SlideShare une entreprise Scribd logo
1  sur  19
Stabilization of Inertia Wheel
Pendulum using Multiple Sliding
   Surface Control Technique
   A paper from Multtopic Conference, 2006. INMIC’ 06. IEEE

        By Nadeem Qaiser, Naeem Iqbal, and Naeem Qaiser
     Dept. of Electrical Engineering, Dept. of Computer Science
      and Information technology, PIEAS Islamabad, Pakistan

CONTROL OF ROBOT ANDMoonmangmee
     Speaker: Ittidej VIBRATION LABORATORY
                  No.6 Student ID: 5317500117

                        January 17, 2012
2/18
Key references for this presentation
Proceedings:
[1] M.W. Spong, P. Corke, and R. Lozano, “Nonlinear Control
    of the Inertia Wheel Pendulum”, Automatica, 2000.
PhD Thesis:
[2] Reza Olfati-Saber, Nonlinear Control of Undeactuated
   Mechanical Systems with Application to Robotics and
   Aerospace Vehicles, MIT, PhD Thesis 2001.

Textbook:
[3] Bongsob Song and J. Karl Hedrick, Dynamic
   Surface Control of Uncertain Nonlinear
   Systems: An LMI Approach, Springer,
   New York, 2011.
3/18
Classifications & Styles of Control Paper

            Control Application (or Control Engineering)
               Dynamic model
               Controller and/or observer design            Engineers
               Experimental setup
               Simulations vs. experimental results

Control Theory (or Mathematical
                                    Type 2:
Control Theory or Control Sciences)
                                     Problem formulation & Assumptions
 Type 1:                             Mathematical proofs (rigorously):
  Dynamic model (a benchmark)            definition, lemma, proposition,
  Controller and/or observer             theorem, corollary, etc.
   design                            No experiments
  Computer simulation via           Illustrated examples
   compare with other methods        Sometimes has no simulations
          Engineers &
                                                  Mathematicians
          Mathematicians
                                                  are in a majority
4/18
Control Sciences

 Stabilization of Inertia Wheel
Pendulum using Multiple Sliding
   Surface Control Technique
  Control Theory (or Mathematical Control Theory or
                   Control Sciences)
5/18
Outline

   Underactuated Mechanical Systems
   Overview of Control System Design
   Dynamic Model
   Controller Design
   Stability Analysis
   Simulation Results
   Concluding Remarks
6/18
Underactuated Mechanical Systems
                              q2         Fully actuated: #Control I/P = #DOF.
                q2                      Underactuated: #Control I/P < #DOF.
                                   q1
S




           q1
E




       Pendubot        Inverted Pendulum
L
P




                                   q2
                q2
M




                        q1
           q1
                       Rotational Inverted            q3
A




       Acrobot         Pendulum
                                                                         q1
                                                            q2
X




                q2                 q2
E




           q1            q1                                         q4

    Rotary Prismatic   Perpendicular Rotational         “Fish Robot”
    System             Inverted Pendulum          [Mason and Burdick, 2000]
7/18
Underactuated Mechanical Systems
8/18
The Inertia-Wheel Pendulum

                                                I2         q2
S




                                           q1
E




                                                I1 , L 1
                                      g
L
P
M




                              Single-Input-Single-Output (SISO)
                              Nonlinear time-invariant
A




                              Underactuated mechanical system
X




                              Simple mechanical system
     [Spong et al, 2000]       Euler-Lagrange (EL) equations
E




                                  of motion
9/18
Control System Architecture


        Step 2:



                        Step 1:

              Step 3:
10/18
 Dynamic Model
                                   é
                                   m 11 m 12 ùé& ù
                                               q&       é ( m l + m L )g sin (q ) ù
                                                        -                              é0 ù
Step 1:                            ê         úê 1 ú+    ê    1 1    2 1        1 ú     ê út
                   I2         q2   ê         úê& ú
                                               q&       ê                         ú=   ê1 ú
                                   ê 21 m 22 úê 2 ú
                                   m
                                   ë 42 44443 û
                                             ûë         ê
                                                        ë
                                                                   0              ú
                                                                                  û    ê ú
                                                                                       ë û
                                   1444                 144444444442 44444444443       {
                                      M (q )                             g (q )        Q (q )

              q1
                                                           2         2
                   I1 , L 1         w h e r e m 11 = m 1l 1 + m 2 L 1 + I 1 + I 2
          g
                                      a n d m 12 = m 21 = I 2 a r e con st a n t s

                                      í m q& + m q& - ( m l + m L )g sin (q ) = 0
                                      ï    &      &
                                      ï  11 1   12 2     1 1   2 1         1
                                   W: ì
                                      ï                       m 21q& + m 22q& = t
                                                                  &        &
                                      ï
                                      î                            1         2




