SlideShare une entreprise Scribd logo
Comprendre pour agir
19/06/2015 Nom du document 1
Pilote optimisation sur données MCA
19 juin 2015
Contacts: Antoine Moreau – 06 19 23 08 70 - antoine.moreau@slpv-analytics.com
La problématique
 ROI marketing propose à ses clients une solution de mesure de l’efficacité des
actions de communication. Celle-ci, basée sur le déclaratif des répondants,
permet de calculer des indicateurs d’efficacité pour chaque point de contact, à
un niveau très fin (36 points de contact).
 Ces indicateurs sont calculés en termes de BEP (Brand Experience Point). Le
BEP combine le fait d’avoir été en contact avec la marque et la capacité
d’influenceur du point de contact correspondant. Il s’agit d’une mesure
d’efficacité qui peut être utilisée de différentes manières:
• Hiérarchisation des points de contact en terme d’influence,
• Hiérarchisation des marques en terme d’influence,
• Efficacité de la communication, en comparant, pour chaque marque, sa
part de marché et sa part d’influence,
• Rendement des actions de communication, en divisant le nombre total de
BEP par marque par la dépense totale,
• …
 Les clients de ROI marketing se pose la question du positionnement des
données MCA par rapport à une analyse de type Marketing Mix Modelling.
 L’objet de ce document est d’entamer la discussion sur la comparaison
MCA/MMM
19/06/2015 Pilote optimisation sur données MCA 2
19/06/2015 Nom du document 3
Modélisation données Allemagne
BEP au niveau individuel
 Une étape préliminaire à l’estimation du modèle consiste à calculer des BEP
au niveau individuel.
 On dispose pour cela des BEP pour un certain nombre de segments:
• Age
• Marque achetée le plus souvent
• CSP
• Région
 Les BEP individuels sont calculés par redressement: on attribue un BEP à un
répondant, comme un poids dans un redressement, en calant le nombre de
BEP sur chaque modalité de chaque segment.
 Il y a donc 16*36=576 redressements, pour chacune des 16 marques et des
36 points de contact.
19/06/2015 Pilote optimisation sur données MCA 4
Le modèle de base (1/2)
 On modélise le choix de la marque la plus achetée en fonction des BEP
associés à chaque marque.
 Il s’agit d’un modèle logit multinomial classique, équivalent à ceux utilisés pour
les trade off.
 Le modèle de base est le suivant:
• Le répondant associe à chaque marque i une utilité Vi. Vi s’écrit en
fonction des contacts de l’individu avec les actions publicitaires de la
marque, exprimés en BEP:
Vi= constantei + α1 * BEP1 + ….. + αK * BEPK
• La marque la plus souvent achetée sera celle dont l’utilité et maximale
 Les coefficients αk donnent le poids, toutes choses égales par ailleurs, de
chaque point de contact dans le choix de la marque la plus souvent achetée.
Ils permettent de calculer l’élasticité des parts de marché à la variation du
nombre de BEP et de faire des simulations
19/06/2015 Pilote optimisation sur données MCA 5
Le modèle de base (2/2)
 Un défaut du modèle précédent est que les coefficients αk sont identiques pour
toutes les marques. Il est possible que l’influence des points de contact sur la
préférence de marque dépende du point de contact, par exemple en fonction
de la qualité de la création sur chaque point de contact.
 Un modèle global serait donc:
Vi= constantei + α1i * BEP1 + ….. + αKi * BEPK
 Ce modèle ne peut pas être identifié: il n’y a pas suffisamment de variance
dans les données. Nous avons estimé le modèle qui permet de différencier le
plus de coefficients αki.
• 10 points de contact sont modélisés avec un impact différencié selon les
marques.
• L’hypothèse d’égalité des deux modèles est très significativement rejetée,
ce qui valide l’idée du modèle global ci-dessus.
19/06/2015 Pilote optimisation sur données MCA 6
Le modèle de base n’est pas le bon
 Une première condition de validité du modèle estimé est que les coefficients
αki soient positifs: l’utilité associée à une marque ne peut pas décroître en
fonction du BEP.
 Dans le modèle de base décrit précédemment, il y a quelques coefficients
négatifs significatifs. Ils sont tous associés à la marque Nivéa, qui domine
largement toutes les autres, avec une part de marché de 32,8% (sur la
question: marque achetée le plus souvent).
 Cela veut dire que le modèle n’arrive pas à décrire correctement le marché
dans sa globalité et jette un doute sur l’ensemble des résultats.
 Une première manière de corriger cet effet est d’estimer un modèle sans
constantes. De fait, dans le modèle sans constantes, il n’y a plus de
coefficients négatifs significatifs. Mais le modèle sans constantes a deux
inconvénients:
• Les parts de marché estimé par le modèle ne sont plus calées sur les
vraies parts de marché, contrairement au modèle avec constantes.
• Il est un cas particulier du modèle avec constantes et un test statistique
rejette fortement le fait que les constantes puissent être nulles.
 Nous recommandons plutôt d’utiliser un modèle de choix séquentiel (ou
emboîté: nested logit model).
19/06/2015 Pilote optimisation sur données MCA 7
Modèles de choix séquentiel
 Dans un modèle séquentiel, on suppose que le consommateur fait son choix
en deux étapes:
• Entre plusieurs groupes de possibilités,
• Puis, à l’intérieur du groupe choisi, entre les choix associés à ce groupe.
 Un exemple classique de choix séquentiel est celui du mode de transport. On
modélise le choix entre (voiture, train, avion) en faisant l’hypothèse que les
individus vont d’abord faire le choix entre transports terrestres et transport
aérien, et ensuite, faire un choix entre voiture et train.
 Dans notre cas, il y a deux manières de donner un cadre théorique au modèle
séquentiel:
• L’existence d’une marque nationale historique: les consommatrices ferait
d’abord le choix (ou non) d’acheter Nivéa, puis, si elles ne l’achètent pas,
d’acheter une des marques restantes.
• L’existence de trois marchés différents: mass market (Nivéa, Olay, Garnier,
L’Oréal Paris, Diadermine), pharmacie (Eucerine, Vichy, Weleda, La
Roche Posay, Avène, Olivenoel), Luxe (Shiseido), Calrins, Biotherm,
Clinique, Lancôme).
 Les deux modèles séquentiels ont été estimés.
19/06/2015 Pilote optimisation sur données MCA 8
Modèles de choix séquentiel
 Les utilités s’écrivent de la même manière:
• Seuls 4 coefficients αki peuvent être différenciés selon les marques.
• Dans le premier modèle séquentiel, la constante correspondant à Nivéa ne
peut pas être identifiée/
 Le modèle a deux ou trois paramètres supplémentaires, correspondants aux
« élasticités » entre les groupes.
 Les probabilités de choix des marques s’écrivent d’une manière un peu plus
complexe que dans le modèle de base, en fonction des utilités et des
élasticités.
19/06/2015 Pilote optimisation sur données MCA 9
Parts de marché estimées par les modèles
 Comme déjà indiqué, un premier critère de validité du modèle est qu’il n’y ait pas de
coefficient négatif significatif.
• C’est le cas pour le modèle sans constantes comme pour les deux modèles
séquentiels.
 Un deuxième critère de validité consiste à regarder les parts de marché estimées par le
modèle
19/06/2015 Pilote optimisation sur données MCA 10
 Le modèle sans constantes est beaucoup plus éloigné des vraies parts de marché que
