
January 27, 2005 11:45            L24-CH08        Sheet number 6 Page number 342                        black             ...
January 27, 2005 11:45          L24-CH08               Sheet number 7 Page number 343                                     ...
January 27, 2005 11:45            L24-CH08               Sheet number 8 Page number 344                                   ...
January 27, 2005 11:45      L24-CH08             Sheet number 9 Page number 345         black              Exercise Set 8....
January 27, 2005 11:45           L24-CH08                      Sheet number 10 Page number 346                       black...
January 27, 2005 11:45             L24-CH08                             Sheet number 11 Page number 347                   ...
January 27, 2005 11:45         L24-CH08            Sheet number 12 Page number 348                              black     ...
January 27, 2005 11:45         L24-CH08                   Sheet number 13 Page number 349                        black    ...
January 27, 2005 11:45        L24-CH08             Sheet number 14 Page number 350                                        ...
January 27, 2005 11:45      L24-CH08                       Sheet number 15 Page number 351                       black    ...
January 27, 2005 11:45           L24-CH08                    Sheet number 16 Page number 352                              ...
January 27, 2005 11:45       L24-CH08              Sheet number 17 Page number 353               black              Exerci...
January 27, 2005 11:45                L24-CH08               Sheet number 18 Page number 354                           bla...
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Chapter 08
Prochain SlideShare
Chargement dans…5
×

Chapter 08

369 vues

Publié le

Publié dans : Formation
0 commentaire
0 j’aime
Statistiques
Remarques
  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

Aucun téléchargement
Vues
Nombre de vues
369
Sur SlideShare
0
Issues des intégrations
0
Intégrations
3
Actions
Partages
0
Téléchargements
3
Commentaires
0
J’aime
0
Intégrations 0
Aucune incorporation

Aucune remarque pour cette diapositive

Chapter 08

  1. 1. January 27, 2005 11:45 L24-CH08 Sheet number 1 Page number 337 black CHAPTER 8 Principles of Integral Valuation EXERCISE SET 8.1 1 1 1 1. u = 4 − 2x, du = −2dx, − u3 du = − u4 + C = − (4 − 2x)4 + C 2 8 8 3 √ 2. u = 4 + 2x, du = 2dx, u du = u3/2 + C = (4 + 2x)3/2 + C 2 1 1 1 3. u = x2 , du = 2xdx, sec2 u du = tan u + C = tan(x2 ) + C 2 2 2 4. u = x2 , du = 2xdx, 2 tan u du = −2 ln | cos u | + C = −2 ln | cos(x2 )| + C 1 du 1 1 5. u = 2 + cos 3x, du = −3 sin 3xdx, − = − ln |u| + C = − ln(2 + cos 3x) + C 3 u 3 3 2 2 1 du 1 1 2 6. u = x, du = dx, = tan−1 u + C = tan−1 x + C 3 3 6 1 + u2 6 6 3 7. u = ex , du = ex dx, sinh u du = cosh u + C = cosh ex + C 1 8. u = ln x, du = dx, sec u tan u du = sec u + C = sec(ln x) + C x 9. u = tan x, du = sec2 xdx, eu du = eu + C = etan x + C 1 du 1 1 10. u = x2 , du = 2xdx, √ = sin−1 u + C = sin−1 (x2 ) + C 2 1−u 2 2 2 1 1 6 1 11. u = cos 5x, du = −5 sin 5xdx, − u5 du = − u + C = − cos6 5x + C 5 30 30 √ du 1 + 1 + u2 1 + 1 + sin2 x 12. u = sin x, du = cos x dx, √ = − ln + C = − ln +C u u2 + 1 u sin x du 13. u = ex , du = ex dx, √ = ln u + u2 + 4 + C = ln ex + e2x + 4 + C 4 + u2 1 −1 14. u = tan−1 x, du = dx, eu du = eu + C = etan x +C 1 + x2 √ 1 √ 15. u = x − 1, du = √ dx, 2 eu du = 2eu + C = 2e x−1 +C 2 x−1 1 1 1 16. u = x2 + 2x, du = (2x + 2)dx, cot u du = ln | sin u| + C = ln sin |x2 + 2x| + C 2 2 2 √ 1 √ 17. u = x, du = √ dx, 2 cosh u du = 2 sinh u + C = 2 sinh x + C 2 x 337