                                                       
                                                         &                           &
                                   L e t x 1 = q1, x 2 = q1, x 3 = q 2, a n d x 4 = q 2
                                                               í
                                                               ï   x& = x 2
                                                               ï    1
                                                               ï
                                                               ï   x& = ..... + t
                                                               ï
                                                               ï    2
                                   S t a t e e qu a t io n :   ì
                                                               ï   x& = x 4
                                                               ï     3
                                                               ï
                                                               ï   x& = ..... + t
                                                               ï
                                                               ï
                                                               î     4
11/18
    Collocated Partial Feedback Linearization
    General Form of the EL Equations of Motion for
    an Underactuated Mechanical System: [Spong et al, 2000]
                                                                              Proposition        There exists a global
       é (q )                                                                 invertible change of control in the form
       m               m 1 2 ( q ) ù é& ù
                                      q&        é (q , q ) ù
                                                h       &        é0 ù
       ê 11
    W: ê                           ú ê 1 ú+     ê1         ú=    ê ú
                       m 2 2 (q ) ú ê& ú        ê (q , q ) ú     êt ú                                          &
                                                                                          t = a (q )u + b (q , q )
       ê 2 1 (q )
       m                             q&
                                   úê 2 ú       h
                                                ê2
                                                        &
                                                           ú     ê ú
       ë                           ûë û         ë          û     ë û
                                                                              where
C on figu r a t ion v ect or :                                                                                              - 1
                                             C on t r ol v ect or :               a ( q ) = m 2 2 ( q ) - m 2 1 ( q )m 1 1 ( q )m 1 2 ( q )
               T        (n - m )         m
q = [q 1 , q 2 ] Î ¡               ´ ¡       ,t Î ¡   m
                                                          ( m ) con t r ols             &               &                   - 1
                                                                                                                                              &
                                                                               b ( q , q ) = h 2 ( q , q ) - m 2 1 ( q )m 1 1 ( q )h 1 ( q , q )
( n - m ) u n d er a ct u a t ed coor d in a t es
                                                                              such that the dynamics of transformed
      ( m ) a ct u a t ed coor d in a t es                                    to the partially linearized system.
Remarks:
   fully linearized system (using a change of control)  Impossible
   partially linearized system (q2 transform into a double integrator)  Possible
   after that, the new control u appears in the both (q1, p1) & (q2, p2) subsystems
   this procedure is called collocated partial linearization
12/18
  Collocated Partial Feedback Linearization
                        í
                        ï   &
                            q1 = p1                            ü
                                                               ï
                        ï                                      ï
                        ï                                      ý ( q 1 , p 1 ) n o n lin e a r s u bs y s t e m
                        ï                                      ï
                        ï   &
                            p 1 = f 0 ( q , p ) + g 0 ( q )u   ï
              Wn ew   : ï
                        ì                                      þ
                        ï   &
                            q2 = p2                            ü
                                                               ï
                        ï                                      ï
                        ï                                      ý ( q 2 , p 2 ) lin e a r s u bs y s t e m
                        ï                                      ï
                        ï   &
                            p2 = u                             ï
                        ï
                        î                                      þ
                                                                           - 1
  where  is an m m positive definite symmetric matrix and g 0 (q ) = - m 11 (1)m 12 (q )
         (q)

Step 2:
Transform to the Partial Feedback Linearization form
                                               í a (q , q ) = ( m m - m 2 ) / m
                                               ï         &
                                               ï                 11 22         21     11
             t = a (q , q )u + b (q ) w h er e ì
                         &
                                               ï b (q ) = ( m 21 / m 11 ) ( m 1l1 + m 2 L 1 )g sin ( q 1 )
                                               ï
                                               ï
                                               î

Define new state variables New state equation in the Strict Feedback Form
                                             í &
                                             ï z = (m l + m L ) g sin ( z )
íz = m q + m q
ï          &         &
                                             ï 1
                                             ï          1 1     2 1      2            } N o n lin a e r (C o r e o r R e d u c e d )
ï 1                                          ï
ï        11 1      12 2
                                             ï                  m 12                  ü
                                                                                      ï
ï z = q ( p en d u lu m a n gle)             ï        1                               ï
ì 2                                          ì z& =        z1 -      z3               ï
                                                                                      ï L in e a r (o r O u t e r )
ï      1
                                             ï 2    m 11        m 11                  ý
ï z = q ( w h eel v elocit y )               ï
ï 3    &                                     ï                                        ï
ï
î      2                                     ï z& = u                                 ï
                                             ï 3                                      ï
                                                                                      ï
                                             ï
                                             î                                        þ
13/18
 Controller Design
Step 3:                                                        Outer Subsystem Controller Design