le modèle séquentiel. Le modèle en 3 groupes est meilleur que le modèle en 2 groupes.
Base
Sans
Constantes
Séquentiel
3 groupes
Séquentiel
2 groupes
Avène 2,7% 6,0% 2,6% 2,7%
Biotherm 1,0% 5,2% 1,0% 1,1%
Clarins 1,0% 5,1% 1,0% 0,9%
Clinique 1,4% 5,3% 1,6% 1,4%
Diadermine 6,8% 6,9% 6,8% 6,4%
Eucerin 4,1% 5,9% 4,2% 4,6%
Garnier 9,1% 7,1% 9,1% 8,8%
L’Oréal Paris 11,5% 9,1% 11,5% 10,9%
La Roche Posay 3,7% 6,3% 3,5% 4,0%
Lancome 1,0% 5,1% 0,9% 1,0%
Nivéa 32,8% 6,9% 32,7% 32,8%
Olay 9,3% 7,1% 9,3% 9,3%
Olivenoel 5,4% 6,9% 5,3% 5,3%
Shiseido 1,0% 5,2% 0,9% 0,9%
Vichy 5,8% 6,5% 6,0% 6,1%
Weleda 3,4% 5,3% 3,6% 3,6%
Tests statistiques entre modèles
 Le critère de bonne prévision des parts de marché ne permet de trancher
statistiquement entre le modèle de base et les modèles séquentiels, puisque le modèle
de base est par définition calé sur les parts de marché observées.
 On dispose cependant d’un test statistique: si les élasticités ne sont pas différentes de
1, le modèle de base ne peut pas être rejeté. Pour les deux modèles, l’hypothèse que
les élasticités sont égales à 1 est clairement rejetée:
19/06/2015 Pilote optimisation sur données MCA 11
Modèle 2 groupes Elasticité Ecart-type
iv.nivea 0,014 0,322
iv.reste 10,881 1,322
Modèle 2 groupes Elasticité Ecart-type
iv.mass 1,057 0,144
iv.pharma 0,338 0,049
iv.luxe 5,402 1,901
 On peut donc rejeter le modèle de base.
 A ce stade, on n’a pas mis en œuvre de test statistique permettant de comparer les
deux modèles séquentiels. La prévision des parts de marché nous indique que le
modèle à 3 groupes est meilleur que le modèle à 2 groupes
Simulations sur les parts de marché
 L’output principal du modèle est une simulation sur les parts de marché des
marques, quand on modifie le nombre de BEP.
 Les simulations ont été réalisées pour La Roche Posay et Vichy, selon les
principes suivants:
• Diminution de 5% du budget TV Ad, soit 288K€, pour Vichy, et
augmentation de 10% du nombre de BEP pour les autres médias
• Diminution de 5% du budget Dermatologist advice, soit 252K€ pour La
Roche Posay, et augmentation de 10% du nombre de BEP pour les autres
médias.
 Les slides suivantes donnent les résultats des simulations: il s’agit de la
variation de la part de marché en pourcentage par rapport à la situation
observée.
 Les quatre modèles donnent des résultats différents, avec une forte similarité
entre modèle de base et modèle sans constantes.
• Le modèle séquentiel à 3 groupes ayant les meilleures qualités
statistiques, c’est celui que nous recommandons.
19/06/2015 Pilote optimisation sur données MCA 12
Simulations Vichy
19/06/2015 Pilote optimisation sur données MCA 13
Sampling offered by pharmacist 0,45% Brochure at POS 0,58% Sampling offered by pharmacist 0,48% Brand displays at POS 0,30%
Brand displays at POS 0,33% Brand displays at POS 0,48% Brochure at POS 0,38% Product trial in pharmacy 0,09%
Brochure at POS 0,32% Sampling offered by pharmacist 0,26% Product trial in pharmacy 0,29% Sampling offered by pharmacist -0,02%
Product trial in pharmacy 0,30% Sampling at POS 0,23% Friends & family advice 0,29% Promo events at POS -0,02%
Dermatologist's advice 0,25% Promo events at POS 0,18% Sampling received by mail 0,24% Brand animation at POS -0,02%
Brand website 0,12% Brand's video on Internet 0,16% Brand animation at POS 0,12% Friends & family advice -0,03%
Sampling at POS 0,08% Internet Ad 0,11% Window postering at POS 0,12% Brand's video on Internet -0,04%
Promo events at POS 0,03% Dermatologist's advice 0,06% Brand's video on Internet 0,09% Sampling at POS -0,09%
Friends & family advice 0,01% Advice in blogs and social networks -0,01% Advice in specialized websites 0,06% Dermatologist's advice -0,09%
Advice in blogs and social networks -0,02% Friends & family advice -0,01% Outdoor ad 0,05% Packaging -0,12%
Internet Ad -0,02% Brand animation at POS -0,03% Sampling at POS 0,04% Daily press Ad -0,12%
Brand animation at POS -0,02% Outdoor ad -0,03% Promo events at POS 0,04% Advice in specialized websites -0,13%
Pharmacists' advice -0,04% Packaging -0,04% Advice in blogs and social networks 0,01% Health magazine Ad -0,17%
Brand found on search engines -0,10% Window postering at POS -0,06% Dermatologist's advice 0,01% Internet Ad -0,17%
Brand's video on Internet -0,12% Product trial in pharmacy -0,06% Packaging -0,01% Window postering at POS -0,18%
Loyalty card -0,13% Advice of consumer associations -0,06% Brand website -0,02% Advice of consumer associations-0,19%
Outdoor ad -0,14% Shelf info at POS -0,07% Daily press Ad -0,03% Outdoor ad -0,19%
Packaging -0,15% Brand website -0,09% Pharmacists' advice -0,07% Pharmacists' advice -0,20%
Shelf info at POS -0,16% Health magazine Ad -0,10% TV prgrm sponsoring -0,09% Shelf info at POS -0,21%
Window postering at POS -0,17% Advice in specialized websites -0,11% Brand found on search engines -0,12% Brochure at POS -0,27%
Health magazine Ad -0,18% Loyalty card -0,12% Advice of consumer associations -0,12% Celebrity endorsment -0,28%
TV prgrm sponsoring -0,18% Pharmacists' advice -0,14% Internet Ad -0,13% Loyalty card -0,28%
Advice of consumer associations -0,20% Beauty magazine Ad -0,15% Loyalty card -0,14% Sampling received by mail -0,28%
Daily press Ad -0,21% Sampling received by mail -0,16% Health magazine Ad -0,15% TV prgrm sponsoring -0,28%
E mailing / E newsletter -0,22% TV prgrm sponsoring -0,17% Articles about the brand in media -0,15% Brand found on search engines -0,29%
Sampling received by mail -0,22% Celebrity endorsment -0,18% Celebrity endorsment -0,15% Advice in blogs and social networks-0,29%
Customer service by phone -0,22% Customer service by phone -0,18% Customer service by phone -0,16% Customer service by phone -0,30%
Celebrity endorsment -0,23% Sampling in magazines -0,18% E mailing / E newsletter -0,16% Sampling in magazines -0,30%
Advice in specialized websites -0,25% Daily press Ad -0,19% Mobile Marketing -0,17% Articles about the brand in media-0,30%
Mobile Marketing -0,26% Mobile Marketing -0,19% Magazine inserts -0,17% E mailing / E newsletter -0,31%
Brand's magazine at home -0,27% Brand found on search engines -0,21% Brand displays at POS -0,18% Mobile Marketing -0,31%
Magazine inserts -0,31% E mailing / E newsletter -0,21% Brand's magazine at home -0,19% Brand's magazine at home -0,33%
Articles about the brand in media -0,32% Brand's magazine at home -0,21% Shelf info at POS -0,19% Magazine inserts -0,34%
Sampling in magazines -0,33% Magazine inserts -0,23% Beauty magazine Ad -0,20% Beauty magazine Ad -0,35%
Beauty magazine Ad -0,40% Articles about the brand in media -0,28% Sampling in magazines -0,23% Brand website -0,51%
% variation part de marché - Vichy
Séquentiel 3 groupes Séquentiel 2 groupes Sans constantesBase
Simulations La Roche Posay
19/06/2015 Pilote optimisation sur données MCA 14
Product trial in pharmacy 0,23% Product trial in pharmacy 3,25% Brand displays at POS 28,17% Brochure at POS 18,17%
TV Ad -0,54% Loyalty card 2,66% Internet Ad 22,18% Internet Ad 13,29%
Packaging -0,57% Brand displays at POS 1,50% Friends & family advice 3,16% Sampling offered by pharmacist 4,68%
Brand displays at POS -2,06% Brochure at POS 1,48% TV prgrm sponsoring 1,50% Friends & family advice 1,49%