  2. 2. January 27, 2005 11:45 L24-CH08 Sheet number 2 Page number 338 black 338 Chapter 8 dx du 1 1 18. u = ln x, du = , 2 =− +C =− +C x u u ln x √ 1 2 du 2 −u ln 3 2 −√x 19. u = x, du = √ dx, =2 e−u ln 3 du = − e +C =− 3 +C 2 x 3u ln 3 ln 3 20. u = sin θ, du = cos θdθ, sec u tan u du = sec u + C = sec(sin θ) + C 2 2 1 1 1 2 21. u = , du = − 2 dx, − csch2 u du = coth u + C = coth + C x x 2 2 2 x dx 22. √ = ln x + x2 − 4 + C x2 − 4 du 1 2+u 1 2 + e−x 23. u = e−x , du = −e−x dx, − = − ln + C = − ln +C 4−u 2 4 2−u 4 2 − e−x 1 24. u = ln x, du = dx, cos u du = sin u + C = sin(ln x) + C x ex dx du 25. u = ex , du = ex dx, √ = √ = sin−1 u + C = sin−1 ex + C 1 − e2x 1 − u2 1 26. u = x−1/2 , du = − dx, − 2 sinh u du = −2 cosh u + C = −2 cosh(x−1/2 ) + C 2x3/2 1 du 1 1 1 27. u = x2 , du = 2xdx, = sin u du = − cos u + C = − cos(x2 ) + C 2 csc u 2 2 2 2du 28. 2u = ex , 2du = ex dx, √ = sin−1 u + C = sin−1 (ex /2) + C 4 − 4u2 29. 4−x = e−x 2 2 ln 4 , u = −x2 ln 4, du = −2x ln 4 dx = −x ln 16 dx, 1 1 u 1 −x2 ln 4 1 −x2 − eu du = − e +C =− e +C =− 4 +C ln 16 ln 16 ln 16 ln 16 1 πx ln 2 1 30. 2πx = eπx ln 2 , 2πx dx = e +C = 2πx + C π ln 2 π ln 2 1 2 1 31. (a) u = sin x, du = cos x dx, u du = u + C = sin2 x + C 2 2 1 1 1 (b) sin x cos x dx = sin 2x dx = − cos 2x + C = − (cos2 x − sin2 x) + C 2 4 4 1 1 1 1 (c) − (cos2 x − sin2 x) + C = − (1 − sin2 x − sin2 x) + C = − + sin2 x + C, 4 4 4 2 and this is the same as the answer in part (a) except for the constants. 1 1 32. (a) sech 2x = = (now multiply top and bottom by sech2 x) cosh 2x cosh2 x + sinh2 x sech2 x = 1 + tanh2 x
  3. 3. January 27, 2005 11:45 L24-CH08 Sheet number 3 Page number 339 black Exercise Set 8.2 339 sech2 x (b) sech2x dx = dx = tan−1 (tanh x) + C, or, replacing 2x with x, 1 + tanh2 x sechx dx = tan−1 (tanh(x/2)) + C 1 2 2ex (c) sech x = = x = 2x cosh x e + e−x e +1 ex (d) sech x dx = 2 dx = 2 tan−1 (ex ) + C e2x+1 sec2 x 1 1 33. (a) = = tan x cos2 x tan x cos x sin x 1 1 1 sec2 x 1 (b) csc 2x = = = , so csc 2x dx = ln tan x + C sin 2x 2 sin x cos x 2 tan x 2 1 1 (c) sec x = = = csc(π/2 − x), so cos x sin(π/2 − x) 1 sec x dx = csc(π/2 − x) dx = − ln tan(π/2 − x) + C 2 EXERCISE SET 8.2 1. u = x, dv = e−2x dx, du = dx, v = − 1 e−2x ; 2 1 1 −2x 1 1 xe−2x dx = − xe−2x + e dx = − xe−2x − e−2x + C 2 2 2 4 1 3x 1 3x 1 1 3x 1 3x 2. u = x, dv = e3x dx, du = dx, v = e ; xe3x dx = xe − e3x dx = xe − e + C 3 3 3 3 9 3. u = x2 , dv = ex dx, du = 2x dx, v = ex ; x2 ex dx = x2 ex − 2 xex dx. For xex dx use u = x, dv = ex dx, du = dx, v = ex to get xex dx = xex − ex + C1 so x2 ex dx = x2 ex − 2xex + 2ex + C 1 1 4. u = x2 , dv = e−2x dx, du = 2x dx, v = − e−2x ; x2 e−2x dx = − x2 e−2x + xe−2x dx 2 2 For xe−2x dx use u = x, dv = e−2x dx to get 1 1 1 1 xe−2x dx = − xe−2x + e−2x dx = − xe−2x − e−2x + C 2 2 2 4 1 1 1 so x2 e−2x dx = − x2 e−2x − xe−2x − e−2x + C 2 2 4 1 5. u = x, dv = sin 3x dx, du = dx, v = − cos 3x; 3 1 1 1 1 x sin 3x dx = − x cos 3x + cos 3x dx = − x cos 3x + sin 3x + C 3 3 3 9
  4. 4. January 27, 2005 11:45 L24-CH08 Sheet number 4 Page number 340 black 340 Chapter 8 1 6. u = x, dv = cos 2x dx, du = dx, v = sin 2x; 2 1 1 1 1 x cos 2x dx = x sin 2x − sin 2x dx = x sin 2x + cos 2x + C 2 2 2 4 7. u = x2 , dv = cos x dx, du = 2x dx, v = sin x; x2 cos x dx = x2 sin x − 2 x sin x dx For x sin x dx use u = x, dv = sin x dx to get x sin x dx = −x cos x + sin x + C1 so x2 cos x dx = x2 sin x + 2x cos x − 2 sin x + C 8. u = x2 , dv = sin x dx, du = 2x dx, v = − cos x; x2 sin x dx = −x2 cos x + 2 x cos x dx; for x cos x dx use u = x, dv = cos x dx to get x cos x dx = x sin x + cos x + C1 so x2 sin x dx = −x2 cos x + 