Goal: Stabilizes z 2 ® 0, z 3 ® 0                             Second define the sliding surface
   ì                                                          S 1 = z 2 - z 2d
   ï
   ï
   ï
       z& =
        1     (m 1l 1 + m 2L 1 ) g sin ( z 2 )   }   C ore                         1           m 12
   ï
   ï                                             ü
                                                 ï
                                                              S& = z& - z&d =           z1 -          z 3 - z&d
   ï            1                 m
                                                 ï
                                                               1    2     2
                                                                                 m 11          m 11
                                                                                                              2
   í   z& =            z1 -           12
                                           z3    ï
                                                 ï O uter
   ï    2
              m                   m              ý
   ï
   ï              11                  11
                                                 ï            To achieve this condition, we choose
   ï   z& = u                                    ï
   ï
   ï
   î     3                                       ï
                                                 ï
                                                 þ
                                                                          m 11 æ
                                                                               çK S + 1 z - z& ÷
                                                                                                ö
                                                                 z 3d   =      ç 1 1            ÷
                                                                               ç             2d ÷
   Core Subsystem Controller Design                                       m 12 ç
                                                                               è      m 11
                                                                                           1
                                                                                                ÷
                                                                                                ø
First Design the synthetic inputs z2d for the
core subsystem achieves the Lyapunov stability Third Design again the synthetic I/P, z3d
                              2
    V ( z i ) = 1 z i > 0 ( p osit iv e d efin it e)          S 2 = z 3 - z 3d
                2

  Þ V& z i ) = z i z& < 0 ( n ega t iv e d efin it e)
      (                                                       S& = z& - z&d = u - z&d
                                                               2    3     3         3
                     i


To achieve this condition, we choose                          Finally, the control law chosen to drive
                       - 1
                                                              S20
z 2d = - a t a n             (cz 1 ) , 0 < a £   p
                                                 2
                                                     ,c > 0                 u = z&d - K 2S 2
                                                                                  3
14/18
Stability Results

Theorem 1:                                                    Theorem 3:
                                                                     í S& = - K S - ( m / m )S
                                                                     ï 1
 SN :   {   z& = sin ( z 2 d + S 1 )
             1
                                                               SL
                                                                     ï
                                                                    :ì &
                                                                                 1 1   12  11  2

        í S& = - K S - ( m / m )S
        ï 1                                                          ï S 2 = - K 2S 2
        ï          1 1    12  11  2
                                                                     ï
                                                                     î
 SL   : ì
        ï S& = - K 2S 2                                         is global asymptotic stability
        ï 2
        î                                                       L
                                                                              
( ,  ) is global asymptotic stability
  N   L                                                         is global exponential stability
                                                                L




                                SN
                                       S1= 0
                                               :   { z& =
                                                      1
                                                            sin (a t a n
                                                                           - 1
                                                                                 (cz 1 ) )


        Proposition 1:  |S1 = 0 is globally Lipschitz.
                        N

              Theorem 2:  |S1 = 0 if 0 < a ≤  and c > 0
                          N                     /2
                                   then z1 = 0 is global asymptotic stability.

Remark: we left out all of the proofs from the presentation
15/18
Simulation Results

                                                                   I2
    Initial state:
                                                                         q2(T) = 0
(q1(0), q2(0)) = ( 0)
                   ,             Plant parameters:
                                     m11 = 4.83 10-3
                                      m12 = m21 = m22         I1 , L 1

     g                                     = 32 10-6         g          q1(T) = 0
                                    w = 379.26 10-3

                q1(0) =     Controller parameters:

     I1 , L 1                         a =  c = 9,
                                            /2,
                                                              Final state:
                                       K1 = 4, K2 = 6,
                                     and  = 0.001
                                            T            (q1(T), q2(T)) = (0, 0)

                            where the plant parameters are setted
         I2                 as same as in Olfati-Saber (2001) and
                            Spong (2000).
16/18
Simulation Results
                 Pendulum angle, velocity        Pendulum angle, velocity
MSS Controller




                                                                            [Olfati-Saber, 2001]
                            2.2 sec                            3.6 sec
                      time (second)                   time (second)

                     Wheel velocity         VS       Wheel velocity




                                 3 sec                          3.7 sec
                      time (second)                   time (second)
17/18
Simulation Results

   Control effort (Nm)        Control effort (Nm)


      0.43 Nm                    0.33 Nm


                         VS

     time (second)              time (second)

   MSS Controller             [Olfati-Saber, 2001]
18/18
Concluding Remarks

 The collocated partial feedback linearization was presented
  for transform a nonlinear underactuated mechanical system
  into the strict feedback form
 A Multiple Sliding Surface controller is designed to achieves
  global asymptotically stable of the pendulum angle and the
  wheel velocity (neglect the wheel angle)
 The MSS has advantages that the two controllers, i.e.
   no supervisory switching required as in Spong’s design
  (2000) (more simple structure)
   the response is faster than the designs by Olfati-Saber
  (2001) (more better performance)
 However, more control effort required for MSS
Thank you
        Please comments and suggests!