Brand website -2,66% TV prgrm sponsoring 0,75% Product trial in pharmacy 1,02% TV prgrm sponsoring 0,95%
Brochure at POS -2,67% Advice of consumer associations 0,62% Advice of consumer associations 0,58% Brand displays at POS 0,77%
Brand's video on Internet -2,71% Sampling at POS 0,59% Loyalty card 0,43% Advice of consumer associations0,24%
Sampling at POS -2,78% Daily press Ad 0,01% Brochure at POS 0,22% Brand's video on Internet 0,10%
Advice in blogs and social networks -2,88% Beauty magazine Ad -0,14% Sampling received by mail 0,06% Product trial in pharmacy 0,01%
Outdoor ad -2,99% Brand's magazine at home -0,14% Daily press Ad -0,02% Health magazine Ad -0,15%
Promo events at POS -3,07% Friends & family advice -0,15% Pharmacists' advice -0,06% Sampling in magazines -0,21%
Loyalty card -3,14% Window postering at POS -0,22% Brand's video on Internet -0,08% Advice in specialized websites -0,23%
Window postering at POS -3,23% Advice in blogs and social networks -0,26% Brand found on search engines -0,10% Advice in blogs and social networks-0,24%
Health magazine Ad -3,23% Promo events at POS -0,26% Brand's magazine at home -0,15% Brand found on search engines -0,24%
Advice of consumer associations -3,31% Internet Ad -0,29% TV Ad -0,19% Daily press Ad -0,25%
Daily press Ad -3,32% Packaging -0,32% Advice in blogs and social networks -0,22% Window postering at POS -0,34%
Shelf info at POS -3,33% Health magazine Ad -0,32% Celebrity endorsment -0,28% Brand's magazine at home -0,34%
Brand found on search engines -3,33% Sampling received by mail -0,38% Health magazine Ad -0,29% Celebrity endorsment -0,37%
Celebrity endorsment -3,34% Shelf info at POS -0,44% Promo events at POS -0,34% Sampling received by mail -0,41%
Magazine inserts -3,35% Celebrity endorsment -0,45% Outdoor ad -0,34% TV Ad -0,42%
Sampling received by mail -3,35% Sampling in magazines -0,47% Window postering at POS -0,35% Outdoor ad -0,43%
E mailing / E newsletter -3,35% Brand's video on Internet -0,54% Articles about the brand in media -0,35% Shelf info at POS -0,46%
Friends & family advice -3,36% Pharmacists' advice -0,54% Brand animation at POS -0,35% Magazine inserts -0,50%
Mobile Marketing -3,38% Articles about the brand in media -0,55% E mailing / E newsletter -0,36% Brand animation at POS -0,53%
Brand animation at POS -3,38% Brand animation at POS -0,55% Shelf info at POS -0,39% E mailing / E newsletter -0,53%
Advice in specialized websites -3,41% Brand found on search engines -0,56% Mobile Marketing -0,43% Articles about the brand in media-0,53%
Customer service by phone -3,43% Customer service by phone -0,57% Customer service by phone -0,45% Mobile Marketing -0,54%
TV prgrm sponsoring -3,58% Outdoor ad -0,58% Brand website -0,48% Promo events at POS -0,55%
Brand's magazine at home -3,60% Mobile Marketing -0,58% Magazine inserts -0,49% Customer service by phone -0,59%
Sampling in magazines -3,64% E mailing / E newsletter -0,61% Advice in specialized websites -0,52% Pharmacists' advice -0,59%
Articles about the brand in media -3,68% Brand website -0,61% Beauty magazine Ad -0,64% Beauty magazine Ad -0,60%
Pharmacists' advice -3,76% Magazine inserts -0,71% Packaging -0,91% Brand website -0,62%
Internet Ad -3,81% Advice in specialized websites -0,78% Sampling at POS -1,22% Packaging -1,03%
Sampling offered by pharmacist -3,96% TV Ad -0,98% Sampling in magazines -1,57% Sampling at POS -1,04%
Beauty magazine Ad -4,43% Sampling offered by pharmacist -1,35% Sampling offered by pharmacist -1,70% Loyalty card -1,99%
% variation part de marché - La Roche Posay
Séquentiel 3 groupes Séquentiel 2 groupes Base Sans constantes
Eléments de conclusion
 La modélisation permet de répondre à des questions What If sur les données
MCA, ce qui apporte de la valeur ajoutée aux données.
 Touts sortes de scénarios peuvent être testés, avec des sorties possibles sur
toutes les marques: il faudra définir un cadre typique de scénario.
 Ce pilote a été l’occasion d’automatiser une bonne partie de la modélisation. Il
faudra faire de même sur la partie acquisition des données.
 Mais la discussion des slides précédentes montre qu’il y aura toujours un
temps non compressible à passer sur le choix du bon modèle.
19/06/2015 Pilote optimisation sur données MCA 15
19/06/2015 Nom du document 16
Annexe: MCA et MMM
Marketing Mix Modelling
 Une analyse de type MMM cherche à mesurer l’impact des actions de
communication sur les ventes d’un produit. L’output standard de l’analyse est
une décomposition de la variation des ventes en fonction des actions de
communication:
• x% de la variation des ventes vient de l’action de communication 1, y% de
la variation des ventes vient de l’action de communication 2,….
 Un sous-produit important du MMM est la capacité à faire:
• Des analyses de simulation: que se passe-t-il si on fait plus de radio et
moins de TV?
• Des analyses d’optimisation: quelle est la répartition optimale du budget
entre médias?
 Les analyses MMM peuvent être purement tactiques et axées sur les
campagnes publicitaires produit. Mais elles peuvent aussi intégrer une
composante stratégique, en prenant en compte les actions publicitaires sur la
marque.
 Elles nécessitent des données quantitatives sur longue période (au moins
quatre ans de données mensuelles, par exemple).
19/06/2015 Pilote optimisation sur données MCA 17
MMM vs MCA (1/2)
 Les deux approches se différencient par le type de données utilisées:
• Déclaratif au niveau individuel pour MCA vs données de panel ou de pige
pour MMM.
• Photographie à l’instant t pour MCA vs évolution temporelle pour MMM,
 …et donc par les résultats disponibles pour chaque méthode:
• Granularité des résultats jusqu’au point de contact pour MCA vs résumé
des actions de communication par canaux agrégés de contact pour MMM.
• Possibilité d’avoir des résultats par cible pour MCA vs résultats
uniquement agrégés pour MMM.
 Il y a donc trois raisons principales pour lesquelles un client MCA pourrait être
tenté par une approche MMM:
• Le biais possible du déclaratif/Le côté « incontestable » d’une approche
basée sur des données objectives,
• Disposer d’un outil de simulation What if,
• Faire des analyses à fréquence plus rapprochées et plus tactiques.
19/06/2015 Pilote optimisation sur données MCA 18
MMM vs MCA (2/2)
19/06/2015 Pilote optimisation sur données MCA 19
 La deuxième partie de ce document donne des pistes pour construire un outil
de simulation.
 Cet outil de simulation permet aussi de répondre à l’objection sur le déclaratif:
on peut agréger les points de contact MCA au même niveau que celui des
analyses MMM et vérifier qu’on obtient des élasticités similaires.
 L’imbrication de données MCA dans un exercice de type MMM ne peut se
concevoir que si on dispose de plusieurs études MCA sur le même marché.
Une fois que l’on a vérifié que les élasticités sont similaires et qu’on est donc
bien sur des analyses compatibles, les données MCA peuvent être utilisées
pour
• Donner un éclairage plus fin sur l’efficacité des différents médias.
• Répartir l’impact ventes sur les points de contact détaillés.
• Répartir l’impact ventes sur les cibles.