2x sin x + 2 cos x + C 1 1 1 2 1 1 2 1 9. u = ln x, dv = x dx, du = dx, v = x2 ; x ln x dx = x ln x − x dx = x ln x − x2 + C x 2 2 2 2 4 √ 1 2 10. u = ln x, dv = dx, v = x3/2 ; x dx, du = x 3 √ 2 3/2 2 2 4 x ln x dx = x ln x − x1/2 dx = x3/2 ln x − x3/2 + C 3 3 3 9 ln x 11. u = (ln x)2 , dv = dx, du = 2 dx, v = x; (ln x)2 dx = x(ln x)2 − 2 ln x dx. x Use u = ln x, dv = dx to get ln x dx = x ln x − dx = x ln x − x + C1 so (ln x)2 dx = x(ln x)2 − 2x ln x + 2x + C 1 1 √ ln x √ 1 √ √ 12. u = ln x, dv = √ dx, du = dx, v = 2 x; √ dx = 2 x ln x−2 √ dx = 2 x ln x−4 x+C x x x x 3 3x 13. u = ln(3x − 2), dv = dx, du = dx, v = x; ln(3x − 2)dx = x ln(3x − 2) − dx 3x − 2 3x − 2 3x 2 2 but dx = 1+ dx = x + ln(3x − 2) + C1 so 3x − 2 3x − 2 3 2 ln(3x − 2)dx = x ln(3x − 2) − x − ln(3x − 2) + C 3 2x x2 14. u = ln(x2 + 4), dv = dx, du = 2+4 dx, v = x; ln(x2 + 4)dx = x ln(x2 + 4) − 2 dx x x2 + 4 x2 4 x but dx = 1− dx = x − 2 tan−1 + C1 so x2 +4 x2 + 4 2 x ln(x2 + 4)dx = x ln(x2 + 4) − 2x + 4 tan−1 +C 2
  5. 5. January 27, 2005 11:45 L24-CH08 Sheet number 5 Page number 341 black Exercise Set 8.2 341 √ 15. u = sin−1 x, dv = dx, du = 1/ 1 − x2 dx, v = x; sin−1 x dx = x sin−1 x − x/ 1 − x2 dx = x sin−1 x + 1 − x2 + C 2 16. u = cos−1 (2x), dv = dx, du = − √ dx, v = x; 1 − 4x2 2x 1 cos−1 (2x)dx = x cos−1 (2x) + √ dx = x cos−1 (2x) − 1 − 4x2 + C 1 − 4x2 2 3 17. u = tan−1 (3x), dv = dx, du = dx, v = x; 1 + 9x2 3x 1 tan−1 (3x)dx = x tan−1 (3x) − dx = x tan−1 (3x) − ln(1 + 9x2 ) + C 1 + 9x2 6 1 1 1 1 x2 18. u = tan−1 x, dv = x dx, du = dx, v = x2 ; x tan−1 x dx = x2 tan−1 x − dx 1 + x2 2 2 2 1 + x2 x2 1 but dx = 1− dx = x − tan−1 x + C1 so 1 + x2 1 + x2 1 1 1 x tan−1 x dx = x2 tan−1 x − x + tan−1 x + C 2 2 2 19. u = ex , dv = sin x dx, du = ex dx, v = − cos x; ex sin x dx = −ex cos x + ex cos x dx. For ex cos x dx use u = ex , dv = cos x dx to get ex cos x = ex sin x − ex sin x dx so ex sin x dx = −ex cos x + ex sin x − ex sin x dx, 1 x 2 ex sin x dx = ex (sin x − cos x) + C1 , ex sin x dx = e (sin x − cos x) + C 2 1 20. u = e3x , dv = cos 2x dx, du = 3e3x dx, v = sin 2x; 2 1 3x 3 e3x cos 2x dx = e sin 2x − e3x sin 2x dx. Use u = e3x , dv = sin 2x dx to get 2 2 1 3 e3x sin 2x dx = − e3x cos 2x + e3x cos 2x dx, so 2 2 1 3 9 e3x cos 2x dx = e3x sin 2x + e3x cos 2x − e3x cos 2x dx, 2 4 4 13 1 1 3x e3x cos 2x dx = e3x (2 sin 2x + 3 cos 2x) + C1 , e3x cos 2x dx = e (2 sin 2x + 3 cos 2x) + C 4 4 13 1 21. u = eax , dv = sin bx dx, du = aeax dx, v = − cos bx (b = 0); b 1 ax a eax sin bx dx = − e cos bx + eax cos bx dx. Use u = eax , dv = cos bx dx to get b b 1 a eax cos bx dx = eax sin bx − eax sin bx dx so b b 1 a a2 eax sin bx dx = − eax cos bx + 2 eax sin bx − 2 eax sin bx dx, b b b eax eax sin bx dx = 2 (a sin bx − b cos bx) + C a + b2
  6. 6. January 27, 2005 11:45 L24-CH08 Sheet number 6 Page number 342 black 342 Chapter 8 e−3θ 22. From Exercise 21 with a = −3, b = 5, x = θ, answer = √ (−3 sin 5θ − 5 cos 5θ) + C 34 cos(ln x) 23. u = sin(ln x), dv = dx, du = dx, v = x; x sin(ln x)dx = x sin(ln x) − cos(ln x)dx. Use u = cos(ln x), dv = dx to get cos(ln x)dx = x cos(ln x) + sin(ln x)dx so sin(ln x)dx = x sin(ln x) − x cos(ln x) − sin(ln x)dx, 1 sin(ln x)dx = x[sin(ln x) − cos(ln x)] + C 2 1 24. u = cos(ln x), dv = dx, du = − sin(ln x)dx, v = x; x cos(ln x)dx = x cos(ln x) + sin(ln x)dx. Use u = sin(ln x), dv = dx to get sin(ln x)dx = x sin(ln x) − cos(ln x)dx so cos(ln x)dx = x cos(ln x) + x sin(ln x) − cos(ln x)dx, 1 cos(ln x)dx = x[cos(ln x) + sin(ln x)] + C 2 25. u = x, dv = sec2 x dx, du = dx, v = tan x; sin x x sec2 x dx = x tan x − tan x dx = x tan x − dx = x tan x + ln | cos