CONTROL OF ROBOT AND VIBRATION LABORATORY

Contenu connexe

Similaire à Stabilization of Inertia Wheel Pendulum using Multiple Sliding Surface Control Technique

Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control o...
Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control o...Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control o...
Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control o...IJMTST Journal
 
Mathematical model analysis and control algorithms design based on state feed...
Mathematical model analysis and control algorithms design based on state feed...Mathematical model analysis and control algorithms design based on state feed...
Mathematical model analysis and control algorithms design based on state feed...hunypink
 
Optimal_Control_of_a_Double_Inverted_Pen.pdf
Optimal_Control_of_a_Double_Inverted_Pen.pdfOptimal_Control_of_a_Double_Inverted_Pen.pdf
Optimal_Control_of_a_Double_Inverted_Pen.pdfandrestomas5
 
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...ijcsitcejournal
 
PID-Control_automation_Engineering_chapter6.ppt
PID-Control_automation_Engineering_chapter6.pptPID-Control_automation_Engineering_chapter6.ppt
PID-Control_automation_Engineering_chapter6.pptmohamed abd elrazek
 
STABILIZATION AT UPRIGHT EQUILIBRIUM POSITION OF A DOUBLE INVERTED PENDULUM W...
STABILIZATION AT UPRIGHT EQUILIBRIUM POSITION OF A DOUBLE INVERTED PENDULUM W...STABILIZATION AT UPRIGHT EQUILIBRIUM POSITION OF A DOUBLE INVERTED PENDULUM W...
STABILIZATION AT UPRIGHT EQUILIBRIUM POSITION OF A DOUBLE INVERTED PENDULUM W...ijcsa
 
Performance measurement and dynamic analysis of two dof robotic arm manipulator
Performance measurement and dynamic analysis of two dof robotic arm manipulatorPerformance measurement and dynamic analysis of two dof robotic arm manipulator
Performance measurement and dynamic analysis of two dof robotic arm manipulatoreSAT Journals
 
Control system introduction for different application
Control system introduction for different applicationControl system introduction for different application
Control system introduction for different applicationAnoopCadlord1
 
Modelling using differnt metods in matlab2 (2) (2) (2) (4) (1) (1).pptx
Modelling using differnt metods in matlab2 (2) (2) (2) (4) (1) (1).pptxModelling using differnt metods in matlab2 (2) (2) (2) (4) (1) (1).pptx
Modelling using differnt metods in matlab2 (2) (2) (2) (4) (1) (1).pptxKadiriIbrahim2
 
Effects of clearance size on the dynamic response of planar multi body system...
Effects of clearance size on the dynamic response of planar multi body system...Effects of clearance size on the dynamic response of planar multi body system...
Effects of clearance size on the dynamic response of planar multi body system...Alexander Decker
 
Fir 05 dynamics 2-dof
Fir 05 dynamics 2-dofFir 05 dynamics 2-dof
Fir 05 dynamics 2-dofnguyendattdh
 
lec-7_phase_plane_analysis.pptx
lec-7_phase_plane_analysis.pptxlec-7_phase_plane_analysis.pptx
lec-7_phase_plane_analysis.pptxdatamboli
 
Multi parametric model predictive control based on laguerre model for permane...
Multi parametric model predictive control based on laguerre model for permane...Multi parametric model predictive control based on laguerre model for permane...
Multi parametric model predictive control based on laguerre model for permane...IJECEIAES
 
Design and Simulation of Different Controllers for Stabilizing Inverted Pendu...
Design and Simulation of Different Controllers for Stabilizing Inverted Pendu...Design and Simulation of Different Controllers for Stabilizing Inverted Pendu...
Design and Simulation of Different Controllers for Stabilizing Inverted Pendu...IJERA Editor
 
Fractional-order sliding mode controller for the two-link robot arm
Fractional-order sliding mode controller for the two-link robot arm Fractional-order sliding mode controller for the two-link robot arm
Fractional-order sliding mode controller for the two-link robot arm IJECEIAES
 
Nonlinear Robust Control for Spacecraft Attitude
Nonlinear Robust Control for Spacecraft AttitudeNonlinear Robust Control for Spacecraft Attitude
Nonlinear Robust Control for Spacecraft AttitudeNooria Sukmaningtyas
 

Similaire à Stabilization of Inertia Wheel Pendulum using Multiple Sliding Surface Control Technique (20)

Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control o...
Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control o...Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control o...
Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control o...
 
Mathematical model analysis and control algorithms design based on state feed...
Mathematical model analysis and control algorithms design based on state feed...Mathematical model analysis and control algorithms design based on state feed...
Mathematical model analysis and control algorithms design based on state feed...
 
Optimal_Control_of_a_Double_Inverted_Pen.pdf
Optimal_Control_of_a_Double_Inverted_Pen.pdfOptimal_Control_of_a_Double_Inverted_Pen.pdf
Optimal_Control_of_a_Double_Inverted_Pen.pdf
 
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
 
PID-Control_automation_Engineering_chapter6.ppt
PID-Control_automation_Engineering_chapter6.pptPID-Control_automation_Engineering_chapter6.ppt
PID-Control_automation_Engineering_chapter6.ppt
 
STABILIZATION AT UPRIGHT EQUILIBRIUM POSITION OF A DOUBLE INVERTED PENDULUM W...
STABILIZATION AT UPRIGHT EQUILIBRIUM POSITION OF A DOUBLE INVERTED PENDULUM W...STABILIZATION AT UPRIGHT EQUILIBRIUM POSITION OF A DOUBLE INVERTED PENDULUM W...
STABILIZATION AT UPRIGHT EQUILIBRIUM POSITION OF A DOUBLE INVERTED PENDULUM W...
 