Contenu connexe

En vedette

Guia didáctica
Guia didácticaGuia didáctica
Guia didáctica
Laura Velazquez
 
Producción
ProducciónProducción
Producción
Gerald Jauregui
 
Points forts d'OpenStreetMap
Points forts d'OpenStreetMapPoints forts d'OpenStreetMap
Points forts d'OpenStreetMap
Jorieke Vyncke
 
Koha, metabuscadores y herramientas colaborativas de edición de contenidos
Koha, metabuscadores y herramientas colaborativas de edición de contenidosKoha, metabuscadores y herramientas colaborativas de edición de contenidos
Koha, metabuscadores y herramientas colaborativas de edición de contenidos
Vicente Piñeiro
 
Télérelevé multifluides : Eau Gas Chaleur Elec - Conférence distributeurs mu...
Télérelevé multifluides : Eau Gas Chaleur Elec - Conférence distributeurs mu...Télérelevé multifluides : Eau Gas Chaleur Elec - Conférence distributeurs mu...
Télérelevé multifluides : Eau Gas Chaleur Elec - Conférence distributeurs mu...
Benoit Cliche
 
Lancement des "Morocco Trade Centers"
Lancement des "Morocco Trade Centers" Lancement des "Morocco Trade Centers"
Lancement des "Morocco Trade Centers"
Reda Rami
 
La oficina de gobierno para enfrentar la complejidad -P1/2
La oficina de gobierno para enfrentar la complejidad -P1/2La oficina de gobierno para enfrentar la complejidad -P1/2
La oficina de gobierno para enfrentar la complejidad -P1/2
Fundación CiGob
 
Correcciones de la actividad número 6
Correcciones de la actividad número 6Correcciones de la actividad número 6
Correcciones de la actividad número 6
Sofia Torres
 
Soundcloud, la musique conversationnelle l3 groupe 3
Soundcloud, la musique conversationnelle l3 groupe 3Soundcloud, la musique conversationnelle l3 groupe 3
Soundcloud, la musique conversationnelle l3 groupe 3
laurence allard
 
L’économie du secteur des télécoms en France : 4ème étude Arthur D. Little / ...
L’économie du secteur des télécoms en France : 4ème étude Arthur D. Little / ...L’économie du secteur des télécoms en France : 4ème étude Arthur D. Little / ...
L’économie du secteur des télécoms en France : 4ème étude Arthur D. Little / ...
polenumerique33
 
Diapo milgram v3.0
Diapo milgram v3.0Diapo milgram v3.0
Diapo milgram v3.0
Jules Parent
 
05pruebas
05pruebas05pruebas
05pruebas
Fabian Araya
 
Plaquette novosph%c3%a8re page
Plaquette novosph%c3%a8re pagePlaquette novosph%c3%a8re page
Plaquette novosph%c3%a8re page
AgenceCommunicationConnecto
 
Dossier_de_production
Dossier_de_productionDossier_de_production
Dossier_de_production
Gauthier Mouton
 
L’achat d’une voiture : vos frais
L’achat d’une voiture : vos fraisL’achat d’une voiture : vos frais
L’achat d’une voiture : vos frais
Wagenverkopen
 
Dans la bible
Dans la bibleDans la bible
Dans la bible
sultan126
 
Les instal lacions_de_la_calefaccio_i_climatitzacio
Les instal lacions_de_la_calefaccio_i_climatitzacioLes instal lacions_de_la_calefaccio_i_climatitzacio
Les instal lacions_de_la_calefaccio_i_climatitzacio
informaticajuanjo
 
Profesores anarillo
Profesores anarilloProfesores anarillo
Profesores anarillo
Laura Velazquez
 

En vedette (20)

Guia didáctica
Guia didácticaGuia didáctica
Guia didáctica
 
Producción
ProducciónProducción
Producción
 
Points forts d'OpenStreetMap
Points forts d'OpenStreetMapPoints forts d'OpenStreetMap
Points forts d'OpenStreetMap
 
Koha, metabuscadores y herramientas colaborativas de edición de contenidos
Koha, metabuscadores y herramientas colaborativas de edición de contenidosKoha, metabuscadores y herramientas colaborativas de edición de contenidos
Koha, metabuscadores y herramientas colaborativas de edición de contenidos
 
Télérelevé multifluides : Eau Gas Chaleur Elec - Conférence distributeurs mu...
Télérelevé multifluides : Eau Gas Chaleur Elec - Conférence distributeurs mu...Télérelevé multifluides : Eau Gas Chaleur Elec - Conférence distributeurs mu...
Télérelevé multifluides : Eau Gas Chaleur Elec - Conférence distributeurs mu...
 
Lancement des "Morocco Trade Centers"
Lancement des "Morocco Trade Centers" Lancement des "Morocco Trade Centers"
Lancement des "Morocco Trade Centers"
 
La oficina de gobierno para enfrentar la complejidad -P1/2
La oficina de gobierno para enfrentar la complejidad -P1/2La oficina de gobierno para enfrentar la complejidad -P1/2
La oficina de gobierno para enfrentar la complejidad -P1/2
 
Correcciones de la actividad número 6
Correcciones de la actividad número 6Correcciones de la actividad número 6
Correcciones de la actividad número 6
 
Smi2012
Smi2012Smi2012
Smi2012
 
Soundcloud, la musique conversationnelle l3 groupe 3
Soundcloud, la musique conversationnelle l3 groupe 3Soundcloud, la musique conversationnelle l3 groupe 3
Soundcloud, la musique conversationnelle l3 groupe 3
 
L’économie du secteur des télécoms en France : 4ème étude Arthur D. Little / ...
L’économie du secteur des télécoms en France : 4ème étude Arthur D. Little / ...L’économie du secteur des télécoms en France : 4ème étude Arthur D. Little / ...
L’économie du secteur des télécoms en France : 4ème étude Arthur D. Little / ...
 
Diapo milgram v3.0
Diapo milgram v3.0Diapo milgram v3.0
Diapo milgram v3.0
 
05pruebas
05pruebas05pruebas
05pruebas
 
Plaquette novosph%c3%a8re page
Plaquette novosph%c3%a8re pagePlaquette novosph%c3%a8re page
Plaquette novosph%c3%a8re page
 
Dossier_de_production
Dossier_de_productionDossier_de_production
Dossier_de_production
 
L’achat d’une voiture : vos frais
L’achat d’une voiture : vos fraisL’achat d’une voiture : vos frais
L’achat d’une voiture : vos frais
 
Dans la bible
Dans la bibleDans la bible
Dans la bible
 
Les instal lacions_de_la_calefaccio_i_climatitzacio
Les instal lacions_de_la_calefaccio_i_climatitzacioLes instal lacions_de_la_calefaccio_i_climatitzacio
Les instal lacions_de_la_calefaccio_i_climatitzacio
 
La tempesta, cisco
La tempesta, ciscoLa tempesta, cisco
La tempesta, cisco
 
Profesores anarillo
Profesores anarilloProfesores anarillo
Profesores anarillo
 

Similaire à Pilote optimisation sur données MCA®

Aressy Regards Croises 2009
Aressy Regards Croises 2009Aressy Regards Croises 2009
Aressy Regards Croises 2009
aressy
 