x| + C cos x 26. u = x, dv = tan2 x dx = (sec2 x − 1)dx, du = dx, v = tan x − x; x tan2 x dx = x tan x − x2 − (tan x − x)dx 1 1 = x tan x − x2 + ln | cos x| + x2 + C = x tan x − x2 + ln | cos x| + C 2 2 2 1 x2 27. u = x2 , dv = xex dx, du = 2x dx, v = e ; 2 2 1 2 x2 2 1 2 x2 1 x2 x3 ex dx = x e − xex dx = x e − e +C 2 2 2 1 1 28. u = xex , dv = dx, du = (x + 1)ex dx, v = − ; (x + 1)2 x+1 xex xex xex ex dx = − + ex dx = − + ex + C = +C (x + 1)2 x+1 x+1 x+1 1 2x 29. u = x, dv = e2x dx, du = dx, v = e ; 2 2 2 2 2 1 2x 1 1 1 xe2x dx = xe − e2x dx = e4 − e2x = e4 − (e4 − 1) = (3e4 + 1)/4 0 2 0 2 0 4 0 4
  7. 7. January 27, 2005 11:45 L24-CH08 Sheet number 7 Page number 343 black Exercise Set 8.2 343 1 30. u = x, dv = e−5x dx, du = dx, v = − e−5x ; 5 1 1 1 1 1 xe−5x dx = − xe−5x + e−5x dx 0 5 0 5 0 1 1 1 1 1 = − e−5 − e−5x = − e−5 − (e−5 − 1) = (1 − 6e−5 )/25 5 25 0 5 25 1 1 31. u = ln x, dv = x2 dx, du = dx, v = x3 ; x 3 e e e e 1 3 1 1 3 1 3 1 3 1 3 x2 ln x dx = x ln x − x2 dx = e − x = e − (e − 1) = (2e3 + 1)/9 1 3 1 3 1 3 9 1 3 9 1 1 1 32. u = ln x, dv = 2 dx, du = dx, v = − ; x x x e e e ln x 1 1 √ 2 dx = − ln x √ + √ dx e x x e e x2 √ 1 1 √ 1 e 1 1 1 1 3 e−4 = − + √ ln e − √ =− + √ − +√ = e e x e e 2 e e e 2e 1 33. u = ln(x + 2), dv = dx, du = dx, v = x; x+2 1 1 1 1 x 2 ln(x + 2)dx = x ln(x + 2) − dx = ln 3 + ln 1 − 1− dx −1 −1 −1 x+2 −1 x+2 1 = ln 3 − [x − 2 ln(x + 2)] = ln 3 − (1 − 2 ln 3) + (−1 − 2 ln 1) = 3 ln 3 − 2 −1 1 34. u = sin−1 x, dv = dx, du = √ dx, v = x; 1 − x2 √ 3/2 √ 3/2 √ 3/2 √ √ √ 3/2 −1 −1 x 3 3 sin x dx = x sin x − √ dx = sin−1 + 1 − x2 0 0 0 1 − x2 2 2 0 √ √ 3 π 1 π 3 1 = + −1= − 2 3 2 6 2 √ 1 35. u = sec−1 θ, dv = dθ, du = √ dθ, v = θ; 2θ θ − 1 4 √ √1 4 1 √ 4 √ 4 sec−1 θdθ = θ sec−1 dθ = 4 sec−1 2 − 2 sec−1 2 − θ − 1 θ − √ 2 2 2 θ−1 2 2 π π √ 5π √ =4 −2 − 3+1= − 3+1 3 4 6 1 1 36. u = sec−1 x, dv = x dx, du = √ dx, v = x2 ; x x2−1 2 2 2 2 1 2 1 x x sec−1 x dx = x sec−1 x − √ dx 1 2 1 2 1 x2 − 1 1 1 2 √ = [(4)(π/3) − (1)(0)] − x2 − 1 = 2π/3 − 3/2 2 2 1
  8. 8. January 27, 2005 11:45 L24-CH08 Sheet number 8 Page number 344 black 344 Chapter 8 1 37. u = x, dv = sin 2x dx, du = dx, v = − cos 2x; 2 π π π π 1 1 1 x sin 2x dx = − x cos 2x + cos 2x dx = −π/2 + sin 2x = −π/2 0 2 0 2 0 4 0 π π π π 1 2 π2 38. (x + x cos x)dx = x + x cos x dx = + x cos x dx; 0 2 0 0 2 0 u = x, dv = cos x dx, du = dx, v = sin x π π π π π x cos x dx = x sin x − sin x dx = cos x = −2 so (x + x cos x)dx = π 2 /2 − 2 0 0 0 0 0 √ √ 1 2 39. u = tan−1 x, dv = xdx, du = √ dx, v = x3/2 ; 2 x(1 + x) 3 3 √ √ 2 3/2 √ 3 1 3 x x tan−1 xdx = x tan−1 x − dx 1 3 1 3 1 1+x 2 3/2 √ 3 1 3 1 = x tan−1 x − 1− dx 3 1 3 1 1+x 2 3/2 √ 1 1 3 √ = x tan−1 x − x + ln |1 + x| = (2 3π − π/2 − 2 + ln 2)/3 3 3 3 1 2x 40. u = ln(x2 + 1), dv = dx, du = dx, v = x; x2 + 1 2 2 2 2 2x2 1 ln(x2 + 1)dx = x ln(x2 + 1) − dx = 2 ln 5 − 2 1− dx 0 0 0 x2+1 0 x2 + 1 2 = 2 ln 5 − 2(x − tan−1 x) = 2 ln 5 − 4 + 2 tan−1 2 0 √ 41. t = x, t2 = x, dx = 2t dt √ x (a) e dx = 2 tet dt; u = t, dv = et dt, du = dt, v = et , √ √ √ e x dx = 2tet − 2 et dt = 2(t − 1)et + C = 2( x − 1)e x + C √ (b) cos x dx = 2 t cos t dt; u = t, dv = cos tdt, du = dt, v = sin t, √ √ √ √ cos x dx = 2t sin t − 2 sin tdt = 2t sin t + 2 cos t + C = 2 x sin x + 2 cos x + C
