SlideShare une entreprise Scribd logo
1  sur  93
Télécharger pour lire hors ligne
Les Techniques de
transmission
dans les réseaux
Informatiques
Pr. Benabbou Faouzia
Laboratoire de Technologie d’Information et Modélisation
Université Hassan II -Casablanca
Faculté des sciences ben M'sik
2020-2021
2
Transmission de données
q Pour faire une communication, il faut avoir un moyen pour
transmettre les données
q Évolution de moyen de systèmes de communication
• Age primitif : signaux de la fumée
• Pas trop loin : le télégraphe (Code de Morse)
• Téléphonie, Radio, Télévision,
q Moyen de transmission adapté à l’information à transmettre
q Problèmes majeurs
• Codage de l’information
• Numériser l’information
• Adapter les signaux au support physique de transmission
F. Benabbou-Transmission de Données
3
Système de communication
Définition : Un système de communication a pour
fonction d’assurer le transport de l’information entre un
émetteur (ou plusieurs) et un (ou plusieurs) récepteurs
reliés par un canal de communication. Cette information
est transportée sur le canal sous forme d’un signal.
récepteur
émetteur
canal de communication
signal
sens du transfert de l'information
F. Benabbou-Transmission de Données
4
Système de communication
q Exemples : téléphone, télévision.
q Caractéristiques : un système de
communication peut être caractérisé par :
• le type de l’information transmise (son, image vidéo,
données informatiques,...)
• les transformations nécessaires pour transmettre cette
information (son, transformation en un signal
électrique).
F. Benabbou-Transmission de Données
5
q Trouver une “ bonne ” transformation de l’information en
signal tel que le canal soit capable de le propager
“ correctement ”
q Pour que le récepteur puisse trouver suffisamment
d’informations dans le signal reçu pour reconstituer
l’information initiale.
Problème de la transmission
F. Benabbou-Transmission de Données
6
q Définition :
L’information à transmettre est une séquence binaire (ou message
binaire).
q Les éléments constituant un système bipoint sont :
1. L’émetteur et le récepteur : équipements informatiques
(ordinateurs, imprimantes, etc.) appelés Equipement Terminaux de
Traitement de Données, dits ETTD.
2. Le canal de communication, (ou voie ou ligne de transmission) :
support physique qui peut être un câble électrique, fibre optique ou
une onde hertzienne.
Système de communication informatique
F. Benabbou-Transmission de Données
7
q Terminologie :
¨ L’information est transportée sur le support sous forme d’un signal résultant de
la transformation de l’information binaire pour l’adapter au support.
¨ Cette transformation est réalisée par des appareils situés à chaque extrémité de
la voie et appelés ETCD : Equipements Terminaux de Circuit de Données,
comme les modems.
¨ L’ensemble “ ligne plus modems ” s’appelle un circuit de données
¨ On appelle liaison de données (bipoint) l’ensemble formé des ETTD, des ETCD et
de la ligne.
F. Benabbou-Transmission de Données
8
Notion de signal
q Définition : un signal est une grandeur physique qui
évolue au cours du temps, il est caractérisé par son
amplitude et sa fréquence.
q Exemple de signaux
§ une grandeur électrique (intensité, tension),
§ une intensité sonore,
§ une onde électromagnétique (rayons infrarouges, ondes
lumineuses, etc.).
F. Benabbou-Transmission de Données
9
§ La forme générale du signal est f(t)=A.sin(w0t + φ)
§ A l’amplitude de l’onde
§ f la fréquence de l’onde, nombre de fois que l’onde se
reproduit identique à elle-même en une seconde
§ φ la phase, w0=f/2π
Caractéristique d’un signal (électrique)
F. Benabbou-Transmission de Données
10
Notion de signal
q Deux type de signaux
Signal continu Signal discret
x n’est défini qu’en un
ensemble dénombrable de
points
F. Benabbou-Transmission de Données
11
q Signal analogique
q Signal Numérique
Type de signaux
F. Benabbou-Transmission de Données
12
q La courbe d’amplitude d’un signal analogique est
une courbe continue quelconque
q Les signaux « réels » sont par nature analogiques
puisque les phénomènes physiques qu’ils
représentent sont analogiques (ex: le son,…).
Signal analogique
F. Benabbou-Transmission de Données
13
Signal numérique
n On définit un signal numérique comme une grandeur
codée par un ensemble fini de valeurs.
n La courbe d’amplitude d’un tel signal est une courbe en
escalier.
n Par exemple:
F. Benabbou-Transmission de Données
14
q Un signal numérique peut être analysé suivant trois caractéristiques :
§ amplitude en fonction du temps,
§ puissance en fonction de la fréquence,
§ et débit binaire.
q Spectre de puissance du signal numérique
q La durée d’émission d’un bit est appelée Tb.
Puissance du signal émis
1/2T 1/T 3/2T
-12V
+12V
Amplitude du signal émis
t
f
Signal numérique
F. Benabbou-Transmission de Données
15
q Les signaux numériques peuvent être transformés en
signaux analogiques par des techniques de modulation.
§ L’opération inverse qui permet de retrouver le signal initial
s’appelle la démodulation
q De même, il est possible de “ numériser ” un signal
analogique en appliquant des techniques telle MIC
(modulation par impulsion codée)
§ basée sur l’échantillonnage du signal et le codage de chaque
échantillon.
Traitement de signal
F. Benabbou-Transmission de Données
16
q Les caractéristiques d’une liaison de données
(débit, taux d’erreur,...) dépendent beaucoup :
§ des caractéristiques des supports
o bande passante, affaiblissement du signal en fonction de la
longueur, délai de propagation, distorsion,...
§ de la façon d’utiliser ces derniers pour transmettre
l’information, par exemple avec ou sans multiplexage.
Les caractéristiques des liaisons
F. Benabbou-Transmission de Données
17
q Relations entre Support de transmission et Canal
§ Un support physique est tout dispositif qui transporte le signal
§ Un support peut être formé de un ou plusieurs canaux
§ Un canal sur un support occupe toute ou une partie de la
bande passante
§ Partage de la bande passante entre les différents canaux
Concept de base
canal
Bande
passante
signaux
F. Benabbou-Transmission de Données
18
Elles permettent de savoir quelles transformations il faudra
effectuer sur les signaux à émettre pour qu’ils soient
transportés correctement
Caractéristiques des supports
F. Benabbou-Transmission de Données
19
n L’affaiblissement croît plus vite que la distance
n L’affaiblissement varie en fonction de la
n L’affaiblissement dépend:
w La nature du support de transmission
w La distance parcouru par le signal
w amplificateur de signal dans la liaison
w La fréquence du signal
w ex : proportionnel à Öf sur les paires métalliques
Affaiblissement du signal
F. Benabbou-Transmission de Données
20
q Une voie peut être caractérisée par :
o sa largeur de bande ou bande passante, sa courbe d’affaiblissement et sa
capacité de transporter de l’information.
q La bande passante (BP) d’une voie est la plage de fréquence sur
laquelle la voie est capable de transmettre des signaux sans que
leur affaiblissement soit trop important.
q C’est la plage de fréquences où il présente les meilleurs caractéristiques
de transmission.
q Elle s’exprime en Hertz
q La largeur de bande passante=f2-f1.
B an d e
P ass an te
F ré q u en ce
R ap p ort
d 'a ffa ib liss em e nt
Bande passante
F. Benabbou-Transmission de Données
21
¨ Elle donne la valeur du rapport d’affaiblissement des
signaux en fonction de la fréquence :
• Le rapport d’affaiblissement est le rapport entre
l’amplitude du signal reçu et la puissance du signal
émis
• Il est considéré comme nul pour les fréquences hors de
la bande passante
• Il est constant pour les fréquences dans la bande
passante
La courbe d’affaiblissement
F. Benabbou-Transmission de Données
Longueur élémentaire
q La longueur élémentaire d’une voie est la longueur
maximale de support au delà de laquelle le signal doit être
amplifié ou répété pour être correctement reçu.
q Intérêt
§ L’importance de l’affaiblissement dépend des caractéristiques
physiques du support :
o il est moins important dans les fibres optiques que dans les câbles électriques,
dans les câbles coaxiaux que dans les paires torsadées
22
F. Benabbou-Transmission de Données
23
§ La capacité (débit maximal) d’une voie est la quantité
maximale d’information qu’elle peut transporter par
seconde.
§ L’unité d’information étant le bit, la capacité s’exprime en
bit/s.
La capacité
F. Benabbou-Transmission de Données
24
q Le débit théorique maximum d’un support soumis à du
bruit est :
C=W.log2(1+S/N)
§ où D est exprimé en bit/s
§ W exprimé en Hertz (Hz), représente la bande passante
du support,
§ S/N est le rapport de la puissance du signal émis sur la
puissance du bruit de la voie exprimé en décibel.
§ La correspondance avec les unités “ réelles ” est
donnée par la relation :
S/N décibel=10 log10(S/N).
Formule de shannon-Tuller
F. Benabbou-Transmission de Données
25
q Le temps de transit dans une station est le temps pendant le quel une
trame est retardée entre l’instant de début de réception et celui du
début de sa ré-émission
q Par exemple : c’est le temps d’attente dans un commutateur de trame
q Le délai de transit se mesure normalement en seconde, mais aussi en
bit par analogie avec la notion de longueur du canal Lc
Délai de Transit
F. Benabbou-Transmission de Données
26
q C’est la durée qui sépare le début d’émission d’un message de la fin
de sa réception.
q Le délai de transfert est la somme du délai de transmission et du délai
de propagation
Ttransfert = Tt+Tp
q Il est aussi appelé délai d’acheminement
q Pour des supports de faibles longueurs, le délai de propagation est
négligeable
Délai de Transit
F. Benabbou-Transmission de Données
27
q Un signal se propage sur un support à une vitesse dite
vitesse de propagation
On note par
d : la longueur du canal (en mètre)
V : la vitesse de propagation (en mètre/seconde)
Alors : Le délai (ou le temps) de propagation est Tp = d/V
q La vitesse de propagation dépend du support de
transmission
qVitesse de la lumière mais dépend du support
§ 3.0 x 108 mètres/seconde dans le vide
§2.3 x 108 mètres /seconde sur un câble
§2.0 x 108 mètres /seconde dans une fibre
§Approximation générale: 5μs/km
d
V
Délai de Propagation
F. Benabbou-Transmission de Données
28
Délai de Transmission
q Le Temps de transmission est le temps nécessaire à
l’émission ou la réception d’une trame (ou paquet)
§ Une Trame (ou paquet) est un Bloc lié de bits
successifs
On Note par:
L : Longueur de la trame en bits
B : le débit binaire
Alors le temps de transmission Tt=L/B
 Exemple:
§ Une trame de taille L=128 octets sur Réseau
Ethernet fonctionnant à 10 Mb/s a un délai de
transmission 128*8(bits)/106 (bits/sec) =10-3 sec = 1
ms F. Benabbou-Transmission de Données
Temps de transfert sur un lien
29
F. Benabbou-Transmission de Données
30
Longueur du Canal
q On appelle longueur d’un canal Lc (en bits) le nombre de bits
présent simultanément tout au long du canal
q On peut l’assimiler à la taille d’une trame telle que l’on émet
le dernier bit quand le premier arrive au récepteur
q C’est le nombre de bits qu’on émet pendant que le premier
se propage sur le canal
Lc = B*d/V = B*Tp
B : le débit
Tp: le temps de propagation
d: la longueur du canal (en mètre)
V : : la vitesse de propagation (en mètre/seconde)
4 2 1
3
8 6 5
7
9
F. Benabbou-Transmission de Données
31
q Unités de mesure
§ bit – une unité binaire (0 ou 1)
§ octet (ou Byte) – groupe de 8 bits
§ Kilo-octets (Ko) – 1024 octets = 210
§ Méga-octets (Mo) – 1024Ko - 1048576 octets=220
§ Giga-octets (Go) – 1024 Mo - 1073741824 octets = 230
§ téra octet (To) = 1024 Go
Unités de Données
F. Benabbou-Transmission de Données
32
Throughput ou Débit Réel