2018 idm -family touchpoint
2018 idm -family touchpoint2018 idm -family touchpoint
2018 idm -family touchpoint
onibi29
 
Les décisions stratégiques de l
Les décisions stratégiques de lLes décisions stratégiques de l
Les décisions stratégiques de l
487180
 
Mrlab event
Mrlab eventMrlab event
Mrlab event
Uniteam
 
De l’usage des Options Réelles dans le secteur des Biotechs
De l’usage des Options Réelles dans le secteur des BiotechsDe l’usage des Options Réelles dans le secteur des Biotechs
De l’usage des Options Réelles dans le secteur des Biotechs
CBM Audit & Conseil
 
Herve balloux datamining
Herve balloux dataminingHerve balloux datamining
Herve balloux datamining
HerveBalloux
 
Outils et méthodes d'analyse stratégique et marketing
Outils et méthodes d'analyse stratégique et marketingOutils et méthodes d'analyse stratégique et marketing
Outils et méthodes d'analyse stratégique et marketing
Philippe Massol
 
Check list stratégique de kratiroff
Check list stratégique de kratiroffCheck list stratégique de kratiroff
Check list stratégique de kratiroff
Hubert Kratiroff
 
Exoptic : optimisation commerciale et sectorisation pour le marché de l'Optique
Exoptic : optimisation commerciale et sectorisation pour le marché de l'OptiqueExoptic : optimisation commerciale et sectorisation pour le marché de l'Optique
Exoptic : optimisation commerciale et sectorisation pour le marché de l'Optique
Groupe ARTICQUE
 
NP6 révolutionne les méthodes de segmentation - avec le témoignage du Groupe PSA
NP6 révolutionne les méthodes de segmentation - avec le témoignage du Groupe PSANP6 révolutionne les méthodes de segmentation - avec le témoignage du Groupe PSA
NP6 révolutionne les méthodes de segmentation - avec le témoignage du Groupe PSA
NP6
 
Benchmark - COFIDIS
Benchmark - COFIDISBenchmark - COFIDIS
Benchmark - COFIDIS
Raphaël Dewan
 
Pano trade2010le site marketing
Pano trade2010le site marketingPano trade2010le site marketing
Pano trade2010le site marketing
RETAIL EXPLORER
 
Attribution, Contribution : Les enjeux de la deduplication -
Attribution, Contribution : Les enjeux de la deduplication - Attribution, Contribution : Les enjeux de la deduplication -
Attribution, Contribution : Les enjeux de la deduplication -
Romain Fonnier
 
Attribution , Contribution : les enjeux de la déduplication - IAB france - ma...
Attribution , Contribution : les enjeux de la déduplication - IAB france - ma...Attribution , Contribution : les enjeux de la déduplication - IAB france - ma...
Attribution , Contribution : les enjeux de la déduplication - IAB france - ma...
Romain Fonnier
 
Go to Market : Business model / Marketing
Go to Market : Business model / MarketingGo to Market : Business model / Marketing
Go to Market : Business model / Marketing
Emmanuel GONON
 
TO
TOTO
Multicanal: Concept & démarrage
Multicanal: Concept & démarrage Multicanal: Concept & démarrage
Multicanal: Concept & démarrage
Etienne Darbousset
 
Multicanal : concept & démarrage - Idaho Consulting - octobre 2013
Multicanal : concept & démarrage - Idaho Consulting - octobre 2013Multicanal : concept & démarrage - Idaho Consulting - octobre 2013
Multicanal : concept & démarrage - Idaho Consulting - octobre 2013
Idaho Consulting
 
FSECG MS MARK ST CH 3 cours marketing stratégique
FSECG MS MARK ST CH 3 cours marketing stratégiqueFSECG MS MARK ST CH 3 cours marketing stratégique
FSECG MS MARK ST CH 3 cours marketing stratégique
Linahhhcccddd
 

Similaire à Pilote optimisation sur données MCA® (20)

Aressy Regards Croises 2009
Aressy Regards Croises 2009Aressy Regards Croises 2009
Aressy Regards Croises 2009
 
2018 idm -family touchpoint
2018 idm -family touchpoint2018 idm -family touchpoint
2018 idm -family touchpoint
 
Les décisions stratégiques de l
Les décisions stratégiques de lLes décisions stratégiques de l
Les décisions stratégiques de l
 
Td5 pg2
Td5 pg2Td5 pg2
Td5 pg2
 
Mrlab event
Mrlab eventMrlab event
Mrlab event
 
De l’usage des Options Réelles dans le secteur des Biotechs
De l’usage des Options Réelles dans le secteur des BiotechsDe l’usage des Options Réelles dans le secteur des Biotechs
De l’usage des Options Réelles dans le secteur des Biotechs
 
Herve balloux datamining
Herve balloux dataminingHerve balloux datamining
Herve balloux datamining
 
Outils et méthodes d'analyse stratégique et marketing
Outils et méthodes d'analyse stratégique et marketingOutils et méthodes d'analyse stratégique et marketing
Outils et méthodes d'analyse stratégique et marketing
 
Check list stratégique de kratiroff
Check list stratégique de kratiroffCheck list stratégique de kratiroff
Check list stratégique de kratiroff
 
Exoptic : optimisation commerciale et sectorisation pour le marché de l'Optique
Exoptic : optimisation commerciale et sectorisation pour le marché de l'OptiqueExoptic : optimisation commerciale et sectorisation pour le marché de l'Optique
Exoptic : optimisation commerciale et sectorisation pour le marché de l'Optique
 
NP6 révolutionne les méthodes de segmentation - avec le témoignage du Groupe PSA
NP6 révolutionne les méthodes de segmentation - avec le témoignage du Groupe PSANP6 révolutionne les méthodes de segmentation - avec le témoignage du Groupe PSA
NP6 révolutionne les méthodes de segmentation - avec le témoignage du Groupe PSA
 
Benchmark - COFIDIS
Benchmark - COFIDISBenchmark - COFIDIS
Benchmark - COFIDIS
 
Pano trade2010le site marketing
Pano trade2010le site marketingPano trade2010le site marketing
Pano trade2010le site marketing
 
Attribution, Contribution : Les enjeux de la deduplication -
Attribution, Contribution : Les enjeux de la deduplication - Attribution, Contribution : Les enjeux de la deduplication -
Attribution, Contribution : Les enjeux de la deduplication -
 
Attribution , Contribution : les enjeux de la déduplication - IAB france - ma...
Attribution , Contribution : les enjeux de la déduplication - IAB france - ma...Attribution , Contribution : les enjeux de la déduplication - IAB france - ma...
Attribution , Contribution : les enjeux de la déduplication - IAB france - ma...
 