  9. 9. January 27, 2005 11:45 L24-CH08 Sheet number 9 Page number 345 black Exercise Set 8.2 345 42. Let q1 (x), q2 (x), q3 (x) denote successive antiderivatives of q(x), so that q3 (x) = q2 (x), q2 (x) = q1 (x), q1 (x) = q(x). Let p(x) = ax2 + bx + c. Repeated Repeated Differentiation Antidifferentiation ax2 + bx + c q(x) + 2ax + b q1 (x) − 2a q2 (x) + 0 q3 (x) Then p(x)q(x) dx = (ax2 + bx + c)q1 (x) − (2ax + b)q2 (x) + 2aq3 (x) + C. Check: d [(ax2 +bx + c)q1 (x) − (2ax + b)q2 (x) + 2aq3 (x)] dx = (2ax + b)q1 (x) + (ax2 + bx + c)q(x) − 2aq2 (x) − (2ax + b)q1 (x) + 2aq2 (x) = p(x)q(x) 43. Repeated Repeated Differentiation Antidifferentiation 3x2 − x + 2 e−x + 6x − 1 −e−x − 6 e−x + 0 −e−x (3x2 − x + 2)e−x = −(3x2 − x + 2)e−x − (6x − 1)e−x − 6e−x + C = −e−x [3x2 + 5x + 7] + C 44. Repeated Repeated Differentiation Antidifferentiation x2 + x + 1 sin x + 2x + 1 − cos x − 2 − sin x + 0 cos x (x2 + x + 1) sin x dx = −(x2 + x + 1) cos x + (2x + 1) sin x + 2 cos x + C = −(x2 + x − 1) cos x + (2x + 1) sin x + C
  10. 10. January 27, 2005 11:45 L24-CH08 Sheet number 10 Page number 346 black 346 Chapter 8 45. Repeated Repeated Differentiation Antidifferentiation 4x4 sin 2x + 1 16x3 − cos 2x 2 − 1 48x 2 − sin 2x + 4 1 96x cos 2x 8 − 1 96 sin 2x 16 + 1 0 − cos 2x 32 4x4 sin 2x dx = (−2x4 + 6x2 − 3) cos 2x + −(4x3 + 6x) sin 2x + C 46. Repeated Repeated Differentiation Antidifferentiation √ x3 2x + 1 + 1 3x 2 (2x + 1)3/2 3 − 1 6x (2x + 1)5/2 15 + 1 6 (2x + 1)7/2 105 − 1 0 (2x + 1)9/2 945 √ 1 1 2 2 x3 2x + 1 dx = x3 (2x + 1)3/2 − x2 (2x + 1)5/2 + x(2x + 1)7/2 − (2x + 1)9/2 + C 3 5 35 315 47. (a) We perform a single integration by parts: u = cos x, dv = sin x dx, du = − sin x dx, v = − cos x, sin x cos x dx = − cos2 x − sin x cos x dx. Thus 1 2 sin x cos x dx = − cos2 x + C, sin x cos x dx = − cos2 x + C 2 1 2 1 (b) u = sin x, du = cos x dx, sin x cos x dx = u du = u + C = sin2 x + C 2 2 x 48. (a) u = x2 , dv = √ , du = 2x dx, v = x2 + 1, x2 +1 1 x3 1 1 √ 2 1 1√ 2 √ dx = x2 x2 + 1 − 2x x2 + 1 dx = 2 − (x2 + 1)3/2 =− 2+ 0 x2 + 1 0 0 3 0 3 3
  11. 11. January 27, 2005 11:45 L24-CH08 Sheet number 11 Page number 347 black Exercise Set 8.2 347 √ √ 2 2 x 1 3 (b) u = x2 + 1, du = √ dx, (u − 1) du = 2 u −u x2 + 1 1 3 1 2√ √ 1 1√ 2 = 2− 2− +1=− 2+ . 3 3 3 3 e e 49. (a) A = ln x dx = (x ln x − x) =1 1 1 e e (b) V = π (ln x)2 dx = π (x(ln x)2 − 2x ln x + 2x) = π(e − 2) 1 1 π/2 π/2 π/2 π/2 1 2 π2 50. A = (x − x sin x)dx = x − x sin x dx = − (−x cos x + sin x) = π 2 /8 − 1 0 2 0 0 8 0 π π 51. V = 2π x sin x dx = 2π(−x cos x + sin x) = 2π 2 0 0 π/2 π/2 52. V = 2π x cos x dx = 2π(cos x + x sin x) = π(π − 2) 0 0 π 53. distance = t3 sin tdt; 0 Repeated Repeated Differentiation Antidifferentiation t3 sin t + 3t2 − cos t − 6t − sin t + 6 cos t − 0 sin t π π t3 sin t dx = [(−t3 cos t + 3t2 sin t + 6t cos t − 6 sin t)] = π 3 − 6π 0 0 1 54. u = 2t, dv = sin(kωt)dt, du = 2dt, v = − cos(kωt); the integrand is an even function of t so kω π/ω π/ω π/ω π/ω 2 1 t sin(kωt) dt = 2 t sin(kωt) dt = − t cos(kωt) +2 cos(kωt) dt −π/ω 0 kω 0 0 kω k+1 π/ω k+1 2π(−1) 2 2π(−1) = + sin(kωt) = kω 2 k2 ω2 0 kω 2 1 3 55. (a) sin4 x dx = − sin3 x cos x + sin2 x dx 4 4 1 3 1 1 = − sin3 x cos x + − sin x cos x + x + C 4 4 2 2 1 3 3 = − sin3 x cos x − sin x cos x + x + C 4 8 8
  12. 12. January 27, 2005 11:45 L24-CH08 Sheet number 12 Page number 348 black 348 Chapter 8 π/2 π/2 π/2 1 4 (b) sin5 x dx = − sin4 x cos x + sin3 x dx 0 5 0 5 0 π/2 π/2 4 1 2 = − sin2 x cos x + sin x dx 5 3 0 3 0 π/2 8 8 =− cos x = 15 0 15 1 4 1 4 1 2 56. (a) cos5 x dx = cos4 x sin x + cos3 x dx = cos4 x sin x + cos2 x sin x + sin x + C 5 5 5 5 3 3 1 4 8 = cos4 x sin x + cos2 x sin x + sin x + C 5 15 15 1 5 (b) cos6 x dx = cos5 x sin x + cos4 x dx 6 6 1 5 1 3 = cos5 x sin x + cos3 x sin x + cos2 x dx 6 6 4 4 1 5 5 1 1 = cos5 x sin x + cos3 x sin x + cos x sin x + x + C, 6 24 8 2 2 π/2 1 5 5 5 cos5 x sin x + cos3 x sin x + cos x sin x + x = 5π/32 6 24 16 16 0 57. u = sinn−1 x, dv = sin x dx, du = (n − 1) sinn−2 x cos x dx, v = − cos x; sinn x dx = − sinn−1 x cos x + (n − 1) sinn−2 x cos2 x dx = − sinn−1 x cos x + (n − 1) sinn−2 x (1 − sin2 x)dx = − sinn−1 x cos x + (n − 1) sinn−2 x dx − (n − 1) sinn x dx, n sinn x dx = − sinn−1 x cos x + (n − 1) sinn−2 x dx, 1 n−1 sinn x dx = − sinn−1 x cos x + sinn−2 x dx n n 58. (a) u = secn−2 x, dv = sec2 x dx, du = (n − 2) secn−2 x tan x dx, v = tan x; secn x dx = secn−2 x tan x − (n − 2) secn−2 x tan2 x dx = secn−2 x tan x − (n − 2) secn−2 x (sec2 x − 1)dx = secn−2 x tan x − (n − 2) secn x dx + (n − 2) secn−2 x dx, (n − 1) secn x dx = secn−2 x tan x + (n − 2) secn−2 x dx, 1 n−2 secn x dx = secn−2 x tan x + secn−2 x dx n−1 n−1
  13. 13. January 27, 2005 11:45 L24-CH08 Sheet number 13 Page number 349 black Exercise Set 8.2 349 (b) tann x dx = tann−2 x (sec2 x − 1) dx = tann−1 x sec2 x dx − tann−2 x dx 1 = tann−1 x − tann−2 x dx n−1 (c) u = xn , dv = ex dx, du = nxn−1 dx, v = ex ; xn ex dx = xn ex − n xn−1 ex dx 1 1 1 59. (a) tan4 x dx = tan3 x − tan2 x dx = tan3 x − tan x + dx = tan3 x − tan x + x + C 3 3 3 1 2 1 2 (b) sec4 x dx = sec2 x tan x + sec2 x dx = sec2 x tan x + tan x + C 3 3 3 3 (c) x3 ex dx = x3 ex − 3 x2 ex dx = x3 ex − 3 x2 ex − 2 xex dx = x3 ex − 3x2 ex + 6 xex − ex dx = x3 ex − 3x2 ex + 6xex − 6ex + C 60. (a) u = 3x, 1 1 1 2 u 2 x2 e3x dx = u2 eu du = u2 eu − 2 ueu du = u e − ueu − eu du 27 27 27 27 1 2 u 2 2 1 2 2 = u e − ueu + eu + C = x2 e3x − xe3x + e3x + C 27 27 27 3 9 27 √ (b) u = − x, 1 √ −1 xe− x dx = 2 u3 eu du, 0 0 u3 eu du = u3 eu − 3 u2 eu du = u3 eu − 3 u2 eu − 2 ueu du = u3 eu − 3u2 eu + 6 ueu − eu du = u3 eu − 3u2 eu + 6ueu − 6eu + C, −1 −1 2 u3 eu du = 2(u3 − 3u2 + 6u − 6)eu = 12 − 32e−1 0 0 61. u = x, dv = f (x)dx, du = dx, v = f (x); 1 1 1 x f (x)dx = xf (x) − f (x)dx −1 −1 −1 1 = f (1) + f (−1) − f (x) = f (1) + f (−1) − f (1) + f (−1) −1 62. (a) u dv = uv − v du = x(sin x + C1 ) + cos x − C1 x + C2 = x sin x + cos x + C2 ; the constant C1 cancels out and hence plays no role in the answer. (b) u(v + C1 ) − (v + C1 )du = uv + C1 u − v du − C1 u = uv − v du
  14. 14. January 27, 2005 11:45 L24-CH08 Sheet number 14 Page number 350 black 350 Chapter 8 dx 63. u = ln(x + 1), dv = dx, du = , v = x + 1; x+1 ln(x + 1) dx = u dv = uv − v du = (x + 1) ln(x + 1) − dx = (x + 1) ln(x + 1) − x + C 3dx 2 64. u = ln(3x − 2), dv = dx, du = ,v = x − ; 3x − 2 3 2 2 1 ln(3x − 2) dx = u dv = uv − v du = x− ln(3x − 2) − x− dx 3 3 x − 2/3 2 2 = x− ln(3x − 2) − x − +C 3 3 1 1 65. u = tan−1 x, dv = x dx, du = 2 dx, v = (x2 + 1) 1+x 2 1 2 1 x tan−1 x dx = u dv = uv − v du = (x + 1) tan−1 x − dx 2 2 1 2 1 = (x + 1) tan−1 x − x + C 2 2 1 66. u = , dv = x dx, du = − x(ln x)2 dx, 1 1 v = ln x ln x 1 1 dx = 1 + dx. x ln x x ln x This seems to imply that 1 = 0, but recall that both sides represent a function plus an arbitrary constant; these two arbitrary constants will take care of the 1. 67. (a) u = f (x), dv = dx, du = f (x), v = x; b b b b f (x) dx = xf (x) − xf (x) dx = bf (b) − af (a) − xf (x) dx a a a a (b) Substitute y = f (x), dy = f (x) dx, x = a when y = f (a), x = b when y = f (b), b f (b) f (b) xf (x) dx = x dy = f −1 (y) dy a f (a) f (a) y (c) From a = f −1 (α) and b = f −1 (β) we get b bf (b) − af (a) = βf −1 (β) − αf −1 (α); then A1 β β f (b) f −1 (x) dx = f −1 (y) dy = f −1 (y) dy, a A2 α α f (a) x which, by Part (b), yields a= f –1(a) b=f –1(b) β b f −1 (x) dx = bf (b) − af (a) − f (x) dx α a f −1 (β) −1 −1 = βf (β) − αf (α) − f (x) dx f −1 (α) β f −1 (β) Note from the figure that A1 = f −1 (x) dx, A2 = f (x) dx, and α f −1 (α) A1 + A2 = βf −1 (β) − αf −1 (α), a “picture proof”.