D05532531
D05532531D05532531
D05532531
 
Performance measurement and dynamic analysis of two dof robotic arm manipulator
Performance measurement and dynamic analysis of two dof robotic arm manipulatorPerformance measurement and dynamic analysis of two dof robotic arm manipulator
Performance measurement and dynamic analysis of two dof robotic arm manipulator
 
Control system introduction for different application
Control system introduction for different applicationControl system introduction for different application
Control system introduction for different application
 
Modelling using differnt metods in matlab2 (2) (2) (2) (4) (1) (1).pptx
Modelling using differnt metods in matlab2 (2) (2) (2) (4) (1) (1).pptxModelling using differnt metods in matlab2 (2) (2) (2) (4) (1) (1).pptx
Modelling using differnt metods in matlab2 (2) (2) (2) (4) (1) (1).pptx
 
Effects of clearance size on the dynamic response of planar multi body system...
Effects of clearance size on the dynamic response of planar multi body system...Effects of clearance size on the dynamic response of planar multi body system...
Effects of clearance size on the dynamic response of planar multi body system...
 
Fir 05 dynamics
Fir 05 dynamicsFir 05 dynamics
Fir 05 dynamics
 
Fir 05 dynamics 2-dof
Fir 05 dynamics 2-dofFir 05 dynamics 2-dof
Fir 05 dynamics 2-dof
 
Article 1
Article 1Article 1
Article 1
 
lec-7_phase_plane_analysis.pptx
lec-7_phase_plane_analysis.pptxlec-7_phase_plane_analysis.pptx
lec-7_phase_plane_analysis.pptx
 
Multi parametric model predictive control based on laguerre model for permane...
Multi parametric model predictive control based on laguerre model for permane...Multi parametric model predictive control based on laguerre model for permane...
Multi parametric model predictive control based on laguerre model for permane...
 
Ball and beam
Ball and beamBall and beam
Ball and beam
 
Design and Simulation of Different Controllers for Stabilizing Inverted Pendu...
Design and Simulation of Different Controllers for Stabilizing Inverted Pendu...Design and Simulation of Different Controllers for Stabilizing Inverted Pendu...
Design and Simulation of Different Controllers for Stabilizing Inverted Pendu...
 
Fractional-order sliding mode controller for the two-link robot arm
Fractional-order sliding mode controller for the two-link robot arm Fractional-order sliding mode controller for the two-link robot arm
Fractional-order sliding mode controller for the two-link robot arm
 
Nonlinear Robust Control for Spacecraft Attitude
Nonlinear Robust Control for Spacecraft AttitudeNonlinear Robust Control for Spacecraft Attitude
Nonlinear Robust Control for Spacecraft Attitude
 

Plus de อิทธิเดช มูลมั่งมี

Tricks ทางคณิตศาสตร์กับการแก้ปัญหาฟิสิกส์
Tricks ทางคณิตศาสตร์กับการแก้ปัญหาฟิสิกส์Tricks ทางคณิตศาสตร์กับการแก้ปัญหาฟิสิกส์
Tricks ทางคณิตศาสตร์กับการแก้ปัญหาฟิสิกส์อิทธิเดช มูลมั่งมี
 
เรขาคณิตของการเคลื่อนที่แบบโปรเจกไตล์
เรขาคณิตของการเคลื่อนที่แบบโปรเจกไตล์เรขาคณิตของการเคลื่อนที่แบบโปรเจกไตล์
เรขาคณิตของการเคลื่อนที่แบบโปรเจกไตล์อิทธิเดช มูลมั่งมี
 

Plus de อิทธิเดช มูลมั่งมี (20)

Peaking phenomenon
Peaking phenomenonPeaking phenomenon
Peaking phenomenon
 
Constructive nonlinear smc
Constructive nonlinear smcConstructive nonlinear smc
Constructive nonlinear smc
 
วารสารคณิตศาสตร์ ฉบับพิเศษ
วารสารคณิตศาสตร์ ฉบับพิเศษวารสารคณิตศาสตร์ ฉบับพิเศษ
วารสารคณิตศาสตร์ ฉบับพิเศษ
 
Sliding Mode Control Stability (Jan 19, 2013)
Sliding Mode Control Stability (Jan 19, 2013)Sliding Mode Control Stability (Jan 19, 2013)
Sliding Mode Control Stability (Jan 19, 2013)
 
In–Cylinder Air Estimation on Diesel Dual Fuel Engine Using Kalman Filter
In–Cylinder Air Estimation on Diesel Dual Fuel Engine Using Kalman FilterIn–Cylinder Air Estimation on Diesel Dual Fuel Engine Using Kalman Filter
In–Cylinder Air Estimation on Diesel Dual Fuel Engine Using Kalman Filter
 