Go to Market : Business model / Marketing
Go to Market : Business model / MarketingGo to Market : Business model / Marketing
Go to Market : Business model / Marketing
 
TO
TOTO
TO
 
Multicanal: Concept & démarrage
Multicanal: Concept & démarrage Multicanal: Concept & démarrage
Multicanal: Concept & démarrage
 
Multicanal : concept & démarrage - Idaho Consulting - octobre 2013
Multicanal : concept & démarrage - Idaho Consulting - octobre 2013Multicanal : concept & démarrage - Idaho Consulting - octobre 2013
Multicanal : concept & démarrage - Idaho Consulting - octobre 2013
 
FSECG MS MARK ST CH 3 cours marketing stratégique
FSECG MS MARK ST CH 3 cours marketing stratégiqueFSECG MS MARK ST CH 3 cours marketing stratégique
FSECG MS MARK ST CH 3 cours marketing stratégique
 

Pilote optimisation sur données MCA®

  • 1. Comprendre pour agir 19/06/2015 Nom du document 1 Pilote optimisation sur données MCA 19 juin 2015 Contacts: Antoine Moreau – 06 19 23 08 70 - antoine.moreau@slpv-analytics.com
  • 2. La problématique  ROI marketing propose à ses clients une solution de mesure de l’efficacité des actions de communication. Celle-ci, basée sur le déclaratif des répondants, permet de calculer des indicateurs d’efficacité pour chaque point de contact, à un niveau très fin (36 points de contact).  Ces indicateurs sont calculés en termes de BEP (Brand Experience Point). Le BEP combine le fait d’avoir été en contact avec la marque et la capacité d’influenceur du point de contact correspondant. Il s’agit d’une mesure d’efficacité qui peut être utilisée de différentes manières: • Hiérarchisation des points de contact en terme d’influence, • Hiérarchisation des marques en terme d’influence, • Efficacité de la communication, en comparant, pour chaque marque, sa part de marché et sa part d’influence, • Rendement des actions de communication, en divisant le nombre total de BEP par marque par la dépense totale, • …  Les clients de ROI marketing se pose la question du positionnement des données MCA par rapport à une analyse de type Marketing Mix Modelling.  L’objet de ce document est d’entamer la discussion sur la comparaison MCA/MMM 19/06/2015 Pilote optimisation sur données MCA 2
  • 3. 19/06/2015 Nom du document 3 Modélisation données Allemagne
  • 4. BEP au niveau individuel  Une étape préliminaire à l’estimation du modèle consiste à calculer des BEP au niveau individuel.  On dispose pour cela des BEP pour un certain nombre de segments: • Age • Marque achetée le plus souvent • CSP • Région  Les BEP individuels sont calculés par redressement: on attribue un BEP à un répondant, comme un poids dans un redressement, en calant le nombre de BEP sur chaque modalité de chaque segment.  Il y a donc 16*36=576 redressements, pour chacune des 16 marques et des 36 points de contact. 19/06/2015 Pilote optimisation sur données MCA 4
  • 5. Le modèle de base (1/2)  On modélise le choix de la marque la plus achetée en fonction des BEP associés à chaque marque.  Il s’agit d’un modèle logit multinomial classique, équivalent à ceux utilisés pour les trade off.  Le modèle de base est le suivant: • Le répondant associe à chaque marque i une utilité Vi. Vi s’écrit en fonction des contacts de l’individu avec les actions publicitaires de la marque, exprimés en BEP: Vi= constantei + α1 * BEP1 + ….. + αK * BEPK • La marque la plus souvent achetée sera celle dont l’utilité et maximale  Les coefficients αk donnent le poids, toutes choses égales par ailleurs, de chaque point de contact dans le choix de la marque la plus souvent achetée. Ils permettent de calculer l’élasticité des parts de marché à la variation du nombre de BEP et de faire des simulations 19/06/2015 Pilote optimisation sur données MCA 5
  • 6. Le modèle de base (2/2)  Un défaut du modèle précédent est que les coefficients αk sont identiques pour toutes les marques. Il est possible que l’influence des points de contact sur la préférence de marque dépende du point de contact, par exemple en fonction de la qualité de la création sur chaque point de contact.  Un modèle global serait donc: Vi= constantei + α1i * BEP1 + ….. + αKi * BEPK  Ce modèle ne peut pas être identifié: il n’y a pas suffisamment de variance dans les données. Nous avons estimé le modèle qui permet de différencier le plus de coefficients αki. • 10 points de contact sont modélisés avec un impact différencié selon les marques. • L’hypothèse d’égalité des deux modèles est très significativement rejetée, ce qui valide l’idée du modèle global ci-dessus. 19/06/2015 Pilote optimisation sur données MCA 6
  • 7. Le modèle de base n’est pas le bon  Une première condition de validité du modèle estimé est que les coefficients αki soient positifs: l’utilité associée à une marque ne peut pas décroître en fonction du BEP.  Dans le modèle de base décrit précédemment, il y a quelques coefficients négatifs significatifs. Ils sont tous associés à la marque Nivéa, qui domine largement toutes les autres, avec une part de marché de 32,8% (sur la question: marque achetée le plus souvent).  Cela veut dire que le modèle n’arrive pas à décrire correctement le marché dans sa globalité et jette un doute sur l’ensemble des résultats.  Une première manière de corriger cet effet est d’estimer un modèle sans constantes. De fait, dans le modèle sans constantes, il n’y a plus de coefficients négatifs significatifs. Mais le modèle sans constantes a deux inconvénients: • Les parts de marché estimé par le modèle ne sont plus calées sur les vraies parts de marché, contrairement au modèle avec constantes. • Il est un cas particulier du modèle avec constantes et un test statistique rejette fortement le fait que les constantes puissent être nulles.  Nous recommandons plutôt d’utiliser un modèle de choix séquentiel (ou emboîté: nested logit model). 19/06/2015 Pilote optimisation sur données MCA 7
  • 8. Modèles de choix séquentiel  Dans un modèle séquentiel, on suppose que le consommateur fait son choix en deux étapes: • Entre plusieurs groupes de possibilités, • Puis, à l’intérieur du groupe choisi, entre les choix associés à ce groupe.  Un exemple classique de choix séquentiel est celui du mode de transport. On modélise le choix entre (voiture, train, avion) en faisant l’hypothèse que les individus vont d’abord faire le choix entre transports terrestres et transport aérien, et ensuite, faire un choix entre voiture et train.  Dans notre cas, il y a deux manières de donner un cadre théorique au modèle séquentiel: • L’existence d’une marque nationale historique: les consommatrices ferait d’abord le choix (ou non) d’acheter Nivéa, puis, si elles ne l’achètent pas, d’acheter une des marques restantes. • L’existence de trois marchés différents: mass market (Nivéa, Olay, Garnier, L’Oréal Paris, Diadermine), pharmacie (Eucerine, Vichy, Weleda, La Roche Posay, Avène, Olivenoel), Luxe (Shiseido), Calrins, Biotherm, Clinique, Lancôme).  Les deux modèles séquentiels ont été estimés. 19/06/2015 Pilote optimisation sur données MCA 8
  • 9. Modèles de choix séquentiel  Les utilités s’écrivent de la même manière: • Seuls 4 coefficients αki peuvent être différenciés selon les marques. • Dans le premier modèle séquentiel, la constante correspondant à Nivéa ne peut pas être identifiée/  Le modèle a deux ou trois paramètres supplémentaires, correspondants aux « élasticités » entre les groupes.  Les probabilités de choix des marques s’écrivent d’une manière un peu plus complexe que dans le modèle de base, en fonction des utilités et des élasticités. 19/06/2015 Pilote optimisation sur données MCA 9