q Il est défini pour évaluer la performance de l’usage que l’on
fait du réseau
§ Si on émet de toutes petites trames on utilisera peu le canal
§ Si on émet de grande trame ça sera le contraire
q Le « Throughput » est défini par
Th= L/(Tp+Tt )
Exemple :
§ 10Mbit/s, 2Km, avec L= 2000 Octets Th= 9,9Mbit/s
§ 10Mbit/s, 2Km, avec L= 100 Octets Th= 8,89 Mbit/s
§10Mbit/s, 2Km, avec L= 512 Bits Th= 8,3Mbit/s
F. Benabbou-Transmission de Données
33
Taux D’utilisation
q Il est défini par le rapport entre le « throughput » et le débit
binaire à la base de temps de transmission
U = Th/B
q le taux est sans unité
q Pour les trois exemples précédents on obtient
respectivement les taux d’utilisation suivant 0,99; 0,89; 0,83
si on note a= Lc/L= Tp/Tt
on montre que U = 1/(1+a)
F. Benabbou-Transmission de Données
Taux d’erreur
q Il s’exprime par la probabilité de perte ou d’altération
d’une information élémentaire (bit) transmise sur cette
voie
q On peut le déterminer en mesurant ( pendant une
période de temps significative) le rapport du nombre de
bits erronés sur le nombre de bits transmis.
q Le taux d’erreur résiduel est le taux d’erreur qui reste
après la mise en œuvre des mécanismes de protection
contre les erreurs par la couche liaison
34
F. Benabbou-Transmission de Données
Mode d’utilisation d’un circuit de
données
M O D E M
ém etteur M O D E M ré cep teur
M O D E M
ém etteur
M O D E M
ré cep teur
M O D E M M O D E M
ré cep teur
ém etteur
ém etteur
ré cep teur
ém etteur
ré cep teur
M o de sim ple x
M o de half-d u ple x
M o de full-d uplex
35
q Trois types de circuits de données sont utilisés en transmission de
données :
§ Mode simplex
§ mode half-duplex
§ mode full-duplex
F. Benabbou-Transmission de Données
Modes de transmission
q La transmission n’est possible que si le récepteur sait à
quel rythme les bits de chaque donnée sont transmis
q Le récepteur doit pouvoir déterminer :
§ chaque bit
§ quel bit est le 1er et le dernier de chaque bloc de bits (octet)
§ Le début et la fin de chaque bloc d'octets (trame)
q on distingue
§ transmission asynchrone
§ transmission synchrone
36
F. Benabbou-Transmission de Données
Notion d’horloge
q Emetteur et récepteur possède une Horloge qui leur
permet de savoir quand émettre et quand recevoir
q C’est un signal périodique
q Représentation de l’Horloge
37
F. Benabbou-Transmission de Données
Transmission Synchrone
q Émetteur et récepteur sont cadencés à la même horloge
q Le récepteur reçoit de façon continue (même lorsque
aucun bit n'est transmis) les informations au rythme où
l'émetteur les envoie.
q C'est pourquoi il est nécessaire qu'émetteur et récepteur
soient cadencés à la même vitesse.
q Les horloges sont synchrones: même fréquence et
même phase.
38
F. Benabbou-Transmission de Données
Transmission Synchrone
q Les transitions de H conditionnent celles des Données.
39
F. Benabbou-Transmission de Données
Transmission Synchrone
q Flux continu binaire:
§ Echange par bloc d'octets: trame
§ La longueur du blocs peut être quelconque ou fixe, délimités par
des symboles de début et fin de blocs
§ Les caractères se suivent sans temps mort entre octets
successifs
q L’horloge est le plus souvent fournit par l’émetteur
§ par une ligne additionnelle
§ par un codage auto synchronisant (ex. : code Manchester qui
sera vu ultérieurement)
§ par transmission de messages de synchronisation
40
F. Benabbou-Transmission de Données
Transmission Asynchrone
q Dans le cas de transmission asynchrone, il n’y a pas de
référentiel temporel entre l’émetteur et le récepteur
q Données sont transmises sur la base de caractère
§ 5 à 8 bits de données
q Synchronisation maintenue pour chaque caractère
§ Les horloges de l’émetteur et du récepteur ont la même
fréquence et l’horloge bit est définie à partir du signal de début
de bloc
q Permet d’éviter les erreurs d'échantillonnage lorsqu'il y a
une dérive de l'horloge
q Période d'inactivité aléatoire entre les caractères
41
F. Benabbou-Transmission de Données
Transmission Asynchrone
q L’émetteur envoie un signal de début de bloc pour indiquer au
récepteur de synchroniser son horloge
q Donc chaque donnée transmise comporte des bits supplémentaires
§ 1 bit de START, toujours à 0, pour la synchronisation
§ les 7 ou 8 bits de donnée
§ 1 bit de parité éventuel, pour détection d’erreurs
§ 1 ou 2 bits de STOP, toujours à 1
§ au repos, la ligne reste à 1
42
F. Benabbou-Transmission de Données
43
qAsynchrone :
§ A cause de la dérive des horloges, il n’est pas possible
de transmettre de longues suites binaires : la taille des
blocs est de 10 bits au maximum
§ Ce mode de transmission est sensible aux erreurs dues
aux parasites puisque la détection d’un début de
caractère (signal d’échantillonnage) est définie par le
passage à 0 de la ligne.
§ Le mode asynchrone est utilisé pour les liaisons
courtes et basse vitesse, et où la source de donnée
produit des caractères à des instants aléatoires
(communications télégraphiques, communications avec
les terminaux)
Transmission Asynchrone
F. Benabbou-Transmission de Données
Caractéristiques des signaux
q Le moment élémentaire Tm
§ C’est l’intervalle de temps de quantification ou de modulation,
§ C’est la durée minimale pendant laquelle chaque valeur élémentaire
du signal reste positionnée sur la voie.
§ l’intervalle significatif le plus court séparant deux instants significatifs
successifs.
§ Autrement Tm est la durée d’un élément binaire bit.
q La rapidité modulation Rm
§ définie par l’inverse de Tm Rm = 1/ Tm
§ Représente la quantité d’informations transmises par moments
élémentaires.
§ C’est le nombre de signaux élémentaires transmis par seconde sur
la voie.
§ La rapidité de modulation s’exprime en bauds
44
F. Benabbou-Transmission de Données
45
Caractéristiques des signaux
q En télégraphie Tm=0.02s, Rm = 50 Bauds.
q La quantité d’information transmise dépend:
§ du nombre de signaux élémentaires transmis
§ mais aussi de l’information contenue dans chaque signal
élémentaire
§ Ex:
o 00 V1,
o 01 V2,
o 10 V3,
o 11 V4
Ou
o 0 V1, et 1 V2
F. Benabbou-Transmission de Données
46
q la valence du signal: Nombre d’états que peut prendre un signal
pour représenter l’information
q La théorie de l’information a permis de montrer que si le nombre
d’états significatifs distincts d’un signal est égal à n, la quantité
d’information contenue dans ce signal est :
v = log2 n (Karbowiak 1969)
§ V : La quantité d’information contenue dans un moment élémentaire,
§ n : Le nombre de valeurs différentes sur la ligne de transmission.
La valence
F. Benabbou-Transmission de Données
La valence
47
F. Benabbou-Transmission de Données
Relation entre débit et rapidité de
modulation
q Il est important de savoir quel est le débit binaire
correspondant à une technique de transmission
particulière caractérisée par sa rapidité de modulation
Rm.
q La relation entre ces deux grandeurs peut s’exprimer :
D= Rm* (nombre de bits codés avec un état physique)
ou encore, si l’on considère les grandeurs Tm et Tb (D=1/Tb,
Rm=1/Tm) :
D=Rm*log2(n)
q Par contre, s’il faut plusieurs états physiques pour coder
un bit,on a : D = Rm/k k : nombre d’états pour coder un bit
48
F. Benabbou-Transmission de Données
49
R=D/2
R=D
R=2D
R=D
F. Benabbou-Transmission de Données
Remarque
q les bits par seconde correspondent à une quantité
d’information transmise par seconde
q les bauds correspondent à une vitesse de transmission
des signaux élémentaires
q Le développement de procédés de modulation
complexes a permis de transmettre plusieurs bits
pendant la même durée élémentaire.
q Ainsi, la rapidité de modulation a pu rester constante
pendant que le débit binaire a augmenté
50
F. Benabbou-Transmission de Données
51
q Dans de nombreuses applications la valence est égale à 2 et
k=1, et donc D =Rm.
q Cette coïncidence est à l’origine de nombreux abus de
langage
q les techniques de modulation utilisent souvent une valence
de signal supérieure à deux
q Par exemple, dans une modulation de phase à quatre phases
(0,p/2, p et 3p/2), n = 4 et donc D=2*Rm.
Remarque
F. Benabbou-Transmission de Données
Modulation / Codage
53
Adaptation du signal au support
q La déformation des signaux transmis augmente lorsque la bande
passante de fréquence utilisée est importante
q Certaines lignes ne laissent pas passer les basses fréquences
§ les signaux numériques ont un spectre qui contient des fréquences
basses
q Adaptation du spectre du signal à la ligne ; quand les appareils
(transformateurs, amplificateurs) ne laissent pas passer les basses
fréquences
q Résistance aux bruits, qui dépend de la largeur de bande occupée par
le signal et du nombre de niveaux du code
q Estimation du signal d’horloge en réception pour la transmission
synchrone
F. Benabbou-Transmission de Données
54
Adaptation du signal au support
qLe but est de réduire la fréquence principale du
signal transmis
qDeux types de transmission:
§ transmission numérique (ou en bande de base)
§ transmission analogique (ou par transposition en
fréquence ou modulation)
F. Benabbou-Transmission de Données
Transmission en bande de base
q Ce mode de transmission est utilisé pour la transmission
synchrone lorsque la voie utilisée peut transporter les
basses fréquences
q Utilisée sur des supports à grande bande passante
q Où des distances limitées (de l’ordre de qq km)
q la plage de fréquences utilisée par le signal issu de la
suite codée est la même que celle de la suite initiale.
q L’intérêt de ce mode de transmission est son coût peu
élevé et sa simplicité
55
F. Benabbou-Transmission de Données
Quelques précisions
q Tout signal est une somme de composantes purement
sinusoïdales (fondamentale et harmoniques).
q Dans la plupart des cas, les harmoniques supérieures à un
certain rang peuvent ne pas être transmises
sans qu'on note une altération inacceptable du signal.
q Les harmoniques d'un signal transmis sur une ligne sont
diversement atténués, suivant leur fréquence, par la bande
passante de la ligne.. 56
F. Benabbou-Transmission de Données
Quelques précisions
q Si l'ensemble des harmonique utiles du signal à
transmettre se situent dans la bande passante
de la ligne que l'on souhaite utiliser,on peut appliquer ce
signal directement à l'entrée de la ligne.
q Il sera transmis sans atténuation notable à l'autre
extrémité.
57
F. Benabbou-Transmission de Données
Transmission en bande de base
q Le signal codé est envoyé tel qu’il sur le support de transmission
q Le récepteur doit reconstituer le signal avant de le décoder.
q Le signal reconstitué est légèrement déphasé par rapport au signal
d’origine
q La vitesse de transmission est faible. 58
F. Benabbou-Transmission de Données
Les principales qualités d’un code
q largeur de sa plage de fréquences :
§ la plus étroite possible
q codage de l’horloge
q résistance au bruit
q complexité du codage
§ coût et vitesse de codage
q facilité d’installation
q …
59
F. Benabbou-Transmission de Données
Les codes usuels utilisés en bande
de base
q Les codes à deux niveaux (binaire) :
§ code NRZ (Non Return to Zero)
§ code NRZI (Non Return to Zero Invert)
§ code biphase
§ code biphase différentiel
§ code de Miller
q Les codes à trois niveaux (ternaire) :
§ code RZ (Return to Zero)
§ code bipolaire (simple)
§ code bipolaire entrelacé d’ordre 2
§ codes bipolaires à haute densité d’ordre n (BHDn)
60
F. Benabbou-Transmission de Données
Les codes usuels utilisés en bande
de base
q Les états peuvent représenter par exemple :
§ deux niveaux de tension par rapport à la masse
§ la différence de tension entre deux fils
§ la présence/absence de courant dans un fil
§ la présence/absence de lumière
61
F. Benabbou-Transmission de Données
62
q Code : 1 → -a
0 → +a
q Exemple
Code NRZ (No Return to Zero)
F. Benabbou-Transmission de Données