Sliding Mode Control of Air-Path in Diesel Dual-Fuel Engine
Sliding Mode Control of Air-Path in Diesel Dual-Fuel EngineSliding Mode Control of Air-Path in Diesel Dual-Fuel Engine
Sliding Mode Control of Air-Path in Diesel Dual-Fuel Engine
 
Tricks ทางคณิตศาสตร์กับการแก้ปัญหาฟิสิกส์
Tricks ทางคณิตศาสตร์กับการแก้ปัญหาฟิสิกส์Tricks ทางคณิตศาสตร์กับการแก้ปัญหาฟิสิกส์
Tricks ทางคณิตศาสตร์กับการแก้ปัญหาฟิสิกส์
 
Sliding mode control (revised march, 2012)
Sliding mode control (revised march, 2012)Sliding mode control (revised march, 2012)
Sliding mode control (revised march, 2012)
 
Lyapunov stability 1
Lyapunov  stability 1Lyapunov  stability 1
Lyapunov stability 1
 
Lyapunov stability 2
Lyapunov stability 2Lyapunov stability 2
Lyapunov stability 2
 
Sliding mode control (revised march, 2012)
Sliding mode control (revised march, 2012)Sliding mode control (revised march, 2012)
Sliding mode control (revised march, 2012)
 
Calculus of variation ตอนที่ 2
Calculus of variation ตอนที่ 2Calculus of variation ตอนที่ 2
Calculus of variation ตอนที่ 2
 
Calculus of variation ตอนที่ 3 (จบ)
Calculus of variation ตอนที่ 3 (จบ)Calculus of variation ตอนที่ 3 (จบ)
Calculus of variation ตอนที่ 3 (จบ)
 
เรขาคณิตของการเคลื่อนที่แบบโปรเจกไตล์
เรขาคณิตของการเคลื่อนที่แบบโปรเจกไตล์เรขาคณิตของการเคลื่อนที่แบบโปรเจกไตล์
เรขาคณิตของการเคลื่อนที่แบบโปรเจกไตล์
 
Comparison Principle
Comparison PrincipleComparison Principle
Comparison Principle
 
สมการการแปลงพิกัด
สมการการแปลงพิกัดสมการการแปลงพิกัด
สมการการแปลงพิกัด
 
เรขาคณิตของการสะท้อนของแสง
เรขาคณิตของการสะท้อนของแสงเรขาคณิตของการสะท้อนของแสง
เรขาคณิตของการสะท้อนของแสง
 
Multilinear mapping and its application to determinants
Multilinear mapping and its application to determinantsMultilinear mapping and its application to determinants
Multilinear mapping and its application to determinants
 
การประมาณค่าพาย
การประมาณค่าพายการประมาณค่าพาย
การประมาณค่าพาย
 
ฟังก์ชันค่าเวกเตอร์ (Vector Valued Function)
ฟังก์ชันค่าเวกเตอร์ (Vector Valued Function)ฟังก์ชันค่าเวกเตอร์ (Vector Valued Function)
ฟังก์ชันค่าเวกเตอร์ (Vector Valued Function)
 

Dernier

Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxNikitaBankoti2
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIShubhangi Sonawane
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxnegromaestrong
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 

Dernier (20)

Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 

Stabilization of Inertia Wheel Pendulum using Multiple Sliding Surface Control Technique