  15. 15. January 27, 2005 11:45 L24-CH08 Sheet number 15 Page number 351 black Exercise Set 8.3 351 68. (a) Use Exercise 67(c); 1/2 sin−1 (1/2) π/6 1 1 1 1 sin−1 x dx = sin−1 −0·sin−1 0− sin x dx = sin−1 − sin x dx 0 2 2 sin−1 (0) 2 2 0 (b) Use Exercise 67(b); e2 ln e2 2 2 ln x dx = e2 ln e2 − e ln e − f −1 (y) dy = 2e2 − e − ey dy = 2e2 − e − ex dx e ln e 1 1 EXERCISE SET 8.3 1 1. u = cos x, − u3 du = − cos4 x + C 4 1 1 2. u = sin 3x, u5 du = sin6 3x + C 3 18 1 1 1 3. sin2 5θ = (1 − cos 10θ) dθ = θ− sin 10θ + C 2 2 20 1 1 1 4. cos2 3x dx = (1 + cos 6x)dx = x+ sin 6x + C 2 2 12 1 1 5. sin3 aθ dθ = sin aθ(1 − cos2 aθ) dθ = − cos aθ − cos3 aθ + C (a = 0) a 3a 6. cos3 at dt = (1 − sin2 at) cos at dt 1 1 = cos at dt − sin2 at cos at dt = sin at − sin3 at + C (a = 0) a 3a 1 1 7. u = sin ax, u du = sin2 ax + C, a = 0 a 2a 8. sin3 x cos3 x dx = sin3 x(1 − sin2 x) cos x dx 1 1 = (sin3 x − sin5 x) cos x dx = sin4 x − sin6 x + C 4 6 9. sin2 t cos3 t dt = sin2 t(1 − sin2 t) cos t dt = (sin2 t − sin4 t) cos t dt 1 1 = sin3 t − sin5 t + C 3 5 10. sin3 x cos2 x dx = (1 − cos2 x) cos2 x sin x dx 1 1 = (cos2 x − cos4 x) sin x dx = − cos3 x + cos5 x + C 3 5 1 1 1 1 11. sin2 x cos2 x dx = sin2 2x dx = (1 − cos 4x)dx = x− sin 4x + C 4 8 8 32
  16. 16. January 27, 2005 11:45 L24-CH08 Sheet number 16 Page number 352 black 352 Chapter 8 1 1 12. sin2 x cos4 x dx = (1 − cos 2x)(1 + cos 2x)2 dx = (1 − cos2 2x)(1 + cos 2x)dx 8 8 1 1 1 1 = sin2 2x dx + sin2 2x cos 2x dx = (1 − cos 4x)dx + sin3 2x 8 8 16 48 1 1 1 = x− sin 4x + sin3 2x + C 16 64 48 1 1 1 13. sin 2x cos 3x dx = (sin 5x − sin x)dx = − cos 5x + cos x + C 2 10 2 1 1 1 14. sin 3θ cos 2θdθ = (sin 5θ + sin θ)dθ = − cos 5θ − cos θ + C 2 10 2 1 1 15. sin x cos(x/2)dx = [sin(3x/2) + sin(x/2)]dx = − cos(3x/2) − cos(x/2) + C 2 3 3 16. u = cos x, − u1/3 du = − cos4/3 x + C 4 π/2 π/2 17. cos3 x dx = (1 − sin2 x) cos x dx 0 0 π/2 1 2 = sin x − sin3 x = 3 0 3 π/2 π/2 π/2 1 1 18. sin2 (x/2) cos2 (x/2)dx = sin2 x dx = (1 − cos 2x)dx 0 4 0 8 0 π/2 1 1 = x− sin 2x = π/16 8 2 0 π/3 π/3 π/3 1 1 19. sin4 3x cos3 3x dx = sin4 3x(1 − sin2 3x) cos 3x dx = sin5 3x − sin7 3x =0 0 0 15 21 0 π π π 1 1 1 20. cos2 5θ dθ = (1 + cos 10θ)dθ = θ+ sin 10θ =π −π 2 −π 2 10 −π π/6 π/6 π/6 1 1 1 21. sin 4x cos 2x dx = (sin 2x + sin 6x)dx = − cos 2x − cos 6x 0 2 0 4 12 0 = [(−1/4)(1/2) − (1/12)(−1)] − [−1/4 − 1/12] = 7/24 2π 2π 2π 1 1 1 1 22. sin2 kx dx = (1 − cos 2kx)dx = x− sin 2kx =π− sin 4πk (k = 0) 0 2 0 2 2k 0 4k 1 1 23. tan(2x − 1) + C 24. − ln | cos 5x| + C 2 5 25. u = e−x , du = −e−x dx; − tan u du = ln | cos u| + C = ln | cos(e−x )| + C 1 1 26. ln | sin 3x| + C 27. ln | sec 4x + tan 4x| + C 3 4