63
q Code simple, utilisé couramment entre
l’ordinateur et ses périphériques
q Ses principaux inconvénients sont que
l’information d’horloge n’est pas transportée
q La composante continue n’est pas nulle (il
faut brouiller le signal)
q Le spectre de puissance du code NRZ est
concentré aux basse fréquence
Code NRZ (No Return to Zero)
F. Benabbou-Transmission de Données
64
Code NRZ: Exemple
F. Benabbou-Transmission de Données
Code biphase (ou Manchester)
q code:
1 → (-a/+a)
0 →(+a/-a)
qExemple:
65
F. Benabbou-Transmission de Données
Code biphase (ou Manchester)
q Les principaux avantages sont que l’information
d’horloge est transportée (une transition à chaque
bit émis)
q Essentiellement codage destiné à régler le problème
de la transmission aux basses fréquences.
q La composante continue est nulle (les composantes
sinusoïdales coswt ou bien sinwt où la période est
nul et w est infini )
q Le spectre du signal résultant est deux fois plus
large que pour le code NRZ (spectre de puissance
indiquent la répartition en fréquences de la
puissance du signal)
66
F. Benabbou-Transmission de Données
67
Code biphase: Exemple
F. Benabbou-Transmission de Données
Code biphase différentiel
q C’est un dans lequel les transitions sont définies par valeur
précédente du niveau de la ligne
§ La transmission de chaque élément binaire est réalisée
par l’émission d’une transition (montante -a/+a, soit
descendante +a/-a sur la voie.
§ Exemple:
valeur 1 : même transition que celle du bit précédent
valeur 0 : transition opposée à celle du bit précédent
68
F. Benabbou-Transmission de Données
Code biphase différentiel
q Les avantages sont les mêmes que pour le codage biphase
q L'intérêt est de s'affranchir de la phase de la l'horloge
§ En effet, d'après la définition du code Biphase, le signal élémentaire
est comparé à la valeur précédemment (égale ou l’inverse) reçue
pour décider respectivement de la valeur "0" ou "1".
q Il faut cependant définir une valeur initiale de transition pour
le premier bit transmis
q le 1er symbole doit être décodé de façon certaine
q Problème s'il y a corruption d'un des symboles : la suite est
mal décodée
q Codage utilisé par Token Ring.
69
F. Benabbou-Transmission de Données
70
Code biphase différentiel: exemple
F. Benabbou-Transmission de Données
Code bipolaire simple
q Code:
0 →0
1 →+a ou –a alternativement
71
F. Benabbou-Transmission de Données
q Code ternaire,
q Possibilité de dérive de l’horloge (suite de 0)
q Utilisé par le système de téléphonie
numérique
72
Code bipolaire
F. Benabbou-Transmission de Données
Transmission par modulation
q Si les ou quelques harmoniques du signal se trouvent en dehors de la
bande passante de la ligne, il faut utiliser d'autres modes de
transmissions : la modulation.
q Si on transmet directement le signal sur ce support il serait totalement
atténué par ce dernier.
73
F. Benabbou-Transmission de Données
Transmission par modulation
q D'abord on génère une sinusoïde de fréquence assez élevée pour
être largement contenue dans la bande passante du support de
transmission
q Cette sinusoïde s'appelle la porteuse
q La sinusoïde est définie par 3 paramètres: la fréquence f,
l’amplitude A et la phase j
P = A sin(2 p F t + F)
q Il s’agit de transformer un signal en bande de base a(t) (signal
modulant), en un signal modulé dont le spectre est situé dans une
bande étroite centrée sur une fréquence porteuse.
q La porteuse n’a d’autre rôle que de transporter
q La porteuse ne véhicule en elle même aucune information, seule sa
modulation a une signification
74
F. Benabbou-Transmission de Données
Transmission par modulation
q Prenons une porteuse de la forme:
P = A cos(2 p F t + F) (1)
q Chacun des trois paramètres de la porteuse peut être
séparément rendu proportionnel au signal à transmettre.
q Ce qui donne lieu aux trois types fondamentaux de
modulation :
§ Modulation d'Amplitude
§ Modulation de Fréquence
§ Modulation de Phase
75
F. Benabbou-Transmission de Données
Modulation d’amplitude
q Le signal à transporter n'est généralement pas une sinusoïde
mais peut toujours être décomposé (séries de Fourrier) en un
certain nombre de sinusoïdes pures appelées ses
harmoniques. Prenons l'une de ces harmoniques :
(2)
q Pour moduler la porteuse P par le signal à transporter " s ", on
fait en sorte que l'amplitude de la porteuse (1) soit fonction
linéaire du signal s
q Nous obtenons ainsi la porteuse p modulée par le signal s.
76
F. Benabbou-Transmission de Données
Modulation d’amplitude
q Signal modulé : sm(t) = A(t) cos(2 p fo t - fo)
avec A(t) = K + s(t) et s(t) Î {-a,+a} ... ou s(t) Î [-a,+a]
q Technique électroniquement simple mais sensible au bruit
77
Sm(t)
1/f0
F. Benabbou-Transmission de Données
Modulation de fréquence
q Dans la formule (1) de la porteuse, on remplace
la fréquence ou la phase par une fonction
linéaire du signal formule (2).
q Signal P modulée par le signal s modulé
q L'amplitude du signal modulé reste constante,
q C'est sa fréquence qui oscille autour d'une
valeur centrale F0.
78
F. Benabbou-Transmission de Données
Modulation de fréquence
q Signal modulé : sm(t) = A0 cos(2 p f(t) t - fo)
avec f(t) = f0 + s(t) et s(t) Î {-w,+w}... Ou s(t) Î [-w,+ w]
q Utilisée par la technique de multiplexage fréquentiel.
79
Sm(t)
F. Benabbou-Transmission de Données
Modulation de phase
80
q Modulation de phase :
q Signal P modulée par le signal s modulé
F. Benabbou-Transmission de Données
Modulation de phase
q Signal modulé : sm(t) = A0 cos(2 p fo t - f(t))
avec f(t) = f0 + s(t) et s(t) Î {P k/n} (dans ce cas on prend 0 et p /2) pour
n symboles ... Ou s(t) Î [-P,+ P]
q Modulation complexe
81
Sm(t)
F. Benabbou-Transmission de Données
MODEM
82
q Le rôle du modem est de transformer le message de données à émettre
en un signal compatible avec la ligne.
qLe classement des MODEM est défini par des avis du CCITT en fonction
des critères suivants :
§ Technique de transmission : bande de base ou modulation.
§ Débit : 300, 600, 1200, 2400, 9600, 12900...bits.
§ Support de transmission : réseau commuté, lignes spécialisées half-
duplex (avec ou sans voie de retour) ou full-duplex.
§ Méthode de synchronisation : synchrone ou asynchrone.
§ Format de l’appareil : boîtier indépendant, carte à insérer dans
l’ordinateur, circuit intégré.
F. Benabbou-Transmission de Données
83
Partage statique d’une voie
Lorsque plusieurs circuits de données doivent être réalisés en
parallèle entre deux points A et B une question se pose :
Est ce qu’on peut utiliser une voie pour envoyer des données
différentes ?
ê
Oui c’est possible grâce à des techniques de concentration et
de multiplexage
F. Benabbou-Transmission de Données
84
Partage statique d’une voie
q Concentration
§ c’est un partage à la demande d’un canal de
sortie entre plusieurs canaux d’entrée
§ Si plusieurs canaux d’entrée sont actifs en
même temps, il faut soit stocker une partie de
l’information à transmettre, soit bloquer le trafic
de certains canaux.
F. Benabbou-Transmission de Données
85
Partage statique d’une voie
q Multiplexage
§ il consiste à diviser, par une méthode invariable
dans le temps, un support commun de débit D
entre plusieurs canaux (logiques) dont la
somme des débits ne peut excéder D.
§ Le multiplexeur combine les données de
plusieurs voies de transmission dites voies
basse vitesse en un seul train de donnée sur
une voie haute vitesse dite voie composite
F. Benabbou-Transmission de Données
86
q Multiplexage
Il existe trois techniques de multiplexage :
§ Le multiplexage en fréquence (FDM : Frequence
Division Multiplexing)
§ Le multiplexage temporel (SDTM : Synchronous
Time Division Multiplexing)
§ Le multiplexage statistique
F. Benabbou-Transmission de Données
87
Multiplexage Fréquentiel
Ø Multiplexage Fréquentiel
ü Partage de la bande passante en fonction de la fréquence d’émission
ü Cas du canal radio:
§ La Bande de fréquence FM [ 88 MHz - 108 MHz] contient
plusieurs canaux
§ Chaque canal est caractérisé par une fréquence dite porteuse
( qui transporte le signal)
§ Le Signal est transporté dans une sous bande centrée sur la
fréquence porteuse
§ La largeur de la sous bande dépend de la bande passante de
l’information c’est à dire la quantité d’information par unité de
temps
Fréquence
88 108
93 MHz 97 MHz
Fréquence Porteuse 97 MHz
Sous-Bande qui transporte le signal
F. Benabbou-Transmission de Données
88
+ +
X
X
X X
X
X
voie 1
voie 1
voie 3
voie 2
voie 3
voie 2
......
......
ligne
multiplex
multiplexeur démultiplexeur
filtre passe-
bande
filtre passe-bande
modulateurs
démodulateurs
voie1 voie2 voie3 voie n
Amplitude
spectre du signal émis sur la ligne multiplex
f
spectre des voies i
f
Amplitude
F. Benabbou-Transmission de Données
89
q Le multiplexage temporel
§ Comme son nom l’indique cette technique est basée sur
un découpage de l’espace-temps, et non comme ci-
dessus sur un découpage de l’espace fréquence.
§ La suite binaire continue qui circule sur la voie haute
vitesse est découpée en trames de longueur identique de
L bits
§ chaque trame est découpée en sous blocs de di bits
appelés Intervalles de Temps
§ Les données de chaque voie basse vitesse i sont émises
dans les « emplacements » correspondant aux intervalles
de temps de rang i des trames de la voie haute vitesse
§ On obtient ainsi un entrelacement des données des n
voies basse vitesse dont le débit binaire Di est D/n.
F. Benabbou-Transmission de Données
90
a1 am b1 b2 bm z1 z2 zm
a1 b1 z1 a2 b2 z2 am bm
IT1 IT2 ITI ITn IT1 IT2 ITi ITn IT1 IT2
di
L
trame 2
trame1
L L
trame m
blocs émis sur la voie n :
blocs émis sur la voie 2 :
blocs émis sur la voie1 :
a2
F. Benabbou-Transmission de Données
91
q Lorsque les circuits basse vitesse sont des liaisons en mode
synchrone, le multiplexeur fait un découpage artificiel des
données basse vitesse pour les transmettre sur les IT. La
longueur de la trame (L) est calculée d’après le débit binaire
des voies basse vitesse et celui de la voie composite.
q Par exemple, D=19200 bit/s, Di=1200bit/s, di=1 bit et L=16
bits.
q La plupart des multiplexeur temporels disponibles sur le
marché proposent des intervalles de temps (IT)
correspondants à des sous blocs di de 1 bit ou 8 bits.
q Le multiplexage temporel a été d’abord mis au point pour le
réseau téléphonique dans le but d’obtenir une meilleure
efficacité de la transmission de la voix sur les supports
téléphoniques
q Il existe de plus des multiplexeurs qui permettent de
multiplexer des liaisons de données avec des voies
téléphoniques numérisés (MIC).
F. Benabbou-Transmission de Données
92
q Le multiplexage statistique
§ C’est une technique numérique permettant de concentrer
des liaisons asynchrones sur une liaison synchrone en
exploitant les temps de silence des voies asynchrones
§ Comme pour le multiplexage temporel, la ligne
multiplexée est allouée régulièrement à chaque terminal,
mais seulement s’il a besoin de transmettre
§ Les temps de silence sont évalués statistiquement (d’où le
nom donné à cette technique) et définissent l’allocation
statique de chaque voie base vitesse
§ Le prélèvement sur les différentes voies reliées au
multiplexeurs n’est pas cyclique mais modifié
dynamiquement en permanence selon l’activité réelle sur
chacune d’elle
F. Benabbou-Transmission de Données
93
q Le multiplexage statistique
§ avec ce procédé on récupère la bande passante des
voies inactives
§ il est nécessaire de transmettre l’adresse de la voie
émettrice
§ Comme pour les techniques de concentration, il est
nécessaire de disposer de mémoires de stockage pour
les caractères en attente de voies asynchrone, et il y a
risque de débordement si le débit de ces voies dépasse
les estimations prévues.
F. Benabbou-Transmission de Données