  • 1. Stabilization of Inertia Wheel Pendulum using Multiple Sliding Surface Control Technique A paper from Multtopic Conference, 2006. INMIC’ 06. IEEE By Nadeem Qaiser, Naeem Iqbal, and Naeem Qaiser Dept. of Electrical Engineering, Dept. of Computer Science and Information technology, PIEAS Islamabad, Pakistan CONTROL OF ROBOT ANDMoonmangmee Speaker: Ittidej VIBRATION LABORATORY No.6 Student ID: 5317500117 January 17, 2012
  • 2. 2/18 Key references for this presentation Proceedings: [1] M.W. Spong, P. Corke, and R. Lozano, “Nonlinear Control of the Inertia Wheel Pendulum”, Automatica, 2000. PhD Thesis: [2] Reza Olfati-Saber, Nonlinear Control of Undeactuated Mechanical Systems with Application to Robotics and Aerospace Vehicles, MIT, PhD Thesis 2001. Textbook: [3] Bongsob Song and J. Karl Hedrick, Dynamic Surface Control of Uncertain Nonlinear Systems: An LMI Approach, Springer, New York, 2011.
  • 3. 3/18 Classifications & Styles of Control Paper Control Application (or Control Engineering)  Dynamic model  Controller and/or observer design Engineers  Experimental setup  Simulations vs. experimental results Control Theory (or Mathematical Type 2: Control Theory or Control Sciences)  Problem formulation & Assumptions Type 1:  Mathematical proofs (rigorously):  Dynamic model (a benchmark) definition, lemma, proposition,  Controller and/or observer theorem, corollary, etc. design  No experiments  Computer simulation via  Illustrated examples compare with other methods  Sometimes has no simulations Engineers & Mathematicians Mathematicians are in a majority
  • 4. 4/18 Control Sciences Stabilization of Inertia Wheel Pendulum using Multiple Sliding Surface Control Technique Control Theory (or Mathematical Control Theory or Control Sciences)
  • 5. 5/18 Outline  Underactuated Mechanical Systems  Overview of Control System Design  Dynamic Model  Controller Design  Stability Analysis  Simulation Results  Concluding Remarks
  • 6. 6/18 Underactuated Mechanical Systems q2 Fully actuated: #Control I/P = #DOF. q2 Underactuated: #Control I/P < #DOF. q1 S q1 E Pendubot Inverted Pendulum L P q2 q2 M q1 q1 Rotational Inverted q3 A Acrobot Pendulum q1 q2 X q2 q2 E q1 q1 q4 Rotary Prismatic Perpendicular Rotational “Fish Robot” System Inverted Pendulum [Mason and Burdick, 2000]
  • 8. 8/18 The Inertia-Wheel Pendulum I2 q2 S q1 E I1 , L 1 g L P M  Single-Input-Single-Output (SISO)  Nonlinear time-invariant A  Underactuated mechanical system X  Simple mechanical system [Spong et al, 2000] Euler-Lagrange (EL) equations E of motion
  • 9. 9/18 Control System Architecture Step 2: Step 1: Step 3:
  • 10. 10/18 Dynamic Model é m 11 m 12 ùé& ù q& é ( m l + m L )g sin (q ) ù - é0 ù Step 1: ê úê 1 ú+ ê 1 1 2 1 1 ú ê út I2 q2 ê úê& ú q& ê ú= ê1 ú ê 21 m 22 úê 2 ú m ë 42 44443 û ûë ê ë 0 ú û ê ú ë û 1444 144444444442 44444444443 { M (q ) g (q ) Q (q ) q1 2 2 I1 , L 1 w h e r e m 11 = m 1l 1 + m 2 L 1 + I 1 + I 2 g a n d m 12 = m 21 = I 2 a r e con st a n t s í m q& + m q& - ( m l + m L )g sin (q ) = 0 ï & & ï 11 1 12 2 1 1 2 1 1 W: ì ï m 21q& + m 22q& = t & & ï î 1 2  & & L e t x 1 = q1, x 2 = q1, x 3 = q 2, a n d x 4 = q 2 í ï x& = x 2 ï 1 ï ï x& = ..... + t ï ï 2 S t a t e e qu a t io n : ì ï x& = x 4 ï 3 ï ï x& = ..... + t ï ï î 4
  • 11. 11/18 Collocated Partial Feedback Linearization General Form of the EL Equations of Motion for an Underactuated Mechanical System: [Spong et al, 2000] Proposition There exists a global é (q ) invertible change of control in the form m m 1 2 ( q ) ù é& ù q& é (q , q ) ù h & é0 ù ê 11 W: ê ú ê 1 ú+ ê1 ú= ê ú m 2 2 (q ) ú ê& ú ê (q , q ) ú êt ú & t = a (q )u + b (q , q ) ê 2 1 (q ) m q& úê 2 ú h ê2 & ú ê ú ë ûë û ë û ë û where C on figu r a t ion v ect or : - 1 C on t r ol v ect or : a ( q ) = m 2 2 ( q ) - m 2 1 ( q )m 1 1 ( q )m 1 2 ( q ) T (n - m ) m q = [q 1 , q 2 ] Î ¡ ´ ¡ ,t Î ¡ m ( m ) con t r ols & & - 1 & b ( q , q ) = h 2 ( q , q ) - m 2 1 ( q )m 1 1 ( q )h 1 ( q , q ) ( n - m ) u n d er a ct u a t ed coor d in a t es such that the dynamics of transformed ( m ) a ct u a t ed coor d in a t es to the partially linearized system. Remarks:  fully linearized system (using a change of control)  Impossible  partially linearized system (q2 transform into a double integrator)  Possible  after that, the new control u appears in the both (q1, p1) & (q2, p2) subsystems  this procedure is called collocated partial linearization