  • 10. Parts de marché estimées par les modèles  Comme déjà indiqué, un premier critère de validité du modèle est qu’il n’y ait pas de coefficient négatif significatif. • C’est le cas pour le modèle sans constantes comme pour les deux modèles séquentiels.  Un deuxième critère de validité consiste à regarder les parts de marché estimées par le modèle 19/06/2015 Pilote optimisation sur données MCA 10  Le modèle sans constantes est beaucoup plus éloigné des vraies parts de marché que le modèle séquentiel. Le modèle en 3 groupes est meilleur que le modèle en 2 groupes. Base Sans Constantes Séquentiel 3 groupes Séquentiel 2 groupes Avène 2,7% 6,0% 2,6% 2,7% Biotherm 1,0% 5,2% 1,0% 1,1% Clarins 1,0% 5,1% 1,0% 0,9% Clinique 1,4% 5,3% 1,6% 1,4% Diadermine 6,8% 6,9% 6,8% 6,4% Eucerin 4,1% 5,9% 4,2% 4,6% Garnier 9,1% 7,1% 9,1% 8,8% L’Oréal Paris 11,5% 9,1% 11,5% 10,9% La Roche Posay 3,7% 6,3% 3,5% 4,0% Lancome 1,0% 5,1% 0,9% 1,0% Nivéa 32,8% 6,9% 32,7% 32,8% Olay 9,3% 7,1% 9,3% 9,3% Olivenoel 5,4% 6,9% 5,3% 5,3% Shiseido 1,0% 5,2% 0,9% 0,9% Vichy 5,8% 6,5% 6,0% 6,1% Weleda 3,4% 5,3% 3,6% 3,6%
  • 11. Tests statistiques entre modèles  Le critère de bonne prévision des parts de marché ne permet de trancher statistiquement entre le modèle de base et les modèles séquentiels, puisque le modèle de base est par définition calé sur les parts de marché observées.  On dispose cependant d’un test statistique: si les élasticités ne sont pas différentes de 1, le modèle de base ne peut pas être rejeté. Pour les deux modèles, l’hypothèse que les élasticités sont égales à 1 est clairement rejetée: 19/06/2015 Pilote optimisation sur données MCA 11 Modèle 2 groupes Elasticité Ecart-type iv.nivea 0,014 0,322 iv.reste 10,881 1,322 Modèle 2 groupes Elasticité Ecart-type iv.mass 1,057 0,144 iv.pharma 0,338 0,049 iv.luxe 5,402 1,901  On peut donc rejeter le modèle de base.  A ce stade, on n’a pas mis en œuvre de test statistique permettant de comparer les deux modèles séquentiels. La prévision des parts de marché nous indique que le modèle à 3 groupes est meilleur que le modèle à 2 groupes
  • 12. Simulations sur les parts de marché  L’output principal du modèle est une simulation sur les parts de marché des marques, quand on modifie le nombre de BEP.  Les simulations ont été réalisées pour La Roche Posay et Vichy, selon les principes suivants: • Diminution de 5% du budget TV Ad, soit 288K€, pour Vichy, et augmentation de 10% du nombre de BEP pour les autres médias • Diminution de 5% du budget Dermatologist advice, soit 252K€ pour La Roche Posay, et augmentation de 10% du nombre de BEP pour les autres médias.  Les slides suivantes donnent les résultats des simulations: il s’agit de la variation de la part de marché en pourcentage par rapport à la situation observée.  Les quatre modèles donnent des résultats différents, avec une forte similarité entre modèle de base et modèle sans constantes. • Le modèle séquentiel à 3 groupes ayant les meilleures qualités statistiques, c’est celui que nous recommandons. 19/06/2015 Pilote optimisation sur données MCA 12
  • 13. Simulations Vichy 19/06/2015 Pilote optimisation sur données MCA 13 Sampling offered by pharmacist 0,45% Brochure at POS 0,58% Sampling offered by pharmacist 0,48% Brand displays at POS 0,30% Brand displays at POS 0,33% Brand displays at POS 0,48% Brochure at POS 0,38% Product trial in pharmacy 0,09% Brochure at POS 0,32% Sampling offered by pharmacist 0,26% Product trial in pharmacy 0,29% Sampling offered by pharmacist -0,02% Product trial in pharmacy 0,30% Sampling at POS 0,23% Friends & family advice 0,29% Promo events at POS -0,02% Dermatologist's advice 0,25% Promo events at POS 0,18% Sampling received by mail 0,24% Brand animation at POS -0,02% Brand website 0,12% Brand's video on Internet 0,16% Brand animation at POS 0,12% Friends & family advice -0,03% Sampling at POS 0,08% Internet Ad 0,11% Window postering at POS 0,12% Brand's video on Internet -0,04% Promo events at POS 0,03% Dermatologist's advice 0,06% Brand's video on Internet 0,09% Sampling at POS -0,09% Friends & family advice 0,01% Advice in blogs and social networks -0,01% Advice in specialized websites 0,06% Dermatologist's advice -0,09% Advice in blogs and social networks -0,02% Friends & family advice -0,01% Outdoor ad 0,05% Packaging -0,12% Internet Ad -0,02% Brand animation at POS -0,03% Sampling at POS 0,04% Daily press Ad -0,12% Brand animation at POS -0,02% Outdoor ad -0,03% Promo events at POS 0,04% Advice in specialized websites -0,13% Pharmacists' advice -0,04% Packaging -0,04% Advice in blogs and social networks 0,01% Health magazine Ad -0,17% Brand found on search engines -0,10% Window postering at POS -0,06% Dermatologist's advice 0,01% Internet Ad -0,17% Brand's video on Internet -0,12% Product trial in pharmacy -0,06% Packaging -0,01% Window postering at POS -0,18% Loyalty card -0,13% Advice of consumer associations -0,06% Brand website -0,02% Advice of consumer associations-0,19% Outdoor ad -0,14% Shelf info at POS -0,07% Daily press Ad -0,03% Outdoor ad -0,19% Packaging -0,15% Brand website -0,09% Pharmacists' advice -0,07% Pharmacists' advice -0,20% Shelf info at POS -0,16% Health magazine Ad -0,10% TV prgrm sponsoring -0,09% Shelf info at POS -0,21% Window postering at POS -0,17% Advice in specialized websites -0,11% Brand found on search engines -0,12% Brochure at POS -0,27% Health magazine Ad -0,18% Loyalty card -0,12% Advice of consumer associations -0,12% Celebrity endorsment -0,28% TV prgrm sponsoring -0,18% Pharmacists' advice -0,14% Internet Ad -0,13% Loyalty card -0,28% Advice of consumer associations -0,20% Beauty magazine Ad -0,15% Loyalty card -0,14% Sampling received by mail -0,28% Daily press Ad -0,21% Sampling received by mail -0,16% Health magazine Ad -0,15% TV prgrm sponsoring -0,28% E mailing / E newsletter -0,22% TV prgrm sponsoring -0,17% Articles about the brand in media -0,15% Brand found on search engines -0,29% Sampling received by mail -0,22% Celebrity endorsment -0,18% Celebrity endorsment -0,15% Advice in blogs and social networks-0,29% Customer service by phone -0,22% Customer service by phone -0,18% Customer service by phone -0,16% Customer service by phone -0,30% Celebrity endorsment -0,23% Sampling in magazines -0,18% E mailing / E newsletter -0,16% Sampling in magazines -0,30% Advice in specialized websites -0,25% Daily press Ad -0,19% Mobile Marketing -0,17% Articles about the brand in media-0,30% Mobile Marketing -0,26% Mobile Marketing -0,19% Magazine inserts -0,17% E mailing / E newsletter -0,31% Brand's magazine at home -0,27% Brand found on search engines -0,21% Brand displays at POS -0,18% Mobile Marketing -0,31% Magazine inserts -0,31% E mailing / E newsletter -0,21% Brand's magazine at home -0,19% Brand's magazine at home -0,33% Articles about the brand in media -0,32% Brand's magazine at home -0,21% Shelf info at POS -0,19% Magazine inserts -0,34% Sampling in magazines -0,33% Magazine inserts -0,23% Beauty magazine Ad -0,20% Beauty magazine Ad -0,35% Beauty magazine Ad -0,40% Articles about the brand in media -0,28% Sampling in magazines -0,23% Brand website -0,51% % variation part de marché - Vichy Séquentiel 3 groupes Séquentiel 2 groupes Sans constantesBase