Contenu connexe

Similaire à Les Techniques de transmission dans les Réseaux Informatiques(OSI)

cours2.pdf
cours2.pdfcours2.pdf
cours2.pdfAlynaEla
 
TRANSMISSION NUMERIQUE Année 2022-2023 CEFIB
TRANSMISSION NUMERIQUE Année 2022-2023 CEFIBTRANSMISSION NUMERIQUE Année 2022-2023 CEFIB
TRANSMISSION NUMERIQUE Année 2022-2023 CEFIBYounoussKEITA
 
Chap2 physique
Chap2 physiqueChap2 physique
Chap2 physiqueEns Kouba
 
cours-transmission-serie.pdf
cours-transmission-serie.pdfcours-transmission-serie.pdf
cours-transmission-serie.pdfmerazgaammar2
 
modulation AM FM PM
modulation AM FM PMmodulation AM FM PM
modulation AM FM PMHassnTAI
 
chap2 genéralites-chaine_de_transmission_15-16
chap2 genéralites-chaine_de_transmission_15-16chap2 genéralites-chaine_de_transmission_15-16
chap2 genéralites-chaine_de_transmission_15-16BAKKOURY Jamila
 
Communication et support de Transmission L1 UNILO 2023.pdf
Communication et support de Transmission L1 UNILO 2023.pdfCommunication et support de Transmission L1 UNILO 2023.pdf
Communication et support de Transmission L1 UNILO 2023.pdfBernardKabuatila
 
Tp 3 transmission de donné modulation d'amplitude,de fréquence et de phase
Tp 3 transmission de donné modulation d'amplitude,de fréquence et de phaseTp 3 transmission de donné modulation d'amplitude,de fréquence et de phase
Tp 3 transmission de donné modulation d'amplitude,de fréquence et de phasehamdinho
 
Media et equipement réseau
Media et equipement réseauMedia et equipement réseau
Media et equipement réseauMohamed Keita
 
Modulation AM.pdf
Modulation AM.pdfModulation AM.pdf
Modulation AM.pdfHassnTAI
 
Arm 4 canaux-logiques_2006-fva[1]
Arm 4 canaux-logiques_2006-fva[1]Arm 4 canaux-logiques_2006-fva[1]
Arm 4 canaux-logiques_2006-fva[1]elthier
 
TPs_docs_GSM.pdf
TPs_docs_GSM.pdfTPs_docs_GSM.pdf
TPs_docs_GSM.pdfSouadZid
 
CoursReseauxInfo.pdf
CoursReseauxInfo.pdfCoursReseauxInfo.pdf
CoursReseauxInfo.pdfOULAKBIRIlham
 
chapitre 1 - Ingénierie des systèmes de télécommunications.pdf
chapitre 1 - Ingénierie des systèmes de télécommunications.pdfchapitre 1 - Ingénierie des systèmes de télécommunications.pdf
chapitre 1 - Ingénierie des systèmes de télécommunications.pdfMariamHafsa
 