  17. 17. January 27, 2005 11:45 L24-CH08 Sheet number 17 Page number 353 black Exercise Set 8.3 353 √ 1 √ √ 28. u = x, du = √ dx; 2 sec u du = 2 ln | sec u + tan u| + C = 2 ln sec x + tan x + C 2 x 1 29. u = tan x, u2 du = tan3 x + C 3 1 1 30. tan5 x(1 + tan2 x) sec2 x dx = (tan5 x + tan7 x) sec2 x dx = tan6 x + tan8 x + C 6 8 1 1 31. tan 4x(1 + tan2 4x) sec2 4x dx = (tan 4x + tan3 4x) sec2 4x dx = tan2 4x + tan4 4x + C 8 16 1 1 32. tan4 θ(1 + tan2 θ) sec2 θ dθ = tan5 θ + tan7 θ + C 5 7 1 1 33. sec4 x(sec2 x − 1) sec x tan x dx = (sec6 x − sec4 x) sec x tan x dx = sec7 x − sec5 x + C 7 5 1 2 34. (sec2 θ − 1)2 sec θ tan θdθ = (sec4 θ − 2 sec2 θ + 1) sec θ tan θdθ = sec5 θ − sec3 θ + sec θ + C 5 3 35. (sec2 x − 1)2 sec x dx = (sec5 x − 2 sec3 x + sec x)dx = sec5 x dx − 2 sec3 x dx + sec x dx 1 3 = sec3 x tan x + sec3 x dx − 2 sec3 x dx + ln | sec x + tan x| 4 4 1 5 1 1 = sec3 x tan x − sec x tan x + ln | sec x + tan x| + ln | sec x + tan x| + C 4 4 2 2 1 5 3 = sec3 x tan x − sec x tan x + ln | sec x + tan x| + C 4 8 8 36. [sec2 x − 1] sec3 x dx = [sec5 x − sec3 x]dx 1 3 = sec3 x tan x + sec3 x dx − sec3 x dx (equation (20)) 4 4 1 1 = sec3 x tan x − sec3 x dx 4 4 1 1 1 = sec3 x tan x − sec x tan x − ln | sec x + tan x| + C (equation (20), (22)) 4 8 8 1 1 37. sec2 t(sec t tan t)dt = sec3 t + C 38. sec4 x(sec x tan x)dx = sec5 x + C 3 5 1 39. sec4 x dx = (1 + tan2 x) sec2 x dx = (sec2 x + tan2 x sec2 x)dx = tan x + tan3 x + C 3 40. Using equation (20), 1 3 sec5 x dx = sec3 x tan x + sec3 x dx 4 4 1 3 3 = sec3 x tan x + sec x tan x + ln | sec x + tan x| + C 4 8 8
  18. 18. January 27, 2005 11:45 L24-CH08 Sheet number 18 Page number 354 black 354 Chapter 8 41. u = 4x, use equation (19) to get 1 1 1 1 1 tan3 u du = tan2 u + ln | cos u| + C = tan2 4x + ln | cos 4x| + C 4 4 2 8 4 1 42. Use equation (19) to get tan4 x dx = tan3 x − tan x + x + C 3 √ 2 2 43. tan x(1 + tan2 x) sec2 x dx = tan3/2 x + tan7/2 x + C 3 7 2 44. sec1/2 x(sec x tan x)dx = sec3/2 x + C 3 π/8 π/8 1 45. (sec2 2x − 1)dx = tan 2x − x = 1/2 − π/8 0 2 0 π/6 π/6 1 46. sec2 2θ(sec 2θ tan 2θ)dθ = sec3 2θ = (1/6)(2)3 − (1/6)(1) = 7/6 0 6 0 47. u = x/2, π/4 1 π/4 √ 2 tan5 u du = tan4 u − tan2 u − 2 ln | cos u| = 1/2 − 1 − 2 ln(1/ 2) = −1/2 + ln 2 0 2 0 1 π/4 1 π/4 √ 48. u = πx, sec u tan u du = sec u = ( 2 − 1)/π π 0 π 0 1 1 49. (csc2 x − 1) csc2 x(csc x cot x)dx = (csc4 x − csc2 x)(csc x cot x)dx = − csc5 x + csc3 x + C 5 3 cos2 3t 1 1 50. · dt = csc 3t cot 3t dt = − csc 3t + C sin2 3t cos 3t 3 cos x 1 51. (csc2 x − 1) cot x dx = csc x(csc x cot x)dx − dx = − csc2 x − ln | sin x| + C sin x 2 1 52. (cot2 x + 1) csc2 x dx = − cot3 x − cot x + C 3 2π 2π 1 53. (a) sin mx cos nx dx = [sin(m + n)x + sin(m − n)x]dx 0 2 0 2π cos(m + n)x cos(m − n)x = − − 2(m + n) 2(m − n) 0 2π 2π but cos(m + n)x = 0, cos(m − n)x = 0. 0 0 2π 1 2π (b) cos mx cos nx dx = [cos(m + n)x + cos(m − n)x]dx; 0 2 0 since m = n, evaluate sin at integer multiples of 2π to get 0. 2π 1 2π (c) sin mx sin nx dx = [cos(m − n)x − cos(m + n)x] dx; 0 2 0 since m = n, evaluate sin at integer multiples of 2π to get 0.

×