  • 14. Simulations La Roche Posay 19/06/2015 Pilote optimisation sur données MCA 14 Product trial in pharmacy 0,23% Product trial in pharmacy 3,25% Brand displays at POS 28,17% Brochure at POS 18,17% TV Ad -0,54% Loyalty card 2,66% Internet Ad 22,18% Internet Ad 13,29% Packaging -0,57% Brand displays at POS 1,50% Friends & family advice 3,16% Sampling offered by pharmacist 4,68% Brand displays at POS -2,06% Brochure at POS 1,48% TV prgrm sponsoring 1,50% Friends & family advice 1,49% Brand website -2,66% TV prgrm sponsoring 0,75% Product trial in pharmacy 1,02% TV prgrm sponsoring 0,95% Brochure at POS -2,67% Advice of consumer associations 0,62% Advice of consumer associations 0,58% Brand displays at POS 0,77% Brand's video on Internet -2,71% Sampling at POS 0,59% Loyalty card 0,43% Advice of consumer associations0,24% Sampling at POS -2,78% Daily press Ad 0,01% Brochure at POS 0,22% Brand's video on Internet 0,10% Advice in blogs and social networks -2,88% Beauty magazine Ad -0,14% Sampling received by mail 0,06% Product trial in pharmacy 0,01% Outdoor ad -2,99% Brand's magazine at home -0,14% Daily press Ad -0,02% Health magazine Ad -0,15% Promo events at POS -3,07% Friends & family advice -0,15% Pharmacists' advice -0,06% Sampling in magazines -0,21% Loyalty card -3,14% Window postering at POS -0,22% Brand's video on Internet -0,08% Advice in specialized websites -0,23% Window postering at POS -3,23% Advice in blogs and social networks -0,26% Brand found on search engines -0,10% Advice in blogs and social networks-0,24% Health magazine Ad -3,23% Promo events at POS -0,26% Brand's magazine at home -0,15% Brand found on search engines -0,24% Advice of consumer associations -3,31% Internet Ad -0,29% TV Ad -0,19% Daily press Ad -0,25% Daily press Ad -3,32% Packaging -0,32% Advice in blogs and social networks -0,22% Window postering at POS -0,34% Shelf info at POS -3,33% Health magazine Ad -0,32% Celebrity endorsment -0,28% Brand's magazine at home -0,34% Brand found on search engines -3,33% Sampling received by mail -0,38% Health magazine Ad -0,29% Celebrity endorsment -0,37% Celebrity endorsment -3,34% Shelf info at POS -0,44% Promo events at POS -0,34% Sampling received by mail -0,41% Magazine inserts -3,35% Celebrity endorsment -0,45% Outdoor ad -0,34% TV Ad -0,42% Sampling received by mail -3,35% Sampling in magazines -0,47% Window postering at POS -0,35% Outdoor ad -0,43% E mailing / E newsletter -3,35% Brand's video on Internet -0,54% Articles about the brand in media -0,35% Shelf info at POS -0,46% Friends & family advice -3,36% Pharmacists' advice -0,54% Brand animation at POS -0,35% Magazine inserts -0,50% Mobile Marketing -3,38% Articles about the brand in media -0,55% E mailing / E newsletter -0,36% Brand animation at POS -0,53% Brand animation at POS -3,38% Brand animation at POS -0,55% Shelf info at POS -0,39% E mailing / E newsletter -0,53% Advice in specialized websites -3,41% Brand found on search engines -0,56% Mobile Marketing -0,43% Articles about the brand in media-0,53% Customer service by phone -3,43% Customer service by phone -0,57% Customer service by phone -0,45% Mobile Marketing -0,54% TV prgrm sponsoring -3,58% Outdoor ad -0,58% Brand website -0,48% Promo events at POS -0,55% Brand's magazine at home -3,60% Mobile Marketing -0,58% Magazine inserts -0,49% Customer service by phone -0,59% Sampling in magazines -3,64% E mailing / E newsletter -0,61% Advice in specialized websites -0,52% Pharmacists' advice -0,59% Articles about the brand in media -3,68% Brand website -0,61% Beauty magazine Ad -0,64% Beauty magazine Ad -0,60% Pharmacists' advice -3,76% Magazine inserts -0,71% Packaging -0,91% Brand website -0,62% Internet Ad -3,81% Advice in specialized websites -0,78% Sampling at POS -1,22% Packaging -1,03% Sampling offered by pharmacist -3,96% TV Ad -0,98% Sampling in magazines -1,57% Sampling at POS -1,04% Beauty magazine Ad -4,43% Sampling offered by pharmacist -1,35% Sampling offered by pharmacist -1,70% Loyalty card -1,99% % variation part de marché - La Roche Posay Séquentiel 3 groupes Séquentiel 2 groupes Base Sans constantes
  • 15. Eléments de conclusion  La modélisation permet de répondre à des questions What If sur les données MCA, ce qui apporte de la valeur ajoutée aux données.  Touts sortes de scénarios peuvent être testés, avec des sorties possibles sur toutes les marques: il faudra définir un cadre typique de scénario.  Ce pilote a été l’occasion d’automatiser une bonne partie de la modélisation. Il faudra faire de même sur la partie acquisition des données.  Mais la discussion des slides précédentes montre qu’il y aura toujours un temps non compressible à passer sur le choix du bon modèle. 19/06/2015 Pilote optimisation sur données MCA 15
  • 16. 19/06/2015 Nom du document 16 Annexe: MCA et MMM
  • 17. Marketing Mix Modelling  Une analyse de type MMM cherche à mesurer l’impact des actions de communication sur les ventes d’un produit. L’output standard de l’analyse est une décomposition de la variation des ventes en fonction des actions de communication: • x% de la variation des ventes vient de l’action de communication 1, y% de la variation des ventes vient de l’action de communication 2,….  Un sous-produit important du MMM est la capacité à faire: • Des analyses de simulation: que se passe-t-il si on fait plus de radio et moins de TV? • Des analyses d’optimisation: quelle est la répartition optimale du budget entre médias?  Les analyses MMM peuvent être purement tactiques et axées sur les campagnes publicitaires produit. Mais elles peuvent aussi intégrer une composante stratégique, en prenant en compte les actions publicitaires sur la marque.  Elles nécessitent des données quantitatives sur longue période (au moins quatre ans de données mensuelles, par exemple). 19/06/2015 Pilote optimisation sur données MCA 17
  • 18. MMM vs MCA (1/2)  Les deux approches se différencient par le type de données utilisées: • Déclaratif au niveau individuel pour MCA vs données de panel ou de pige pour MMM. • Photographie à l’instant t pour MCA vs évolution temporelle pour MMM,  …et donc par les résultats disponibles pour chaque méthode: • Granularité des résultats jusqu’au point de contact pour MCA vs résumé des actions de communication par canaux agrégés de contact pour MMM. • Possibilité d’avoir des résultats par cible pour MCA vs résultats uniquement agrégés pour MMM.  Il y a donc trois raisons principales pour lesquelles un client MCA pourrait être tenté par une approche MMM: • Le biais possible du déclaratif/Le côté « incontestable » d’une approche basée sur des données objectives, • Disposer d’un outil de simulation What if, • Faire des analyses à fréquence plus rapprochées et plus tactiques. 19/06/2015 Pilote optimisation sur données MCA 18
  • 19. MMM vs MCA (2/2) 19/06/2015 Pilote optimisation sur données MCA 19  La deuxième partie de ce document donne des pistes pour construire un outil de simulation.  Cet outil de simulation permet aussi de répondre à l’objection sur le déclaratif: on peut agréger les points de contact MCA au même niveau que celui des analyses MMM et vérifier qu’on obtient des élasticités similaires.  L’imbrication de données MCA dans un exercice de type MMM ne peut se concevoir que si on dispose de plusieurs études MCA sur le même marché. Une fois que l’on a vérifié que les élasticités sont similaires et qu’on est donc bien sur des analyses compatibles, les données MCA peuvent être utilisées pour • Donner un éclairage plus fin sur l’efficacité des différents médias. • Répartir l’impact ventes sur les points de contact détaillés. • Répartir l’impact ventes sur les cibles.