Cours_RéseauxTéléphoniquesRéseauxLocauxRadio_Chap1.pdf
Cours_RéseauxTéléphoniquesRéseauxLocauxRadio_Chap1.pdfCours_RéseauxTéléphoniquesRéseauxLocauxRadio_Chap1.pdf
Cours_RéseauxTéléphoniquesRéseauxLocauxRadio_Chap1.pdfSalmaElAgal
 

Similaire à Les Techniques de transmission dans les Réseaux Informatiques(OSI) (20)

cours2.pdf
cours2.pdfcours2.pdf
cours2.pdf
 
Carte mentale transport Voix sur ip
Carte mentale transport Voix sur ipCarte mentale transport Voix sur ip
Carte mentale transport Voix sur ip
 
TRANSMISSION NUMERIQUE Année 2022-2023 CEFIB
TRANSMISSION NUMERIQUE Année 2022-2023 CEFIBTRANSMISSION NUMERIQUE Année 2022-2023 CEFIB
TRANSMISSION NUMERIQUE Année 2022-2023 CEFIB
 
Projet Rnis
Projet RnisProjet Rnis
Projet Rnis
 
Chap2 physique
Chap2 physiqueChap2 physique
Chap2 physique
 
cours-transmission-serie.pdf
cours-transmission-serie.pdfcours-transmission-serie.pdf
cours-transmission-serie.pdf
 
modulation AM FM PM
modulation AM FM PMmodulation AM FM PM
modulation AM FM PM
 
Reseaux-sans-fil.pdf
Reseaux-sans-fil.pdfReseaux-sans-fil.pdf
Reseaux-sans-fil.pdf
 
chap2 genéralites-chaine_de_transmission_15-16
chap2 genéralites-chaine_de_transmission_15-16chap2 genéralites-chaine_de_transmission_15-16
chap2 genéralites-chaine_de_transmission_15-16
 
Chapitre 2 - Transmission
Chapitre 2  - TransmissionChapitre 2  - Transmission
Chapitre 2 - Transmission
 
Communication et support de Transmission L1 UNILO 2023.pdf
Communication et support de Transmission L1 UNILO 2023.pdfCommunication et support de Transmission L1 UNILO 2023.pdf
Communication et support de Transmission L1 UNILO 2023.pdf
 
Couche physique réseau
Couche physique réseauCouche physique réseau
Couche physique réseau
 
Tp 3 transmission de donné modulation d'amplitude,de fréquence et de phase
Tp 3 transmission de donné modulation d'amplitude,de fréquence et de phaseTp 3 transmission de donné modulation d'amplitude,de fréquence et de phase
Tp 3 transmission de donné modulation d'amplitude,de fréquence et de phase
 
Media et equipement réseau
Media et equipement réseauMedia et equipement réseau
Media et equipement réseau
 
Modulation AM.pdf
Modulation AM.pdfModulation AM.pdf
Modulation AM.pdf
 
Arm 4 canaux-logiques_2006-fva[1]
Arm 4 canaux-logiques_2006-fva[1]Arm 4 canaux-logiques_2006-fva[1]
Arm 4 canaux-logiques_2006-fva[1]
 
TPs_docs_GSM.pdf
TPs_docs_GSM.pdfTPs_docs_GSM.pdf
TPs_docs_GSM.pdf
 
CoursReseauxInfo.pdf
CoursReseauxInfo.pdfCoursReseauxInfo.pdf
CoursReseauxInfo.pdf
 
chapitre 1 - Ingénierie des systèmes de télécommunications.pdf
chapitre 1 - Ingénierie des systèmes de télécommunications.pdfchapitre 1 - Ingénierie des systèmes de télécommunications.pdf
chapitre 1 - Ingénierie des systèmes de télécommunications.pdf
 
Cours_RéseauxTéléphoniquesRéseauxLocauxRadio_Chap1.pdf
Cours_RéseauxTéléphoniquesRéseauxLocauxRadio_Chap1.pdfCours_RéseauxTéléphoniquesRéseauxLocauxRadio_Chap1.pdf
Cours_RéseauxTéléphoniquesRéseauxLocauxRadio_Chap1.pdf
 

Les Techniques de transmission dans les Réseaux Informatiques(OSI)