  • 12. 12/18 Collocated Partial Feedback Linearization í ï & q1 = p1 ü ï ï ï ï ý ( q 1 , p 1 ) n o n lin e a r s u bs y s t e m ï ï ï & p 1 = f 0 ( q , p ) + g 0 ( q )u ï Wn ew : ï ì þ ï & q2 = p2 ü ï ï ï ï ý ( q 2 , p 2 ) lin e a r s u bs y s t e m ï ï ï & p2 = u ï ï î þ - 1 where  is an m m positive definite symmetric matrix and g 0 (q ) = - m 11 (1)m 12 (q ) (q) Step 2: Transform to the Partial Feedback Linearization form í a (q , q ) = ( m m - m 2 ) / m ï & ï 11 22 21 11 t = a (q , q )u + b (q ) w h er e ì & ï b (q ) = ( m 21 / m 11 ) ( m 1l1 + m 2 L 1 )g sin ( q 1 ) ï ï î Define new state variables New state equation in the Strict Feedback Form í & ï z = (m l + m L ) g sin ( z ) íz = m q + m q ï & & ï 1 ï 1 1 2 1 2 } N o n lin a e r (C o r e o r R e d u c e d ) ï 1 ï ï 11 1 12 2 ï m 12 ü ï ï z = q ( p en d u lu m a n gle) ï 1 ï ì 2 ì z& = z1 - z3 ï ï L in e a r (o r O u t e r ) ï 1 ï 2 m 11 m 11 ý ï z = q ( w h eel v elocit y ) ï ï 3 & ï ï ï î 2 ï z& = u ï ï 3 ï ï ï î þ
  • 13. 13/18 Controller Design Step 3: Outer Subsystem Controller Design Goal: Stabilizes z 2 ® 0, z 3 ® 0 Second define the sliding surface ì S 1 = z 2 - z 2d ï ï ï z& = 1 (m 1l 1 + m 2L 1 ) g sin ( z 2 ) } C ore 1 m 12 ï ï ü ï S& = z& - z&d = z1 - z 3 - z&d ï 1 m ï 1 2 2 m 11 m 11 2 í z& = z1 - 12 z3 ï ï O uter ï 2 m m ý ï ï 11 11 ï To achieve this condition, we choose ï z& = u ï ï ï î 3 ï ï þ m 11 æ çK S + 1 z - z& ÷ ö z 3d = ç 1 1 ÷ ç 2d ÷ Core Subsystem Controller Design m 12 ç è m 11 1 ÷ ø First Design the synthetic inputs z2d for the core subsystem achieves the Lyapunov stability Third Design again the synthetic I/P, z3d 2 V ( z i ) = 1 z i > 0 ( p osit iv e d efin it e) S 2 = z 3 - z 3d 2 Þ V& z i ) = z i z& < 0 ( n ega t iv e d efin it e) ( S& = z& - z&d = u - z&d 2 3 3 3 i To achieve this condition, we choose Finally, the control law chosen to drive - 1 S20 z 2d = - a t a n (cz 1 ) , 0 < a £ p 2 ,c > 0 u = z&d - K 2S 2 3
  • 14. 14/18 Stability Results Theorem 1: Theorem 3: í S& = - K S - ( m / m )S ï 1 SN : { z& = sin ( z 2 d + S 1 ) 1 SL ï :ì & 1 1 12 11 2 í S& = - K S - ( m / m )S ï 1 ï S 2 = - K 2S 2 ï 1 1 12 11 2 ï î SL : ì ï S& = - K 2S 2  is global asymptotic stability ï 2 î L  ( ,  ) is global asymptotic stability N L  is global exponential stability L SN S1= 0 : { z& = 1 sin (a t a n - 1 (cz 1 ) ) Proposition 1:  |S1 = 0 is globally Lipschitz. N Theorem 2:  |S1 = 0 if 0 < a ≤  and c > 0 N /2 then z1 = 0 is global asymptotic stability. Remark: we left out all of the proofs from the presentation
  • 15. 15/18 Simulation Results I2 Initial state: q2(T) = 0 (q1(0), q2(0)) = ( 0) , Plant parameters: m11 = 4.83 10-3 m12 = m21 = m22 I1 , L 1 g = 32 10-6 g q1(T) = 0 w = 379.26 10-3 q1(0) =  Controller parameters: I1 , L 1 a =  c = 9, /2, Final state: K1 = 4, K2 = 6, and  = 0.001 T (q1(T), q2(T)) = (0, 0) where the plant parameters are setted I2 as same as in Olfati-Saber (2001) and Spong (2000).
  • 16. 16/18 Simulation Results Pendulum angle, velocity Pendulum angle, velocity MSS Controller [Olfati-Saber, 2001] 2.2 sec 3.6 sec time (second) time (second) Wheel velocity VS Wheel velocity 3 sec 3.7 sec time (second) time (second)
  • 17. 17/18 Simulation Results Control effort (Nm) Control effort (Nm) 0.43 Nm 0.33 Nm VS time (second) time (second) MSS Controller [Olfati-Saber, 2001]
  • 18. 18/18 Concluding Remarks  The collocated partial feedback linearization was presented for transform a nonlinear underactuated mechanical system into the strict feedback form  A Multiple Sliding Surface controller is designed to achieves global asymptotically stable of the pendulum angle and the wheel velocity (neglect the wheel angle)  The MSS has advantages that the two controllers, i.e.  no supervisory switching required as in Spong’s design (2000) (more simple structure)  the response is faster than the designs by Olfati-Saber (2001) (more better performance)  However, more control effort required for MSS
  • 19. Thank you Please comments and suggests! CONTROL OF ROBOT AND VIBRATION LABORATORY