  • 1. Les Techniques de transmission dans les réseaux Informatiques Pr. Benabbou Faouzia Laboratoire de Technologie d’Information et Modélisation Université Hassan II -Casablanca Faculté des sciences ben M'sik 2020-2021
  • 2. 2 Transmission de données q Pour faire une communication, il faut avoir un moyen pour transmettre les données q Évolution de moyen de systèmes de communication • Age primitif : signaux de la fumée • Pas trop loin : le télégraphe (Code de Morse) • Téléphonie, Radio, Télévision, q Moyen de transmission adapté à l’information à transmettre q Problèmes majeurs • Codage de l’information • Numériser l’information • Adapter les signaux au support physique de transmission F. Benabbou-Transmission de Données
  • 3. 3 Système de communication Définition : Un système de communication a pour fonction d’assurer le transport de l’information entre un émetteur (ou plusieurs) et un (ou plusieurs) récepteurs reliés par un canal de communication. Cette information est transportée sur le canal sous forme d’un signal. récepteur émetteur canal de communication signal sens du transfert de l'information F. Benabbou-Transmission de Données
  • 4. 4 Système de communication q Exemples : téléphone, télévision. q Caractéristiques : un système de communication peut être caractérisé par : • le type de l’information transmise (son, image vidéo, données informatiques,...) • les transformations nécessaires pour transmettre cette information (son, transformation en un signal électrique). F. Benabbou-Transmission de Données
  • 5. 5 q Trouver une “ bonne ” transformation de l’information en signal tel que le canal soit capable de le propager “ correctement ” q Pour que le récepteur puisse trouver suffisamment d’informations dans le signal reçu pour reconstituer l’information initiale. Problème de la transmission F. Benabbou-Transmission de Données
  • 6. 6 q Définition : L’information à transmettre est une séquence binaire (ou message binaire). q Les éléments constituant un système bipoint sont : 1. L’émetteur et le récepteur : équipements informatiques (ordinateurs, imprimantes, etc.) appelés Equipement Terminaux de Traitement de Données, dits ETTD. 2. Le canal de communication, (ou voie ou ligne de transmission) : support physique qui peut être un câble électrique, fibre optique ou une onde hertzienne. Système de communication informatique F. Benabbou-Transmission de Données
  • 7. 7 q Terminologie : ¨ L’information est transportée sur le support sous forme d’un signal résultant de la transformation de l’information binaire pour l’adapter au support. ¨ Cette transformation est réalisée par des appareils situés à chaque extrémité de la voie et appelés ETCD : Equipements Terminaux de Circuit de Données, comme les modems. ¨ L’ensemble “ ligne plus modems ” s’appelle un circuit de données ¨ On appelle liaison de données (bipoint) l’ensemble formé des ETTD, des ETCD et de la ligne. F. Benabbou-Transmission de Données
  • 8. 8 Notion de signal q Définition : un signal est une grandeur physique qui évolue au cours du temps, il est caractérisé par son amplitude et sa fréquence. q Exemple de signaux § une grandeur électrique (intensité, tension), § une intensité sonore, § une onde électromagnétique (rayons infrarouges, ondes lumineuses, etc.). F. Benabbou-Transmission de Données
  • 9. 9 § La forme générale du signal est f(t)=A.sin(w0t + φ) § A l’amplitude de l’onde § f la fréquence de l’onde, nombre de fois que l’onde se reproduit identique à elle-même en une seconde § φ la phase, w0=f/2π Caractéristique d’un signal (électrique) F. Benabbou-Transmission de Données
  • 10. 10 Notion de signal q Deux type de signaux Signal continu Signal discret x n’est défini qu’en un ensemble dénombrable de points F. Benabbou-Transmission de Données
  • 11. 11 q Signal analogique q Signal Numérique Type de signaux F. Benabbou-Transmission de Données
  • 12. 12 q La courbe d’amplitude d’un signal analogique est une courbe continue quelconque q Les signaux « réels » sont par nature analogiques puisque les phénomènes physiques qu’ils représentent sont analogiques (ex: le son,…). Signal analogique F. Benabbou-Transmission de Données
  • 13. 13 Signal numérique n On définit un signal numérique comme une grandeur codée par un ensemble fini de valeurs. n La courbe d’amplitude d’un tel signal est une courbe en escalier. n Par exemple: F. Benabbou-Transmission de Données
  • 14. 14 q Un signal numérique peut être analysé suivant trois caractéristiques : § amplitude en fonction du temps, § puissance en fonction de la fréquence, § et débit binaire. q Spectre de puissance du signal numérique q La durée d’émission d’un bit est appelée Tb. Puissance du signal émis 1/2T 1/T 3/2T -12V +12V Amplitude du signal émis t f Signal numérique F. Benabbou-Transmission de Données
  • 15. 15 q Les signaux numériques peuvent être transformés en signaux analogiques par des techniques de modulation. § L’opération inverse qui permet de retrouver le signal initial s’appelle la démodulation q De même, il est possible de “ numériser ” un signal analogique en appliquant des techniques telle MIC (modulation par impulsion codée) § basée sur l’échantillonnage du signal et le codage de chaque échantillon. Traitement de signal F. Benabbou-Transmission de Données
  • 16. 16 q Les caractéristiques d’une liaison de données (débit, taux d’erreur,...) dépendent beaucoup : § des caractéristiques des supports o bande passante, affaiblissement du signal en fonction de la longueur, délai de propagation, distorsion,... § de la façon d’utiliser ces derniers pour transmettre l’information, par exemple avec ou sans multiplexage. Les caractéristiques des liaisons F. Benabbou-Transmission de Données
  • 17. 17 q Relations entre Support de transmission et Canal § Un support physique est tout dispositif qui transporte le signal § Un support peut être formé de un ou plusieurs canaux § Un canal sur un support occupe toute ou une partie de la bande passante § Partage de la bande passante entre les différents canaux Concept de base canal Bande passante signaux F. Benabbou-Transmission de Données
  • 18. 18 Elles permettent de savoir quelles transformations il faudra effectuer sur les signaux à émettre pour qu’ils soient transportés correctement Caractéristiques des supports F. Benabbou-Transmission de Données
  • 19. 19 n L’affaiblissement croît plus vite que la distance n L’affaiblissement varie en fonction de la n L’affaiblissement dépend: w La nature du support de transmission w La distance parcouru par le signal w amplificateur de signal dans la liaison w La fréquence du signal w ex : proportionnel à Öf sur les paires métalliques Affaiblissement du signal F. Benabbou-Transmission de Données
  • 20. 20 q Une voie peut être caractérisée par : o sa largeur de bande ou bande passante, sa courbe d’affaiblissement et sa capacité de transporter de l’information. q La bande passante (BP) d’une voie est la plage de fréquence sur laquelle la voie est capable de transmettre des signaux sans que leur affaiblissement soit trop important. q C’est la plage de fréquences où il présente les meilleurs caractéristiques de transmission. q Elle s’exprime en Hertz q La largeur de bande passante=f2-f1. B an d e P ass an te F ré q u en ce R ap p ort d 'a ffa ib liss em e nt Bande passante F. Benabbou-Transmission de Données
  • 21. 21 ¨ Elle donne la valeur du rapport d’affaiblissement des signaux en fonction de la fréquence : • Le rapport d’affaiblissement est le rapport entre l’amplitude du signal reçu et la puissance du signal émis • Il est considéré comme nul pour les fréquences hors de la bande passante • Il est constant pour les fréquences dans la bande passante La courbe d’affaiblissement F. Benabbou-Transmission de Données
  • 22. Longueur élémentaire q La longueur élémentaire d’une voie est la longueur maximale de support au delà de laquelle le signal doit être amplifié ou répété pour être correctement reçu. q Intérêt § L’importance de l’affaiblissement dépend des caractéristiques physiques du support : o il est moins important dans les fibres optiques que dans les câbles électriques, dans les câbles coaxiaux que dans les paires torsadées 22 F. Benabbou-Transmission de Données
  • 23. 23 § La capacité (débit maximal) d’une voie est la quantité maximale d’information qu’elle peut transporter par seconde. § L’unité d’information étant le bit, la capacité s’exprime en bit/s. La capacité F. Benabbou-Transmission de Données
  • 24. 24 q Le débit théorique maximum d’un support soumis à du bruit est : C=W.log2(1+S/N) § où D est exprimé en bit/s § W exprimé en Hertz (Hz), représente la bande passante du support, § S/N est le rapport de la puissance du signal émis sur la puissance du bruit de la voie exprimé en décibel. § La correspondance avec les unités “ réelles ” est donnée par la relation : S/N décibel=10 log10(S/N). Formule de shannon-Tuller F. Benabbou-Transmission de Données
  • 25. 25 q Le temps de transit dans une station est le temps pendant le quel une trame est retardée entre l’instant de début de réception et celui du début de sa ré-émission q Par exemple : c’est le temps d’attente dans un commutateur de trame q Le délai de transit se mesure normalement en seconde, mais aussi en bit par analogie avec la notion de longueur du canal Lc Délai de Transit F. Benabbou-Transmission de Données
  • 26. 26 q C’est la durée qui sépare le début d’émission d’un message de la fin de sa réception. q Le délai de transfert est la somme du délai de transmission et du délai de propagation Ttransfert = Tt+Tp q Il est aussi appelé délai d’acheminement q Pour des supports de faibles longueurs, le délai de propagation est négligeable Délai de Transit F. Benabbou-Transmission de Données
  • 27. 27 q Un signal se propage sur un support à une vitesse dite vitesse de propagation On note par d : la longueur du canal (en mètre) V : la vitesse de propagation (en mètre/seconde) Alors : Le délai (ou le temps) de propagation est Tp = d/V q La vitesse de propagation dépend du support de transmission qVitesse de la lumière mais dépend du support § 3.0 x 108 mètres/seconde dans le vide §2.3 x 108 mètres /seconde sur un câble §2.0 x 108 mètres /seconde dans une fibre §Approximation générale: 5μs/km d V Délai de Propagation F. Benabbou-Transmission de Données
  • 28. 28 Délai de Transmission q Le Temps de transmission est le temps nécessaire à l’émission ou la réception d’une trame (ou paquet) § Une Trame (ou paquet) est un Bloc lié de bits successifs On Note par: L : Longueur de la trame en bits B : le débit binaire Alors le temps de transmission Tt=L/B  Exemple: § Une trame de taille L=128 octets sur Réseau Ethernet fonctionnant à 10 Mb/s a un délai de transmission 128*8(bits)/106 (bits/sec) =10-3 sec = 1 ms F. Benabbou-Transmission de Données
  • 29. Temps de transfert sur un lien 29 F. Benabbou-Transmission de Données
  • 30. 30 Longueur du Canal q On appelle longueur d’un canal Lc (en bits) le nombre de bits présent simultanément tout au long du canal q On peut l’assimiler à la taille d’une trame telle que l’on émet le dernier bit quand le premier arrive au récepteur q C’est le nombre de bits qu’on émet pendant que le premier se propage sur le canal Lc = B*d/V = B*Tp B : le débit Tp: le temps de propagation d: la longueur du canal (en mètre) V : : la vitesse de propagation (en mètre/seconde) 4 2 1 3 8 6 5 7 9 F. Benabbou-Transmission de Données
  • 31. 31 q Unités de mesure § bit – une unité binaire (0 ou 1) § octet (ou Byte) – groupe de 8 bits § Kilo-octets (Ko) – 1024 octets = 210 § Méga-octets (Mo) – 1024Ko - 1048576 octets=220 § Giga-octets (Go) – 1024 Mo - 1073741824 octets = 230 § téra octet (To) = 1024 Go Unités de Données F. Benabbou-Transmission de Données
  • 32. 32 Throughput ou Débit Réel q Il est défini pour évaluer la performance de l’usage que l’on fait du réseau § Si on émet de toutes petites trames on utilisera peu le canal § Si on émet de grande trame ça sera le contraire q Le « Throughput » est défini par Th= L/(Tp+Tt ) Exemple : § 10Mbit/s, 2Km, avec L= 2000 Octets Th= 9,9Mbit/s § 10Mbit/s, 2Km, avec L= 100 Octets Th= 8,89 Mbit/s §10Mbit/s, 2Km, avec L= 512 Bits Th= 8,3Mbit/s F. Benabbou-Transmission de Données
  • 33. 33 Taux D’utilisation q Il est défini par le rapport entre le « throughput » et le débit binaire à la base de temps de transmission U = Th/B q le taux est sans unité q Pour les trois exemples précédents on obtient respectivement les taux d’utilisation suivant 0,99; 0,89; 0,83 si on note a= Lc/L= Tp/Tt on montre que U = 1/(1+a) F. Benabbou-Transmission de Données
  • 34. Taux d’erreur q Il s’exprime par la probabilité de perte ou d’altération d’une information élémentaire (bit) transmise sur cette voie q On peut le déterminer en mesurant ( pendant une période de temps significative) le rapport du nombre de bits erronés sur le nombre de bits transmis. q Le taux d’erreur résiduel est le taux d’erreur qui reste après la mise en œuvre des mécanismes de protection contre les erreurs par la couche liaison 34 F. Benabbou-Transmission de Données
  • 35. Mode d’utilisation d’un circuit de données M O D E M ém etteur M O D E M ré cep teur M O D E M ém etteur M O D E M ré cep teur M O D E M M O D E M ré cep teur ém etteur ém etteur ré cep teur ém etteur ré cep teur M o de sim ple x M o de half-d u ple x M o de full-d uplex 35 q Trois types de circuits de données sont utilisés en transmission de données : § Mode simplex § mode half-duplex § mode full-duplex F. Benabbou-Transmission de Données
  • 36. Modes de transmission q La transmission n’est possible que si le récepteur sait à quel rythme les bits de chaque donnée sont transmis q Le récepteur doit pouvoir déterminer : § chaque bit § quel bit est le 1er et le dernier de chaque bloc de bits (octet) § Le début et la fin de chaque bloc d'octets (trame) q on distingue § transmission asynchrone § transmission synchrone 36 F. Benabbou-Transmission de Données
  • 37. Notion d’horloge q Emetteur et récepteur possède une Horloge qui leur permet de savoir quand émettre et quand recevoir q C’est un signal périodique q Représentation de l’Horloge 37 F. Benabbou-Transmission de Données
  • 38. Transmission Synchrone q Émetteur et récepteur sont cadencés à la même horloge q Le récepteur reçoit de façon continue (même lorsque aucun bit n'est transmis) les informations au rythme où l'émetteur les envoie. q C'est pourquoi il est nécessaire qu'émetteur et récepteur soient cadencés à la même vitesse. q Les horloges sont synchrones: même fréquence et même phase. 38 F. Benabbou-Transmission de Données
  • 39. Transmission Synchrone q Les transitions de H conditionnent celles des Données. 39 F. Benabbou-Transmission de Données
  • 40. Transmission Synchrone q Flux continu binaire: § Echange par bloc d'octets: trame § La longueur du blocs peut être quelconque ou fixe, délimités par des symboles de début et fin de blocs § Les caractères se suivent sans temps mort entre octets successifs q L’horloge est le plus souvent fournit par l’émetteur § par une ligne additionnelle § par un codage auto synchronisant (ex. : code Manchester qui sera vu ultérieurement) § par transmission de messages de synchronisation 40 F. Benabbou-Transmission de Données
  • 41. Transmission Asynchrone q Dans le cas de transmission asynchrone, il n’y a pas de référentiel temporel entre l’émetteur et le récepteur q Données sont transmises sur la base de caractère § 5 à 8 bits de données q Synchronisation maintenue pour chaque caractère § Les horloges de l’émetteur et du récepteur ont la même fréquence et l’horloge bit est définie à partir du signal de début de bloc q Permet d’éviter les erreurs d'échantillonnage lorsqu'il y a une dérive de l'horloge q Période d'inactivité aléatoire entre les caractères 41 F. Benabbou-Transmission de Données
  • 42. Transmission Asynchrone q L’émetteur envoie un signal de début de bloc pour indiquer au récepteur de synchroniser son horloge q Donc chaque donnée transmise comporte des bits supplémentaires § 1 bit de START, toujours à 0, pour la synchronisation § les 7 ou 8 bits de donnée § 1 bit de parité éventuel, pour détection d’erreurs § 1 ou 2 bits de STOP, toujours à 1 § au repos, la ligne reste à 1 42 F. Benabbou-Transmission de Données
  • 43. 43 qAsynchrone : § A cause de la dérive des horloges, il n’est pas possible de transmettre de longues suites binaires : la taille des blocs est de 10 bits au maximum § Ce mode de transmission est sensible aux erreurs dues aux parasites puisque la détection d’un début de caractère (signal d’échantillonnage) est définie par le passage à 0 de la ligne. § Le mode asynchrone est utilisé pour les liaisons courtes et basse vitesse, et où la source de donnée produit des caractères à des instants aléatoires (communications télégraphiques, communications avec les terminaux) Transmission Asynchrone F. Benabbou-Transmission de Données
  • 44. Caractéristiques des signaux q Le moment élémentaire Tm § C’est l’intervalle de temps de quantification ou de modulation, § C’est la durée minimale pendant laquelle chaque valeur élémentaire du signal reste positionnée sur la voie. § l’intervalle significatif le plus court séparant deux instants significatifs successifs. § Autrement Tm est la durée d’un élément binaire bit. q La rapidité modulation Rm § définie par l’inverse de Tm Rm = 1/ Tm § Représente la quantité d’informations transmises par moments élémentaires. § C’est le nombre de signaux élémentaires transmis par seconde sur la voie. § La rapidité de modulation s’exprime en bauds 44 F. Benabbou-Transmission de Données
  • 45. 45 Caractéristiques des signaux q En télégraphie Tm=0.02s, Rm = 50 Bauds. q La quantité d’information transmise dépend: § du nombre de signaux élémentaires transmis § mais aussi de l’information contenue dans chaque signal élémentaire § Ex: o 00 V1, o 01 V2, o 10 V3, o 11 V4 Ou o 0 V1, et 1 V2 F. Benabbou-Transmission de Données
  • 46. 46 q la valence du signal: Nombre d’états que peut prendre un signal pour représenter l’information q La théorie de l’information a permis de montrer que si le nombre d’états significatifs distincts d’un signal est égal à n, la quantité d’information contenue dans ce signal est : v = log2 n (Karbowiak 1969) § V : La quantité d’information contenue dans un moment élémentaire, § n : Le nombre de valeurs différentes sur la ligne de transmission. La valence F. Benabbou-Transmission de Données
  • 48. Relation entre débit et rapidité de modulation q Il est important de savoir quel est le débit binaire correspondant à une technique de transmission particulière caractérisée par sa rapidité de modulation Rm. q La relation entre ces deux grandeurs peut s’exprimer : D= Rm* (nombre de bits codés avec un état physique) ou encore, si l’on considère les grandeurs Tm et Tb (D=1/Tb, Rm=1/Tm) : D=Rm*log2(n) q Par contre, s’il faut plusieurs états physiques pour coder un bit,on a : D = Rm/k k : nombre d’états pour coder un bit 48 F. Benabbou-Transmission de Données
  • 50. Remarque q les bits par seconde correspondent à une quantité d’information transmise par seconde q les bauds correspondent à une vitesse de transmission des signaux élémentaires q Le développement de procédés de modulation complexes a permis de transmettre plusieurs bits pendant la même durée élémentaire. q Ainsi, la rapidité de modulation a pu rester constante pendant que le débit binaire a augmenté 50 F. Benabbou-Transmission de Données
  • 51. 51 q Dans de nombreuses applications la valence est égale à 2 et k=1, et donc D =Rm. q Cette coïncidence est à l’origine de nombreux abus de langage q les techniques de modulation utilisent souvent une valence de signal supérieure à deux q Par exemple, dans une modulation de phase à quatre phases (0,p/2, p et 3p/2), n = 4 et donc D=2*Rm. Remarque F. Benabbou-Transmission de Données
  • 53. 53 Adaptation du signal au support q La déformation des signaux transmis augmente lorsque la bande passante de fréquence utilisée est importante q Certaines lignes ne laissent pas passer les basses fréquences § les signaux numériques ont un spectre qui contient des fréquences basses q Adaptation du spectre du signal à la ligne ; quand les appareils (transformateurs, amplificateurs) ne laissent pas passer les basses fréquences q Résistance aux bruits, qui dépend de la largeur de bande occupée par le signal et du nombre de niveaux du code q Estimation du signal d’horloge en réception pour la transmission synchrone F. Benabbou-Transmission de Données
  • 54. 54 Adaptation du signal au support qLe but est de réduire la fréquence principale du signal transmis qDeux types de transmission: § transmission numérique (ou en bande de base) § transmission analogique (ou par transposition en fréquence ou modulation) F. Benabbou-Transmission de Données
  • 55. Transmission en bande de base q Ce mode de transmission est utilisé pour la transmission synchrone lorsque la voie utilisée peut transporter les basses fréquences q Utilisée sur des supports à grande bande passante q Où des distances limitées (de l’ordre de qq km) q la plage de fréquences utilisée par le signal issu de la suite codée est la même que celle de la suite initiale. q L’intérêt de ce mode de transmission est son coût peu élevé et sa simplicité 55 F. Benabbou-Transmission de Données
  • 56. Quelques précisions q Tout signal est une somme de composantes purement sinusoïdales (fondamentale et harmoniques). q Dans la plupart des cas, les harmoniques supérieures à un certain rang peuvent ne pas être transmises sans qu'on note une altération inacceptable du signal. q Les harmoniques d'un signal transmis sur une ligne sont diversement atténués, suivant leur fréquence, par la bande passante de la ligne.. 56 F. Benabbou-Transmission de Données
  • 57. Quelques précisions q Si l'ensemble des harmonique utiles du signal à transmettre se situent dans la bande passante de la ligne que l'on souhaite utiliser,on peut appliquer ce signal directement à l'entrée de la ligne. q Il sera transmis sans atténuation notable à l'autre extrémité. 57 F. Benabbou-Transmission de Données
  • 58. Transmission en bande de base q Le signal codé est envoyé tel qu’il sur le support de transmission q Le récepteur doit reconstituer le signal avant de le décoder. q Le signal reconstitué est légèrement déphasé par rapport au signal d’origine q La vitesse de transmission est faible. 58 F. Benabbou-Transmission de Données
  • 59. Les principales qualités d’un code q largeur de sa plage de fréquences : § la plus étroite possible q codage de l’horloge q résistance au bruit q complexité du codage § coût et vitesse de codage q facilité d’installation q … 59 F. Benabbou-Transmission de Données
  • 60. Les codes usuels utilisés en bande de base q Les codes à deux niveaux (binaire) : § code NRZ (Non Return to Zero) § code NRZI (Non Return to Zero Invert) § code biphase § code biphase différentiel § code de Miller q Les codes à trois niveaux (ternaire) : § code RZ (Return to Zero) § code bipolaire (simple) § code bipolaire entrelacé d’ordre 2 § codes bipolaires à haute densité d’ordre n (BHDn) 60 F. Benabbou-Transmission de Données
  • 61. Les codes usuels utilisés en bande de base q Les états peuvent représenter par exemple : § deux niveaux de tension par rapport à la masse § la différence de tension entre deux fils § la présence/absence de courant dans un fil § la présence/absence de lumière 61 F. Benabbou-Transmission de Données
  • 62. 62 q Code : 1 → -a 0 → +a q Exemple Code NRZ (No Return to Zero) F. Benabbou-Transmission de Données
  • 63. 63 q Code simple, utilisé couramment entre l’ordinateur et ses périphériques q Ses principaux inconvénients sont que l’information d’horloge n’est pas transportée q La composante continue n’est pas nulle (il faut brouiller le signal) q Le spectre de puissance du code NRZ est concentré aux basse fréquence Code NRZ (No Return to Zero) F. Benabbou-Transmission de Données
  • 64. 64 Code NRZ: Exemple F. Benabbou-Transmission de Données
  • 65. Code biphase (ou Manchester) q code: 1 → (-a/+a) 0 →(+a/-a) qExemple: 65 F. Benabbou-Transmission de Données
  • 66. Code biphase (ou Manchester) q Les principaux avantages sont que l’information d’horloge est transportée (une transition à chaque bit émis) q Essentiellement codage destiné à régler le problème de la transmission aux basses fréquences. q La composante continue est nulle (les composantes sinusoïdales coswt ou bien sinwt où la période est nul et w est infini ) q Le spectre du signal résultant est deux fois plus large que pour le code NRZ (spectre de puissance indiquent la répartition en fréquences de la puissance du signal) 66 F. Benabbou-Transmission de Données
  • 67. 67 Code biphase: Exemple F. Benabbou-Transmission de Données
  • 68. Code biphase différentiel q C’est un dans lequel les transitions sont définies par valeur précédente du niveau de la ligne § La transmission de chaque élément binaire est réalisée par l’émission d’une transition (montante -a/+a, soit descendante +a/-a sur la voie. § Exemple: valeur 1 : même transition que celle du bit précédent valeur 0 : transition opposée à celle du bit précédent 68 F. Benabbou-Transmission de Données
  • 69. Code biphase différentiel q Les avantages sont les mêmes que pour le codage biphase q L'intérêt est de s'affranchir de la phase de la l'horloge § En effet, d'après la définition du code Biphase, le signal élémentaire est comparé à la valeur précédemment (égale ou l’inverse) reçue pour décider respectivement de la valeur "0" ou "1". q Il faut cependant définir une valeur initiale de transition pour le premier bit transmis q le 1er symbole doit être décodé de façon certaine q Problème s'il y a corruption d'un des symboles : la suite est mal décodée q Codage utilisé par Token Ring. 69 F. Benabbou-Transmission de Données
  • 70. 70 Code biphase différentiel: exemple F. Benabbou-Transmission de Données
  • 71. Code bipolaire simple q Code: 0 →0 1 →+a ou –a alternativement 71 F. Benabbou-Transmission de Données
  • 72. q Code ternaire, q Possibilité de dérive de l’horloge (suite de 0) q Utilisé par le système de téléphonie numérique 72 Code bipolaire F. Benabbou-Transmission de Données
  • 73. Transmission par modulation q Si les ou quelques harmoniques du signal se trouvent en dehors de la bande passante de la ligne, il faut utiliser d'autres modes de transmissions : la modulation. q Si on transmet directement le signal sur ce support il serait totalement atténué par ce dernier. 73 F. Benabbou-Transmission de Données
  • 74. Transmission par modulation q D'abord on génère une sinusoïde de fréquence assez élevée pour être largement contenue dans la bande passante du support de transmission q Cette sinusoïde s'appelle la porteuse q La sinusoïde est définie par 3 paramètres: la fréquence f, l’amplitude A et la phase j P = A sin(2 p F t + F) q Il s’agit de transformer un signal en bande de base a(t) (signal modulant), en un signal modulé dont le spectre est situé dans une bande étroite centrée sur une fréquence porteuse. q La porteuse n’a d’autre rôle que de transporter q La porteuse ne véhicule en elle même aucune information, seule sa modulation a une signification 74 F. Benabbou-Transmission de Données
  • 75. Transmission par modulation q Prenons une porteuse de la forme: P = A cos(2 p F t + F) (1) q Chacun des trois paramètres de la porteuse peut être séparément rendu proportionnel au signal à transmettre. q Ce qui donne lieu aux trois types fondamentaux de modulation : § Modulation d'Amplitude § Modulation de Fréquence § Modulation de Phase 75 F. Benabbou-Transmission de Données
  • 76. Modulation d’amplitude q Le signal à transporter n'est généralement pas une sinusoïde mais peut toujours être décomposé (séries de Fourrier) en un certain nombre de sinusoïdes pures appelées ses harmoniques. Prenons l'une de ces harmoniques : (2) q Pour moduler la porteuse P par le signal à transporter " s ", on fait en sorte que l'amplitude de la porteuse (1) soit fonction linéaire du signal s q Nous obtenons ainsi la porteuse p modulée par le signal s. 76 F. Benabbou-Transmission de Données
  • 77. Modulation d’amplitude q Signal modulé : sm(t) = A(t) cos(2 p fo t - fo) avec A(t) = K + s(t) et s(t) Î {-a,+a} ... ou s(t) Î [-a,+a] q Technique électroniquement simple mais sensible au bruit 77 Sm(t) 1/f0 F. Benabbou-Transmission de Données
  • 78. Modulation de fréquence q Dans la formule (1) de la porteuse, on remplace la fréquence ou la phase par une fonction linéaire du signal formule (2). q Signal P modulée par le signal s modulé q L'amplitude du signal modulé reste constante, q C'est sa fréquence qui oscille autour d'une valeur centrale F0. 78 F. Benabbou-Transmission de Données
  • 79. Modulation de fréquence q Signal modulé : sm(t) = A0 cos(2 p f(t) t - fo) avec f(t) = f0 + s(t) et s(t) Î {-w,+w}... Ou s(t) Î [-w,+ w] q Utilisée par la technique de multiplexage fréquentiel. 79 Sm(t) F. Benabbou-Transmission de Données
  • 80. Modulation de phase 80 q Modulation de phase : q Signal P modulée par le signal s modulé F. Benabbou-Transmission de Données
  • 81. Modulation de phase q Signal modulé : sm(t) = A0 cos(2 p fo t - f(t)) avec f(t) = f0 + s(t) et s(t) Î {P k/n} (dans ce cas on prend 0 et p /2) pour n symboles ... Ou s(t) Î [-P,+ P] q Modulation complexe 81 Sm(t) F. Benabbou-Transmission de Données
  • 82. MODEM 82 q Le rôle du modem est de transformer le message de données à émettre en un signal compatible avec la ligne. qLe classement des MODEM est défini par des avis du CCITT en fonction des critères suivants : § Technique de transmission : bande de base ou modulation. § Débit : 300, 600, 1200, 2400, 9600, 12900...bits. § Support de transmission : réseau commuté, lignes spécialisées half- duplex (avec ou sans voie de retour) ou full-duplex. § Méthode de synchronisation : synchrone ou asynchrone. § Format de l’appareil : boîtier indépendant, carte à insérer dans l’ordinateur, circuit intégré. F. Benabbou-Transmission de Données
  • 83. 83 Partage statique d’une voie Lorsque plusieurs circuits de données doivent être réalisés en parallèle entre deux points A et B une question se pose : Est ce qu’on peut utiliser une voie pour envoyer des données différentes ? ê Oui c’est possible grâce à des techniques de concentration et de multiplexage F. Benabbou-Transmission de Données
  • 84. 84 Partage statique d’une voie q Concentration § c’est un partage à la demande d’un canal de sortie entre plusieurs canaux d’entrée § Si plusieurs canaux d’entrée sont actifs en même temps, il faut soit stocker une partie de l’information à transmettre, soit bloquer le trafic de certains canaux. F. Benabbou-Transmission de Données
  • 85. 85 Partage statique d’une voie q Multiplexage § il consiste à diviser, par une méthode invariable dans le temps, un support commun de débit D entre plusieurs canaux (logiques) dont la somme des débits ne peut excéder D. § Le multiplexeur combine les données de plusieurs voies de transmission dites voies basse vitesse en un seul train de donnée sur une voie haute vitesse dite voie composite F. Benabbou-Transmission de Données
  • 86. 86 q Multiplexage Il existe trois techniques de multiplexage : § Le multiplexage en fréquence (FDM : Frequence Division Multiplexing) § Le multiplexage temporel (SDTM : Synchronous Time Division Multiplexing) § Le multiplexage statistique F. Benabbou-Transmission de Données
  • 87. 87 Multiplexage Fréquentiel Ø Multiplexage Fréquentiel ü Partage de la bande passante en fonction de la fréquence d’émission ü Cas du canal radio: § La Bande de fréquence FM [ 88 MHz - 108 MHz] contient plusieurs canaux § Chaque canal est caractérisé par une fréquence dite porteuse ( qui transporte le signal) § Le Signal est transporté dans une sous bande centrée sur la fréquence porteuse § La largeur de la sous bande dépend de la bande passante de l’information c’est à dire la quantité d’information par unité de temps Fréquence 88 108 93 MHz 97 MHz Fréquence Porteuse 97 MHz Sous-Bande qui transporte le signal F. Benabbou-Transmission de Données
  • 88. 88 + + X X X X X X voie 1 voie 1 voie 3 voie 2 voie 3 voie 2 ...... ...... ligne multiplex multiplexeur démultiplexeur filtre passe- bande filtre passe-bande modulateurs démodulateurs voie1 voie2 voie3 voie n Amplitude spectre du signal émis sur la ligne multiplex f spectre des voies i f Amplitude F. Benabbou-Transmission de Données
  • 89. 89 q Le multiplexage temporel § Comme son nom l’indique cette technique est basée sur un découpage de l’espace-temps, et non comme ci- dessus sur un découpage de l’espace fréquence. § La suite binaire continue qui circule sur la voie haute vitesse est découpée en trames de longueur identique de L bits § chaque trame est découpée en sous blocs de di bits appelés Intervalles de Temps § Les données de chaque voie basse vitesse i sont émises dans les « emplacements » correspondant aux intervalles de temps de rang i des trames de la voie haute vitesse § On obtient ainsi un entrelacement des données des n voies basse vitesse dont le débit binaire Di est D/n. F. Benabbou-Transmission de Données
  • 90. 90 a1 am b1 b2 bm z1 z2 zm a1 b1 z1 a2 b2 z2 am bm IT1 IT2 ITI ITn IT1 IT2 ITi ITn IT1 IT2 di L trame 2 trame1 L L trame m blocs émis sur la voie n : blocs émis sur la voie 2 : blocs émis sur la voie1 : a2 F. Benabbou-Transmission de Données
  • 91. 91 q Lorsque les circuits basse vitesse sont des liaisons en mode synchrone, le multiplexeur fait un découpage artificiel des données basse vitesse pour les transmettre sur les IT. La longueur de la trame (L) est calculée d’après le débit binaire des voies basse vitesse et celui de la voie composite. q Par exemple, D=19200 bit/s, Di=1200bit/s, di=1 bit et L=16 bits. q La plupart des multiplexeur temporels disponibles sur le marché proposent des intervalles de temps (IT) correspondants à des sous blocs di de 1 bit ou 8 bits. q Le multiplexage temporel a été d’abord mis au point pour le réseau téléphonique dans le but d’obtenir une meilleure efficacité de la transmission de la voix sur les supports téléphoniques q Il existe de plus des multiplexeurs qui permettent de multiplexer des liaisons de données avec des voies téléphoniques numérisés (MIC). F. Benabbou-Transmission de Données
  • 92. 92 q Le multiplexage statistique § C’est une technique numérique permettant de concentrer des liaisons asynchrones sur une liaison synchrone en exploitant les temps de silence des voies asynchrones § Comme pour le multiplexage temporel, la ligne multiplexée est allouée régulièrement à chaque terminal, mais seulement s’il a besoin de transmettre § Les temps de silence sont évalués statistiquement (d’où le nom donné à cette technique) et définissent l’allocation statique de chaque voie base vitesse § Le prélèvement sur les différentes voies reliées au multiplexeurs n’est pas cyclique mais modifié dynamiquement en permanence selon l’activité réelle sur chacune d’elle F. Benabbou-Transmission de Données
  • 93. 93 q Le multiplexage statistique § avec ce procédé on récupère la bande passante des voies inactives § il est nécessaire de transmettre l’adresse de la voie émettrice § Comme pour les techniques de concentration, il est nécessaire de disposer de mémoires de stockage pour les caractères en attente de voies asynchrone, et il y a risque de débordement si le débit de ces voies dépasse les estimations prévues. F. Benabbou-Transmission de Données